

Rearrangement of DNA {ragments:
a branch-and-cut algorithm!

C.E. Ferreira® C. C.de Souza® Y. Wakabayashi®

¢ Instituto de Matemdlica e Eslalistica * Instituto de Computagdo
Universidade de Sdo Paulo Universidade Estadual de Campiras
e-mail: [cef, yw]@ime.usp.br cid@dcc.unicamp.br
Abstract

We consider a problem that arises in the process of rearrangement of DNA [ragments. We present a graph
theoretical formulation of the problem and mention some extensions. \Ve show this problem to be NP-hard.
A 0/l-integer linear programming formulation of the problem is given and some results of a branch-and-cut
algorithm based on this formulation are discussed.

Key words: Inleger Programming, Compulalional Biology, Branch-and-Cut, Polyhedral Combinalorics.

1 Introduction

Let T be a finite alphabet and C a collection of strings over . Let £ and & be positive inlegers.
If s is a string in C, then we denote by {—last(s), resp. {— first(s), the substring of s consisting
of the last, resp. first, ¢ characters of s.

Given two strings s and ¢ such that {—last(s) = (- first(t), and ¢ has length =, then we denote
by #|¢t the string obtained by concatenating s with the n — ¢ last characters of . For example,
if s = ACTGTCA and t = TCAGGGT then st denotes the string ACTGTCAGGGT. The
notation s4l¢, 82¢, - « - lem_, 3m i8 used to denote the string s),_, obtained as follows. First,
we obtain the string s} := 81]¢, 82, then for i = 2,...,m — 1 we let s} := 8}_;l¢,8i41. Thus,
for s and ¢ as above, and z = GTAACC, the notation slyt|zz stands for the string
ACTGTCAGGGTAACC.

If a sequence 8 = (31,33,...,5m} of strings in C has the property that for any two of its
consecutive strings, say 8; and sj41, there exists an integer {; > k such that £;—last(s;) =

VThis research has been partially supported by CNPq (Project ProComb of ProTeM-1I-CC; Proc.
680065/94) and CNPq individual research grants (proc. no. 300752/94-G, 300883/94-3 and 304527/89-0 resp.}.
The two authors from University of Sio Paulo have also been suppcried by FAPESP (Project “Structural and
Algorithmic Aspects of Combinatorial Structures”, Proc. 96/4505~2)

1

U;-firsi(s;41), and neither s; is a substring of s;41 nor s; is a substring of s;41, then the
string z := 81]¢, 82le, - - -l Sm is called a k-contig (on C). The sequence s is called a skeleton
of the k-contig 2. If u and v are strings in C, such that u is a substring of v (eventually u = v)
and v is in a skeleton of a k-contig z, then we say that u is covered by z.

For each positive integer k, we define the Minimum k-Contig Problem, denoted by MkCP, as
follows. Given a collection C of strings over an alphabet £, find a collection C’ of k-contigs
with the property that each string in C is covered by precisely one k-contig in C’, and C' has
the smallest possible cardinality.

This problem occurs in the reconstruction of DNA fragments. An usual strategy to determine
the sequence of the bases in a DNA molecule (which can be seen as a string over the alphabet
{A, T, C, G}) can be described as follows. First, many copies of this molecule are produced
and, afterwards, these copies are (by means of chemical substances) broken into several small
pieces that we are able to handle. Then, the problem is how to “glue” the small pieces in the
correct way lo reconsirucl the original sequence? (see [M92] and [MS36]).

Many different approaches have been used to solve the DNA Fragment Assembly Problem (see
(KM95] for a good survey on the subject). A usual strategy is to apply algorithms designed
for the shortest common superstring problem. Kececioglu proposes in his Ph.D. thesis [K91]
a natural graph theoretical model to this problem. In this paper we suggest a very similar
formulation and the use of polyhedral techniques to develop a branch-and-cul algorithm for
the problem. We also present some computational results obtained with this approach.

The MKCP can be applied in the context of DNA Fragment Assembly. The idea is to obtain -
for a given positive integer k and a collection C of pieces — a collection C’ of k-contigs in such
a way that the original molecule is completely covered by the k-contigs in C'. A collection
C’ with the smallest possible cardinality gives a best possible approximation to the original
molecule.

Ezample 1.1: Let k =2 and 'C’ consist of the following strings:

1. CCTAATGCTT 8. TGTTTAGCCTG 9. TGCGTTTTGTGC
2. TGTTTAGCCTGCGT 6. CCTGCGTTTTGTGCC 10. GACGTAGACA
3. CTGTGTTTAGCCT 7. TTTTGTCCAT

4. GTAGACAACCCTGTG 8. TTTTGTCCATC

An optimal solution for the corresponding minimum 2-contig problem consists of a single
2-contig

GACGTAGACAACCCTGTGTTTAGCCT ... CTAATGCTTTTGTCCATC,

having as a skeleton the sequence (10,4, 3,2,6,1,8). Note that string 5 is a substring of 2,
string 7 a substring of 8, and string 9 is a substring of 6.

The real problem is surely much more complicated than that, since it involves reverse com-
plements, errors and other issues. We discuss some of these aspects in the sequel.

2 A model using graph theory

Consider an instance of the MKCP cousisting of a collection C of strings. Let G = (V, A) be
a directed graph constructed as follows: each node i € V' corresponds Lo a string 3; € C, and
there is an arc (i,j) € 4 if and only if there exists £ > k such that L—last(s;) = L- first(s;).

It is easy to see that any directed path in G corresponds to a skeleton of a k-contig. Thus,
if we find in G a collection of node-disjoint directed paths covering all nodes of G, we have
a collection of k-contigs covering exactly once each string in C. There may exist, however,
nodes corresponding to strings that are substrings of others and they need not be covered by
the collection of paths. These nodes are called Steiner nodes and the other ones are called
terminals. Thus a smallest set of node-disjoint directed paths covering the terminals of G
gives a solution for the given instance of the MkCP.

Ezample 2.1: For the instance given in Example 1.1 the corresponding graph is the following.
Nodes 5, 7 and 9 are Steiner nodes.

