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1. INTRODUCTION

The representations of the cyclic group of
order p? for p prime, by matrices over the
integers, were classified by Reiner in [3]- This
was done by giving a complete list of all the
indecomposable lattices over the group ring
ZG, and a set of invariants which characterizes
the isomorphism class of every direct sum of
indecomposables. The methods used by Reiner
are extended here in order to give some of the
integral representations of the cyclic group
G of order p" for any n.

For all unexplained terminology, we refer
the reader to [2].

If € is a primitive root of 1 of order p",
we write { = (7"
I <i<n Considering a fixed pair ij, with
l<i<j<n, we classify the isomorphism
classes of the ZG-lattices M such that the

simple components of the QG-lattice QM
are isomorphic to Q.Q(), or Q). In
particular, for n =2 “these lattices furnish

all the integral representations of the cyclic
group of order p? Then we describe the
isomorphism classes of the direct sums of the
lattices M  obtained as above, for different
pairs ij. The proofs of these results are too
long to be given in this note; they will appear
elsewhere. :

Let G, be the cyclic group of order p’,
and ®@; the cyclotomic polynomial with root
§; as above. There is an epimorphism:

2G, ~ ZIXJ/X* — 1) » ZX}/(@) = R,

* Received April 30, 1981: presented by ARON
Simis.

and R, =Z[{] for any

Thus every torsion-free R;-module is a lattice ;
over ZG; and hence over ZG, through the
epimorphism G = G On the other hand,
for every ZG; lattice M, if a is the generator
of G, then the submodule L of M annihilated
by aP-1 is a ZG,-lattice. If M is a lattice of
the type we want to study, then N = M/L
is annihilated by ®(a) and hence is an R;-
module. Further, N is torsion-free over R
It is known (see [3] and [4]) that:

Ext;(N,L) ~ L = L/pL.

Because QL and QN have no common
composition factors, two extensions of N by L
are isomorphic if and only if one is obtained
fromthe other by the action ofan automorphism
vy of L, on the left, and an automorphism &
of N on the right. The actions of ¥ and & on
Ext;(N,L) are given by applying the functors
Ext;4(N,) and Ext!,(-L) to y and &. The
ZGylattice M is then determined by the ZG,-
sublattice L, the R;-lattice N, and an element
uel, which represents an orbit of Ext}.(N,L)
under these actions. Such a lattice we indicate,
as in [3], with the notation (L,N,u).

If N =R, and L is one of the ZG_-lattices:
Z.R,E, = Z[X]/(X-1)(®,),

then there is a ring epimorphism R,— L
and the group of automorphisms of R; acts
on L through this epimorphism. Since U(R))
maps onto U(Z), there are only two extensions
of R; by Z. The unique non-split extension is
E; = (Z,R;1). The same holds if R, is replaced
by an ideal B of R;. We then use the notation
E(B) = (Z,B,1).
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If ¢ is the Euler function and A =X — 1,
then letting bars denote lattices modulo p,
we have:

R, = Z[AYA)*™.E, = Z[AJ/(h)*"* 1.

Every element of any of these rings can then
clearly be written as the product of a unit by
a power of the residue of A.

It is well known (see [2]) that a ZG-lattice
M is indecomposable if and only if the lattice
I_M is indecomposable over the p-adic group
ring I.G. A lattice M’ is said to be locally
isomorphic to M, or to belong to the same
genus as M, when IPM’ ~ lpM as IpG-Iattices.
The ZG-lattices considered in theorems 1 and
2 are determined by first finding all their genera
and then determining the isomorphism classes
in each genus.

2. INDECOMPOSABLE LATTICES

Consider now a fixed pair i) where
| <i<j<n. Using the preceding notations,
we list the following types of indecomposable
ZG-lattices. With the methods of [3] it can
be shown (see also [1]) that this list contains
one representative for each genus of the set of
all the indecomposable ZG-lattices M, such
that the composition factors of QM are
isomorphic to Q, Q) or Q(Z)).

1°Z;2° R,R;; 3° E.E;; 4°(R,R A7), 1 = O,...
a0pY) = 15 5° (E,RA), r = 0,....0(p)):
6° (Z ®R,R,1 +47),r = 0,....0(p") — 1;
7° if p' # 2, (Z DE,R;,1 + 1),
r=L...0(p") — 1.

In order to determine the isomorphism
classes of these indecomposable ZG-lattices
some further notation is needed.

Foreachr, 0 < r < ¢(p), let t = d(p') +
— 1 and consider the composite

L:R, - R, - Z[A)(W).

The action of R, on R; gives another
epimorphism 6 from R; to Z[A]/(A)': Denote:

U*(R) = x(U(R)), U¥(R)) = B(U(R))).
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The norm from Q({)) to Q(;) determines
a map N:R,— R, It can be easily shown
that x = ON, hence U*R; = U*R). For
t = L,...0(p") we write:

U, = UZ[AJ0)), V, = UJUR,).

Let now U(R,), be a set of representatives
ueR;, of V., with t=¢(p)—r. For each
ideal A of R, and each ideal B of R, such a u
defines a ZG-lattices (A,B,u) because A = R..

Now for 0 <r < ¢(p), let t=d(p')+
+ 1 — r and consider:

n:E, - E, - Z[AJ/(R)'.

If j>i we also have a map v from R; to

Z[A)/(). Let '
U*E,) = n(U(E)), U*(R;) = v(U(R)).

