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Abstract. We investigate the long-range interactions between two neutrons utilizing recent data on the
neutron static and dynamic electric and magnetic dipole polarizabilities. The resulting long-range potentials
are used to make quantitative comparisons between the collisions of a neutron with a neutron and a neutron
with a proton. We also assess the importance of the first pion production threshold and first excited state
of the nucleon, the Δ-resonance (Jπ = +3/2, I = 3/2). We found both dynamical effects to be quite
relevant for distances r between ∼ 50 fm up to ∼ 103 fm in the nn system, the neutron-wall system and
in the wall-neutron-wall system, reaching the expected asymptotic limit beyond that. Relevance of our
findings to the confinement of ultra cold neutrons inside bottles is discussed.

1 Introduction

A polarizable particle is expected to exhibit a long-range
electromagnetic interaction. Examples include the charge-
induced dipole interaction energy between an electron and
a hydrogen atom, − 1

2αe2/d4, and the dipole-dipole dis-
persion interaction energy between two hydrogen atoms,
−C6/d6, where d is the separation between the electron
and the H atom or between the two H atoms, α = 9

2a3
0 is

the atomic electric dipole polarizability, and C6 ≈ 6.5e2a5
0

is the dispersion or van der Waals constant. The quanti-
ties α and C6 can be expressed in terms of the electric
dipole oscillator strength distribution of the atom, which
describes the response of the electron to photons at spe-
cific frequencies of an external electric field. Higher order
interaction energies involving magnetic dipole and higher-
order multipolar polarizabilities, and multipolar disper-
sion constants are also well-characterized and these may
be expressed in terms of the corresponding multipolar os-
cillator strengths. These interaction potentials are general
for atoms and molecules and they are widely studied and
applied for descriptions of spectroscopy and scattering.

The neutron possesses internal structure (two quarks
down and one quark up) with an electric dipole polariz-
ability αn and a magnetic dipole polarizability βn, usually
viewed as the response of the pion cloud to external elec-
tromagnetic fields [1–4]. The most recent recommended
values from the Particle Data Group (PDG) are αn =

a e-mail: hussein@if.usp.br

(11.6±1.5)×10−4 fm3 and βn = (3.7±2.0)×10−4 fm3 [5].
Another recommendation is αn = (12.5 ± 1.8) × 10−4 fm3

and βn = (2.7 ∓ 1.8) × 10−4 fm3 [6]. (The appearance of
± and ∓ is related to the sum rule used to determine
these values.) A number of separate groups determined
the neutron electric dipole polarizability αn by measuring
the effect of the potential energy

−1
2
αne2Z2/R4, (1)

where Z is the nuclear charge and R is the separation dis-
tance, on the scattering amplitude [7] in neutron scatter-
ing by 208Pb nuclei. The high nuclear charge generates an
electric field that polarizes the neutron leading to an effect
completely analogous and of the same form as that men-
tioned in the first paragraph for the charge-induced dipole
interaction between an electron and an atom. Experi-
ments were carried out looking at the differential scatter-
ing of neutrons on Pb and by looking at neutron transmis-
sion through Pb. For example, using neutron transmission
through lead Schmiedmayer et al. [8] obtained the value
αn = (12.0 ± 1.5 ± 2.0) × 10−4 fm3, where the first uncer-
tainty is statistical and the second uncertainty is systemat-
ical. Further analyses of this experiment and discussions
of other neutron-nucleus scattering experiments can be
found in refs. [2,9,10]. Two other experimental approaches
to the neutron polarizability are through measurements of
quasi-free Compton scattering from the bound neutron in
the deuteron (γ + d(np) → γ′ + d(np)) and of elastic pho-
ton scattering from the deuteron (γ + d → γ + d) [11,12],
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where the observable quantities are the Compton polar-
izabilities ᾱn + β̄n and ᾱn − β̄n. In particular, Compton
scattering experimental results, with the use of sum rules,
led to the recommended values for βn, cited above. One
can also use sum rules and the result for αn from neutron
scattering experiments to determine βn [8, 12]. Compton
scattering implies a response of the neutron to photon en-
ergies and provides a connection to the polarizabilities.
Care is required in using theoretical Compton scattering
frequency-dependent amplitudes because of the presence
of relatively small corrections arising from the relativis-
tic wave equations utilized [13,14], but no conceptual dif-
ficulties arise in relating static polarizabilities arising in
Compton scattering to those arising from an external elec-
tric field because they are identical [6,15]. In the past few
years the frequency-dependent values of αn and βn have
been calculated in the framework of chiral effective field
theory [3,12,16,17], the effective theory of the underlying
quantum chromodynamics (QCD). Guided by the approx-
imate chiral symmetry of QCD, these calculations show
good agreement with data, though convergence patterns
are different depending on its covariant or heavy-baryon
formulations, and on the explicit inclusion of the Delta
resonance (c.f. ref. [17]).

