POLYNOMIAL SLOW-FAST SYSTEMS ON THE
POINCARE-LYAPUNOV SPHERE

OTAVIO HENRIQUE PEREZ! AND PAULO RICARDO DA SILVA?

ABSTRACT. The main goal of this paper is to study compactifi-
cations of polynomial slow-fast systems. More precisely, the aim
is to give conditions in order to guarantee normal hyperbolicity
at infinity of the Poincaré-Lyapunov sphere for slow-fast systems
defined in R™. For the planar case, we prove a global version of the
Fenichel Theorem, which assures the persistence of invariant man-
ifolds in the whole Poincaré—Lyapunov disk. We also discuss the
occurrence of non normally hyperbolic points at infinity, namely:
fold, transcritical and pitchfork singularities.

1. INTRODUCTION

Slow-fast systems are well-known in the literature due to their vast
importance in applied sciences. For instance, the van der Pol system
[25] was introduced in order to study a vacuum tube triode circuit.
Applications in biology can be found in [12] and in references therein,
and we refer the book [16] for applications in other branches of sciences.

A system of ODEs of the form

(1) et = P(z,y,e), y=Q(z,y,e),

is called slow-fast system, where z € R,y = (y2,...,yn) € R,
0 < e < 1. For our purposes, it will supposed that

P:R"™ R, Q= (Q%...,Q") :R"™ - R"!

are polynomial functions with respect to the x,y variables and analytic
with respect to e. Throughout this paper, x and y will be called fast
and slow variables, respectively. Setting ¢ = 0 in equation (1), we
obtain the so called slow system given by

(2) O:P(‘r7Y7O>7 y:Q(x,y,O),
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which is not an ODE, but it is an algebraic differential equation (ADE).
Solutions of (2) are contained in a codimension one affine algebraic
variety

Co={(x,y) ERx R, P(z,y,0) =0},

which will be called critical set or critical manifold.
In equation (1), the dot - represents the derivative of x(7) and y(7)
with respect to 7. By taking et = 7, system (1) can be written as

(3) ' = P(z,y,e), y =eQ(zy,e).

The apostrophe " in (3) denotes the derivative of z(t) and y(¢) with
respect to t. Setting € = 0 in equation (3) we obtain

(4) ' = P(x,y,0), y =0.

which will be called fast system. System (4) can be seen as a system
of ordinary differential equations, with y € R" being a parameter and
the critical set Cj is a set of equilibrium points of (4).

Observe that systems (1) and (3) are equivalent if € > 0, since they
differ by time scale. The main challenge is to study systems (2) and (4)
in order to obtain information of the full system (1). For this purpose,
the key tool used in this paper is Geometric Singular Perturbation
Theory (GSPT for short). Neil Fenichel’s seminal work [9] assures
that, under the hypothesis of normal hyperbolicity, compact limit sets
persist for small perturbations. See Subsection 2.1 for further details.

This paper is devoted to study conditions in order to assure normal
hyperbolicity near infinity. This problem was motivated by [23], in
which all possible global phase portraits of quadratic planar slow-fast
systems were given. In such reference, the authors conjectured a global
versiton of Fenichel Theorem for quadratic planar slow-fast systems.
The contribution of our paper is to give an answer of this problem for
polynomial slow-fast systems in general.

The Poincaré compactification is a well known approach used in the
study of global dynamics of polynomial vector fields. The main ideas
were introduced in [21] by Henri Poincaré for the 2-dimensional case.
We refer to [1, 5, 11, 20] for details of such technique, including the
case in which the polynomial vector field is defined in R™.

