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Abstract. Principal component analysis (PCA) is an efficient model for the op-
timization problem of finding d′ axes of a subspace Rd′ ⊆ Rd so that the mean
squared distances from a given set R of points to the axes are minimal. De-
spite being steadily employed since 1901 in different scenarios, e.g., mechanics,
PCA has become an important link in machine learning chained tasks, such
as feature learning and AutoML designs. A frequent yet open issue that arises
from supervised-based problems is how many PCA axes are required for the
performance of machine learning constructs to be tuned. Accordingly, we inves-
tigate the behavior of six independent and uncoupled criteria for estimating the
number of PCA axes, namely Scree-Plot %, Scree Plot Gap, Kaiser-Guttman,
Broken-Stick, ρ-Score, and 2D. In total, we evaluate the performance of those
approaches in 20 high dimensional datasets by using (i) four different classi-
fiers, and (ii) a hypothesis test upon the reported F-Measures. Results indicate
Broken-Stick and Scree-Plot % criteria consistently outperformed the competi-
tors regarding supervised-based tasks, whereas estimators Kaiser-Guttman and
Scree-Plot Gap delivered poor performances in the same scenarios.

1. Introduction
Principal component analysis (PCA) is a widely adopted model for dimensionality
reduction1, a pre-processing step related to machine learning tasks [Pearson 1901,
Aggarwal 2015]. Such a step is particularly relevant for supervised-driven problems, in
which the curse of dimensionality [Pestov 2008] may disrupt the learning bias of certain
classifiers, e.g., Naı̈ve-Bayes (NB), Instance-based Learning (IbL), Decision-Tree (DT),
and Multi-Layer Perceptron (MLP), as well severely degraded their computational per-
formance [Aggarwal 2015, James et al. 2013]. Formally, given a dataset R ⊂ Rd, PCA

1The most relevant dimensions for a particular set of points are the most prominent data features. Ac-
cordingly, we use the terms dimensions and features alternately.



enables finding the d′ orthogonal axes of a subspace Rd′ ⊆ Rd so that the mean squared
distances from elements inR to the axes are minimal.

A common yet open issue that arises in practice is distinguishing relevant and non-
relevant axes so that data are reduced to a proper subspace [Pestov 2008, Aggarwal 2015].
Unlike previous approaches that investigate the relationship between d′ and co-variance
patterns within artificial data [Jackson 1993, Neto et al. 2005], we focus on examining
distinct criteria for choosing the number of PCA axes whose performance is assessed by
different classifiers. Figure 1 highlights the challenges of exhaustively estimating num-
ber d′ in supervised UCI dataset WINE2 regarding two wrapped classifiers: (i) labeling
performance is not monotonic with d′, and (ii) individual maxima are overfitting-prone.
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Figure 1. PCA reduction and labeling of WINE dataset.

In this study, we investigate the behavior of six global, distinct, and classifier-
unwrapped criteria for choosing the number of dimensions in PCA reductions for label-
ing problems, namely (i) graphical-based estimators Scree-Plot %, Scree Plot Gap, and
2D; (ii) statistical-based indicators Broken-Stick, and Kaiser-Guttman; and (iii) intrin-
sic dimension-based criterion ρ-Score. We compared those criteria in the labeling of
20 datasets with four classifiers (NB, IbL, DT, and MLP), and results indicate estima-
tors Broken-Stick and Scree-Plot % surpassed the competitors, while indicators Kaiser-
Guttman and Scree-Plot Gap performed modestly. Such outcomes provide indications to
devise the tuning of PCA-based pieces within AutoML designs.

The remainder of this paper is organized as follows. Section 2 discusses the es-
timators for the number of PCA dimensions, while Section 3 describes the material and
methods. Sections 4 and 5 provide the experimental comparison and conclude the study.

2. Preliminaries

PCA axes can be found as the uncorrelated coefficients calculated from discrete data
features. In a nutshell, reducing a dataset R ⊂ Rd by PCA into a d′-dimensional repre-
sentation, d′ ≤ d, is a sequence of six sequential steps, namely: (i) scale each R feature
to the [0, 1] interval, (ii) calculate means µi,i∈[1,d] for everyR feature, (iii) subtract means
µi,i∈[1,d] from each R element, (iv) calculate co-variance matrix Cd×d from R entries,
(v) obtain both C eigenvalues and eigenvectors, and (vi) calculate the cross product of R
entries and d′ eingenvectors related to the d′ highest and descending-sorted eigenvalues.