The paper addresses the influence of the internal struc-
ture of the neutron and proton on their dispersive interac-
tions with another neutron. In the second section we look
at the neutron-neutron Casimir-Polder (CP) interaction
and in the third section we compare the CP effect in the
nn and pn systems. In the fourth section we derive the CP
interaction in the neutron-wall system, and finally in the
fifth section, we give our concluding remarks.

2 The neutron-neutron Casimir-Polder
interaction

We believe it is reasonable to expect that there is a
neutron-neutron dispersion interaction, based on the ex-
perimental evidence for the static polarizabilities αn and
βn and on theoretical calculations of the polarizabilities
as functions of photon energies. Indeed, while our con-
clusion is based on a physical analogy between the neu-
tron and the H atom there is a more formal basis for
such an expectation. Feinberg and Sucher showed that
for asymptotically large separations, retarded dispersion
interactions between two “systems” (electromagnetically
polarizable particles) result independently of the system
models and follow from general principles of Lorentz in-
variance, electromagnetic current conservation, analytic-
ity, and unitarity [18, 19]. An early application of these
ideas to a calculation of the neutron-neutron scattering
length was carried out by Arnold [20]. However, at the
time of his analysis βn was unknown, the accepted value
of αn was twice today’s value, and dynamic polarizabilities
were unavailable.

Following Feinberg and Sucher [18], the asymptotic
(r ∼ ∞) long-range interaction potential between two

neutrons is given by the Casimir-Polder potential

V ∞
CP,nn(r) = −(�c/4π)[23(α2

n + β2
n) − 14αnβn]r−7

+O(r−9) = V ∗
CP,nn(r) + O(r−9), (2)

with the notation V ∗
CP meaning the static limit of the nu-

cleon dynamic polarizabilities. In contrast, the asymptotic
long-range interaction potential between a proton and a
neutron is the sum of the charge-induced dipole interac-
tion potential and the Casimir-Polder–type potential for
a neutral polarizable particle and a charged particle [21]

V ∞
CP,pn(r) =

�c α0

[
− 1

2
αnr−4+

1
4πcMp

(11αn+5βn)r−5+O(r−7)
]

=

V ∗
CP,pn(r) + O(r−7), (3)

where Mp is the proton mass and α0 = e2/4π ∼ 1/137
is the electromagnetic fine structure constant. Note the
appearance of a repulsive r−5 potential for the asymptotic
interaction of a neutron and a proton. (We would expect
the polarizability of the proton to enter at the higher order
of O(r−7) through a potential similar to eq. (2) that is
bilinear in neutron and proton polarizabilities [18].)

Accordingly, estimates that improve on the asymptotic
Casimir-Polder interaction between two neutrons and be-
tween a neutron and a proton can be obtained from, re-
spectively, eqs. (2) and (3), where we have substituted the
accepted polarizability values and converted the expres-
sions to suitable units for nuclear physics,

V ∗
CP,nn(r) ≈ −0.49 × 10−3(r/fm)−7 MeV, r ∼ ∞, (4)

and

V ∗
CP,pn(r) ≈ 0.91 × 10−3(r/fm)−4

×[−1 + 0.40(r/fm)−1]MeV, r ∼ ∞. (5)

More generally, The Casimir-Polder theory gives the in-
teraction between two identical neutral polarizable parti-
cles valid for all distances sufficiently large that exchange
forces are negligible [18,22],

VCP,ij(r) = − α0

πr6
Iij(r), (6)

where

Iij(r) =
∫ ∞

0

dωe−2α0ωr
{[

αi(iω)αj(iω)

+βi(iω)βj(iω)
]
PE(α0ωr)

+
[
αi(iω)βj(iω) + βi(iω)αj(iω)

]
PM (α0ωr)

}
,

PE(x) = x4 + 2x3 + 5x2 + 6x + 3,

PM (x) = −(x4 + 2x3 + x2), (7)

αi(ω) and βi(ω) are respectively the dynamic electric and
magnetic dipole polarizability of particle i, similarly for
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Table 1. Parameters of eqs. (8), (9) fitted to the theoretical curves of ref. [26]. See text for details.