In our study, it is considered Poincaré—Lyapunov compactification
(PL-compactification for short) of polynomial vector fields in R™. The
PL-compactification can be seen as a generalization of the well known
Poincaré compactification technique, whose construction is very similar
to the classical Poincaré compactification, in the sense that we make it
quasi-homogeneous instead of homogeneous (see [5, 18]).
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Such technique was utilized in several papers by Freddy Dumortier
and his collaborators, for example studying Liénard equations near
infinity (see for instance [2, 3, 4, 8]). In [17, 22] it was given all
possible phase portraits in the Poincaré—Lyapunov disk (PL-disk for
short) of polynomial vector fields having isolated singularities with
quasi-homogeneous degree 4 and 5, respectively. Structural stability of
quasi-homogeneous polynomial vector fields in the PL-disk was studied
in [19]. Global dynamics of Benoit system (which is three dimensional)
in the Poincaré-Lyapunov ball (PL-ball for short) was considered in
[18]. See [5, Chapters 5 and 9] for an introduction on such method.

Let Y be a polynomial vector field and let w = (wy,...,w,) € Z" be
a vector of positive integers, which will be called weight vector. The
Poincaré—Lyapunov compactification Y*° of Y is an analytic vector
field defined in a compact n-dimensional manifold called Poincaré—
Lyapunov sphere (PL-sphere), which is denoted by S” and it is home-
omorphic to §* = {37! 22 = 1} € R™*!. The phase space R" is iden-
tified with the northern hemisphere of S”, and the set {2,113 =0} C S”
plays the role of infinity. See subsection 2.2 for details.

In the study of global dynamics of polynomial vector fields, the PL-
compactification Y is a vector field defined in S, however, its global
phase portrait is often sketched in the PL-ball. Throughout this paper,
the n-dimensional PL-ball will be denoted by B. In particular, the PL-
disk will be denoted by D, = B2. The interior of D, plays the role
of R?, while its boundary plays the role of infinity. Analogously, the
interior of the 3-dimensional PL-ball B? plays the role of R?* and its
boundary represents infinity. See figure 1.

D, B?
FIGURE 1. PL-disk (left) and 3-dimensional PL-ball (right).

Many interesting phenomena can occur at infinity of the phase space.
For instance, consider the slow-fast system

2 3
(5) x'zy%—%—%, y =0, 2 =clay’—xy?).
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After Poincaré compactification, in one of the three charts the fol-
lowing system is obtained

u? ol

6 '=v————

©) W=t

which is the van der Pol system studied in [6] (see also figure 2). More
generally, system

V' =¢e(a—x),

2, ko 3,,ks
(7) x’:yklz——xz‘y _x?gf .y =0, 2 =¢clay™ —zy™)
presents a van der Pol system at infinity after a PL-compactification
with weights w = (wi,ws,ws) if, and only if, the positive integers
ki, ..., ks satisfy
0 — 4]
k2 = =t ) k4 = T )
) )
o — 0—2 0 —
;ﬁ:M, oy = 2291 fy = W1 Ws
W9 w2 w2

FIGURE 2. Critical manifold of slow-fast system (5) (left) and
its phase portrait at infinity (right), which is given by the van der
Pol equation (6). The critical manifold is highlithed in green and
the canard cycle is highlighted in red (see also [6]).

Let us briefly describe our main results. A preliminary and use-
ful result is given in Proposition 4, which discusses possible dynam-
ics at infinity of a compactified slow-fast system based on the quasi-
homogeneous degree of P and Q. Afterwards, in Theorem 7 we state
Fenichel Theorem in a suitable way in order to study the perturbed
system at infinity (boundary of the PL-ball).
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Theorem A establishes conditions that a polynomial slow-fast system
in R™ must satisfy in order to assure normal hyperbolicity at infinity.
More precisely, item (a) of Theorem A states an algebraic condition on
the polynomial P of the initial slow-fast system so that the origin of
each chart of the PL-ball is normally hyperbolic. Such condition implies
that, concerning the Newton polytope of the slow-fast vector field (see
Subsection 4.1 for a precise definition), points associated to higher order
monomials are all contained in the same (n — 1)-dimensional compact
face of the polytope. We emphasize that Theorem A item (a) concerns
the origin of each chart of the compactification.

On the other hand, in Theorem A item (c) is given a necessary
condition in order to assure normal hyperbolicity outside the origin,
and such condition is based on the transversal intersection of Cy with
infinity. Finally, Theorem A item (b) concerns a degenerate case, in
which the whole infinity is a component of the critical manifold.

