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Abstract

®

CrossMark

In the present work, we consider the generation of excited nonlinear topological modes of
Bose—Einstein condensates. These nonlinear modes present a number of interesting properties
and can be used in many applications, such as in matter-wave optics experiments. The
resonant generation of nonlinear modes by modulating either the trapping potential or the
scattering length have been previously reported. Here, we propose the simultaneous use of
both modulations with an adjustable relative phase between them in order to coherently
control the transition from the ground state to an excited mode. Within the framework of the
Gross—Pitaevskii equation (GPE), we show that the transition probability and the transition
duration can be controlled by means of the manipulation of the relative phase. In particular, the
acceleration of the transition can be useful to avoid dissipative effects of the condensate with
its surroundings. In our analysis, we employ approximate analytical techniques, including a

perturbative treatment, and numerical calculations for the GPE.

Keywords: coherent control, nonlinear topological modes, non-ground-state condensates,

Bose—Einstein condensates, phase control
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1. Introduction

The control of quantum many-body systems’ dynamics is of
fundamental importance for physics [1, 2]. In particular, con-
trolling Bose—Einstein condensates (BEC) of ultracold atoms
offers the possibility for investigating large-scale quantum
phenomena and for implementing quantum technologies, such
as quantum computers and quantum simulators [3, 4]. A rele-
vant goal in this many-body system is the generation of con-
densates in excited topological modes, which exhibit several
interesting features such as mode locking, critical dynamics,
interference patterns and atomic squeezing [5]. Additionally,
condensates prepared in such excited modes have been used
in breakthrough matter-wave optics experiments [6, 7].

In the mean-field picture, nonlinear modes of BEC are
represented by stationary solutions of the Gross—Pitaevskii
equation (GPE), and are also termed topological modes [8].
It has been shown that a given nonlinear mode can be gener-
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ated by a time-dependent modulation of the trapping poten-
tial tuned to the resonance between the ground state and the
desired excited nonlinear mode [9]. Alternatively, it is also
possible to generate a nonlinear mode by means of a resonant
time-dependent modulation of the scattering length [10, 11],
which can be produced by an alternating magnetic field close
to a Feshbach resonance [11-14].

In the present work, we explore the use of both modulations
to resonantly generate nonlinear topological modes. Different
quantum transition amplitudes can be attributed to the modu-
lation of the trap and to the modulation of the scattering length
[9, 10]. Since these distinct excitation pathways connect an
initial state to the same final target state, the total transition
probability depends on the modulus squared of the sum of
the corresponding complex transition amplitudes. Thus, upon
changing the relative phase of these amplitudes, it is possible
to modify the final yield. This interference between quantum
transition amplitudes is the underlying principle of coherent
control [15-22]. Here, we consider the role of the relative

© 2020 IOP Publishing Ltd  Printed in the UK
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phase of the modulations on the transitions between nonlinear
modes.

Coherent control concepts have contributed towards the
development of quantum optimal control theory (QOCT),
which seeks to find external controls to drive a given transition,
maximizing some performance criteria [23—25]. There have
been several experimental and theoretical successful imple-
mentations of quantum optimal control algorithms for BEC
[26-30]. It is worth noting that QOCT has been applied to
maximize the transition between nonlinear modes utilizing
temporal and spatial modulation of both the trapping and the
scattering length [31]. However, the control fields obtained
from QOCT are complex and difficult to be implemented in
laboratory. Additionally, the detailed role of the interference
between both modulations has not been addressed.

The paper is organized as follows: in section 2, we introduce
the theoretical framework for the production of the nonlin-
ear coherent modes. In section 3, a time average technique is
applied to the GPE allowing the description of the dynamics by
only two modes. A perturbative treatment is used to obtain an
analytic expression for the transition probability in section 4.
Numerical results confirming the predictions are presented in
section 5. Finally, conclusions are drawn in section 6.

