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Abstract

In the present work, we consider the generation of excited nonlinear topological modes of

Bose–Einstein condensates. These nonlinear modes present a number of interesting properties

and can be used in many applications, such as in matter-wave optics experiments. The

resonant generation of nonlinear modes by modulating either the trapping potential or the

scattering length have been previously reported. Here, we propose the simultaneous use of

both modulations with an adjustable relative phase between them in order to coherently

control the transition from the ground state to an excited mode. Within the framework of the

Gross–Pitaevskii equation (GPE), we show that the transition probability and the transition

duration can be controlled by means of the manipulation of the relative phase. In particular, the

acceleration of the transition can be useful to avoid dissipative effects of the condensate with

its surroundings. In our analysis, we employ approximate analytical techniques, including a

perturbative treatment, and numerical calculations for the GPE.

Keywords: coherent control, nonlinear topological modes, non-ground-state condensates,

Bose–Einstein condensates, phase control

(Some �gures may appear in colour only in the online journal)

1. Introduction

The control of quantum many-body systems’ dynamics is of

fundamental importance for physics [1, 2]. In particular, con-

trolling Bose–Einstein condensates (BEC) of ultracold atoms

offers the possibility for investigating large-scale quantum

phenomena and for implementing quantum technologies, such

as quantum computers and quantum simulators [3, 4]. A rele-

vant goal in this many-body system is the generation of con-

densates in excited topological modes, which exhibit several

interesting features such as mode locking, critical dynamics,

interference patterns and atomic squeezing [5]. Additionally,

condensates prepared in such excited modes have been used

in breakthrough matter-wave optics experiments [6, 7].

In the mean-�eld picture, nonlinear modes of BEC are

represented by stationary solutions of the Gross–Pitaevskii

equation (GPE), and are also termed topological modes [8].

It has been shown that a given nonlinear mode can be gener-

3 Author to whom any correspondence should be addressed.

ated by a time-dependent modulation of the trapping poten-

tial tuned to the resonance between the ground state and the

desired excited nonlinear mode [9]. Alternatively, it is also

possible to generate a nonlinear mode by means of a resonant

time-dependent modulation of the scattering length [10, 11],

which can be produced by an alternating magnetic �eld close

to a Feshbach resonance [11–14].

In the present work, we explore the use of bothmodulations

to resonantly generate nonlinear topological modes. Different

quantum transition amplitudes can be attributed to the modu-

lation of the trap and to the modulation of the scattering length

[9, 10]. Since these distinct excitation pathways connect an

initial state to the same �nal target state, the total transition

probability depends on the modulus squared of the sum of

the corresponding complex transition amplitudes. Thus, upon

changing the relative phase of these amplitudes, it is possible

to modify the �nal yield. This interference between quantum

transition amplitudes is the underlying principle of coherent

control [15–22]. Here, we consider the role of the relative

1361-6455/20/125302+8$33.00 1 © 2020 IOP Publishing Ltd Printed in the UK

https://doi.org/10.1088/1361-6455/ab81e5
https://orcid.org/0000-0003-3627-6474
https://orcid.org/0000-0003-0354-9181
mailto:emanuel@df.ufscar.br
http://crossmark.crossref.org/dialog/?doi=10.1088/1361-6455/ab81e5&domain=pdf&date_stamp=2020-5-27


J. Phys. B: At. Mol. Opt. Phys. 53 (2020) 125302 L B da Silva and E F de Lima

phase of the modulations on the transitions between nonlinear

modes.

Coherent control concepts have contributed towards the

development of quantum optimal control theory (QOCT),

which seeks to �nd external controls to drive a given transition,

maximizing some performance criteria [23–25]. There have

been several experimental and theoretical successful imple-

mentations of quantum optimal control algorithms for BEC

[26–30]. It is worth noting that QOCT has been applied to

maximize the transition between nonlinear modes utilizing

temporal and spatial modulation of both the trapping and the

scattering length [31]. However, the control �elds obtained

from QOCT are complex and dif�cult to be implemented in

laboratory. Additionally, the detailed role of the interference

between both modulations has not been addressed.