In dimension 2, Theorem B gives sufficient and necessary conditions
to assure persistence of invariant manifolds in the whole PL-disk. Actu-
ally, transversality turns out to be a necessary and sufficient condition
in order to assure normal hyperbolicity at infinity. Finally, Theorem C
determines conditions that slow-fast systems defined in R?® must satisfy
to generate typical singularities of planar slow-fast systems at infinity,
namely fold, transcritical and pitchfork singularities.

This paper is structured as follows. In Section 2 is presented some
preliminaries on GSPT and Poincaré—Lyapunov compactification. Sec-
tion 3 is devoted to discuss some preliminary propositions and examples
that will be used in subsequent sections. Theorem A is proven in Sec-
tion 4, and Section 5 is devoted to proof a global version of Fenichel
Theorem in the plane (Theorem B). Finally, in Section 6 is proven
Theorem C and some examples are also given.

2. PRELIMINARIES ON GEOMETRIC SINGULAR PERTURBATION
THEORY AND POINCARE-LYAPUNOV COMPACTIFICATION

2.1. Geometric singular perturbation theory. A point p € () is
normally hyperbolic if P,(p) # 0. The set of all normally hyperbolic
points of Cy will be denoted by N'H(Cy). A point p € NH(Cp) is called
attracting or repelling point if P,(p) < 0 or P,(p) > 0, respectively.
Fenichel Theorem is a major result in Geometric Singular Pertur-
bation Theory. It assures that, given a j-dimensional compact nor-
mally hyperbolic sub-manifold K € N'H(Cy) (possibly with boundary)
of system (2), there exists a family of smooth manifolds K. such that
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K. — Ko = K according to Hausdorff distance and K. is a normally hy-
perbolic locally invariant manifold of (1). Such result was first proved
in [9] (see also [24, Theorem 2.2] for a precise statement). In Theorem
7, we stated the Fenichel Theorem in a suitable way in order to assure
persistence of invariant manifolds at infinity.

The Fenichel Theorem can be seen as a “generalization” of the theo-
rem of stable and unstable manifolds. The local invariance of K, means
that it may exist boundaries through which trajectories can leave. Just
as in center manifold theory, in general the locally invariant manifold
K. is not unique. Indeed, it may exist infinitely many invariant mani-
folds O(e_g )-close to the critical manifold. See Figure 3. The manifold
K. obtained in the Fenichel Theorem is called slow manifold.

L e

[ I |\ G
K K.

FIGURE 3. Planar slow-fast system for ¢ = 0 (left) and for ¢ > 0
sufficiently small (right). The Fenichel Theorem assures the exis-
tence of a family of invariant manifolds K., and the flow on K.
converges to the flow on K. Moreover, Fenichel Theorem also as-
sures the existence of a family of stable manifolds W2 of ..

Concerning the slow system (2), “any structure in NH(Cy) which
persists under reqular perturbations persists under singular perturba-
tion” [9, pp. 91]. In other words, hyperbolic equilibrium points or limit
cycles of (2) in NH(Cy) persist for e sufficiently small.

The Fenichel Theorem gives an answer about the dynamics of system
(1) near normally hyperbolic manifolds for e sufficiently small. We
refer to [6, 7, 14, 15] for further problems and techniques concerning
dynamics of (1) near non-normally hyperbolic manifolds.