2Data links at github.com/Renata-Barbosa/cpca



Existing criteria for estimating the d′ value can be divided into (i) graphi-
cal, (ii) statistical, and (iii) intrinsic dimension-based approaches [Neto et al. 2005,
Pestov 2008]. Representative approaches of the first group include the following rules:

Scree-Plot % (SP-%). The estimator assumes a few eigenvalues concentrate the largest
part of data variance, and calculates d′ so that a percentage of variance is kept. Figure 2(a)
illustrates the SP-% rule for covering 70% of the area under the WINE eigenvalues.

Scree-Plot Gap (SP-G). The criterion uses a greedy search for finding the largest
variance difference between two consecutive pairs of scale-normalized eigenval-
ues [Zhu and Ghodsi 2006]. The intersection of both pairs is returned as d′. Figure 2(b)
shows the search on WINE where line segments represent the scaled differences.

Plane visualization (2D). This approach is a baseline rule that sets d′ = 2 so that data can
be visualized in a Euclidean plane. Figure 1(a) shows that PCA reduction for set WINE.

Statistical criteria examine whether a set of eigenvalues is larger than an expected
value drawn from a known data distribution. Approaches of that category include:

Kaiser-Guttman (KG). This rule retrieves every eigenvalue greater than 1.0 aiming at
retaining shared data variance [Guttman 1954, Neto et al. 2005].

Broken-Stick (B-St). If joint variance is randomly distributed within d
axes, then eigenvalues are supposed to follow the Broken-Stick distribution
[Legendre and Legendre 2012]. For a set of eigenvalues ei, Broken-Stick entries are given

by bsi =

(∑d
j=1 ej

d

)
/
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)
. B-St returns the last scaled eigenvalue that deviates

from the random distribution, i.e., d′ = k |
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)
∨(

ek+1/
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∑d
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)
. Figure 2(c) depicts the B-St rule for set WINE.

Finally, intrinsic dimension-based criteria estimate possible correlations embed-
ded within data features. A stable rule for obtaining such a value is as follows.

Rho-Score (ρ-sct). This estimator approximates data intrinsic dimension by using its
distance distribution [Pestov 2008]. Formally, letR ⊂ Rd be a dataset and δ : Rd×Rd →
R+ be the Euclidean distance, the ρ-sct criterion estimates d′ as in Eq. 1.
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Figure 2. Choosing the number of dimensions d′ in a PCA reduction of WINE.



3. Material and Methods
Estimation criteria implementation. We implement PCA, and the six reviewed estima-
tion criteria from scratch in R2 by taking advantage of the spectral decomposition eigen
routine available at R-core package. Graphical-based criteria are constructed upon sorted
eigenvalues produced by the eigen routine, as well as the Kaiser-Guttman rule. An equi-
width histogram H with d positions is employed as the underlying data structure for the
B-St implementation. Each histogram position corresponds to a theoretical descending-
sorted eigenvalue that follows a scale-normalized Broken-Stick distribution. Accordingly,
the B-St estimation is carried out by a linear search over H for finding the first position
that deviates from the eigenvalues’ distribution. Finally, we implemented the Euclidean
distance, as well as both mean and variance Welford’s one-pass calculation for efficiently
obtaining the intrinsic dimension returned by the ρ-sct rule.

Non-parametric and pairwise hypothesis tests. We adopt pairwise tests for assess-
ing which criteria are suitable for estimating the number of dimensions in PCA reduc-
tions of labeled sets. The two-tailored Wicoxon test is convenient for such a pairwise
comparison because the null hypothesis is that results produced by two competing esti-
mators are drawn from the same distribution, whereas the alternative hypothesis is that
outputs are from different distributions [Wilcoxon 1992]. We model the results of PCA
criteria as the quality values measured after a classifier 10-folds cross-validation, e.g., F-
Measure [Aggarwal 2015]. Therefore, a pair of criteria is compared by its paired list of
label-driven results, being that pairwise list sorted by the absolute differences between the
two juxtaposed outputs. An incremental rank ranging from one to the number of observa-
tions is assigned to each position of the sorted list. Ranks of positions where the second
rule outperforms the first are multiplied by −1, which generates two rank groups aggre-
gated by a ranking sum. Such a sum adjusted by the number of observations produces a
z-score, which is employed in the analysis of Wilcoxon’s null hypothesis.

4. Experiments
We evaluate the performance of criteria SP-%, SP-G, 2D, KG, B-St, and ρ-sct in as-
sociation with four different classifiers NB, IbL, DT, and MLP in 20 medium to high
dimensional labeled datasets (R) from UCI, MILD, GBDI and QTDU repositories2. In
particular, we relied on both Weka v3.8.4 and R v3.6.1 to set up the classifiers as follows:
(i) DT with binary splits and early pruning, (ii) MLP with one hidden layer of

√
d neu-

rons, and (iii) IbL with Euclidean distance and one neighbor. Evaluations were conducted
in a KUbuntu machine 19.10 with an Intel i5 processor, 8GB RAM, and a 1TB disk.