2. Excitation of nonlinear modes

We consider the dynamics of a Bose gas wavefunction V¥ (r, t)
described by the Gross—Pitaevskii equation [32, 33],

0 h?
ih—W =(——V?
1hat (r, 1) ( m + V(r,1)

+ g(r, HN|U(r, t)|2) U(r, 1), (1)

where m is the atomic mass and N is the number of atoms in
the condensate. The trapping potential V(r, 1) is composed by
two parts,

V(r, 1) = Vigp(r) + Vinoa(T, 1), )

where Vi (r) is a fixed trapping potential and Vioq(r, 1) a
time-dependent modulating potential. The nonlinear interac-
tion amplitude g(r, f) is also composed by two parts,

g(r9 t) = 80 + gmod(r» t): (3)

where gy = Arhlag /m is a fixed nonlinearity and gnoa(r, 1) =
47rh2a(r, )/m is a modulating nonlinearity, with the s-wave
scattering length a; near a Feshbach resonance being writ-
ten as ag; = ag + a(r, ). The normalization condition of the
wavefunction is [ dr|¥(r,7)> = 1.

With both modulations turned off, i.e., Viyoa(r, ) = 0 and
Zgmod(T, 1) = 0, the system can be described by the nonlinear
Hamiltonian H,,

hZ
Holp(0)] = =52 + Vi) + goN[om)*. (4)

We consider the nonlinear topological modes of Hj, which
are solutions of the eigenvalue problem [9],

Ho[d)n(r)]d)n(r) = Hn¢n(l'), (5)

with n generally being a multi-index label for the quantum
states and ., the corresponding chemical potential. Here, we
are concerned with inducing transitions between stationary
solutions ¢, (r). This task can be accomplished by means of
modulating the trapping potential with an oscillatory field with
frequency w; [9, 34]. Alternatively, one may also modulate the
atomic scattering length with frequency w, [10]. We assume
that both modulations are present and that they possess a phase
difference given by 6,

Vmod(T, 1) = V(r) cos(w;t + 6), (6)

and
8mod (T, 1) = g(r) cos(w,!). (7

For definiteness, we consider a transition between an ini-
tial state ¢;(r) to a final state ¢,(r), with p; < uy, and we
associate the resonance frequency wy; = (up — p11)/h with
this transition. As we have already pointed out, the transition
can be induced by resonant modulations and in this case the
system can be approximately described solely by the topo-
logical modes involved in the transition [9, 34]. Thus, we
assume that the modulating frequencies w,; and w, are close
to wy;. More specifically, we assume that |Aw,/w,| < 1 and
|Awg /w,| < 1, with the detunings defined by Aw, = w, —
w71 and Awg = Wg — wW21.

3. Two-level approximation

In order to simplify the dynamical equations, we consider that
the wave function ¥(r,#) can be written as an expansion in
terms of nonlinear modes [9],

U(r,0) =Y cn(du(r) exp (—ipmt/h) . ®)
and that the following condition is valid,

52
i

dey,
dr

< 1, 9)

meaning that the ¢,,(f) are slow functions of time in comparison
with exp(—ipu,t/h).

Substituting expansion (8) in the GPE and performing a
time-averaging procedure, with the coefficients c¢,,(f) treated
as quasi-invariants, will result in a set of coupled nonlinear
differential equations for the coefficients c,,(f) (see reference
[8] for details). As a consequence, if at the initial time only the
levels n = 1,2 are populated and the frequencies of the modu-
lations are close to wo;, the only relevant coefficients are ¢ ()
and ¢, () and we obtain the set of equations,

.dcy 2 1 VTIPS B
= aplea|er + 53120261( i+ 4 7€ Bl cx e 2y
L inwg 2 2
+ 7€ lea|"cavin + 2|ei] 273, ) (10a)
dcy 2 1 N HA P 1 A .
i, = culale 4 3Ahee G + St ety
1 .
+ EeilAWgt (|Cl|2C1721 + 2|C2|2C1’ﬁ2) , (10b)
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Figure 1. (a) Populations n; = [(¢;| ¥(x, 1)) \2 of the ground and the first excited modes versus time for double modulation and relative

phase 6 = 0 (Vinod + &mod)> along with the population of the first mode for trap-only modulation (Vp,eq) and for nonlinearity-only
modulation (gmod), With A, = 0.1 and A, = 0.3 amplitudes. (b) The same as (a) but for the population of the second excited mode and for

A;=0.08 and A, = 0.4.

with the coupling constants o, B, and v,,, given by

N
o =0y [ drign®F 26,0F - (6,07 A1)

1
B = / dr e, (OVE) (D), (12)

and
N

mn — 1
gl 5 (13)