αn(0) (10−4 fm3) a1 (MeV) a2 (MeV) βn(0) (10−4 fm3) b1 (MeV) b2 (MeV) ωΔ (MeV) ΓΔ (MeV)

Set 1 13.9968 12.2648 1621.63 4.2612 8.33572 22.85 241.484 66.9265

Set 2 11.6 2.2707 2721.47 3.7 8.67962 24.2003 241.593 68.3009

Set 3 12.5 5.91153 2118.79 2.7 9.27719 26.328 241.821 70.8674
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Fig. 1. Dynamic electric (left) and magnetic (right) polarizabilities, as functions of the photon energy ωγ . The yellow circles
are the CB-χEFT results of Lensky et al. [26] while sets 1, 2, and 3 correspond to our parametrizations using the numbers
specified in table 1.

particle j1. Detailed analyses of the neutron based on chi-
ral effective field theory, for photon energies up to the exci-
tation of the Δ resonance are found in refs. [3,12,16,25,26].
The analytic expressions for the neutron polarizabilities
are far from simple. However, we attempt to parametrize
αn(ω) and βn(ω) in terms of relatively simple formulas
that incorporate the most important low-energy aspects.

Our parametrization for the dynamic electric dipole
polarizability reads

αn(ω) =

αn(0)
√

(Mπ+a1)(2Mn+a2)(0.2a2)2√
(
√

|M2
π−ω2|+a1)(

√
|4M2

n−ω2| + a2)[|ω|2+(0.2a2)2]
.

(8)

Besides the static electric polarizability αn(0) and the
masses of the pion (Mπ) and the neutron (Mn), this ex-
pression has two mass parameters a1 and a2. The param-
eter a1 is formally a higher-order effect, but important to
match the correct pion production threshold, which con-
trols the low-energy behavior of αn(ω) [25]. The square
roots in eq. (8) are an attempt to incorporate the pion
production threshold behavior, above which αn devel-
ops an imaginary part. This specific form also assumes
a smooth and asymptotically decreasing behavior of αn

at imaginary frequencies, which is expected from analyt-

1 We note that an analogue of eq. (7) was recently derived for
gravitational interactions: the leading term involves dynamic
gravitational quadrupole polarizabilities [23]. The connection
between electromagnetic and gravitational polarizabilities is
also discussed in [24].

icity of the Compton S-matrix and used in the construc-
tion of our Casimir-Polder potentials. We fit the above
expression to the curves of Lensky, McGovern, and Pasca-
lutsa [26], results from the covariant formulation of baryon
chiral effective field theory (CB-χEFT). In contrast to
the non-relativistic, heavy-baryon formulation of χEFT
(HB-χEFT), the former properly takes into account re-
coil corrections to all orders, which is relevant to correctly
describe the threshold behavior due to pion production.
For Mn = 938.919MeV we obtain Mπ = 134.051MeV,
fairly close to the neutral pion mass (134.98MeV). The
remaining parameters are presented in table 1. In Set 1
we let αn(0) be a fit parameter, in Set 2 we keep αn(0)
fixed to the PDG central value [5], and in Set 3 we keep
αn(0) fixed to the central value of ref. [6]. The quality of
the parametrization can be observed on the left panel of
fig. 1, well within the expected theoretical uncertainties
(see refs. [12, 26]).