A similar formulation for the problem has been proposed by Kececioglu [K91], [KM95], the
main difference lying in the treatment of the Steiner nodes. Kececioglu’s model includes
special edges when a string is contained in another one. In this case the correspondence
between paths and k-contigs (or its skeletons) is not given. His model does not include either
the idea of Steiner nodes.

In the practical application we are interested in, some difficulties arise when the strings are
handled. We know that a DNA molecule can be viewed as two parallel strings over {A,C,
G, T }, where the second string is called the reverse complement. Given a string z over {
A, C, G, T }, its reverse complement Z is the string obtained from z by exchanging each
occurence of the caracters A,C,G,T by T,G,C,AXS, respectively, and then reversing the order
of the obtained sequence. For example, the reverse complement of the string CCTAATGCTT
is AAGCATTAGG. Thus, after a molecule is broken into pieces, one cannot say whether a
piece is from the first string or from the reversed one.

Now, suppose we are given a collection C of strings (some of them can be reversed) and an

3

integer k. Qur goal is to find a collection C’ of k-contigs with minimum cardinality, such that,
for each string, either it or its reverse complement is covered by a k-contig in C’. We refer to
this problem as MkCP".

We present now an extension of the model to treat reverse complements. Consider a collection
C of strings and a positive integer k. Initially, for each string s € C take its reverse complement
3. Let C" be the union of C with the reverse complements. We construct a directed graph
G™ = (V, A) in the following way. Each node i € V corresponds to a string s; € C" and there
is an arc (¢, j) € A if and only i and j are not reverse complements and there exists £ > k such
that {—lasi(s;) = (- first(s;). Nodes corresponding to strings which are substrings of others
are called Steiner nodes. The objective is to cover every terminal, or its reverse complement,
but not both, by a path. Thus, a smallest set of node-disjoint directed paths covering all
terminals or their reverse complements gives a solution to this problem.

There are several other versions of the problem that could be of interest. For instance, we may
allow that astring in C (or C") can be used more than once to form k-contigs. The graph model
is the same bul now we are looking for a collection of node-disjoint walks (or trails) covering
the nodes of the graph. Steiner nodes are also admitted. Other versions allow concatenation
of strings which differ by at most ¢ characters in their final and initial positions, provided
that this occurs in a substring of size at least k. These variants are of interest in practical
applications since errors may occur during the determination of the substring. For instance,
a string ACCCTGCCAT can be wrongly read as ACCGAGCCAT or ACC-TGCCA-. We
can also handle this problem by giving weights to the arcs in such a way that bigger weights
are given when we have more confidence in the concatenation. This weight can be given by
using, for instance, the edit distance of the substrings. Then, we search for a collection of
paths that covers all terminals and has maximum weight.

In this paper we concentrate our attention to the unweighted versions of the problem (although
our approach can be used to handle the weights), with and without considering reverse com-
plements.

3 NP-completeness of MkCP

The version of the problem we are considering here is A’P-hard. We prove that the corre-
sponding decision version of the MkCP is A'P-complete, even if no Steiner node is allowed.

To show this we first prove the following result.

Lemma 3.1 Let G = (V,.A) be a bipartite directed graph with mazimum degree 3 and without
cycles of length 2. Then there is a collection C of strinys over an alphabet T, such that
ICl = V| and to each node i € V corresponds a siring s; € C with the property that

{i,7) € A il and only if there exists > 1 such that l-lasi(s;) = - first(s;). (+)

Furthermore, the collection C can be constructed in polynomial time in the size of G.

Proof. Since G is a bipartite graph with maximum degree 3, the arcs of G can be covered
by 3 matchings, say My, M; and M;.

The construction of the collection C of strings 8; (i € V), is done in 3 steps, each corresponding
to a matching. In step 1 we consider the matching M) and assign labels (of length 2) to all
nodes of G; in step 2, we consider M, and extend these labels to others (of length 3 or 4);
and in step 3 we consider M3 and extend only the labels assigned to the nodes covered by
Ms. For i = 1,2,...,n, the string s; corresponds to the label assigned to the node i, after
considering these 3 steps.

The idea behind the constrution is the following. Let us say that a pair of nodes (i, j) is good
if the labels assigned to i and j, say &} and s}, satisfy the property that there exists an £ > 1
such that ¢~ last(s}) = £~ firsi(s}). Thus, our goal is to label the nodes in such a way that all
arcs in G become good. For that, in step 1 we label the nodes so that all arcs of M) become
good (with € = 1): in step 2 the arcs of M; become good (with ¢ = 2) while the arcs of M,
remain good (with ¢ = 1); and in step 3 the arcs of M3 become good (with ¢ € {2,3,4}) while
the arcs in M; U M3 remain good.

Furthermore, since we want property (#) to hold, we have to make sure that for the final
labels, whenever a pair (i, j) is not an arc of G then it is not a good pair.

Let V = {1,2,...,n}, and suppose that the arcs of M; and of Mj are all named, each
with a different character of length 1 (these characters being different from the characters
corresponding to the nodes in V, which we call numbers, and are also assumed to be of length

1).
e Step 1
Consider the matching M, and assign labels to the nodes covered by M, as follows.

For each arc a = (i, j) in M\, assign the label L;a to the node i, and the label al; to the node
j. Here we are assuming that L; (a node name) is a string of length 1 and L; # Lj il i #£17.

a a
oO——-0 o——0
i b i b |

Li. uLj

If there is a node i that is not covered by Mj, then assign to it the label L;$, where $ is a new
special character (the same for every such node), indicating that the node i is not covered by

M.

e Step 2

Consider now the matching Mz. Change the labels assigned to the nodes covered by Mz,
according to the following rule.

Suppose (i, 7) is an arc in M3 with tail i labelled AB and head j labelled CD. Note that at
this stage, each of the symbols A, B, C, D consists of one character (throughout this proof we
assume they stand for one character).