/ dr e, (1)g(1)|dn(0)]* G (r).
In order to fulfill condition (9), the couplings are assumed to
be much smaller than the transition frequency, i.e., | /wa1 |
< 17 |ﬂmn/w21| < I and |'Ymn/w21| <1 [8]

From the dynamical equation (10), we note that the mod-
ulation of the trap couples the modes by means of the linear
term containing /3,,, and the nonlinear term with «,,, while
the modulation of the scattering length couples the modes
by means of distinct nonlinear terms containing 7,,,. There-
fore, the linear and the nonlinear terms can interfere with each
other and by varying the phase 6, this interference can be con-
trolled. We also note that when the modulation of the scattering
length is absent, gmoa(r, ) = 0, an approximate analytic solu-
tion to (10) has been derived, which shows that the popula-
tion oscillates between the two states with a Rabi-like chirped
frequency [9]. This chirped frequency depends on the popu-
lations |c,,(#)|*. Unfortunately, such approximate solutions for
&mod(T, 1) # 0 is not possible due to the presence of terms with

cn(t)?. Thus, we resort to perturbation theory to gain more
insight into the role of 6 in the transition.

4. Perturbative approximation

We assume that modulating fields (6) and (7) can be considered
as small perturbations in order to apply canonical perturbation
theory [35]. To this end, we introduce a perturbation parameter
A < 1 such that the Hamiltonian can be written as

H[U] = Ho[ ] + A [Vimoa(®, ) + gmoa(r, ON|T*] . (14)

The choice of a single parameter for both modulations is jus-
tified in order to consider the modulations on equal footing
and consequently to simplify the subsequent treatment. We are
interested in the transition probability from state ¢; to state
¢, often defined as Py_(1) = |{¢|¥(r, t)>|2 and we assume
the initial conditions ¢;(0) = 1 and ¢,(0) = 0. However, from
the approximations of the last section, one can deduce the
normalization condition for the coefficients, 3, [c,(H)]* = 1.
Thus, despite of the fact that the set of nonlinear modes is not
orthogonal, we can define the transition probability simply as
Pia(t) = |20

As usual, we write the coefficients c¢;(f) as a power series
in A,

i) = O+ AP0+ NP+, (15)
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Figure 2. (a) Population of the first excited mode versus relative phase of the modulations at some fixed times and parameters of panel (a) of
figure 1. (b) Population of the first excited state versus time for some fixed phases [same parameters of (a)]. (c) Population of the second
excited state at some fixed times and parameters of panel (b) of figure 1. (d) Population of the second excited mode versus time for some

fixed phases [same parameters of (c)].

and substitute this series into dynamic equation (10) equating
the like powers of \. To zeroth order, this yields,

dc” )2 0)
l? = CY12|C2 | (S (163.)
dc)” ©)2 (0)
7 :OQ]|C1 | Gy . (16b)

And we obtain the zeroth order solution as being c(lo)(t) =1,
P =o.
To first order in A, the equations are

dc(l)

i dlt = ajp [(c;(o)c(zl) + c;(l)c(zo)) c(lo) + |c(20)|2c(11)}
1 ©0) Li(Awt+0) 1 iAwgt
+ SBnc; e + et
2 2
)2 0 )2 (0
X [|Cz |“cy 2 +2|c) ¢, 7;1}
L A 0 (0)2
+ 3¢ ey ey M, (17a)
dc(l) ) (1) 0 O\ .0 )2 (1)
. * %
l—di =y {(c1 )+ e )c2 + [c)| ¢ }

1 A |
+ iﬁfzc(l())eﬂ(Aw,H—Q) + ieszng

[0 PP+ A

(17b)

1. 2
+ ECZAW”’ZCT(O)C(ZO) 2.

Substituting the zeroth order solutions into (17a) and (17b),
these equations simplify to

(1)
e o, (18a)
dr
~dc(21) Op.m 1 v | 1 —iAw,t
1 a = 0421|C1 | (&) + 56126 ! + =721€ 8,
(18b)
Thus, within first order, c(ll)(t) = 0and
1 BF ) .
(1) _ 12 —i [ —iAw;t
o'(f)=———-*—¢ e 1
2 2 (a2 — Awy) ( )
1 Y21 iBuwgt
T e — 18t ). 19
2 (a21 — Awg) (e ) ( )

Thus, we can write the transition probability within first order
as

|B12|? 721

P N~ — [l — Aw,t —_
1-2(0) 2o — AP [1 — cos(Aw:n)] + 2ant — AwgP
B2y i0
x |1 = cos(Aw,t)| + !
[ o) 4o — Aw)* (a1 Awy)
% [1 + ei(Awthwg)z . eiAw,z . efiAwgz]
’Y;lﬁl*z e if
oo — Awg) () — Awy)
% [1 + efi(Awlwag)t _ efiAw,t _ eiAwgt} ) (20)
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Figure 3. (a) Maximum population of the first excited mode versus relative phase of the modulations. (b) Same of (a) obtained from the
two-level approximation. (c) Time to reach the maximum population versus relative phase. (d) Same of (c) obtained from the two-level

approximation.

When the frequencies of the modulations are equal, Aw,
Aw, = Aw, the expression for the transition probability sim-
plifies to

P |B1al? + [ya1 > + 2R {B1aym exp(iG)}] .2 (AW
12 & s~ |

|O£21 — Aw\z 2 ’
(21)
where 93{-} stands for the real part.

Although the above expression is only valid for very short
times, for which the population of the state ¢; is still very
close to 1, expression (21) evidences the role of the relative
phase 6 on the transition. For instance, if (51272;) is real and
positive, then for § = 7 the modulations will act destructively
decreasing the transition probability, whereas for = 0 they
will act constructively. The extent of the interference will be
dictated by the magnitude of the couplings parameters /31, and
712 Additionally, according to (21), if the modulation of the
scattering length is absent, then variation of ¢ plays no role in
the dynamics.

5. Numerical results

We have carried out direct numerical calculations of the GPE
solving equation (1) in its 1D version,

1 tmax
d) o 2 ' . 32 2n
0
.0
1&\11()@ 1) = H[V]U(x,1), (22)
with the nonlinear Hamiltonian given by
2
H[V] = + V00 + g 0P, (23)

o2

and considering arbitrary units such that h=m =N =
go = 1. The nonlinear Hamiltonian operator has been written
as a matrix over a grid of points according to the Chebyshev
spectral method [36, 37].

In order to solve the time-dependent equation (22), we
express the corresponding time evolution operator, which con-
nects the initial time # = O to the final time # = #;, in N small
time-step At evolution operators,

N
Ul(ty,0) = H U (kAt, (k — VAP .
k=1

(24)

Each one of the small time-step evolution operators is cal-
culated as an expansion in Chebyshev polynomials [38—40],

Np
U (kAt, (k — 1)Af) = Z anXn(—IH[V((k — 1)An)]Ab),

n=0

(25)
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Figure 4. (a) Population of ground state and the first excited mode versus time for a system driven by the trap modulation only, with
amplitude A, = 0.1 and relative phase ¢ = 0 and 6 = 7/2. (b) Population versus absolute phase for some fixed times [same parameters as
(a)]. (c) Population of first excited state versus time for a system driven by the scattering length modulation only with fixed A, = 0.3 and
relative phase ¢ = 0 and 0 = 7/2. (d) Population of the first excited mode versus absolute phase for some fixed times [same parameters as

©1.

where a, are the expansion coefficients, x, are the complex
Chebyshev polynomials and N, sets the number of terms in
the expansion. The propagation of the wavefunction in the
kth time step is obtained by applying U (kAt, (k — 1)Ar) to
the wavefunction calculated in the previous step W((k — 1)Ar).
The relaxation method, which in essence consists in perform-
ing propagation with imaginary time ¢t — if, has been applied to
obtain the ground state [41]. The excited modes of the conden-
sate have been determined by the spectrum-adapted scheme
described in reference [31]. We have also found very good
agreement comparing our results for the time evolution with
those from references [31, 42].

For harmonic trapping potentials and modulating fields
with linear behavior with distance, no transition to excited
modes is possible through modulation of the trap [5]. Thus, we
have fixed the trapping potential to Vigp(x, 1) = x*/4, allow-
ing for a simple form of the spatial dependence of V(x). For
this trap, we have obtained the chemical potentials o = 0.808,
w1 = 1.857, and p, = 3.279, for the ground, first and second
nonlinear modes, respectively.