For the dynamic magnetic dipole polarizability we use

βn(ω) =
βn(0) − b2

1ω
2 + b3

2 Re(ω)
(ω2 − ω2

Δ)2 + |ω2Γ 2
Δ| , (9)

which incorporates the relevant physics in this quantity,
namely, the Δ resonance. In fact, from the fit parameters
b1, b2, ωΔ, and ΓΔ, the last two are close to the n-Δ mass
splitting2 and Δ resonance width, respectively. The term
proportional to Re(ω) mimics the onset of an imaginary
term in the Compton amplitude above the real photon
threshold, that would otherwise be absent below it. As

2 More precisely, this value is closer to Mn − MΔ − ΓΔ/2,
the onset of the Δ resonance contributions.
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Fig. 2. CP-interaction for two neutrons, as a function of the
separation distance r. The red thick and blue thin lines corre-
spond to the use of dynamical and static dipole polarizabilities,
respectively.

in the αn case, this specific form assumes a smooth and
asymptotically decreasing behavior of βn at imaginary fre-
quencies. The fitted parameters are shown in table 1, with
βn(0) evaluated in analogous way as αn(0) for each Set.
One observes very little spread for this quantity among
these three different sets. However, we noticed numerically
that the contribution of βn(ω) amounts to a decrease of
about 10% in the strength of the Casimir-Polder interac-
tion between two neutrons, VCP,nn(r). This CP potential
is, therefore, most sensitive to the differences observed in
the description of αn(ω), as we discuss later.

In order to assess the quality of eqs. (8), (9) at imagi-
nary frequencies, we compared them to the heavy-baryon
chiral EFT (HB-χEFT) expressions given by Hildebrandt
et al., Appendices B and C of ref. [25]. We made sure
to reproduce their results at real ω, then extrapolated to
the imaginary domain. HB-χEFT lies between our Set 2
and Set 3 with eq. (8) up to about iω = iMπ. On the
other hand, for the magnetic case eq. (9) starts disagree-
ing with HB-χPT beyond iω ≈ i 50MeV ∼ iMπ/3. How-
ever, we checked numerically that the magnetic contribu-
tion to the Casimir-Polder potentials is at most a 15%
effect. We also noticed that the HB-χEFT results for
αn(iω) and βn(iω) exhibit a numerical singularity as one
approaches iω = iMπ. In such complex-ω domain the non-
Born Compton amplitudes, from which αn(ω) and βn(ω)
are obtained, should not exhibit any low-energy physical
singularities. This is probably a consequence of the heavy-
baryon formalism in missing the correct pion-production
threshold, which is normally fixed “by hand” [12, 25, 26].
In this exploratory work we rely on our parametriza-
tions (8), (9), with room for technical improvements post-
poned to future works.

Given the dynamic electric (8) and magnetic (9)
polarizabilities, one computes the neutron-neutron CP-
interaction via eqs. (6) and (7). Figure 2 shows the CP-
interaction for two neutrons, VCP,nn(r), as a function of
the separation distance. The bold red curves correspond
to VCP,nn(r) given by the dynamic polarizabilities previ-
ously shown, while the thin blue curves correspond to the
static limit αn(ω), βn(ω) → αn(0), βn(0). In such limit, in-
tegration of eq. (7) is straightforward and leads to eq. (2).
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Fig. 3. The neutron-neutron CP-interaction as a function of
the separation distance r, multiplied by s r6 (red dotted line,
with s = 100 fm) and r7 (blue long-dashed line). The black
solid line is the CP-potential from the static limit of the dipole
polarizabilities, multiplied by r7.

The difference between the use of dynamic and static
polarizabilities is evident from the curves. In order to as-
sess the expected long-distance limit of eq. (2) we show
VCP,nn in fig. 3 multiplied by different powers of r. We
use parameters from Set 3, which illustrates well the qual-
itative behavior of the other sets. The red dotted curve is
the CP potential multiplied by s r6, where s = 100 fm to
fit in the figure. The blue dashed and black solid lines
stand for the dynamic and static polarizabilities versions
of VCP,nn (the latter indicated by V ∗

CP,nn in the figure),
multiplied by r7. The red thin solid line is the arctan
parametrization [27], which is utilized in atomic physics
(see, for example, ref. [28]), that makes the transition from
the 1/r6 short-distance van der Waals to the asymptotic
1/r7 Casimir-Polder behavior [20].