Extend the label A2 to AICB (that is, insert the string iC between A an B). Extend the
label CD to CBjD (that is, insert the string Bj between C and D).

i b i b
o—-0 Oo———0
AB cD Aics . CBjd

If there is a node i labelled AD that is not covered by M; then give this node the label AiB.

i0 i0

AB AlB

We remark here that if a label contains a character that is a number (corresponding to a node),
this character should be seen as a marker that divides the current label into 2 substrings. This
marker indicates that in the next step, the insertion (if any, to extend this label) will occur
cither immediately aflter, or immediately before this marker. The substring with lenght 2 that
is formed in this step is called an inseparable pair. For example, in the label AiCB (resp.
CBjD) the substring CB is an inseparable pair (no character can be inserted between C and
I} in the next step).

e Step 3

Consider now the matching M3. If a node is not covered by M3 then we leave its label
unchanged; otherwise, we change its label in the following way.

Let b = (i, 5) be an arc of M3. Suppose the node i is labelled aif, and the node j is labelled

776, where a and 8 (resp. 7y and 6) are strings having length 1 or 2 (both have length 1 if the
corresponding node is not covered by M3, otherwise, at most one of them has length 2).

Extend the label aif to aibyg@ (that is, insert the string by between i and). Extend the
label 756 to y3bjé (that is, insert the string fb between 7y and j).

b b

10———0 4 10——m——04

aifl 736 aibyf 7Pbjé
Note that this rule is similar to the rule in step 2. There, we perform the insertion in the middle
of the existing label (there is no need of a marker as we know there are only 2 characters),
and we insert the node character followed (resp. preceded) by the appropriate character. In
step 3 the insertion is performed after the marker (for tails) or before the marker (for heads),
and we insert the character corresponding to the arc in M; followed (resp. preceded) by the
appropriate characters.

The following observations may be helpful to clarify the labelling process. We also give an
illustrative example in the sequel.

(1) After step 3 every node has a label of length between 3 and 7.

G

(2) Fori=1,2...,n, the character i that occurs in the label s; assigned to the node i does
not occur in any other label.

(3) A character corresponding lo an arc in M3 occurs only in the labels assigned to the
nodes incident to this arc.

(4) In the labelling process the first and the last character remain unchanged. That is, once
a label, say AB, is given to a node (in step 1), the final label of this node will start with
A and will end with B,

(5) The labels assigned to nodes i covered by M have one of the following forms: aibyf
or abifl, where b is the arc of Mj incident to the node i.

The labels assigned to nodes i not covered by M3 have one of the forms: AiBC, ABIiC
or AiB.

Let us show that the strings s; assigned to the nodes of G satisfy property (»).

By construction, it follows immediately that all arcs in G are good, that is,

if (i,7) € A then there exists ¢ > 1 such that £—-last(s;) = £~ firsi(s;).

It remains to show the converse of the above statement, that is,

il (i,j)¢ A then t—lasi(s;) # - firsi(s;), for every {2 1. (+)

From the observation (5), it follows that if £ > 5 then for every string s;, both ¢—lasi(s;) and
(—firsi(s;) contain the character ¢ and/or a character corresponding to an arc of Mj. Thus,
from the observations (2) and (3), we can conclude that (+) holds for £ > 5.

It is easy to see that for any two nodes, say i and j, 1-last(s;) = 1—first(s;) if and only
('o]) € Ml-

Thus, it remains to show that (+) holds for 2 < £ < 4. For that, take a node i, and consider
the following 3 cases.

Case 1. The string s; has length 3 or 4

In this case, s; has one of the following forms: AiBC, ADiC or AiB.

It is immediate that, from the observation (2), we can conclude that (+) holds for 3 < L < 4.
If s; = AiBC then there exists a unique node that has a label starting with BC. This is the
node adjacent to i by an arc of M; (that leaves i). Thus, in this case, (+) holds for (=2 10f
s; = ABiC or s; = AiB, from observation (2) we conclude that (+) holds for ¢ = 2.

Case 2. The string s; has the form aibyf

We have four cases to analyse, according to the length of the strings ¥ and f:

Case 2.1. y=AB and = CD:;
Case 2.2. y=AB and g = C;
Case 2.3. y= A and 8 = BC;
Case24. y=Aand 8 = D.

The following claims hold, assuming the existence of the string s;.

(a) There is a unique node whose label starts with B; this is the node adjacent to i by an
arc of Ay that leaves i.

(b) Let y = AB. If 8 = CD then both v and 3 are inseparable pairs, and in this case there
is no label starting with BC. If # = C then if there exists a node whose label starts
with BC, this is the node that is adjacent to i by an arc of M,.

(c) If there exists a node whose label starts with 8, and B has length 2, then this node is
unique and is the one that is adjacent to i by an arc of M; that leaves i.

The proof of these claims can be obtained by analysing how the labels are generated. From
these claims we can conclude that (+) holds for each of the 4 cases above.

Case 3. The string s; has the form aybif

In this case the proof is simple, as the only not straigthforward case is when £ = 2 and 8 has
length 2. But in this case, we know that 8 is an inseparable pair formed in step 2, and there
is 2 unique node adjacent to i by an arc of M, (leaving ©).

The analyses above complete the proof that the collection C satisfies (). Since it is immediate
that the construction of C can be carried out in polynomial time in the size of the input graph,

the proof of the lemma is now complete.
o

Example: Let G be the graph defined in the figure below. The node names corresponding to
the nodes 1, 2, 3, 4 and 5 are A, B, C, D and E, respectively. The arc names are indicated in
the figure. Consider that M, = {a,d}, M3 = {c, [} and M3 = {b,e}. We show in the figure,
the node labels after each step of the construction.

aB .—p- a2dB —» aD$e2dB

AlbDSa <a— Ala -—«— Aa

AB3C «w— dC O: Dd —s D$4d —» D$abdd

E5eaD§ q— ESD§ o— E§

Theorem 3.2 For each integer k > 1 the decision version of MKCP is N'P-complete.

Proof. Let DMKCP denote the decision version of MkCP: given an integer p 2 1, decide
whether a given collection of strings can be covered by at most p k-contigs. Clearly, this

problem is in N'P.
Let us consider first the case k = 1, which we denote here by DM1CP.

We show that the following problem can be reduced to DMICP: given an integer p 2 1 and a
directed graph with maximum degree 3, decide whether this graph can be covered by at most
p node-disjoint paths. This problem is N'P-complete, since for p =1 this is the Hamiltonian
Path Problem (see [GJ79]).

It is immediate that the problem above remains A'P-complete when the input graph is bi partite
with maximum degree 3 and with no cycles of length 2. By Lemma 3.1, given such a graph G,
we can construct in polynomial time (in the size of G) a collection C of strings that constitutes
an instance of DM1CP.

Since the collection C satisfies property (#), it follows that the input graph G can be covered
by at most p node-disjoint paths if and only if C can be covered by at most p k-contigs. Thus,
DMICP is N'P-complete.

Now it remains to show that DMKCP is N'P-complete for each integer k > 2. For that, we
prove two claims.

Claim 1. Let k > 1. If DMKCP is N'P-complete then DMtCP is N'P-complete for £ = 2 + k.

(Proof of Claim 1) Given an instance of DMKCP consisting of a collection C of strings s;,
we construct an instance of DMtCP consisting of a collection C’ of strings s}, as follows.
The collection C’ has exactly || strings, and each string s} is obtained from s; by
replacing each character in s; with two copies of this character. That is, if 5; = ABCB,
then s; = AABBCCBB.

It is easy to see that the collection C can be covered by at most p k-contigs if and only
the collection C’ can be covered by at most p (2 + k)-contigs.

Claim 2. Let k > 2. If DMKCP is N'P-complete then DMtCP is N'P-complete for t = 2sk-1.

(Proof of Claim 2} Let be given an instance of DMkCP consisting of a collection of C
strings s;. We construct an instance of DMtCP consisting of a collection ' of strings,
with precisely |C| strings s, defined as follows. Each s} is obtained from s; by inserting
a new character, say $, between every two consecutive characters in s;. We take the
same character $ for all strings s{. Thus, if if s; = ABCB then s} = ABC$B; and
il 8; = CCCA then s} = CSCSC$A. Note that if s; has length q then s} has length
2+qg—1.

It is not dillicult to see that the collection € can be covered by at most p k-contigs if
and only the collection C’ can be covered by at most p (2 + k — 1)-contigs.

As we have proved that DMICP is N'P-complete, using the two claims above we can conclude

that DMKCP is N'P-complete for every &k > 1.
a

Remark. We note that for a graph with n nodes, the construction of the strings in C in Lemma
3.1 requires an alphabet ¥ with at most 3n 4 1 characters. These strings can be encoded to
strings of length O(log(n)) over an alphabet with 4 (or even 2) characters. However, with
such an encoding, we cannot assure that DMKCP remains A'P-complete for each k > 1 (at
least using the results we have presented).

4 Integer Programming Formulations for MkCP and MkCP"

In this section we show integer programming formulations for MkCP and MkCP". These
formulations are based on flow techniques. We consider the directed graph G = (V, A)
defined in the last section and add two new nodes, a source s and a sink ¢, and arcs linking s
to all nodes in V, and arcs linking all nodes in V to . We associate with each arc (i,j)e A
a variable z;; with the following interpretation:

5 A 1, if the arc (4,7) is in a path;
& 0, otherwise.

Moreover, for all i € V, we let s; (resp. t;) be the variable corresponding to the arc (s, i)
(resp. (i,1)).

10

Thus, a 0/1-ILP formulation for the problem is given by

z= min Zs;

i€V

z Tji+si= Z zij+t forallieV, (1)
Je8-(i) JEST(i)

(P) Y nitti=1 forall i € Z, (2)

j€s+(i)

Z i+ <1 forallieV\Z, (3)
j€s(i)

Y z.<|Cl-1 foral @£CCV, (4)
e€E(C)
z;; € {0,1} for all (i,5) € 4, (5)
si,ti € {0,1} for all i € V, (6)

where E(C) := {(i,§) € A| i,j € C}, 6~ (u) := {v | (v,u) € A} and §*(u) := {v | (u,v) € A}.

The first set of inequalities means that the solution x must be a feasible flow, i.e., for every
node that is not a source or a sink the flow conservation law must be satisfied. Inequalities
(2) and (3), respectively, guarantee that the terminals must be covered, and the Steiner nodes
may be covered by at most one path. Inequalities (4) eliminate the possibility of choosing
arcs that induce a cycle.

It is not difficult to check that a 0/1-vector z satisfies (1) to (6) if and only if the set of arcs
a € A with z, = 1 induces a collection of node-disjoint paths in G that covers all nodes in Z.
Moreover, since we minimize the number of arcs leaving the node s, the number of such paths
is minimized.

It should be noted that the number of constraints (4) is exponential. However, the separation
problem corresponding to these inequalities, called sublour eliminalion constrainis, can be
solved in polynomial time (see [PG85]. This means that the optimum value of the relaxed
LP (substituting constraints (5) by 0 < z;; < 1 for all (i,j) € A and (6) by 0 < s; < 1,
0<t; <1 forall i € V) can be calculated in polynomial time (this follows from a result due
to Grotschel, Lovdsz and Schrijver [GLS88]).

This formulation can be extended for the model with reverse complements. For that, consider
the graph G™ = (V, A) as defined in the last section, and include nodes s and ¢ linked to
all nodes in V, as above. Let us represent the reverse complement of i by i. We can now
formulate MkCP" as follows.

11

" = min Es,- + 57

i€V

Z z;i+ &%= Z zi; 4+ L forallie V, (1)
j€s=(i) JES*(3)

(r) Y, syttt Y, z;+4=1 forallieZ, (2)

jest(i jes+(d

Yo mitti+ Y oz <l forallieViz, (3)
jeft(i) jes+()

Y ze<lCl-1 forall@£CCV, (4)
ecE(C)
z;; € {0,1} for all (i,5) € A, (5)
si b € {0,1} forallie V. (6')

Inequalities (2') and (3') treat the nodes and its reverse complements together. Constraints
(2') guarantee that cach terminal is covered by exactly one path, and it reaches either the
node or its reverse complement, but not both. Constraints (3') assure that a Steiner node or
its reverse complement is used by at most one path.

Similarly to the formulation for MKCP, incqualities (4’) avoid the existence of subtours in the
solution. Morcover, these inequalities can be lifted in this version, as we show in the following

lemmas.

Lemma 4.1 Let C be a subset of nodes in V that induces a violated sublour elimination
incquality. Then, there is no node i such that {i,7} C C.

Proof. Immediate consequence from (1'), (2') and (3').

In the next lemma, the notation [S : §’] for node sets S and §’, stands for the set of arcs going
from § to §'.

Lemma 4.2 Let C be a subset of nodes in V and consider the corresponding subtour elimi-

nation incqualily
Z ze < |C| -1
e€E(C)

Then, the following lifted inequality is also satisfied by all feasible solutions of MkCF", for-
mulated as above.

Z ze + Z z, + Z Ze + Z IGS|C|_11

<€E(C) e€E(T) c€(C:C) e€[C:C)]

where C denoles the set of reverse complements of the nodes in C.

12

Proof. Consider an arbitrary feasible solution S for MkCP™ whose incidence vector is given
by z°. Let C) be the set of nodes in C incident to an arc e in E(C)U[C : C] with z5 = 1.
Similarly, let C; be the set of nodes in C whose reverse complements are in C and are incident
to the arcs in E(C)U(C : C]. Constraints (2’) and (3') guarantee that C; N C; = 0, and
therefore |Cy] + |Ca| < |C]. Moreover, Yece(c) 25 <|C|-1 and Bee E(T) 25 <|Ca) - 1.

Now, let p be the number of arcs in the set [T : CJU[C : C) with z5 = 1, that is:

Z S+ E xf:p.

e€[C:C] e€[C:C]
For each arc (u,v) contributing to this summation, it follows that the nodes T and ¥ cannot
be incident to any other arc in § (as the constraints (1) to (3') have to be satisfied).
Thus, eegic) LEED) c€E(T) 25 <G| +1Cq|-2p -1 (if both Cy and C; are nonempty this
bound is |Cy| + |C3| - 2p - 2).
Summing up these valid inequalities we obtain the inequality:
Leeric) 72 + Leerz) =5 + Lecio) %2 + Leegie) 25 SIC+1Cal -2p - 14 p

<iCl-p-1
<IC| -1

5 Branch-and-cut algorithms

The method we have used to tackle both problems MkCP and MKCP” is based on the linear
programming relaxation combined with branch-and-bound and cutting-planes, the so-called
branch-and-cul technique.

For that, we consider the polyhedron defined as the convex hull of the feasible (integer)
solutions of (P), which we denote by P,(G), that is,

Pi(G) := conv {z € R4| z satisfies (1) to (6)).

Analogously, we consider the polyhedron corresponding to MkCP":
P{(G) := conv {z € RA| z satisfies (1') to (6') }.

Both polyhedra are not full-dimensional, since their descriptions include equations. In this
paper we do not mention results concerning classes of facet-defining inequalities for both
polyhedra. We have found such an inequality which we could not generalize and these studies
might be addressed in a future paper. In our present implementation of a branch-and-cut
algorithm we have used only the inequalities presented in the last section.

13

As we have observed before, although there exists an exponential number of inequalities of
type (4) (resp. (4')) they can be separated efficiently (see [CP80]). We have implemented a
scparation heuristic for these inequalities, based on contractions of the graph, as described in
[PG85). In the case of inequalities (4') these are then lifted as indicated in Lemma 4.2.

It is interesting to note that, if the graph is acyclic, then there are no violated incqualities of
type (4), and the corresponding polytope Pi(G) is integral, i.e., has only 0/1-vertices. In this
case, since linear programming can be solved in polynomial time, the problems is easy.

The idea of the approach is to start with a relaxation of the polyhedron Pi(G) (resp. P{ (G))
and to solve iteratively better approximations of this polyhedron, obtained by using facet-
defining or, at least, valid inequalities that are violated by the optimal solution of the current
relaxation. When we are not able to find any violated valid inequality we fix the value of some
variables and proceed in a branch-and-bound fashion.

We have implemented two versions of the algorithm: one for the model without reverse com-
plements, and one that handles it. In both cases we begin with the LP given by constraints
(1), (2) and (3) (resp. (1), (2') and (3')), and use, as mentioned above, a separation heuristic
for the subtour elimination constraints. In the version with reverse complements the subtour
elimination inequality is lifted, as indicated in Lemma 4.2. Whenever no violated inequality
is found by the separation routine we perform a branching step.

The value of the current LP relaxation is used by a primal heuristic. The idea is to use the
arcs with bigger values in the current solution and try to cover all terminals.

We have tested both versions with two types of instances. In the first type the original
string is 5000 characters long and has been generated randomly on the alphabet {A, T, C,
G}. Each substring has length between 500 and 700 characters. Each substring is generated
by choosing randomly its length and also the position it starts in the original string. For
the model allowing reverse complements the sequence is reversed with probability 50%. The
second type of instances cortesponds to real data, given by DNA molecules. For the problem
with reverse complements, we use some of the instances presented in the DIMACS Challenge

95.

5.1 Instances of MkCP

For the version without reverse complements we are able to solve instances with up to 200
nodes within 1s (in a Sun Sparc 1000), and in many cases the graph is acyclic, and therefore
the first LP is sufficient to provide the optimal solution. We have obtained similar results for
the random and the real instances.

Table 1 summarizes the results for the random instances. In the first column we indicate the
aumber of nodes and ares in the graph. In the second column we indicate the value of k of
the corresponding MKCP problem. Columns 3 and 4 show the number of LPs solved and the
number of nodes in the branch-and-bound tree, respectively. Finally, in the last column we
present the CPU time spent to solve the problems in a SPARC 1000. We use CPLEX to solve
the LP in each iteration.

We have also tested our approach with some real instances (obtained from the author of

14

nodes #arcs| k| # LP | # BB nodes | CPU Time (sec.)
10 11] 3 1 1 0.10
20 47 | 10 1 1 0.15
30 105 5 1 1 0.15
50 330 | 10 1 1 0.11
50 333| 5 23 4 0.47
70 589 | 10 1 1 0.14
70 598 | 5 1 1 0.17
80 798| 5 1 1 0.16

100 1266 | 5 23 4 0.90
200 4566 | 5 1 1 0.32

Table 1: Computational results of the version without reverse complements.

nodes # arcs | k| # LP | # BB nodes | CPU Time (sec.)
273 358 | 12 1 1 0.15
273 358 | 10 1 1 0.16
273 366 | 8 1 1 0.23
273 392 | 6 1 1 0.19
273 595 | 4 142 12 5.40

Table 2: Computational results for instances arising from hss.

[M92]). The DNA sequence (denoted by hss) has length 10532 and has been cut into 273
pieces. We have been able to solve to optimality different instances of the problem, obtained
by using different values of k. See Table 2.

Our explanation to the fact that the problems are not difficalt to solve is that the corresponding
graphs are, in most cases, acyclic, and therefore, the solution of the LP relaxation is integral.
Further tests we have carried out with random graphs (with many cycles) indicate that the
problem becomes much more difficult to solve, even for small instances.

5.2 Instances of MkCP"

We have obtained similar results for the version with reverse complements when testing with
random instances. The results are presented in Table 3.

We have got memory overflow problem when we have tested the version with reverse comple-
ments, as in this version the number of nodes of the graph is twice as large. We considered
four instances of DIMACS benchmark; these are described in Table 4.

We have considered the problem for k = 10. Note that the number of arcs in the graphs goes
from 10331 to 35774. Since we could not solve some of these instances because of insufficient

15

nodes # arcs | k | # LP | # BB nodes CPU Time (scc.)
10 3013 1 1 0.19

20 118 | 3 1 1 0.11

30 280 | 3 12 3 0.30

50 682 |5 153 26 3.89

70 1336 | 5 1 1 0.22

80 1732 | 5| 1355 246 1:30.48

100 2587 | § 22 4 1.21

Table 3: Computational results of the version with reverse complements.

Name | # pieces
b1496 1811
b2126 1504
1247 1704
1518 1910

Table 4: DIMACS Challenge benchmark.

memory space (we use a Sun Sparc 1000 with 702 MBytes memory), we have decided to
generate many subinstances of the original ones, in order to detect how far we could go with
our code to solve practical instances. These instances have been generated by choosing a
random subgraph of the complete instance, with a certain percentage of the total number of
nodes. Tables 5, 6, 7 and 8 stllmmarize the results we have obtained. The second column of
these tables shows the value'of the optimal solution of the problem.

The computational experiments carried out lead us to the following observations. The value
of the lower bound of the first LP relaxation is already the value of the optimal solutions for
all instances we have tested. We have spent most of the time to prove that this was indeed the
case. Thus, with better primal heuristics we could possibly obtain better performances. This
stresses our belief that the formulation we propose for the problem can be used satisfactorily
to test primal heuristics. For instances arising from b2296, 1618 and 1247 the value of the

nodes # arcs | sol. | # LP | # BB nodes | CPU Time (sec.)

342 85 | 136 1 1 0.18

722 411 | 228 1 1 0.26
1074 892 | 308 56 20 2.05
1436 1540 | no sufficient memory

Table 5: Computational results for b1496 (# nodes=3622, # edges=10331).

16

nodes # arcs | sol. [# LP | # BB nodes | CPU Time (sec.)

286 186 | 40 1 1 0.21

608 874 | 45 1 1 0.21

892 1950 | 30 1 1 0.24

1206 3426 | 25 526 162 49.96

1486 5152 | 17 | 1676 516 7:23.46
1804 7640 | no sufficient memory

Table 6: Computational results for b2296 (# nodes=3008, # edges=20940).

nodes # arcs | sol. | # LP [# BB nodes | CPU Time (sec.)

362 320 | 39 1 1 0.19

770 1398 | 42 1 1 0.27

1138 3070 | 23 21 8 1.18

1524 5744 | 13 26 10 ' 242

1888 8700 7 51 20 6.32
2282 12964 | no sufficient memory

Table 7: Computational results for 1518 (# nodes=3820, # edges=35774).

nodes # arcs | sol. | # LP | # BB nodes | CPU Time (sec.)

320 226 | 43 1 1 0.11

688 1040 | 51 1 1 0.21

1012 2136 | 40 1 1 0.29

1690 6176 | 15 1 1 0.51

2040 8958 3 1 1 0.80
2220 10748 | no sufficient memory

Table 8: Computational results for 1247 (# nodes=3408, # edges=25990).

17

optimal solution of the subinstance decreases when the graph becomes more dense. This is an
indication that the approach can be used iteratively with decreasing values of k to provide a
solution to the Fragment Assembly Problem. The only instance for which our approach has
not performed well was b1496, wl.ose graph has some heavily connected components (note
that the number of arcs is small).

6 Conclusions and future research

The computational results we have presented in this paper show that the ILP formulation
we suggest for MkCP and MkCP" can be satisfactorily used to solve medium size instances
of the problems. Our aim is to increase the size of the instances we are able to solve to
optimality. For that, we necd other classes of valid inequalities to improve the lower bounds
in each node of the branch-and-cut trec and better primal heuristics. Moreover, polyhedral
investigations on facet-defining inequalities for the polyhedra we have defined is one of our
goals for future work. It is still a rather long way until we are able to solve instances with
the size of interest for the computational biology community. DIMACS instances could not
be satisfactorily handled because of insufficient memory space, but the results we were able
to derive allow us to say that the approach can be useful for determining the structure of the
original DNA molecule for “real world” examples. The DNA molecules that the community
of computational biologists intend to determine have length of millions of bases; and typigally,
these molecules are broken into several hundreds of pieces. Another possible direction to
continue research is to extend the model to allow the use of the same piece several times (i.e.
covering the graph by node-disjoint walks) and to handle errors.

7 Acknowledgement

We thank J. Meidanis for bringing this problem into our attention and making available some
of his data sets (as the instance hss). The discussions we had during the elaboration of this
work were very stimulating.

References

[CP80) H. Crowder, M.W. Padberg, “Solving large-scale symmetric traveling salesman
problems to optimality”, Management Science 26, 495-509 (1980).

[GJ79) M.R.Garey and D.S. Johnson, Computer and Intractability - A Guide to the Theory
of NP-Completeness, Freeman, New York (1979). °

[GLS88] M. Grétschel, L. Lovisz and A. Schrijver, Geometric Algorithms and Combinatorial
Optimization, Springer-Verlag, Berlin (1988).

[K91) J.D. Kececioglu, “Exact and Approximation Algorithms for DNA Sequence Recon-
struction”, PhD. Thesis, University of Arizona, Tucson (1991).

18

[KM95] J.D. Kececioglu and E.W. Myers, “Combinatorial Algorithms for DNA Sequence
Assembly”, Algorithmica 13, 7-51 (1995).

[M92] J. Meidanis, “Algorithms for Problems in Computational Genetics”, Ph.D. Thesis,
University of Wisconsin-Madison (1992).

[MS96] J. Meidanis and J.C. Setubal, Computational Molecular Biology, PWS, Boston (to
appear in 1997).

[NW88] G.L. Nemhauser and L.A. Wolsey, “Integer and Combinatorial Optimization”, Wi-
ley, (1988).

[PG85] M.W. Padberg and M. Grdtschel, “Polyhedral Aspects of the Travelling Salesman
Problem I : Computations”, in E.L. Lawler, J.K. Lenstra and A.lL.G. Rinooy Kan
eds., The Travelling Salesman Problem, Wiley, New York (1985).

19

RELATORIOS TECNICOS

DEPARTAMENTO DE CIENCIA DA COMPUTACAO
Instituio de Maiemitica ¢ Estatfatica da USP

A listagem contendo os relatérios (&cnicos anteriores n 1994 poderd ser consultada ou solicitada A Secretaria do
Departamento, pessoalmenie, por carta ou c-mail(mac@ime.usp.br).

Flavio S. Corréa da Silva
AN ALGEBRAIC VIEW OF COMBINATION RULES
RT-MAC-9401, Janciro de 1994, 10 pp.

Flavio S. Corréa da Silva e Junior Barrera
AUTOMATING THE GENERATION OF PROCEDURES TO ANALYSE BINARY IMAGES
RT-MAC-9402, Janciro de 1994, 13 pp.

Junior Barrera, Gerald Jean Francis Banon e Roberto de Alencar Lotufo
A MATHEMATICAL MORPHOLOGY TOOLBOX FOR THE KHOROS SYSTEM
RT-MAC-9403, Janeiro de 1994, 28 pp. *

Flavio S. Corréa da Silva
ON THE RELATIONS BETWEEN INCIDENCE CALCULUS AND FAGIN-HALPERN STRUCTURES
RT-MAC-9404, abril de 1994, 11 pp.

Junior Barrera; Flévio Soares Corréa da Silva ¢ Gerald Jean Francis Banon
AUTOMATIC PROGRAMMING OF BINARY MORPHOLOGICAL MACHINES
RT-MAC-9405, abril de 1994, 15 pp.

Valdemar W, Setzer; Cristina G. Fernandes: Wania Gomes Pedrosa s Flavio Hirata
UM GERADOR DE ANALISADORES SINTATICOS PARA GRAFOS SINTATICOS SIMPLES
RT-MAC-9406, abril de 1994, 16 pp.

Siang W. Song

TOWARDS A SIMPLE CONSTRUCTION METHOD FOR HAMILTONIAN DECOMPOSITION OF
THE HYPERCUBE

RT-MAC-9407, maio de 1994, 13 pp.

Julio M. Stern
MODELOS MATEMATICOS PARA FORMACAO DE PORTF OLIOS
RT-MAC-9408, maio de 1994, 50 pp.

Imre Simon
STRING MATCHING ALGORITHMS AND AUTOMATA
RT-MAC-9409, maio de 1994, 14 pp.

Valdemar W. Setzer ¢ Andrea Zisman
CONCURRENCY CONTROL FOR ACCESSING AND COMPACTING B-TREES*

RT-MAC-9410, junho de 1994, 21 pp.

Renata Wassermann ¢ Fldvio S. Corréa da Silva

TOWARDS EFFICIENT MODELLING OF DISTRIBUTED KNOWLEDGE USING EQUATIONAL AND
ORDER-SORTED LOGIC

RT-MAC-941], junho de 1994, 15 pp.

Jair M. Abe, Fldvio S. Corréa da Silva e Marcio Rillo
PARACONSISTENT LOGICS IN ARTIFICIAL INTELLIGENCE AND ROBOTICS.
RT-MAC-9412, junho de 1994, 14 pp.

Flévio S. Corréa da Silva, Daniela V. Carbogim
A SYSTEM FOR REASONING WITH FUZZY PREDICATES
RT-MAC-9413, junho de 1994, 22 pp.

Fldvio S. Corréa da Silva, Jair M. Abe, Marcio Rillo
MODELING PARACONSISTENT KNOWLEDGE IN DISTRIBUTED SYSTEMS
RT-MAC-9414, julho de 1994, 12 pp.

Nami Kobayashi

THE CLOSURE UNDER DIVISION AND A CHARACTERIZATION OF THE RECOGNIZABLE
Z-SUBSETS

RT-MAC-9415, julho dc 1994, 29pp.

Flévio K. Miyazawa e Yoshiko Wakabayashi

AN ALGORITHM FOR THE THREE-DIMENSIONAL PACKING PROBLEM WITH ASYMPTOTIC
PERFORMANCE ANALYSIS |

RT-MAC-9416, novembro de 1994, 30 pp.

Thomaz I. Seidman e Carlos Humes Jr.
SOME KANBAN-CONTROLLED MANUFACTURING SYSTEMS: A FIRST STABILITY ANALYSIS
RT-MAC-9501, janeiro de 1995, 19 pp.

C.Humes Jr. and A.F.P.C. Humes
STABILIZATION IN FMS BY QUASI- PERIODIC POLICIES
RT-MAC-9502, margo de 1995, 31 pp.

Fabio Kon ¢ Arnaldo Mandel
SODA: A LEASE-BASED CONSISTENT DISTRIBUTED FILE SYSTEM
RT-MAC-9503, margo de 1995, 18 pp.