We tuned the SP-% criterion by evaluating its performance with parameters
% = {.65, .7, .75}, being the setup SP-% = .7 the tuning with highest F-Measures, on
average. Table 1 details the F-Measure reached by each criterion for every evaluation
scenario, where Emb. lines stand for data original dimensionality d. Results reinforce no
monotonic relationship can be drawn from F-Measure and the number of dimensions (d′).

Next, we compare the competing criteria through a set of pairwise Wilcoxon’s
tests grouped by classifiers. Figure 3 shows the z-scores obtained for each pairwise com-
parison (line vs. column), and highlights the cases in which the null hypothesis was re-



Table 1. F-Measures for data reduced by PCA with distinct criteria.

Crit. d′
F-Measure R d′

F-Measure R d′
F-Measure RNB DT IbL MLP NB DT IbL MLP NB DT IbL MLP

SP-% 26 .855 .858 .965 .936

M
N
I
S
T

(784)

15 .668 .788 .795 .870

C
N
A
E
2

(128)

19 .829 .711 .839 .870 I
S
O
L
E
T

(617)

SP-G 2 .373 .424 .379 .430 3 .468 .689 .715 .689 2 .322 .276 .257 .311
KG 13 .799 .852 .947 .880 1 .326 .446 .408 .416 6 .654 .608 .666 .698
B-St 47 .870 .854 .972 .951 7 .557 .747 .780 .797 28 .871 .722 .865 .912
ρ-sct 27 .856 .858 .973 .934 3 .468 .689 .715 .689 17 .815 .698 .829 .859
2D 2 .373 .424 .379 .430 2 .420 .573 .586 .559 2 .322 .276 .257 .311
Emb. 784 .686 .860 .965 .883 128 .743 .797 .830 .883 617 .841 .823 .896 .873

SP-% 3 .321 .909 .901 .921

O
Z
O
N
E

(72)

17 .715 .870 .879 .896

S
P
A
M

(57)

25 .504 .631 .670 .659

F
O
X

(230)

SP-G 2 .321 .321 .885 .898 2 .765 .809 .794 .812 2 .543 .498 .572 .537
KG 2 .321 .321 .885 .898 1 .610 .813 .768 .806 1 .505 .469 .558 .542
B-St 3 .321 .909 .901 .921 2 .765 .809 .794 .812 28 .503 .626 .669 .658
ρ-sct 4 .901 .921 .911 .921 2 .765 .809 .794 .812 1 .505 .469 .558 .542
2D 2 .321 .321 .885 .898 2 .765 .809 .794 .812 2 .543 .498 .572 .537
Emb. 72 .751 .922 .914 .914 57 .792 .931 .894 .901 230 .525 .704 .670 .641

SP-% 571 .877 .886 .700 .763 G
I
S
E
T
T
E

(5000)

14 .936 .875 .970 .957

M
F
E
A
T

(649)

12 .743 .876 .873 .875 U
L
C
E
R
S
E
T

(400)

SP-G 2 .696 .699 .624 .698 2 .596 .621 .554 .635 3 .761 .822 .803 .296
KG 28 .892 .908 .965 .977 11 .929 .877 .965 .947 1 .181 .181 .725 .181
B-St 517 .879 .885 .719 .971 26 .952 .871 .973 .973 23 .616 .875 .871 .893
ρ-sct 68 .870 .888 .954 .976 23 .949 .870 .974 .970 1 .181 .181 .725 .181
2D 2 .696 .699 .624 .698 2 .596 .621 .554 .635 2 .242 .271 .764 .227
Emb. 5000 .916 .938 .958 .898 649 .954 .949 .978 .960 400 .280 .895 .882 .821

SP-% 4 .724 .784 .755 .508

S
M
A
R
T

(561)

37 .957 .938 .976 .879 S
E
M
E
I
O
N

(264)

2 .507 .789 .792 .603 G
A
S
D
R
I
F
T

(128)

SP-G 2 .341 .629 .577 .370 2 .316 .316 .838 .316 2 .507 .789 .792 .603
KG 2 .341 .629 .577 .370 12 .948 .939 .971 .974 1 .174 .394 .302 .264
B-St 13 .828 .855 .885 .899 27 .957 .932 .972 .982 4 .609 .957 .983 .828
ρ-sct 4 .724 .784 .755 .508 65 .961 .935 .964 .963 1 .174 .394 .302 .264
2D 2 .341 .629 .577 .370 2 .316 .316 .838 .316 2 .507 .789 .792 .603
Emb. 561 .674 .930 .960 .783 264 .926 .943 .977 .975 128 .595 .978 .995 .938

SP-% 13 .270 .272 .293 .100 M
A
M
M
O
S
E
T

(1111)

35 .656 .907 .968 .928

U
J
I
N

(520)

29 .565 .685 .712 .744

T
I
G
E
R

(230)

SP-G 2 .069 .070 .253 .068 2 .200 .610 .615 .279 3 .571 .683 .664 .660
KG 4 .081 .085 .250 .084 2 .200 .610 .615 .279 1 .474 .578 .555 .582
B-St 36 .308 .269 .301 .121 34 .652 .905 .967 .923 27 .495 .698 .711 .743
ρ-sct 12 .266 .112 .287 .095 17 .087 .182 .280 .178 1 .474 .578 .555 .582
2D 2 .069 .070 .253 .068 2 .020 .610 .615 .279 2 .536 .647 .643 .661
Emb. 1111 .104 .284 .310 .133 520 .508 .895 .973 .836 230 .608 .803 .719 .675

SP-% 4 .410 .581 .667 .546 L
I
B
R
A
S

(90)

4 .508 .553 .706 .262

G
R
A
M
F
A
C
I
A
L

(300)

11 .964 .783 .955 .965

P
L
A
N
T

(192)

SP-G 4 .410 .581 .667 .546 2 .262 .512 .611 .262 2 .366 .306 .322 .304
KG 1 .181 .240 .355 .191 2 .262 .512 .611 .262 1 .073 .072 .073 .041
B-St 8 .724 .665 .848 .747 11 .516 .572 .711 .516 14 .968 .789 .974 .975
ρ-sct 7 .697 .638 .826 .727 4 .508 .553 .706 .262 9 .949 .786 .957 .961
2D 2 .174 .346 .362 .278 2 .262 .512 .611 .262 2 .366 .306 .322 .304
Emb. 90 .631 .694 .856 .801 300 .218 .759 .734 .770 192 .970 .743 .987 .993

SP-% 243 .577 .660 .500 .573 M
A
D
E
L
O
N

(500)

122 .912 .899 .925 .923

Q
S
A
R

(1024)

4 .955 .949 .921 .949

W
I
N
E

(13)

SP-G 2 .606 .615 .580 .573 3 .319 .882 .881 .319 2 .977 .949 .961 .961
KG 1 .599 .607 .544 .579 9 .891 .897 .907 .898 1 .966 .938 .949 .972
B-St 3 .634 .649 .670 .625 54 .909 .905 .924 .917 2 .977 .949 .961 .961
ρ-sct 404 .569 .637 .503 .547 16 .908 .912 .919 .915 1 .966 .938 .949 .972
2D 2 .606 .615 .580 .573 2 .319 .319 .867 .319 2 .977 .949 .961 .961
Emb. 500 .595 .390 .542 .657 1024 .837 .920 .930 .922 13 .966 .938 .949 .972

3.03 3.36 -0.71 2.20 3.82 -2.22
-3.03 0.23 -3.46 -1.25 1.15 -3.55
-3.36 -0.23 -3.36 -1.93 0.67 -3.45
0.71 3.46 3.36 2.84 3.82 -2.73
-2.20 1.25 1.93 -2.84 1.97 -2.91
-3.82 -1.15 -0.67 -3.82 -1.97 -3.66
2.22 3.55 3.45 2.73 2.91 3.66

SP % SP-G KG B-St ρ-scr 2D Emb.
SP %
SP-G
KG
B-St
ρ-scr
2D
Emb.

(a) - Naïve-Bayes (b) - Decision-Tree

3.40 2.99 -1.69 1.51 3.58 -3.53
-3.40 0.05 -3.80 -1.33 1.62 -3.85
-2.99 -0.05 -3.40 -1.93 0.26 -3.62
1.69 3.80 3.40 2.82 3.48 -2.99
-1.51 1.33 1.93 -2.82 1.51 -3.64
-3.58 -1.62 -0.26 -3.48 -1.51 -3.85
3.53 3.85 3.62 2.99 3.64 3.85

SP % SP-G KG B-St ρ-scr 2D Emb.
SP %
SP-G
KG
B-St
ρ-scr
2D
Emb.

SP % SP-G KG B-St ρ-scr 2D Emb.
SP %
SP-G
KG
B-St
ρ-scr
2D
Emb.

(c) - Instance-based Learning (d) - Multi-Layer Perceptron

SP % SP-G KG B-St ρ-scr 2D Emb.
SP % 2.91 3.38 -1.61 -1.35 3.14 0.13
SP-G -2.91 -0.26 -2.66 -2.17 1.83 -2.99
KG -3.38 0.26 -3.66 -2.50 0.67 -2.84
B-St 1.61 2.66 3.66 2.82 3.51 1.38
ρ-scr 1.35 2.17 2.50 -2.82 2.58 -0.22
2D -3.14 -1.83 -0.67 -3.51 -2.58 -3.58
Emb. -0.13 2.99 2.84 -1.38 0.22 3.58

90% confidence interval 95% confidence interval 99% confidence interval

- 3.62 2.99 -2.00 1.66 3.72 -2.29
-3.62 - -0.85 -3.72 -2.07 1.46 -3.92
-2.99 0.85 - -3.76 -2.17 0.96 -3.62
2.00 3.72 3.76 - 3.38 3.72 0.04
-1.66 2.07 2.17 -3.38 - 2.29 -3.08
-3.72 -1.46 -0.96 -3.72 -2.29 - -3.92
2.29 3.92 3.62 -0.04 3.08 3.92 -

Figure 3. Pairwise Wilcoxon’s tests (lines vs. columns) grouped by classifiers.

jected and the corresponding level of confidence. Results indicate B-St rule outperformed
every competitor (including the original data dimensionality) for a confidence level of at



least 90% regarding NB and MLP classification, whereas SP-% also outperformed estima-
tors SP-G, KG, and 2D. A similar result was observed for classifiers IbL and DT in which
B-St dominated SP-G, KG, ρ-sct, and 2D within significance levels. In those scenarios,
SP-% also outperformed SP-G, KG, 2D, and ρ-sct with statistical significance. Such find-
ings pinpoint both criteria B-St and SP-% are suitable rules for choosing the number of
dimensions in a PCA reduction. Notice, however, B-St is a parameterless estimator that
may be preferable to SP-% whenever adjusting variance area % is unpractical.

A counterpart discovery is estimators KG and SP-G performed poorly in compar-
ison to other criteria regarding labeling-driven tasks. In particular, KG did not outperform
any competitor, including SP-G, and baseline rules 2D and Emb.. Lastly, ρ-sct criterion
showed an intermediary performance, which indicates there may be a relationship be-
tween the intrinsic dimension and the number of PCA axes, but not strong as a correlation
to be spotted by the experimental supervised evaluation we carried out.

5. Conclusions and Future Work
This study has discussed global criteria for finding the number of dimensions in a PCA
reduction of labeled datasets. Since estimators are based on distinct theoretical grounds,
we examine their performance from an experimental perspective regarding the biases of
different classifiers. Results indicate B-St and SP-% are suitable rules for estimating the
number of PCA axes, whereas KG and SP-G shall be avoided in the reductions. Such
outcomes enable devising the tuning of PCA-based pieces of AutoMLs in future work.

Acknowledgments. The study was supported by FAPERJ and CEPID-CeMEAI/FAPESP
(Grants 2013/07375-0 – 2019/01735-0).

References
Aggarwal, C. (2015). Data mining: The textbook. Springer.

Guttman, L. (1954). Some necessary conditions for common-factor analysis. Psychome-
trika, 19(2):149–161.

Jackson, D. A. (1993). Stopping rules in principal components analysis: A comparison
of heuristical and statistical approaches. Ecology, 74(8):2204–2214.

James, G., Witten, D., Hastie, T., and Tibshirani, R. (2013). An introduction to Statistical
Learning, volume 112. Springer.

Legendre, P. and Legendre, L. F. (2012). Numerical Ecology. Elsevier.

Neto, P., Jackson, D., and Somers, K. (2005). How many principal components? Stopping
rules for determining the number of non-trivial axes revisited. C. Stat., 49(4):974–997.

Pearson, K. (1901). On lines and planes of closest fit to systems of points in space. The
London, Edinburgh, and Dublin Phil. Magazine and J. of Science, 2(11):559–572.

Pestov, V. (2008). An axiomatic approach to intrinsic dimension of a dataset. Neural
Networks, 21(2-3):204–213.

Wilcoxon, F. (1992). Individual comparisons by ranking methods. In Breakthroughs in
statistics, pages 196–202. Springer.

Zhu, M. and Ghodsi, A. (2006). Automatic dimensionality selection from the scree plot
via the use of profile likelihood. Computational Stat. & Data Analysis, 51(2):918–930.