The red dotted curve shows a clear 1/r6 behavior at
small distances up to ≈ 20 fm, meaning that in this re-
gion the integrand of eq. (7) is nearly constant. This 1/r6

plateau may be just accidental, since this region is domi-
nated by energies larger than used to set our parametriza-
tions (8), (9). This assertion can be checked via the dom-
inance of the exponential factor of eq. (7): r � 20 fm re-
ceives contributions from neutron excitations larger than
(2α0 × 20 fm)−1 ∼ 670MeV. The physics of the Delta
resonance appears at about (2α0ωΔ)−1 ∼ 50 fm, but is
minor since it enters mostly via βn(ω), which is numeri-
cally of ∼ 10%. This way, our results can be considered
valid for distances beyond 50 fm. On the same reasoning,
pion production threshold influences the region around
100 fm. From the blue dashed curve, one also notices that
the large distance behavior (2) is only reached beyond
103 fm, dominated by dynamic polarizabilities in the re-
gion ωγ � 10MeV.

The above discussion was concentrated on the elec-
tromagnetic polarizabilities of the nucleons. The resulting
CP interaction is a consequence of two-photon exchange.
It is known, though, that the strong interaction also gives
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rise to long-range vdW interaction, the color vdW, arising
from multi-gluon exchange. Such force was considered in
the scattering of identical heavy nuclei, such as 208Pb, [29],
and looked for experimentally [30]. Here we mention that
this interaction is similar in structure to the electromag-
netic one, and can be lumped together.

Considerations of the consequences of the interaction
potential power laws r−4, r−5, r−6 and r−7 involving neu-
trons scattering from heavy nuclei were given in ref. [10],
guided by the work of Thaler [7]. In the following section
we give an account of the influence of our calculated CP
interaction in the nn and np systems on the low-energy
n-nucleus scattering as done in [7, 10]. We do this for the
purpose of completeness and to obtain insights into the
way the neutron interacts with the constituents of walls
of material which are potentially used in neutron confine-
ments in bottles. The full n-wall and wall-n-wall inter-
actions and potentials will be discussed in the following
sections.

3 Comparison of the CP effect in the nn and
pn scatering systems

The effect of the long-range interaction on the neutron-
neutron (nn) scattering can be estimated using the first-
order perturbation theory. We can write

fnn(q) = −ann + f∞
nn(q), (10)

where ann is the nn scattering length ann = −18.9±0.4 fm.
Taking for the neutron wave function a plane wave,
φ(k; r) = 1

(2π)3/2 exp(ik · r), the change in the scattering
amplitude arising from eq. (4) is then

f∞
nn(q) = −

(
−0.49 × 10−3 fm7 · MeV

) 2π2μnn

�2

×
∫

drφ�(k′; r)
1
r7

φ(k; r)

=
(
0.49 × 10−3 fm7 · MeV

) Mn

8π�2

∫
dreiq·r 1

r7
,

(11)

where q = |k′−k| = 2k sin(θ/2) is the momentum transfer
divided by �, μnn = 1

2Mn is the reduced mass, and Mn is
the neutron mass. The integral over r can be performed
easily [10]. The lower limit of the r integral is set at r =
R, where R is a radius that characterizes the strong nn
interaction and V ∞

nn(r ≤ R) = 0. We have

f∞
nn(q) =

(
0.49 × 10−3 fm7 · MeV

) (
Mn

2�2

)
1

R4
F7(q),

(12)
where

F7(q)=
sin(qR)

5qR
+

cos(qR)
20

− qR sin(qR)
60

− (qR)2 cos(qR)
120

+
(qR)3 sin(qR)

120
+

(qR)4

120

∫ ∞

qR

dt
cos t

t
, (13)

which gives to leading order in qR the following:

F7(q) =
1
4
− 1

12
(qR)2

+
[

137
7200

− γ

120
− 1

120
ln(qR)

]
(qR)4+O((qR)6),

(14)

where γ ≈ 0.5772 is Euler-Mascheroni constant.
The cross section is given by | − a + f∞

nn|2. Neglecting
the term |f∞

nn|2, we obtain,

σnn(q) = a2 − 2af∞
nn(q). (15)

A similar analysis can be performed for the proton-
neutron (pn) system, using eq. (5). The amplitude is then
given by

fpn(q) = −apn + f∞
pn(q). (16)

Here, apn is the pn scattering length given by apn =
−23.74 fm. The correction owing to the long range inter-
actions is to leading order in qR given by

f∞
pn(q) =

(
0.91 × 10−3 fm4 · MeV

) μpn

4π�2

×
∫

dreiq·r
[

1
r4

− 0.40 fm
r5

]