The paper is organized as follows: in section 2,we introduce

the theoretical framework for the production of the nonlin-

ear coherent modes. In section 3, a time average technique is

applied to theGPE allowing the description of the dynamics by

only two modes. A perturbative treatment is used to obtain an

analytic expression for the transition probability in section 4.

Numerical results con�rming the predictions are presented in

section 5. Finally, conclusions are drawn in section 6.

2. Excitation of nonlinear modes

We consider the dynamics of a Bose gas wavefunctionΨ (r, t)

described by the Gross–Pitaevskii equation [32, 33],

i~
∂

∂t
Ψ(r, t) =

(

−
~
2

2m
∇2

+ V(r, t)

+ g(r, t)N|Ψ(r, t)|2
)

Ψ(r, t), (1)

where m is the atomic mass and N is the number of atoms in

the condensate. The trapping potential V(r, t) is composed by

two parts,

V(r, t) = Vtrap(r)+ Vmod(r, t), (2)

where Vtrap(r) is a �xed trapping potential and Vmod(r, t) a

time-dependent modulating potential. The nonlinear interac-

tion amplitude g(r, t) is also composed by two parts,

g(r, t) = g0 + gmod(r, t), (3)

where g0 = 4π~2a0/m is a �xed nonlinearity and gmod(r, t) =

4π~2a(r, t)/m is a modulating nonlinearity, with the s-wave

scattering length as near a Feshbach resonance being writ-

ten as as = a0 + a(r, t). The normalization condition of the

wavefunction is
∫

dr|Ψ(r, t)|2 = 1.

With both modulations turned off, i.e., Vmod(r, t) = 0 and

gmod(r, t) = 0, the system can be described by the nonlinear

Hamiltonian H0,

H0[φ(r)] = −
~
2

2m
∇2

+ Vtrap(r)+ g0N|φ(r)|
2. (4)

We consider the nonlinear topological modes of H0, which

are solutions of the eigenvalue problem [9],

H0[φn(r)]φn(r) = µnφn(r), (5)

with n generally being a multi-index label for the quantum

states and µn the corresponding chemical potential. Here, we

are concerned with inducing transitions between stationary

solutions φn(r). This task can be accomplished by means of

modulating the trapping potential with an oscillatory �eld with

frequencyωt [9, 34]. Alternatively, one may also modulate the

atomic scattering length with frequency ωg [10]. We assume

that both modulations are present and that they possess a phase

difference given by θ,

Vmod(r, t) = V(r) cos(ωtt + θ), (6)

and

gmod(r, t) = g(r) cos(ωgt). (7)

For de�niteness, we consider a transition between an ini-

tial state φ1(r) to a �nal state φ2(r), with µ1 < µ2, and we

associate the resonance frequency ω21 = (µ2 − µ1)/~ with

this transition. As we have already pointed out, the transition

can be induced by resonant modulations and in this case the

system can be approximately described solely by the topo-

logical modes involved in the transition [9, 34]. Thus, we

assume that the modulating frequencies ωt and ωg are close

to ω21. More speci�cally, we assume that |∆ωt/ωt| ≪ 1 and

|∆ωg/ωg| ≪ 1, with the detunings de�ned by ∆ωt = ωt −
ω21 and∆ωg = ωg − ω21.

3. Two-level approximation

In order to simplify the dynamical equations, we consider that

the wave function Ψ(r, t) can be written as an expansion in

terms of nonlinear modes [9],

Ψ(r, t) =
∑

m

cm(t)φm(r) exp
(

−iµmt/~
)

, (8)

and that the following condition is valid,

~

µm

∣

∣

∣

∣

dcm

dt

∣

∣

∣

∣

≪ 1, (9)

meaning that the cm(t) are slow functions of time in comparison

with exp(−iµmt/~).
Substituting expansion (8) in the GPE and performing a

time-averaging procedure, with the coef�cients cm(t) treated

as quasi-invariants, will result in a set of coupled nonlinear

differential equations for the coef�cients cm(t) (see reference

[8] for details). As a consequence, if at the initial time only the

levels n = 1, 2 are populated and the frequencies of the modu-

lations are close to ω21, the only relevant coef�cients are c1(t)

and c2(t) and we obtain the set of equations,

i
dc1

dt
= α12|c2|

2
c1 +

1

2
β12c2e

i(∆ωtt+θ)
+

1

2
e−i∆ωgtc∗2c1

2γ21

+
1

2
ei∆ωgt

(

|c2|
2
c2γ12 + 2|c1|

2
c2γ

∗
21

)

, (10a)

i
dc2

dt
= α21|c1|

2
c2 +

1

2
β∗
12c1e

−i(∆ωtt+θ)
+

1

2
ei∆ωgtc∗1c2

2γ12

+
1

2
e−i∆ωgt

(

|c1|
2
c1γ21 + 2|c2|

2
c1γ

∗
12

)

, (10b)

2
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Figure 1. (a) Populations n j ≡ |〈φ j| Ψ(x, t)〉|2 of the ground and the �rst excited modes versus time for double modulation and relative
phase θ = 0 (Vmod + gmod), along with the population of the �rst mode for trap-only modulation (Vmod) and for nonlinearity-only
modulation (gmod), with At = 0.1 and Ag = 0.3 amplitudes. (b) The same as (a) but for the population of the second excited mode and for
At = 0.08 and Ag = 0.4.

with the coupling constants αmn, βmn and γmn given by

αmn ≡ g0
N

~

∫

dr|φm(r)|
2
[

2|φn(r)|
2 − |φm(r)|

2
]

, (11)

βmn ≡
1

~

∫

drφ∗
m(r)V(r)φn(r), (12)

and

γmn ≡
N

~

∫

drφ∗
m(r)g(r)|φn(r)|

2φn(r). (13)

In order to ful�ll condition (9), the couplings are assumed to

be much smaller than the transition frequency, i.e., |αmn/ω21|
≪ 1, |βmn/ω21| ≪ 1 and |γmn/ω21| ≪ 1 [8].

From the dynamical equation (10), we note that the mod-

ulation of the trap couples the modes by means of the linear

term containing βmn and the nonlinear term with αmn, while
the modulation of the scattering length couples the modes

by means of distinct nonlinear terms containing γmn. There-
fore, the linear and the nonlinear terms can interfere with each

other and by varying the phase θ, this interference can be con-
trolled.We also note that when themodulation of the scattering

length is absent, gmod(r, t) = 0, an approximate analytic solu-

tion to (10) has been derived, which shows that the popula-

tion oscillates between the two states with a Rabi-like chirped

frequency [9]. This chirped frequency depends on the popu-

lations |cm(t)|
2. Unfortunately, such approximate solutions for

gmod(r, t) 6= 0 is not possible due to the presence of terms with

cm(t)
2. Thus, we resort to perturbation theory to gain more

insight into the role of θ in the transition.

4. Perturbative approximation

We assume thatmodulating�elds (6) and (7) can be considered

as small perturbations in order to apply canonical perturbation

theory [35]. To this end, we introduce a perturbation parameter

λ ≪ 1 such that the Hamiltonian can be written as

H[Ψ] = H0[Ψ]+ λ
[

Vmod(r, t)+ gmod(r, t)N|Ψ|2
]

. (14)

The choice of a single parameter for both modulations is jus-

ti�ed in order to consider the modulations on equal footing

and consequently to simplify the subsequent treatment.We are

interested in the transition probability from state φ1 to state

φ2, often de�ned as P1→2(t) = |〈φ2|Ψ(r, t)〉|2 and we assume

the initial conditions c1(0) = 1 and c2(0) = 0. However, from

the approximations of the last section, one can deduce the

normalization condition for the coef�cients,
∑

m|cm(t)|
2
= 1.

Thus, despite of the fact that the set of nonlinear modes is not

orthogonal, we can de�ne the transition probability simply as

P1→2(t) = |c2(t)|
2
.