For t = l...¢(p") + 1
and

consider U, as before

U, = O/UE)U*R,)).

We remark that it can be shown that
U =V, for t=1,0(0p).

Let U(E,), be a set of representatives u € E,
of U for t=¢(p)+1—r. Each such u
determines the extension (E(A),B,u) because
E(A) = E. With similar notations we denote
extensions of B Z @A and by. Z @ E(A).

Let q be a fixed integer which is a quadratic
non-residue modulo p.

By determining the isomorf:hism classes
in each of the genera of the first list, we obtain
the indecomposable ZG-lattices of Theorem 1.

THEOREM 1 — Every indecomposable ZG-
lattice with components Q, Q((), Q(;) over
QG is isomorphic to one of the following, where
A runs through the ideal classes of R; and B
through the ideal classes of R, and these
indecomposables are non-isomorphic.

1° Z;22 AB: 3R E(A), E(B);

4° (ABAu), r = 0,....4(p") — 1,ue UR,)),;

5° (E(A)BA'), r=0,..4(p"), ueU(E),;:

6.° (Z ®AB,1 + A'u), r =0....,0(p") — 1,
ue UR,),;




INTEGRAL REPRESENTATIONS OF CYCLIC p-GROUPS 21

7°if p'#2: (Z®DEA)B,] + i), r =
= lv--s¢(pi) = l$ ue l-j(Eg_)rq. |;

7*° if p=1l(mod 4), (Z G-?E(A),B,l ~+
+Auqg), r=1,...4(p)— 1, ueUE),,,.

3. DIRECT SUMS OF INDECOMPOSABLES

In this section we consider a direct sum S
of indecomposable ZG-lattices expressed as in
Theorem 1. We denote by A,(S) the product
of all ideals of R, appearing in the summands
of S, and by A(S) the product of all ideals of
R, Let r, be the maximum exponent of A in
the summands of type 5 of S, r, the maximum
exponent of A coming from summands of the
other types, and r(S) = max(r, — 1,r,). We
indicate with u(S) the product of the images
in U,” t = ¢(p) — (S), of all_the u’s and q's
of the summands of types 4 to 7 which form S.

THEOREM 2 — Let S be a direct sum of
indecomposable ZG-lattices of the types given

in Theorem 1. The isomorphism class of S *

determines the following invariants.

I. The genera of the indecomposables
which form S.
L. The ideal class of A(S) in R, and
the ideal class of A(S) in R,
If'S satisfies the following conditions then
the isomorphism class of the sum is determined
by 1 and 11,

a — S has a summand of type 2 or of type 3.

b — Either p # 1 (mod 4, or p = 1 (mod 4)
and among the summands which form S there is
one of type 1, 3, 5 or 6.

If'S has no summands of type 2 nor 3, then
u(S) is invariant under isomorphisms, while if
b is not satisfied, then 1V is invariant. In these
cases 111 and 1V, respectively, must be added
to I and 11, in order to determine S.

IIL.  The element u(S).

IV.  The parity of the number of summands
of type 7* which form S.

We now consider a sum S of modules S;;
for various pairs ij, where each S,; is a sum of

indecomposables as described in theorem 2.
The characterization of the isomorphism class
of S becomes manageable if we reduce the
problem to the cases where it is a sum of two
such modules S, .

Let S be a lattice of the form S = S,; ®
@S,,, with ijk,/ all different.

Ifboth S;; and S, , satisfy a, and if the whole
sum S satisfies b of theorem 2, then the invariants
which determine the isomorphism class of S
are I: the local types of the indecomposable
summands and 1I: the ideal classes of A(S),
A(S),A,(S) and A,S). When these conditions
are not satisfied, the following invariants must
be respectively given: u(S;), u(S,,)" and the
invariant IV of S. '

Consider now sums of the form S = S; ®
©S,, where j# /. IfS satisfies the conditions
aand b of Theorem 2, then this sum is determined
by I: the local types of the indecomposable
summands and II: the ideal classes of A(S),
A((S) and A,(S). If S does not satisfy a then the
following invariant must be considered: III:
the element u(S)e U, with t and u(S) defined
as above, but taking into account all the
indecomposables of both S;; and S,,. If S does
not satisfy b then the invariant 1V of S must
be given.

Nowlet S =S, @S, with i <k.
Take U, = U/U*R;), where

= mln(d)([’) . r(Sij)‘ (b(Pi] = rlsk.i”°

Let u(S) be the product of the images in
U, of all g's and all u’s coming from the
indecomposable summands of S. With this
u(S) the result can be extended in the same way
as in the preceding case.

These methods can still be pushed further
and applied to determine invariants for sums
of the form S = S; @S,,. The isomorphisms
between two of these sums are not expressed
as simply as in the other cases, because in general
this S is an extension of lattices N by L, such
that QN and QL have a common composition
factor. But the result is simple to state when
the sum S is, as in [4], formed by ideals of R,
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R; and R, (that is, indecomposables of type 2)
and extensions of ideals by ideals (type 4).

In this case, if the sum includes
indecomposables of type 2, then S is determined
by I: the local types of indecomposable
summands and II: the ideal classes of A(S),
A(S) and A/S). Otherwise S is determined
by I, Il and the invariant u(S) defined as follows.
Let

t = min(¢(p') — r,(S,).¢(p)) — ,(S,).
Take u(S) to be the productin U, of the images

of the u’s coming from S and the inverses
of the u’s coming from S,,.
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