≈
(
0.91 × 10−3 fm4 · MeV

) (
Mn

2�2

)

× 1
R

[
F4(q) −

0.40 fm
R

F5(q)
]

, (17)

where μpn is the reduced mass of the proton and neutron
and where the functions F4(q) and F5(q) are given by [7,
10]

F4(q) = 1 − 1
4
πqR +

1
6
(qR)2 + . . . (18)

and [10]

F5(q) =
1
2
−

[
11
36

− γ

6
− ln(qR)

6

]
(qR)2 + . . . . (19)

The above results can be summarized by introducing
effective scattering lengths for the nn and the np systems.
Using the definition aeff. = a− f(0) we find, for the effec-
tive CP-modified scattering length for the nn system,

ann,eff. =ann − f∞
nn(0)=ann − 1.23 × 10−4

(
Mn

2�2

)
1

R4
,

(20)
and similarly for the np system,

apn,eff. = anp − f∞
np(0) = anp + 0.91 × 10−3

(
Mn

2�2

)

× 1
R2

(R − 0.20 fm) , (21)

It is clear that the effect of the CP interaction is more pro-
nounced in the np system; basically an order of magnitude



Page 6 of 9 Eur. Phys. J. A (2017) 53: 126

stronger. This becomes clear when calculating the relative
effect on the corresponding cross sections. This discussion
about the effect of the Casimir-Polder interaction on the
scattering lengths of nucleon-nucleon system could be of
use in the study of charge symmetry violation in hadron
physics [31].

It is now a simple undertaking to compare the nn and
the pn long-range corrections to the cross sections,

Δσnn(q)
Δσpn(q)

=
annf∞

nn(q)
apnf∞

pn(q)

=
0.49 fm7 · MeV
0.91 fm4 · MeV

18.9 fm
23.74 fm

×
[

F7(q)/R3

F4(q) − F5(q) × 0.40 fm/R

]
. (22)

Then,

Δσnn(q)
Δσpn(q)

≈ 0.43 fm3

R3

×
[

1
4−

1
12 (qR)2

1− 1
4πqR+ 1

6 (qR)2− 0.4 fm
R [12−( 11

36−
γ
6 −

ln(qR)
6 )](qR)2

]
.

(23)

Taking for qR the value 1 × 10−3, with R = 20 fm and
q = k = 5 × 10−5(fm)−1, corresponding to center-of-mass
nn energy of 1 eV, we can obtain the following numerical
estimate.

Δσnn(q)
Δσpn(q)

≈ 1.36 × 10−5. (24)

The estimate given above clearly indicates that at very
low energies, the np system is much more influenced by
the CP interaction than the nn system. Individually, how-
ever, both are very little affected by this interaction when
discussing neutrons in containers, such as bottles, at en-
ergies in the neV region (ultra cold neutrons). The neu-
trons feel an over all repulsive interaction with the walls
of the container arising from the Fermi pseudo potential
which becomes operative when a critical neutron energy
is reached [32,33]. This critical energy varies in value with
the material of the wall, but in general it is in the 100’s of
neV (e.g. for nickel the critical Fermi energy is 252 neV).
In containers with walls of aluminum the Fermi pseudo
energy or potential is much lower, about 54 neV, corre-
sponding to neutron velocity of 3–24m/s. Therefore the
CP effect which is repulsive for the pn system, the dom-
inant constituent in the neutron-wall interaction, has an
extremely small effect when compared to the dominant
Fermi repulsion.

4 The neutron-wall interaction

In discussing the confinement of neutrons inside contain-
ers or bottles, one is bound to consider the interaction
of neutrons with the wall of the container. The case of
an atom and a perfectly conducting wall was considered
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Fig. 4. CP-interaction for a neutron and a wall, as a function
of the separation distance r. Notation is the same as fig. 2.

by Casimir and Polder, and they obtained the following
expression valid for very large r:

VCP,aW (r) = − 3
8π

�cαd(0)
1
r4

, (25)

where αd(0) is the dynamic polarizability of the atom at
zero frequency. The above formula has been re-derived by
many authors and a more general expression was obtained
which gives the above as the limiting case as r → ∞, and
a 1

r3 form for smaller values of r. For the neutron-wall
interaction a similar expression holds and it can be written
as [34]

VCP,nW (r) = − α0

4πr3
JnW (r), (26)

where

JnW (r) =
∫ ∞

0

dω e−2α0ωrαn(iω)Q(α0ωr),

Q(x) = 2x2 + 2x + 1. (27)

We deduce the neutron-wall interaction based on analogy
with the atom-wall interaction describing the long-range
potential between a neutral polarizable particle and a wall.