We have considered transitions from the ground state to
the first and to the second excited modes. In the first case, we
have set g(x) = Agx and V(x) = Ax, while in the second case,
g(x) = Ax? and V(x) = Ax*. The frequencies of the modula-
tions are set to be equal w, = w, = w and are chosen to satisfy
the resonance condition for each target. The error between the
frequency applied and the true one is estimated for a detuning
of Aw =~ 0.01.

Figure 1 compares single modulation with double modula-
tion for # = 0 by showing the corresponding target population
dynamics, denoted by n; = |(6;[¥(x,n))|*. In panel (a), the

target is the first excited state, while in panel (b) the tar-
get is the second excited state. In both cases, we observe
the double modulation performing a faster transition than the
individual modulations. Additionally, the double modulation
enhances the target population beyond that of the sum of
the individual modulations, which is an evidence of quantum
interference.

Panels (a) and (c) of figure 2 show the population of the
target modes, the first and second modes, respectively, as a
function of the relative phase of the modulations for some fixed
times. For § = 7 the transition is essentially inhibited, whereas
for & = 0 the target population is enhanced, in agreement with
the perturbative analysis. Panels (b) and (d) show the corre-
sponding population dynamics of the target modes for some
fixed phases. We observe that as the phase varies from 0 to
/2, the transitions become slower, while transferring about
the same number atoms. As the phase varies from 7 /2 to , the
transitions time is shortened, but the transfer of atoms is signif-
icantly decreased. This behavior has not been captured by the
perturbative expression and may be attributed to the nonlinear
character of the GPE.

Panel (a) of figure 3 shows the maximum value of n; as a
function of the relative phase. We observe that the maximum
population has an abrupt decrease as 6 goes from 7 /2 to 7 and
an abrupt increase as 6 goes from 7 to 37 /2. Panel (c) shows
the time span to reach the corresponding maximum value of n; .
For 0 just above 7 /2 and for € just below 37 /2 there is a signifi-
cant increase of the time to accomplish the transition. For com-
parative purpose, panels (b) and (d) present the corresponding
results obtained from the two-level approximation by solv-
ing equation (10) using a fourth-order Runge—Kutta method.
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We have obtained for the coupling parameters: ay; ~ 0.124,
B2~ 7.7 x 1072 and 7y, ~ 4.6 x 1072, It is observed an
overall qualitative agreement between the numerical solution
of the GPE with the two-level approximation.

Figure 4 considers the impact of the phase when only a
single modulating field is present. Here we are considering
the role of the absolute phase of each modulation in order
to compare with the role of the relative phase. In panels
(a) and (b), the modulation of the nonlinearity is turned off
8gmod(x, 1) = 0, whereas in panels (c) and (d) the modulation
of the trap is turned off Vi (x, 1) = 0 and equation (7) reads
8mod = 8(x)cos(w,t + 0). The upper panels show the popula-
tion dynamics of the ground and first modes for § = 0 and
6 = /2, while the lower panels show the population of the
first mode as a function of 6 for some fixed times. We note that
the variation of the absolute phase has more impact for the
trapping modulation than for the modulation of the scattering
length. But in both cases, there are small changes in the popu-
lations transfer and in the speed of the transition. The effects of
the absolute phase on the dynamics can be mainly attributed to
the nonlinear nature of the GPE. Considering the modulation
of the trapping potential with fixed scattering length, modi-
fying the absolute the trapping modulation causes changes in
the dynamics of the wavefunction, which in turn changes the
nonlinear term of the GPE, leading to modifications of the
population dynamics. Nevertheless, the impact of the absolute
phase is small compared to the relative phase when the two
modulating fields are present.

6. Conclusion

We have investigated the simultaneous resonant modulation of
the trapping potential and of the scattering length to generate
nonlinear topological modes. In particular, we have focused
on the impact of the relative phase of the modulations on the
transition from the ground state to excited modes in the frame-
work of the GPE. Numerical as well as approximated ana-
lytical methods have been applied. We have shown that the
relative phase can be used to coherently control the transition
to the excited modes by enhancing or suppressing the transi-
tion probability. We have also shown that the relative phase
can affect the speed of the transitions. Thus, by adjusting the
relative phase, the desired transition can be accelerated, which
may be useful to avoid dissipative effects of the condensate
with its surroundings. This behavior, which is not often found
in ordinary quantum dynamics, can be attributed to the non-
linear nature of the GPE. The present work should motivate
the study of different control problems in BEC using double
modulation, such as in the excitation of collective modes.
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