2.2. Poincaré—Lyapunov compactification of polynomial vec-
tor fields. Just as in the homogeneous compactification, the vector
field Y*° is studied using directional charts U; and V;, in which

U={z¢cS" >0}, Vi={zecS", z<0}, z=(21,...,2n41) € R"H

w? w?

foreacht=1,...,n+ 1. See Figure 4.
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Consider a polynomial vector field Y (x) = Y (z1,...,x,). For every
i =1,...,n, the expression of the compactified vector field Y*(u) =
Y*(uy, ..., u,) in the charts U; is obtained from the coordinate change

Uy Ui—1 1 U; _ Up—

Tl = 57 s Li1l = w7y Li = 57y Litl = —wiagy -3 Lp =
un? un Uy un

uwn’
and for different charts U; the coordinate system (ug,...,u,) has dif-
ferent meanings. However, for every i = 1,...,n the set {u,, = 0} is an
invariant set of Y*° which plays the role of infinity. On the other hand,
the expression of Y>°(u) = Y*°(uy,...,u,) in V; is obtained in an anal-

1 1
ogous way as in U;, but setting x; = ——- instead of x; = —-. The
Up' Un'

expression of Y*° in U, 1 coincides with 1}1, and in V,, 1 the exgression
of Y*° coincides with Y (up to a multiplication by —1).

3. POINCARE-LYAPUNOV COMPACTIFICATION OF SLOW-FAST
SYSTEMS

Consider the polynomial slow-fast system (3). Recall that P and Q
are polynomial with respect to the fast variable x and the slow variables
y, but it is analytic with respect to . In what follows we present the
definitions of quasi-homogeneous polynomial and quasi-homogeneous
vector field, which can also be found in [16, Section 7.3].

Let w = (wi,...,w,) € Z" be a weight vector. A polynomial F' :
R"™ — R is quasi-homogeneous of type w and degree k € N if

FO“ 2, X2yo, . Ay) = A Bz g, y), YA ER.

We say that a polynomial vector field Y = (Y7, ...,Y,,) defined in R”
is quasi-homogeneous of type w and degree k,, € N if each component
Y; : R" = R of Y is quasi-homogeneous of type w and degree k + w;.
In other words, it satisfies

Yi( ANz, X2yo, o A yy) = Netws Yi(x,y2, ..., Yn), VA eR.
Example 1. Consider the planar polynomial vector field

Y(z,y) = (V(z,y), Yal(z,y)) = (y,2%)

which determines a cusp singularity at the origin. This vector field is
quasi-homogeneous of type w = (2,3) and degree 1, because

Vi(A2z, NPy) = APV (z,y),  Ya(W2x, Ay) = AT3Ya(x, y).

The vector field associated to the slow-fast system (3) will be denoted
by X., whereas its PL-compactification will be denoted by X2°, which
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is a vector field defined in S?, C R™™. We will also write the polynomial
functions P, Q’ as

51 9j
P=> P, =) Q)
d=—1 d=—1
in which Py is the quasi-homogeneous component of type w and degree
d + wy, and @, is the quasi-homogeneous component of type w and
degree d 4+ w;. The degree of quasihomogeneity of type w of Py and
Qg will be denoted by deg, P; and deg, Qé. The highest degree of
quasithomogeneity of type w of P and (7 is

deg, P = mgx{degw Py} = 61 +wi, deg, Q7 = mjx{degw IV = 64w

Then, the highest quasi-homogeneous degree component of P and Q’
is, respectively, Ps, and Qf;j. The degree of quasi homogeneity type w
of the vector field X, will be simply denoted by deg, X. = maxd;, = 4.

Example 2. Let Y be the planar polynomial vector field given in the
Example 1. If w = (2,3), then deg,Y =1, deg,, Y1 =1+2 =3 and
deg,Y>s = 14+ 3 = 4. Nevertheless, if we consider w = (1,1), then
deg,Y =1,deg, V1 =0+1=1, and deg, Yo =1+1=2.

In what follows, the expressions of X2 in each of the 2(n + 1) local
charts of S” are given. The notation (x,y,e) concerns a coordinate
system in the finite part of the phase space, whereas (u, v, e) concerns
the coordinate system near infinity, in which v = (vo,...,v,). We
emphasize that in different open sets U; of the covering, the coordinates
(u,v,e) have different meanings. See Figure 4.