Similar to the neutron-neutron case, in the static limit
the integration above can be done analytically, leading to

V ∗
CP,nW (r) = −3α(0)

8πr4
, (28)

which is the asymptotic limit for large distances [34], sim-
ilar to eq. (25).

Figures 4 and 5 show the CP-interaction for a neutron
and a wall, as a function of the separation distance r. All
the qualitative discussion presented for the CP-interaction
between two neutrons also applies here. Notice that in
fig. 5 the factors multiplying VCP,nW are r3 and r4. The
only additional comment is that VCP,nW reaches the ex-
pected asymptotic behavior slightly faster than VCP,nn,
most likely due to the smaller degree of the polynomial
Q(x) compared to PE,M (x) multiplying the polarizabili-
ties, see, respectively, eqs. (27) and (7).

For very low energy neutrons, in the ultracold region
En ≈ several hundreds of neV, the attractive CP inter-
action would compete with the repulsive Fermi pseudo
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potential which is given by VF = 2π�
2

M ρa, where ρ is the
number density of the atoms in the wall and a is the scat-
tering length of the neutron-nucleus system. The value
of VF depends on the material of the wall. E.g. for Ni,
VF = 252 neV. Accordingly, for neutron energies below
this value, there is an overall repulsion from the wall. In
the presence of the CP attractive interaction this situation
could potentially change.

The final result, which we consider relevant for this
work, is the case of a neutron between two walls. The
result is known for neutral atoms and we merely extend
it to neutrons. Consider two walls separated by a distance
L and a neutron at a distance z from the midpoint within
the confines of the two walls (−L/2 ≤ z ≤ +L/2). The
confined neutron is subjected to a potential whose form
for any value of L is known [34],

VCP,WnW (z, L) =

− 1
πL3

∫ ∞

0

dt
t2 cosh(2tz/L)

sinh(t)

∫ t
α0L

0

dωα(iω)

+
α2

0

πL

∫ ∞

0

dωω2α(iω)
∫ ∞

α0Lω

dt
e−t

sinh (t)
=

− 1
α0πL4

∫ ∞

0

u3duα

(
i

u

α0L

)

×
∫ ∞

1

dv

sinh(uv)

[
v2 cosh

(
2z

L
uv

)
− e−uv

]
, (29)

where the latter form is most suitable for numerical cal-
culations, as well as deriving analytic results for specific
limits. In particular, if one takes the static limit of eq. (8)
the integrals above can be done exactly, leading to

V ∗
CP,WnW (z, L) = − αn(0)

α0πL4

{
3
8

[
ζ

(
4,

1 − f

2

)

+ ζ

(
4,

1 − f

2

)]
− ζ(4, 1)

4

}

= −π3αn(0)
α0L4

[
3 − 2 cos2(πf/2)

8 cos4(πf/2)
− 1

360

]
,

(30)

where f = 2z/L and

ζ(a, b) =
∞∑

k=0

1
(k + b)a

(31)

is the generalized Zeta function. Equation (30) is nothing
but the L → ∞ limit [34], explicitly showing its L−4 be-
havior. At the midpoint (z → 0) one has VCP,WnW (0, L) =
−11π3αn(0)/(90α0L

4). If the neutron is close to one of the
walls, the potential diverges towards negative values.

Figure 6 shows the numerical results of eq. (29), as
functions of the separation L between the walls, for several
values of the neutron distance from the midpoint z. The
lines are for several values of the fraction f = 2z/L, from
0 to 0.9 in steps of 0.1. The left panel, VCP,WnW , shows
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0.0e+00

100 101 102 103 104

M
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.fm
4

r (fm)

s r3 VCP,nW

r4 VCP,nW

r4 V*
CP,nW

Fig. 5. CP-interaction for a neutron and a wall, as a function of
the separation distance r, multiplied by s r3 (red dotted line,
with s = 100 fm) and r4 (blue long-dashed line). The black
solid line is the CP-potential from the static limit of the dipole
polarizabilities, multiplied by r4.

contributions from the dynamic electric polarizability of
the neutron, while the right panel, V ∗

CP,WnW , only the
static limit. The black dashed line on both panels is the
result of eq. (30) for f = 0.9 and is drawn just to guide
the eye. We can check that the static limit is reached only
at distances as large as ∼ 104 fm, just a tenth of typical
atomic dimensions. This can be better visualized in fig. 7,
with analogously figs. 3 and 5. Similarly to the neutron-
wall case, at small (� 10 fm) and moderate (∼ 100 fm)
distances the behavior resembles more a 1/L3 falloff than
the asymptotic 1/L4. The region of this behavior is slightly
z-dependent, as one compares the left panel (f = 0.9) with
the right panel (f = 0) of fig. 7.

In fig. 8 we present the behavior of VCP,WnW as a func-
tion of the neutron distance from the midpoint z. On the
left panel we select three values of the distance between
the walls, L, indicated in the figure. The red dashed curves
stand for the dynamic polarizability, and the blue solid
curves, for the static limit. One sees that the strength of
the interaction, as well as the discrepancy of the dynamic
and static results, increase as one moves the neutron close
to one of the walls. Finally, on the right panel one can
inspect the dependence of VCP,WnW on both variables z
and L, in the region where both the dynamic and static
cases are not far from each other.

5 Conclusions

In this paper we discussed, derived, and analyzed the
dispersive Van der Waals and the retarded dispersive
Casimir-Polder interactions between two neutrons and in
the proton-neutron system. We found the effect, though
very small compared to the by far dominant short range
strong interaction, is of significance at large distances, and
is stronger in the pn than in the nn system. We further
assessed the importance of the low-energy nucleon dynam-
ics, namely, the pion-production threshold and the first ex-
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cited state of the nucleon, the Δ-resonance (proton (uud),
Δ+, Jπ = 3/2+, I = 3/2, Iz = −1/2; neutron (udd),
Δ0, Jπ = 3/2+, I = 3/2, Iz = +1/2). We found that
they dominate the region ∼ 50 fm � r � 103 fm in the nn
system, the neutron-wall system and in the wall-neutron-
wall system. This demonstrates that for r � 50 fm the
only aspect of the internal quark structure of the nucleon
is the induced electric and magnetic dipole moments of

the nucleon, a pure dipole stretching of the two down-
quarks against the up-quark in the neutron and the two
up-quarks against the one down quark in the proton. How-
ever, for distances r � 50 fm the studied Casimir-Polder
interactions are very sensitive to the electromagnetic re-
sponse of the short-distance quark-gluon dynamics inside
the nucleon. Relevance of our work to confining neutrons
inside bottles is briefly discussed.
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Our study is exploratory and complementary to the
work by Spruch and Kelsey [35] for long-range poten-
tials arising from two-photon exchange in atomic sys-
tems. Spruch and Kelsey replaced the static polarizabil-
ities for two atoms appearing in the long-range Casimir-
Polder potential by their dynamic polarizabilities. This
ansatz was verified rigorously subsequently by two inde-
pendent Coulomb-gauge quantum electrodynamics calcu-
lations [36, 37] and shown to agree with the dispersion
theoretic formalism result [38]. Spruch’s approach is sig-
nificantly easier to apply than the formal dispersion the-
oretic analysis and, at least as far as practical calcula-
tions, it yields correct long-range interaction potentials.
Whether or not this ansatz is good enough or strictly valid
for the neutron could be arguable. For example, we note
that in their book, Rauch and Werner (sect. 10.11, p. 313)
state that neutrons “. . . provide the advantage that their
Casimir or van der Waals forces are small or perhaps non
existing” [39].

We supposed that the neutron has dynamic electric
and magnetic polarizabilities, for which there is certainly
evidence from dispersion relations and chiral effective field
theory calculations to Compton scattering, and that the
neutron interacts as a polarizable particle. Moreover, in
using our calculated potentials to model an experiment,
other interactions may enter (e.g. the response of the neu-
tron to an applied magnetic field or (as we discussed) per-
haps strong interactions). The present work suggests that
the topic is deserving of further study and experimental
investigations.
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