Junior Barrera, Nina Sumiko Tomita, Flévio Soares C. Silva, Routo Terada
AUTOMATIC PROGRAMMING OF BINARY MORPHOLOGICAL MACHINES BY PAC LEARNING
RT-MAC-9504, abril de 1995, 16 pp.

Flévio S. Corréa da Silva e Fabio Kon
CATEGORIAL GRAMMAR AND HARMONIC ANALYSIS
RT-MAC-9505, junho de 1995,17 pp.

Henrique Mongelli e Routo Terada
ALGORITMOS PARALELOS PARA SOLUCAO DE SISTEMAS LINEARES
RT-MAC-9506, junho de 1995, 158 pp.

Kunio Okuda
PARALELIZACAO DE LACOS UNIFORMES POR REDUCAO DE DEPENDENCIA
RT-MAC-9507, julho de 1995, 27 pp.

Valdemar W, Setzer e Lowell Monke
COMPUTERS IN EDUCATION: WHY, WHEN, HOW
RT-MAC-9508, julho de 1995, 21 pp.

Fldvio S. Corréa da Silva
REASONING WITH LOCAL AND GLOBAL INCONSISTENCIES
RT-MAC-9509, julho de 1995, 16 pp.

Julio M. Stern
MODELOS MATEMATICOS PARA FORMACAO DE PORTFOLIOS
RT-MAC-9510, julho de 1995, 43 pp.

Femando lazzetta e Fabio Kon
A DETAILED DESCRIPTION OF MAXANNEALING
RT-MAC-9511, agosto de 1995, 22 pp.

Flévio Keidi Miyazawa e Yoshiko Wakabayashi

POLYNOMIAL APPROXIMATION ALGORITHMS FOR THE ORTHOGONAL
Z-ORIENTED 3-D PACKING PROBLEM

RT-MAC-9512, agosto de 1995, pp.

Junior Barrera e Guillermo Pablo Salas i

SET OPERATIONS ON COLLECTIONS OF CLOSED INTERVALS AND THEIR APPLICATIONS TO
THE AUTOMATIC PROGRAMMINIG OF MORPHOLOGICAL MACHINES

RT-MAC-9513, agosto de 1995, 84 pp.

Marco Dimas Gubitoso e Jorg Cordsen
PERFORMANCE CONSIDERATIONS IN VOTE FOR PEACE
RT-MAC-9514, novembro de 1995, I8pp.

Carlos Eduardo Ferreim e Yoshiko Wakabayashi

ANAIS DA 1 OFICINA NACIONAL EM PROBLEMAS COMBINATORIOS: TEORIA, ALGORITMOS E
APLICACOES

RT-MAC-9515, novembro de 1995, 45 pp.

Markus Endler and Anil D'Souza
SUPPORTING DISTRIBUTED APPLICATION MANAGEMENT IN SAMFA
RT-MAC-9516, novembro de 1995, 22 pp.

Junior Barrera, Routo Terada,

Fldvio Corréa da Silva and Nina Sumiko Tomits
AUTOMATIC PROGRAMMING OF MMACH'S FOR OCR*
RT-MAC-9517, dezembro de 1995, 14 pp.

Junior Barrera, Guillermo Pablo Salas and Ronaldo Fumio Hashimoto

SET OPERATIONS ON CLOSED INTERVALS AND THEIR APPLICATIONS TO THE AUTOMATIC
PROGRAMMING OF MMACH'S

RT-MAC-9518, dezembro de 1995, 14 pp.

Daniela V. Carbogim and Fldvio S. Corréa da Silva
FACTS, ANNOTATIONS, ARGUMENTS AND REASONING
RT-MAC-9601, janeiro de 1996, 22 pp.

Kunio Okuda
REDUCJO DE DEPENDENCIA PARCIAL E REDUCJO DE DEPENDENCIA GENERALIZADA

RT-MAC-9602, fevereiro de 1996, 20 pp.

Junior Barrera, Edward R. Dougherty and Nina Sumiko Tomita

AUTOMATIC PROGRAMMING OF BINARY MORPHOLOGICAL MACHINES BY DESIGN OF
STATISTICALLY OPTIMAL OPERATORS IN THE CONTEXT OF COMPUTATIONAL LEARNING
THEORY.

RT-MAC-9603, abril de 1996, 48 pp.

Junior Barrera e Guillermo Pablo Salas

SET OPERATIONS ON CLOSED INTERVALS AND THEIR APPLICATIONS TO THE AUTOMATIC
PROGRAMMINIG OF MMACH'S

RT-MAC-9604, ahril de 1995, 66 pp.

Kunio Okuda
CYCLE SHRINKING BY DEPENDENCE REDUCTION
RT-MAC-9605, maio de 1996, 25 pp.

Julio Stern, Fabio Nakano ¢ Marcelo Lauretto
REAL: REAL ATTRIBUTE LEARNING FOR STRATEGIC MARKET OPERATION
RT-MAC-9606, agosto de 1996, 16 pp.

Markus Endler
SISTEMAS OPERACIONAIS DISTRIBUIDOS: CONCEITOS, EXEMPLOS E TENDENCIAS
RT-MAC-9607, agosto de 1996, 120 pp.

Hae Yong Kim

CONSTRUCAO RAPIDA E AUTOMATICA DE OPERADORES MORFOLOGICOS E EFICIENTES PELA
APRENDIZAGEM COMPUTACIONAL

RT-MAC-9608, outubro de 1996, 19 pp.

Marcelo Finger
NOTES ON COMPLEX COMBINATORS AND STRUCTURALLY FREE THEOREM PROVING
RT-MAC-9609, dezembro 1996, 28 pp.

Carlos Eduardo Ferreira, Fldvio Keidi Miyazawa e Yoshiko Wakabayashi (eds)
ANAIS DA 1 OFICINA NACIONAL EM PROBLEMAS DE CORTE E EMPACOTAMENTO
RT-MAC-9610, dezembro de 1996, 65 pp.

Carlos Eduardo Ferreira, C. C. de Souza ¢ Yoshiko Wakabayashi
REARRANGEMENT OF DNA FRAGMENTS: A BRANCH-AND-CUT ALGORITHM
RT-MAC-9701, janeiro de 1997, 24 pp.