In Uy, X2° is written as

( 5
— W2
o= Z vd d(st —u—F),
w1
d=-1
vy = j{: (O 5£Qd——vg——fﬁ)
d=—1

Upoy = Z Un 5Qd—?}n 1_Pd)

d=-—1

Uq/@ - § 5+1 dP
w1




SLOW-FAST SYSTEMS ON THE POINCARE-LYAPUNOV SPHERE 9

Us Y3

o (%)
U

Y2

Uz

Ui

FIGURE 4. Directional charts that cover the PL-ball B2. Fol-
lowing the terminology of Definition 3, the slow-fast vector field
obtained in the chart U is the compactification in the fast direc-
tion, whereas the vector field obtained in a chart U; is the com-
pactification in the slow direction, for [ = 2,... n.

where Py, Qfl are computed in (1,u, vy, ...,v,_1,¢) forall j =2,... n.
Observe that it was used the quasi homogeneity of Py, @7 in order to
obtain system (8).

For [ =2,...,n, in U; the compactification is written as
( 5
/ 5—d Wi
u = v Py —eu—
Z n ( d W Qd)7
d=—1
° w
_ 5—d (i i Al .
v, = ed_z v, (Qzl—vi;le), 1<i<l
(9) 9 B
s—d (i Wi :
v, = ¢ Z vy (QZ — vi_lngd), l<i1<n
d=—1
S
/ S+1—d
v, = —— v
n Wi Z n Qd7
L d=—1
where j = 2,...,n, and the polynomial functions Py, Qé are computed
in (u,vg,...,0_1,1,0,...,0,_1,€). Once again it was used the quasi

homogeneity of Py, Q’, to obtain system (9).

The expression of XZ° in U, is precisely the expression of (3).
In the open set V;, X2° is obtained by replacing vii by —U}Ji in the
coordinate change of chart U;, for allt=1,... ,n+ i Furthe;more, in
any local chart U; and V; the set {v, = 0} is an invariant set of X2°

that plays the role of infinity.
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Definition 3. The vector field obtained in the chart Uy will be called
compactification of X, in the positive fast direction. The vector field
obtained in Uy, for | = 2,...,n, will be called compactification of X,
in the [-th positive slow direction.

From the expression of X2 in a chart U; for [ = 1,...,n, one can
conclude the following proposition:

Proposition 4. Let X, be the polynomial vector field associated to the
slow-fast system (3) and denote its PL-compactification by X2°. Then,
in a chart U, forl=1,... n, it follows that:

(a): The PL-compactification of X. in the fast direction is not a
slow-fast system, but it is a singular perturbation problem. In
addition, for e = 0, the set of equilibria is given by {(0,0)} U
{Ps,(1,u,v,...,v,_1,0) = 0}.

(b): The PL-compactification of X. in the l-th slow direction is a
slow-fast system, for alll =2,... n.

(c): Suppose X, is a n-dimensional vector field for n > 3. Then,
forl=2,...,n, the vector field X2° defines a slow-fast system
at infinity {v, = 0} in a chart U, if, and only if, 6 = 61 = J;,, for
some jo. Moreover, such slow-fast system has one fast variable
and n — 2 slow variables.

(d): If 6 = 61 > 6; for all j, then €Q does not affect the dynamics
at infinity {v, = 0}. On the other hand, if 6, < &;, = & for
some jo, in the limit € = 0 the infinity is filled with equilibria.

Proof. Assertions (a) and (b) follow directly from the expressions (8)
and (9) of the vector fields in the fast and slow-directions, respec-
tively. In order to prove assertions (¢) and (d), assume that X, is a
n-dimensional vector field for n > 3. From Equation (9), if 4; > §;
for all j, then only terms of P play role at infinity {v, = 0}. In other
words, if one sets v, = 0 in Equation (9), then only terms of P will
remain, thus ¢Q does not affect the dynamics at infinity. The same
reasoning can be used to prove that, if 6; < ¢;, for some jy, then only
terms of £Q play role at {v, = 0}. Setting ¢ = 0, then {v, = 0} is
filled with equilibria. Finally, if § = 6; = ¢;, for some jy, then terms of
both P and @’ play role at infinity, and therefore dynamics at infinity
of U is given by a slow-fast system. 0

Example 5. