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1 Introduction 

Let E be a finite alphabet and C a collection of strings over E. Let land k be positive integers. 

If a is a string in C, then we denote by l-last(a), resp. l-first(a), the substring of s consisting 

of the last, resp. first, l characters of a. 

Given two strings a and t such that t-last(a) = l-first(t), and t has length n, then we denote 

by al,t the string obtained by concatenating a with then -l last characters oft. For example, 

if a= ACTGTCA and t = TCAGGGT then al3t denotes the string ACTGTCAGGGT. The 

notation .,, It, ailt, .. -It..,_,.,,,. is used to denote the string .11:,__ 1 obtained as follows. First, 

we obtain the string .,j := a1lt,.,2, then for i = 2, ... ,m - 1 we let.,~:= a~_ 1lt,8i+J• Thus, 

for a and t as above, and z = GTAACC, the notation .,f3tl2z stands for the string 

ACTGTCAGGGTAACC. 

If a sequence a = (a1 , .,3 , ••• , .,m) of strings in C has the property that for any two of it.a 

consecutive strings, say-'; and -';+1, there exists an integer l; ~ k such that l;-last(a;) = 
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t;-ftrst(s;+i), and neither s; is a substring of s;+1 nor s; is a substring of s;+a, then the 
string z := s, lt1 -''llt1 •• -lt,,,_1 -'m is called a k-contig (on C). The sequence sis called a skeleton 
of the k-contig z. Ir u and tr are strings in C, such that u is a substring of v (eventually u = v) 
and v is in a skeleton of a k-contig z, then we say that u is covered by z. 

For each positive integer k, we define the Minimum k-Contig 'Problem, denoted by MkCP, as 
follows. Given a collection C of strings over an alphabet E, find a collection C' of k-contigs 
with the property that each string in C is covered by precisely one k-contig in C', and C' has 
the smallest possible cardinality. 

This problem occurs in the reconstruction of DNA fragments. An usual strategy to determine 
the sequence of the bases in a DNA molecule (which can be seen as a string over the alphabet 
{A, T, C, G}) can be described as follows. First, many copies of this molecule are produced 
and, afterwards, these copies are (by means of chemical substances) broken into several small 
pieces that we are able to handle. Then, the problem is how to •glue" the small piece, in the 
correct way to reconstruct the original aequencef (see (M92] and [MS96]). 

Many different approaches have bee11 used to solve the DNA Fragment Assembly Problem (see 
(KM95] for a good survey on the subject). A usual strategy is to apply algorithms designed 
for the shortest common superstring problem. Kececioglu proposes in his Ph.D. thesis [K91) 
a natural graph theoretical model to this problem. In this paper we suggest a very similar 
formulation and the use of polyhedral techniques to develop a branch-and-cut algorithm for 
the problem. We also present some computational results obtained with this approach. 

The MkCP can be applied in the context of DNA Fragment Assembly. The idea is to obtain -
for a given positive integer k and a collection C of pieces - a collection C' of k-contigs in such 
a way that the original molecule is completely covered by the k-contigs in C'. A collection 
C' with the smallest possible cardiuaiity gives a best possible approximation to the original 
molecule. 

Example J. J: Let k = 2 and 'C
1 

consist of the following strings: 

l. CCTAATGCTT 
2.TGTTTAGCCTGCGT 
3. CTGTGTTTAGCCT 
4.GTAGACAACCCTGTG 

5. TGTTTAGCCTG 
6.CCTGCGTTI'TGTGCC 
7. TTI'TGTCCAT 
8. TTI'TGTCCATC 

9.TGCGTTI'TGTGC 
10. GACGTAGACA 

An optimal solution for the corresponding minimum 2-contig problem consists of a single 
2-contig 

GACGTAGACAACCCTGTGTTTAGCCT ••• CTAATGCTTTTGTCCATC, 

having as a skeleton the sequence (10,4,3,2,6,1,8). Note that string 5 is a substring of 2, 
string 7 a substring of 8, and string 9 is a substring of 6. 

The real problem is surely much more complicated than that, since it involves reverse com­
plements, errors and other issues. We discuss 110me of these aspects in the sequel. 
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2 A model using graph theory 

Consider an instance of the f,,lkCP consisting of a collct:tion C of strings. J.cl G = (V, A) he 

a directed graph constructed as follows: each node i E V corresponds to a string :Ji EC, and 

there is aJJ arc (i,j} EA if and only if there exists l ~ k such that. l-last(&;) = l-first(&j}. 

It is easy to see that any directed path in G corresponds to a skeleton of a k-contig. Thus, 

ir we find in Ga collection of node-disjoint directed paths covering all nodes of G, we have 

a collection of k-contigs covering exacUy once each string in C. There may exist, however, 

nodes corresponding to strings that are substrings of others and they need not be covered by 

the collection of paths. These nodes are called Steiner node:, and the other ones are called 

terminals. Thus a smallest set of node-disjoint directed paths covering the terminals of G 

gives a solution for the given instance of the MkCP. 

Example 2.1: For the instance given in Example 1.1 the corresponding graph is the following. 

Nodes 5, 7 and 9 a.re Steiner nodes. 

G) 

V 
A similar formulation for the problem has been proposed by Kececioglu [K91), [KM95), the 

main difference lying in the treatment of the Steiner nodes. Kccecioglu's model includes 

special edges when a string is contained in another one. In this case the correspondence 

between paths and k-contigs (or its skeletons) is not given. His model does not include either 

the idea of Steiner nodes. 

In the practical application we are interested in, some difficulties arise when the strings are 

handled. We know that a DNA molecule can be viewed as two parallel strings over { A, C, 

G, T }, where the second string is called the reverse complement. Given a string z over { 

A, C, G, T }, its reverse complement z is the string obtained from z by exchanging each 

occurence of the caracters A,C,G,T by T,G,C,AXS, respectively, and then reversing the order 

of the obtained sequence. For example, the reverse complement of the string CCTAATGCTT 

is AAGCATTAGG. Thus, after a molecule is broken into pieces, one cannot say whether a 

piece is from the first string or from the reversed one. 

·Now, suppose we are given a collection C of strings (some or them can be reversed) and an 
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integer k. Our goal is lo find a collection C' of k-contigs with minimum cardinality, such that, 
for each string, either it or its reverse complement is covered by a k-contig in e'. We refer to 
this problem as MkCl'r. 

We present now an extension of the model to treat reverse complements. Consider a collection 
C of strings and a positive integer k. Initially, for each string 8 EC take its reverse complement 
i. Let er be the union of C with the reverse complements. We construct a directed graph 
Gr= (V, A) in the following way. Each node i E V corresponds to a string a; E er and there 
is an arc (i,j) E A if and only i and j are not reverse complements and there exists l ~ k such 
that l-last(a;) = l-firsl(JJ;). Nodes corresponding to strings which are substrings of others 
are called Str.iner nodes. The objective is to cover every terminal, or its reverse complement, 
but not both, by a path. Thus, a smallest set of node-disjoint directed paths covering all 
terminals or their reverse complements gives a solution to this problem. 

There are several other versions of the problem that could be of interest. For instance, we may 
allow that a string in C (orer) can be used more than once to form k-contigs. The graph model 
is the same hut now we are looking for a. collection of node-disjoint walks (or trails) covering 
the nodes of the graph. Steiner nodes are also admitted. Other versions allow concatenation 
of strings which differ by at most ( characters in their final and initial positions, provided 
that this occurs in a substring of size at lea.st k. These variants are of interest in practical 
applications since errors may occur during the determination of the substring. For instance, 
a string ACCCTGCCAT can be wrongly read as ACCGAGCCAT or ACC. TGCCA-. We 
can also handle this problem by giving weights to the arcs in such a way that bigger weights 
are given when we have more confidence in the concatenation. Thia weight can be given by 
using, for instance, the edit distance of the substrings. Then, we search for a collection of 
palhs that covl'rs all wrminals au<l has maximum wcighL. 

In this paper we concentrate our attention to the unweighted versions of the problem (although 
our approach can be used to handle the weights), with and without considering reverse com­
plements. 

3 NP-completeness of MkCP 

The version of the problem we are considering here is NP-hard. We prove that the corre­
sponding decision version of the MkCP is NP-complete, even if no Steiner node is allowed. 

To show this we first prove the following result. 

Lemma 3.1 Let G = (V,.A) be a bipartite directed graph with maximum degree 3 and without 
cycles of length 2. Then there is a collection e of slrinys over an alphabet E, such that 
ICI = IVI and Lo each node i E V corresponds a string a; E e with the property that 

(i,j) EA if and only if there exists l ~ l such that l-lasl(s;) = l-first(a;). (•) 

Furthermore, the collection e can be constructed in polynomial time in the aize of G. 
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Proof. Since G is a bipartite graph with maximum degree 3, the arcs of G can be covered 

by 3 matchings, say M1, M2 and M3. 

The construction of the collection C of strings .,i (i E V), is done in 3 steps, each corresponding 

to a matching. In step 1 we consider the matching M1 and assign labels (of length 2) to all 

nodes of G; in step 2, we consider M2, and extend these labels to others (of length 3 or 4); 

and in step 3 we consider MJ and extend only the labels assigned to the nodes covered by 

M3. For i = I, 2, ... , n, the string a; corresponds lo the label assigned lo the node i, after 

considering these 3 steps. 

The idea behind the constrution is the following. Let us say that a pair of nodes (i,j) is good 

if the labels assigned to i and j, say.,~ and ";, satisfy the property that there exists an l ~ 1 

such that l-last(aD = l-firsl(-';)· Thus, our goal is to label the nodes in such a way that all 

arcs in G become good. For that, in step 1 we label the nodes so that all arcs of M1 become 

good (with l = 1): in step 2 the arcs of M2 become good (with l = 2) while the arcs ~f M 1 

remain good (with (=I); and in step 3 the arcs of M3 become good (with l E {2,3,4}) while 

the arcs in M1 U M1 remain good. 

Furthermore, since we want property ( •) to hold, we have to make sure that for the final 

labels, whenever a pair (i,j) is not an arc of G then it is not a good pair. 

Let V = {1,2, ... ,n}, and suppose that the arcs of M 1 and of M3 arc all named, each 

with a different character of length 1 (these characters being different from the characters 

corresponding to the nodes in V, which we call numbers, and are also assumed to be of length 

I). 

• Step 1 

Consider the matching M1 and assign labels lo the nodes covered by M1, as follows. 

For each arc a= (i,j) in M1, assign the label L;a to the node i, and the label al; lo the node 

j. Here we are assuming that L; (a n<><!e name) is a string of lengU, 1 anJ L; i- Li if ii- j. 

a o-----.. o 
i j 

a o----o 
i j 

If there is a node i that is not covered by M1, then assign to iL the label L;$, where Sis a new 

special character (the same for every such node), indicating that the node i is not covered by 

Mi. 

• Step 2 

Consider now the matching Mi. Change the labels assigned to the nodes covered by Mi, 

according to the following rule. 

Suppose (i,j) is an arc in M2 with tail i labelled AB and head j labelled CD. Note that at 

this stage, each of the symbols A, B, C, D consists of one character ( throughout this proor we 

assume they stand for one character). 
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Extend the label AR lo AiC B (that is, insert the string iC between A an B). Extend the 
label CD to C Bj D (that is, insert the string Bj between C and D). 

i :J 
o----••O 

AB CD 

i :J 
0----•0 

Aica CB;Jd 

If there is a node i labelled AB that is not covered by M1 then give this node the label AiB. 

10 
AB 

10 
AiB 

We remark here that if a label contains a character that is a number (corresponding to a node), 
this character should be seen as a marker that divides the current label into 2 substrings. This 
marker indicates that in the next step, the insertion (if any, to extend this label) will occur 
either immediately after, or immediately before this marker. The substring with lenght 2 that 
is formed in this step is called an inseparable pair. For example, in the label AiCD (resp. 
C /JjD) the substring CB is an inseparable pair (no character can be inserted between C and 
I/ in the next slrp). 

• Step 3 

Consider now the matching M3. If a node is not covered by M3 then we leave its label 
unchangc>d; otherwise, we change its label in the following way. 

Let b = (i,j) be an arc of M3. Suppose the node i is labelled ai/J, and the node j is labelled 
-yj{J, where a and /J (resp. -, and 6) are strings having length 1 or 2 (both have length 1 if the 
corresponding node is not covered by M2 , otherwise, at most one of them has length 2). 

Extencl the label ai/J to aifrr/J (that is, insert the string Irr between i and {J). Extend the 
label -yj/J to 1/Jbj6 (that is, insert the string /Jb between 1 and j). 

b 
10-----•0 :J 

oi/J -yj6 

b 
i 0----... .-0 :J 

aib-y/J 1/Jbj6 

Note that this rule is similar to the rule in step 2. There, we perform the insertion in the middle 
of the existing label (there is no need of a marker as we know there are only 2 characters), 
and we insert the node character followed (resp. preceded) by the appropriate character. In 
step 3 the insertion is performed after the marker (for tails) or before the marker (for heads), 
and we insert the character corresponding to the arc in M3 followed (resp. preceded) by the 
appropriate characters. 

The following observations may be helpfol lo clarify the labelling process, We also give an 
illustrative example in the sequel. 

(1) After step 3 every node has a. la.bet of l~ngth between 3 and 7. 
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(2) For i = l, 2 ... , n, the character i that occurs in the label s; assigned to the node i docs 

not occur in any other label. 

(3) A character correspomling to an arc in A/3 occurs only in lhe lal,cls assigned to the 

nudes incident to this arc. 

(4) In the labelling process the first and the last character remain unchanged. That is, once 

a label, say AB, is given to a node (in step 1), the final label of this node will start with 

A and will end with B. 

(5) The labels assigned to nodes i covered by M3 have one or the following forms: oib-y{J 

or a7bi{J, where bis the arc or M3 incident to the node i. 

The labels assigned to nodes i not covered by A-h have one or the forms: AillC, 1llliC 

or AiB. 

Let us show that the strings -'i assigned to the nodes or G satisfy property ( •). 

By construction, it follows immediately that all arcs in Gare good, that is, 

if (i,j) EA then there exists t ~ l such that l-last(si) = l-first(s;). 

It remains to show the converse of the above statement, that is, 

if (i,i) f A then l-/asl(.,;) :/; l-first(.,;), for every t ~ l. (+) 

From the observation (5), il follows that if t ~ 5 then for every string a;, both l-last(.,;) and 

l-firat(s;) contain the character i and/or a character corresponding to an arc of M3. Thus, 

from the observations (2) and (3), we c~n conclude that (+) holds for l ~ 5. 

It is easy to see that for any two nodes, say i and;, l-last(s;) = 1-first(a;) if and only 

(i,j) e M1. 

Thus, it remains to show that ( +) holds for 2 $ l $ 4. For that, take a node i, and consider 

the following 3 cases. 

Case J. The string a; has length 3 or 4 

In this case, a; has one of the following forms: AiBC, AlliC or AiB. 

Jt is immediate that, from the ol,servation (2), we can conclude that ( +) holds for J $ l $ 4. 

If a;= AiBC then there exists a unique node that has a label starting with BC. This is the 

node adjacent to i by an arc of M2 (that leaves i). Thus, in this case, (+) holds fort= 2. If 

a;= ABiC or a;= AiB, from observation (2) we conclude that(+) holds for l = 2. 

Cue 2. The string a; has the form aitry{J 

We have four cases to analyse, according to the length of the strings 7 and /J: 

7 



Case 2.1. "f = AB and {J = CD; 

Case 2.2. "f = 1\B and {J = C; 

Case 2.3. -y = A and {J = DC; 

Case 2.4. -y = A and {J = D. 

The following claims hold, assuming the existence of the string a;. 

(a) There is a unique node whose label starts with 1/1; this is the node adjacent to i by an 
arc of M3 that leaves i. 

(b) Let -y = All. Ir /3 =CD then both -y and {J are inseparable pairs, and in this case there 
is no label starting with BC. If {J = C then if there exists a node whose label starts 
with BC, this ia the node that is adjacent to i by an arc of M2 • 

(c) tr there exists a node whose label starts wi'th /J, and /J has length 2, then this node is 
u11i(1uc and is the one that is adjacent to i by an arc of M2 that leaves i. 

The proof of thcs<' claims can be obtained by analysing how the labels are generated. From 
these claims we can concl udc that ( +) holds for each of the 4 cases above. 
Case ,'J. The string s; has the form o-ybi/3 

l11 this casr the proof is simple, as the only not straigthforward case is when l = 2 and /1 has 
length 2. But in this case, we know that {J is an inseparable pair formed in step 2, and there 
is a unique node adjacent to i by an arc of M2 (leaving i). 

The analyses above complete the proof that the collection C satisfies ( • ). Since it is immediate 
that the construction of C can be carried out in polynomial time in the size of the input graph, 
the proof of the lemma is now complete. 

D 

Example: Let G be the graph defined in the figure below. The node names corresponding to 
the nodes 1, 2, 3, 4 and 5 are A, 8, C, D and E, respectively. The arc names are indicated in 
the figure. Consider that M1 = {a,d}, M2 = {c,/} and M3 = {b,e}. We show in the figure, 
the node labels after each step of the construction. 
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1 

A1bD$a - Ala - Aa aB - aadB - aD$eada 

dB3C - de J>d - D$Cd - D$abCd 

S5eaD$ - S5D$ - S$ 

Theorem 3.2 For cac/i inlcgcr k ~ l the decision version of MkCP is NP-complete. 

Proof. Let DMkCP denote the decision version of MkCP: given an integer p ~ l, decide 

wheiher a given collcciion of strings can be covered by at mosl p k-co11tigs. Clearly, this 

problem is in NP. 

Let us consider first the case k;;;; 1, which we denote here by DMlCP. 

We show that the following problem can be reduced to DMlCP: given an integer p ~ 1 and a 

directed graph with maximum degree 3, decide whether tliis graph can be covered by at most 

p node-disjoint paths. This problem is NP-complete, since for p = 1 this is the Hamiltonian 

Path Problem (see [GJ79]). 

It is immediate that the problem above remains NP-complete when the input graph is bipartite 

with maximum degree 3 and with no cycll'S or length 2. By Lemma 3.1, given such a graph G, 

we can construct in polynomial time (in the size of G) a collection C or strings that coustitutcs 

an instance or DMlCP. 

Since the collection C satisfies property (•), it follows that the input graph G can be covered 

by at most p node-disjoint paths if and only if C can be covered by at most p k-contigs. Thus, 

DMlCP is NP-complete. 

Now it remains to show that DMkCP is NP-complete for each integer k ~ 2. For that, we 

prove two claims. 

Claim J. Let k ~ 1. If DMkCP is NP-complete then DMtCP is NP-complete for t ;;;; 2 • k. 

(Proof of Claim 1) Given an instance of DMkCP consisting of a collection C of strings .,i, 

we construct an instance of DMtCP consisting of a collection C' of strings "i• as follows. 

The collection C' has exactly ICI strings, and each string .,~ is obtained from a; by 

replacing each character in a; with two copies of this character. That is, if "i = ABC B, 

then S; = AABBCCBB. 
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It is easy to see that. the collection C can be covered by at most p k-contigs if and only 
the collection C' can be covered by at most p (2 • k)-contigs. 

Claim 2. Let k ~ 2. tr DMkCP is NP-complete then DMtCP is NP-complete fort = 2•k-1. 

(Proof or Claim 2) Let be given an instance of DMkCP consisting of a collection of C 
strings s;. We construct an instance of DMtCP consisting of a collection C' of strings, 
with precisely ICI strings s:, defined as follows. Each.,: is obtained from -'i. by inserting 
a new character, say $, between every two consecutive characters in &;. We take the 
same character$ for all strings s:. Thus, if if&;= ABCB then.,:= A$B$C$B; and 
if .~; = CCC A then -'; = C$C$CSA. Note that if -'i has length q then -'i has length 
2•q-1. 

It is not dillit:nlt lo sec that the collection C can be covered by al most p k-conligs if 
and only the collection C' can be covered by at most p (2 • k - 1)-contigs. 

As we have proved that DMlCP is NP-complete, using the two claims above we can conclude 
that DMkCP is NP-complete for every k ~ 1. 

a 

Remnrk. We note tliat for a grapli with n nodes, the construction of the strings in C in Lemma 
3.1 requires an alphabet E with at most 3n + I characters. These strings can be encoded lo 
strings of length O(log(n)) over an alphabet with 4 (or even 2) characters. However, with 
such an encoding, we cannot assure that DMkCP remains NP-complete for each k ~ 1 (at 
least using the results we have presented). 

4 Integer Programming Formulations for MkCP and MkCPr 

In this section we show integer programming formulations for MkCP and MkCPr. These 
formulations are based on 11ow techniques. We consider the directed graph G = (V, A) 
defined in the last section and add two new nodes, a sources and a sink t, and arcs linking s 
to all nodes in V, and arcs linking all nodes in V tot. We associate with each arc (i,j) EA 
a variable x;; with the following interpretation: 

x·· _ { 1, if the arc (i,j) is in a path; 
•J - 0, otherwise. 

Moreover, for all i E V, we let s; (resp. t;) be the variable corresponding to the arc (s, i) 
(resp. (i, t)). 



• 

Thus, a 0/1-ILP formulation for lhe problem is given by 

z= min LSi 
iEV 

E Zjj + Sj = I: z;; + t; for all i E V, (I) 

jE&-(i) iE5t(i) 

(/') l: Xjj + t; = I for all i E Z, (:.!) 

;e&+(il 

l: Zjj + t; $ } for all i E V \ Z, (3) 
;e&+(il 

E x.::; ICI - i for all 0 # C <;,_ V, (4) 
eEE(C) 

z;; E {O, I} for all (i,j) E A, (5) 

s;,t; E {O, I} for all i EV, (6) 

where E(C) := {(i,j) EA I i,j EC}, 6-(u) := {v I (v, u) EA} and 6+(u) := {v I (u, 11) EA}. 

The first set of inequalities means that the solution z must be a feasible flow, i.e., for every 

node that is not a source or a sink the flow conservation law must be satisfied. Inequalities 

(2) and (3), respectively, guarantee that the terminals must be covered, and the Steiner nodes 

may be covered by at most one path. Inequalities (4) eliminate the possibility of choosing 

arcs that induce a cycle. 

It is not difficult to check that a 0/1-vector z satisfies (1) to (6) if and only if the set of arcs 

a E A with z 0 = I induces a collection of node-disjoint paths in G that covers all nodes in Z. 

Moreover, since we minimize the number of arcs leaving the nodes, the number of such paths 

is minimized. 

It should be noted that the number of constraints (4) is exponential. However, the separation 

problem corresponding to these inequalities, called aubtour elimination constrointa, can be 

solved in polynomial time (see (PG85]. This means that the optimum value of the relaxed 

LP (substituting constraints (5) by O :5 z;; :5 1 for all (i,j) E A and (6) by O :5 s; :5 I, 

0 :5 t; :5 1 for all i E V) can be calculated in polynomial time (this follows from a result due 

to Grot.5cbel, Lovasz and Schrijver [GLS88]). 

This formulation can be extended for the model with reverse complements. For that, consider 

the graph G" = (V, A) as defined in the last section, and include nodes s and t linked to 

all nodes in V, as above. Let us represent the reverse complement of i by a. W<' can now 

formulate MkCPr as follows. 
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z' = min L•'i +si 
iEV 

E Zjj + Sj = E Zjj + I; for all i e v. (1') 
jE6-(i) ;e.s+(il 

(/") E Zjj + I;+ E z,; +tr= 1 for all i E Z, (2') 

;e&+(il ;e&+(i) 

E Zij +I;+ E z,; + tr :5 1 for all i e V \ z. (3') 
;el+(i) ;e.s+(,') 

E Ze :5 [Cl-1 for all 0 -I- C ~ V, (4') 

eEE(C) 

z;; E {0, l} for all (i.j) e A, (5') 

Sj, t; E { 0, I} for all i E V. (6') 

lll<'<JUalitics (2') and {3') treat the nodes and its reverse complements together. Constraints 

(2') guarant<-c that el\Ch terminal is covered by exactly one path, and it reaches either the 

node or iL,; reverse complement, but not both. Constraints (3') assure that a Steiner node or 

its reverse complement is used by at most one path. 

Similarly to the formulation for M_kCP, inequalities (4') avoid the existence of subtours in the 

solution. l\.fon•ov,~r, thrsc inequalities can he lift<-<l in this version, as we show in the following 

l1•111111as. 

· Lemma 4.1 Let C be a subset of nodes in V that induces a violated subtour elimination 

i11cq11ality. Then, there is no node i such that {i,1} ~ C. 

Proof. Immediate consequence from (1'), (2') and (3'). 
0 

In the next lemma, the notation [S: S1 for node sets Sand S', stands for the set of arcs going 

from S to S'. 

Lemma 4.2 Let C be a subset of nodes in V and consider tlie corresponding subtour elimi-

uation inequality 
L :,;e $ ICI- I. 

eEE{C) 

Then, the following lifted inequality is also satisfied by all feasible solutions of MkCP, for­

mulutcd a., above. 

L Ze + L Ze + L Ze + L Ze $ ICI - 1, 
eEE(C) eEE{C) eE(C:c} eE(G:C) 

where C denotes the set of reverse complements of the nodes in C. 
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Proof. Consider an arbitrary feasible 80lution S for MkCPr whose incidence vector is given 
by z5

• Let C1 be the set of nodes in C incident lo an arc e in E(C) U (C: C] with z: = 1. 
Similarly, let C1 be the set of nodes in C whose reverse complements are in C and are incident 
lo the arcs in E(C) U (C : C]. Constraints (2') and (3') guarantee that C1 n C2 = 9, and 
therefore IC,I + IC2I :5 ICI, Moreover, E,eE(Cl zf :5 IC, I - 1 and E,eE(C) z~ :5 IC2I - 1. 

Now, let p be the number of arcs in the set [l': CJ U (C: G'J with z: = 1, that is: 

E z: + E z: = p. 
•EfC:c) ee(C:C) 

For each arc (u, 11) contributing to this summation, it follows that the nodes 1i and lJ cannot 
• be incident to any other arc in S (as the constraints (11

) to (31 have to be satisfied). 

Thus, LeeE(C) zf + L,eE(l') z: :5 IC1I + !C2I - 2p - 1 (if both C1 and C2 are nonempty this 
• bound is ICil + ICil - 2p- 2). 

Summing up these valid inequalities we obtain the inequality: 

L,eE(C) z: + E,eE(C) z: + E,e(c:i') z: + E,e(l':CJ z: S IC1I + IC2I - 2p - 1 + P 
S ICl-p-1 
:5 ICI- 1. .. 

I • 

5 Branch-and-cut algorithms 

C 

The method we have used to tackle both problema MkCP and MKCPr is bMed on the linear 
programming relaxation combined with branch-and-bound and cutting-planes, the ~ailed 
branch-and-cul technique. 

For that, we consider the polyhedron defined as the convex hull of the feasible (integer) 
80lutions of (P), which we denote by P,,(G}, that is, 

Pt(G) := conv {z e RAI z satisfies (1) to (6)}. 

Analogously, we consider the polyhedron corresponding to MkCPr: 

fl;(G) := conv {z e RAI z satisfies (11 to (6') }. 

Both polyhedra are not full-dimensionaJ, since their descriptions include equations. In this 
paper we do not mention results concerning classes of facet-defining inequalities for both 
polyhedra. We have found such an inequality which we could not generalize and these studies 
might be addressed in a future paper. In our present implementation of a branch-and-cut 
algorithm we have used only the inequalities presented in the l~t section. 
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As we have oliscrvcd before, although there exists an exponential number of inequalities of 

type (4) (resp. (4')) they can be separated efficiently (see [CP80]). We have implemented a 

separation heuristic for these inequalities, based on contractions of the graph, as d scribed in 

(PG85J. In the case of inequalities (4') these are then lifted as indicated in Lemma 4.2. 

It is interesting to note that, if the graph is acyclic, then there are no violated inequalities of 

type (4), and the corrl'fiponding polytopc Pt(G) is integral, i.e., has only 0/1-vcrtices. In this 

case, since linear programming can be solved in polynomial time, the problems is easy. 

The idea of the approach is lo start. with a relaxation of tha polyhedron Pt(G) (resp. J>;(G)) 

and to solve iteratively better approximations of this polyhedron, obtained by using facet­

defining or, at least, valid inequalities that are violated by the optimal solution of the current 

relaxation. When we are not able t.> find any violated valid inequality we fix the value of some 

variables and proceed in a branch-and-bound fashion. 

We have implemented two versions of the algorithm: one for the model witl,out reverse com­

plements, and one that handles it. In both cases we begin with the LP given by constraints 

(1), {2) and (3) (resp. (l'), (2') and (3')), and use, as mentioned above, a separation heuristic 

for the subtour elimination constraints. In the version with reverse complement& the sublour 

elimination inequality is lifted, as indicated in Lemma 4.2. Whenever no violated inequality 

is found by the separation routine we perform a branching step. 

The value of the current LP relaxation is used by a primal heuristic. The idea is to use the 

area with bigger values in the current solution and try to cover all terminals. 

We have tested both versions with two types of instances. In the first type the original 

string is 5000 characters long and has been generated randomly on the alphabet {A, T, C, 

G}. Each substring has length between 500 and 700 characters. Each substring is generated 

by choosing randomly its length and also the position it starts in the original string. For 

the model allowing reverse complements the sequence is reversed with probability 50%. The 

second type of instances cor~esponds to real data, given by DNA molecules. For the problem 

with reverse complements, we use some of the instances presented in the DIMACS Challenge 

95. 

5.1 Instances of MkCP 

For the version without reverse complements we are able to solve instances with up lo 200 

nodes within ls (in a Sun Spare 1000), and in many cases the graph is acyclic, and therefore 

the first LP is sufficient to provide the optimal solution. We have obtained similar results for 

the random and the real instances. 

Table 1 summarizes the results for the random instances. In the first. column we indicate the 

number or nodes and arcs in the graph. In the second column we indicate the value of k of 

the corresponding MkCP problem. Columns 3 and 4 show the number of LPs solved and the 

number of nodes in the branch-and-bound tree, respectively. Finally, in the last column we 

present the CPU time spent lo solve the problems in a SPARC 1000. We use CPLEX to solve 

the LP in each iteration. 

We have also tested our approach with some real instances (obtained from the author of 

14 



- • # nodes # arcs k # LP # BB nodes CPU Time (sec.) 
10 11 3 1 1 0.10 
20 47 10 1 1 0.15 
30 105 5 l 1 0.15 
50 330 10 1 1 0.11 
50 333 5 23 4 0.47 
70 589 10 1 l 0.14 
70 598 5 l 1 0.17 
80 798 5 1 1 0.16 

100 1266 5 23 4 0.90 
200 4566 5 1 l 0.32 

Table 1: Computational results of the version without reverse complements. 

# nodes # arcs k # LP # BB nodes CPU Time {sec.) 
273 358 12 1 l 0.15 
273 358 10 I 1 0.16 
273 366 8 I l 0.23 
273 392 6 l 1 0.19 
273 595 4 142 12 I 5.40 

Table 2: Computational results for instances arising from hsa. 

(M92j). The DNA sequence (denoted by hsa) has length 10532 and has been cut into 273 
pieces. We have been able to solve to optimality different instances or the problem, obtained 
by using different values or k. See Table 2. 

Our explanation l,;, the fact that the problems are not difficult to solve is that the corresponding 
graphs are, in most cases, acyclic, and therefore, the solution of the LP relaxation is integral. 
Further tests we have carried out with random graphs (with many cycles) indicate that the 
problem becomes much more difficult to solve, even for small instances. 

5.2 Instances of MkCPr 

We have obtained similar results for Uie version wiUi reverse complements when testing with 
random instances. The results are presented in Table 3. 