As usual, we write the coef�cients cj(t) as a power series

in λ,
c j(t) = c

(0)
j (t)+ λc(1)j (t)+ λ2c

(2)
j (t)+ · · · , (15)

3
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Figure 2. (a) Population of the �rst excited mode versus relative phase of the modulations at some �xed times and parameters of panel (a) of
�gure 1. (b) Population of the �rst excited state versus time for some �xed phases [same parameters of (a)]. (c) Population of the second
excited state at some �xed times and parameters of panel (b) of �gure 1. (d) Population of the second excited mode versus time for some
�xed phases [same parameters of (c)].

and substitute this series into dynamic equation (10) equating

the like powers of λ. To zeroth order, this yields,

i
dc

(0)
1

dt
= α12|c

(0)
2 |2c(0)1 , (16a)

i
dc

(0)
2

dt
= α21|c

(0)
1 |2c(0)2 . (16b)

And we obtain the zeroth order solution as being c
(0)
1 (t) = 1,

c
(0)
2 (t) = 0.

To �rst order in λ, the equations are

i
dc

(1)
1

dt
= α12

[(

c
∗(0)
2 c

(1)
2 + c

∗(1)
2 c

(0)
2

)

c
(0)
1 + |c(0)2 |2c(1)1

]

+
1

2
β12c

(0)
2 ei(∆ωtt+θ)

+
1

2
ei∆ωgt

×
[

|c(0)2 |2c(0)2 γ12 + 2|c(0)1 |2c(0)2 γ∗
21

]

+
1

2
e−i∆ωgtc

∗(0)
2 c

(0)
1

2
γ21, (17a)

i
dc

(1)
2

dt
= α21

[(

c
∗(0)
1 c

(1)
1 + c

∗(1)
1 c

(0)
1

)

c
(0)
2 + |c(0)1 |2c(1)2

]

+
1

2
β∗
12c

(0)
1 e−i(∆ωtt+θ)

+
1

2
e−i∆ωgt

×
[

|c(0)1 |2c(0)1 γ21 + 2|c(0)2 |2c(0)1 γ∗
12

]

+
1

2
ei∆ωgtc

∗(0)
1 c

(0)
2

2
γ12. (17b)

Substituting the zeroth order solutions into (17a) and (17b),

these equations simplify to

i
dc

(1)
1

dt
= 0, (18a)

i
dc

(1)
2

dt
= α21|c

(0)
1 |2c(1)2 +

1

2
β∗
12e

−i(∆ωtt+θ)
+

1

2
γ21e

−i∆ωgt.

(18b)

Thus, within �rst order, c
(1)
1 (t) = 0 and

c
(1)
2 (t) =−

1

2

β∗
12

(α21 −∆ωt)
e−iθ

(

e−i∆ωtt − 1
)

−
1

2

γ21
(α21 −∆ωg)

(

e−i∆ωgt − 1
)

. (19)

Thus, we can write the transition probability within �rst order

as

P1→2(t) ≈
|β12|

2

2|α21 −∆ωt|2
[1− cos(∆ωtt)]+

|γ21|
2

2|α21 −∆ωg|2

×
[

1− cos(∆ωgt)
]

+
β12γ21

4(α21 −∆ωt)∗(α21∆ωg)
eiθ

×
[

1+ ei(∆ωt−∆ωg)t − ei∆ωtt − e−i∆ωgt
]

+
γ∗
21β

∗
12

4(α21 −∆ωg)∗(α21 −∆ωt)
e−iθ

×
[

1+ e−i(∆ωt−∆ωg)t − e−i∆ωtt − ei∆ωgt
]

. (20)

4
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Figure 3. (a) Maximum population of the �rst excited mode versus relative phase of the modulations. (b) Same of (a) obtained from the
two-level approximation. (c) Time to reach the maximum population versus relative phase. (d) Same of (c) obtained from the two-level
approximation.

When the frequencies of the modulations are equal, ∆ωt =
∆ωg = ∆ω, the expression for the transition probability sim-

pli�es to

P1→2 ≈

[

|β12|
2 + |γ21|

2 + 2R{β12γ21 exp(iθ)}

|α21 −∆ω|2

]

sin2
(

∆ωt

2

)

,

(21)

whereR{·} stands for the real part.
Although the above expression is only valid for very short

times, for which the population of the state φ1 is still very

close to 1, expression (21) evidences the role of the relative

phase θ on the transition. For instance, if (β12γ21) is real and

positive, then for θ = π the modulations will act destructively

decreasing the transition probability, whereas for θ = 0 they

will act constructively. The extent of the interference will be

dictated by the magnitude of the couplings parameters β12 and

γ12. Additionally, according to (21), if the modulation of the

scattering length is absent, then variation of θ plays no role in
the dynamics.

5. Numerical results

We have carried out direct numerical calculations of the GPE

solving equation (1) in its 1D version,

i
∂

∂t
Ψ(x, t) = H[Ψ]Ψ(x, t), (22)

with the nonlinear Hamiltonian given by

H[Ψ] = −
∂2

∂x2
+ V(x, t)+ g(x, t)|Ψ(x, t)|2, (23)

and considering arbitrary units such that ~ = m = N =

g0 = 1. The nonlinear Hamiltonian operator has been written

as a matrix over a grid of points according to the Chebyshev

spectral method [36, 37].

In order to solve the time-dependent equation (22), we

express the corresponding time evolution operator, which con-

nects the initial time t = 0 to the �nal time t = tf, in N small

time-step∆t evolution operators,

U(t f , 0) =

N
∏

k=1

U (k∆t, (k − 1)∆t) . (24)

Each one of the small time-step evolution operators is cal-

culated as an expansion in Chebyshev polynomials [38–40],

U (k∆t, (k − 1)∆t) ≈

Np
∑

n=0

anχn(−iH[Ψ((k− 1)∆t)]∆t),

(25)

5



J. Phys. B: At. Mol. Opt. Phys. 53 (2020) 125302 L B da Silva and E F de Lima

Figure 4. (a) Population of ground state and the �rst excited mode versus time for a system driven by the trap modulation only, with
amplitude At = 0.1 and relative phase θ = 0 and θ = π/2. (b) Population versus absolute phase for some �xed times [same parameters as
(a)]. (c) Population of �rst excited state versus time for a system driven by the scattering length modulation only with �xed Ag = 0.3 and
relative phase θ = 0 and θ = π/2. (d) Population of the �rst excited mode versus absolute phase for some �xed times [same parameters as
(c)].

where an are the expansion coef�cients, χn are the complex

Chebyshev polynomials and Np sets the number of terms in

the expansion. The propagation of the wavefunction in the

kth time step is obtained by applying U (k∆t, (k − 1)∆t) to

the wavefunction calculated in the previous stepΨ((k− 1)∆t).

The relaxation method, which in essence consists in perform-

ing propagationwith imaginary time t→ it, has been applied to

obtain the ground state [41]. The excited modes of the conden-

sate have been determined by the spectrum-adapted scheme

described in reference [31]. We have also found very good

agreement comparing our results for the time evolution with

those from references [31, 42].

For harmonic trapping potentials and modulating �elds

with linear behavior with distance, no transition to excited

modes is possible throughmodulation of the trap [5]. Thus, we

have �xed the trapping potential to Vtrap(x, t) = x4/4, allow-
ing for a simple form of the spatial dependence of V(x). For

this trap,we have obtained the chemical potentialsµ0 = 0.808,
µ1 = 1.857, and µ2 = 3.279, for the ground, �rst and second

nonlinear modes, respectively.

We have considered transitions from the ground state to

the �rst and to the second excited modes. In the �rst case, we

have set g(x) = Agx and V(x) = Atx, while in the second case,

g(x) = Agx
2 and V(x) = Atx

2. The frequencies of the modula-

tions are set to be equal ωt = ωg = ω and are chosen to satisfy

the resonance condition for each target. The error between the

frequency applied and the true one is estimated for a detuning

of∆ω ≈ 0.01.
Figure 1 compares single modulation with double modula-

tion for θ = 0 by showing the corresponding target population

dynamics, denoted by n j ≡ |〈φ j|Ψ(x, t)〉|2. In panel (a), the

target is the �rst excited state, while in panel (b) the tar-

get is the second excited state. In both cases, we observe

the double modulation performing a faster transition than the

individual modulations. Additionally, the double modulation

enhances the target population beyond that of the sum of

the individual modulations, which is an evidence of quantum

interference.

Panels (a) and (c) of �gure 2 show the population of the

target modes, the �rst and second modes, respectively, as a

function of the relative phase of themodulations for some �xed

times. For θ = π the transition is essentially inhibited,whereas

for θ = 0 the target population is enhanced, in agreement with

the perturbative analysis. Panels (b) and (d) show the corre-

sponding population dynamics of the target modes for some

�xed phases. We observe that as the phase varies from 0 to

π/2, the transitions become slower, while transferring about

the same number atoms. As the phase varies from π/2 to π, the
transitions time is shortened, but the transfer of atoms is signif-

icantly decreased. This behavior has not been captured by the

perturbative expression and may be attributed to the nonlinear

character of the GPE.

Panel (a) of �gure 3 shows the maximum value of n1 as a

function of the relative phase. We observe that the maximum

population has an abrupt decrease as θ goes from π/2 to π and

an abrupt increase as θ goes from π to 3π/2. Panel (c) shows
the time span to reach the correspondingmaximumvalue of n1.

For θ just aboveπ/2 and for θ just below3π/2 there is a signi�-
cant increase of the time to accomplish the transition. For com-

parative purpose, panels (b) and (d) present the corresponding

results obtained from the two-level approximation by solv-

ing equation (10) using a fourth-order Runge–Kutta method.

6
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We have obtained for the coupling parameters: α21 ≈ 0.124,
β12 ≈ 7.7× 10−2 and γ21 ≈ 4.6× 10−2. It is observed an

overall qualitative agreement between the numerical solution

of the GPE with the two-level approximation.

Figure 4 considers the impact of the phase when only a

single modulating �eld is present. Here we are considering

the role of the absolute phase of each modulation in order

to compare with the role of the relative phase. In panels

(a) and (b), the modulation of the nonlinearity is turned off

gmod(x, t) = 0, whereas in panels (c) and (d) the modulation

of the trap is turned off Vtrap(x, t) = 0 and equation (7) reads

gmod = g(x)cos(ωgt+ θ). The upper panels show the popula-

tion dynamics of the ground and �rst modes for θ = 0 and

θ = π/2, while the lower panels show the population of the

�rst mode as a function of θ for some �xed times. We note that

the variation of the absolute phase has more impact for the

trapping modulation than for the modulation of the scattering

length. But in both cases, there are small changes in the popu-

lations transfer and in the speed of the transition. The effects of

the absolute phase on the dynamics can be mainly attributed to

the nonlinear nature of the GPE. Considering the modulation

of the trapping potential with �xed scattering length, modi-

fying the absolute the trapping modulation causes changes in

the dynamics of the wavefunction, which in turn changes the

nonlinear term of the GPE, leading to modi�cations of the

population dynamics. Nevertheless, the impact of the absolute

phase is small compared to the relative phase when the two

modulating �elds are present.

6. Conclusion

We have investigated the simultaneous resonant modulation of

the trapping potential and of the scattering length to generate

nonlinear topological modes. In particular, we have focused

on the impact of the relative phase of the modulations on the

transition from the ground state to excited modes in the frame-

work of the GPE. Numerical as well as approximated ana-

lytical methods have been applied. We have shown that the

relative phase can be used to coherently control the transition

to the excited modes by enhancing or suppressing the transi-

tion probability. We have also shown that the relative phase

can affect the speed of the transitions. Thus, by adjusting the

relative phase, the desired transition can be accelerated, which

may be useful to avoid dissipative effects of the condensate

with its surroundings. This behavior, which is not often found

in ordinary quantum dynamics, can be attributed to the non-

linear nature of the GPE. The present work should motivate

the study of different control problems in BEC using double

modulation, such as in the excitation of collective modes.
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