We have got memory overflow problem when we have tested the version with reverse comple­
ments, as in this version the number or nodes of Uie graph is twice as large. We considere<l 
four instances of DIMACS benchmark; these are described in Table 4. 

We have considered the problem for k = 10. Note that the number of arcs in the graphs goes 
from 10331 to 35774. Since we could not solve some of Uiese instances because or insufficient 
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# nodes # arcs k # LP # BB nodes CPU Time (st-c.) -
10 30 3 l l 0.19 • 
20 118 3 1 1 0.11 

30 280 3 12 3 0.30 

50 682 5 153 26 3.89 

70 1336 5 1 1 0.22 

80 1732 5 1355 246 1:30.48 

100 2587 5 22 4 1.21 

Table 3: Computational results of the version with reverse complements. 

Name # pieces 
b1496 1811 
b2126 1504 
1247 1704 
1518 1910 

Table 4: DIMACS Challenge benchmark. 

memory apace (we uae a Sun Spare 1000 with 702 MBytes memory), we have decided to 

generate many subinstances of the original ones, in order to detect how far we could go with 

our code to solve practical instances. These instances have been generated by choosing a 

random subgraph of the complete instance, with a certain percentage of the total number of 

nodes. Tables 5, 6, 7 and 8 summarize the results we have obtained. The second column of 

these tables shows the value'of the optimal solution of the problem. 

The computational experiments carried out lead us to the following observations. The value 

of the lower bound of the first LP relaxation is already the value of the optimal solutions for 

all instances we have tested. We have spent most of the time to prove that this was indeed the 

case. Thus, with better primal heuristics we could possibly obtain better performances. This 

stresses our belief that the formulation we propose for the problem can be used satisfactorily 

to test primal heuristics. For instances arising from b2296, 1618 and 1247 the value of the 

# nodes # arcs sol. # LP # BB nodes CPU Time (sec.) 

342 8.i; 136 1 ] 0.18 

722 411 228 1 1 0.26 

1074 892 308 56 20 'l.05 

1436 1540 no sufficient memory 

Table 5: Computational results for b1496 (# nodes::3622, # edges=l0331). 
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# nodes # arcs sol. # LP # BB nodes CPU Time (sec.) 
286 186 40 l I 0.21 
608 87'1 45 1 1 0.21 
892 1950 30 1 1 0.24 

1206 3426 25 526 162 49.96 
1486 5152 17 1676 516 7:23.46 
1804 7640 no sufficient. memory 

Table 6: Computational results for b2296 (# nodes=3008, # edges=20940). 

# nodes # arcs sol. # LP # BB nodes CPU Time (sec.) 
362 320 39 1 1 0.19 
770 1398 42 1 1 0.27 

1138 3070 23 21 8 1.18 
1524 5744 13 26 10 I 2.-12 
1888 8700 7 51 20 6.32 
2282 12964 no sufficient memory 

Table 7: Computational results for 1518 (# nodes=3820, # edges=35774). 

# nodes # arcs sol. # LP # BB nodes CPU Time (sec.) 
320 226 43 1 1 0.11 
688 1040 51 1 1 0.21 

1012 2136 40 1 1 0.29 
1690 6176 15 1 1 0.51 
2040 8958 3 1 1 0.80 
2220 10748 no sufficient memory 

Table 8: Computatio11al results for 1247 (# nodes=3408, # edges=25990). 
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optimal solution of the subinstance decreases when the graph becomes more dense. This is an 

indication that the approach can be used iteratively with decreasing values of k to provide a 

solution to the Fragment Asscml,ly Problem. The only instance for which our approach has 

not performed well was b1496, wl:ose graph has some heavily connected components (note 

that the number of arcs is small). 

6 Conclusions and future research 

The computational results we have presented in this paper show that the ILP formulation 

we suggest for MkCP and MkCP" can be satisfactorily used to solve medium size instances 

of the problems. Our aim is to increase the size of the instances we are able to solve to 

optimality. For that, we need other classes 0£ valid inequalities to improve the lower bounds 

in each node of the branch-and-cut tree and better primal heuristics. Moreover, polyhedral 

investigations on facet-defining inequalities for the polyhedra we have defined is one of our 

goals for future work. It is still a rather long way unLil we are able to solve instances with 

the size of interest for the computational biology community. DIMACS instances could not 

be satisfactorily handled because of insufficient memory space, but the results we were able 

to derive allow us to say that the approach can be useful for determining the structure of the 

original DNA molecule for "real world" examples. The DNA molecules that the community 

of computational biologists intend to determine have length of millions of bases; and typic;;illy, 

these molecules are broken into several hundreds of pieces. Another possible direction to 

continue research is to extend the model to allow the use of the- same piece several timea (i.e. 

covering the graph by node-disjoint walks) and to handle errors. 
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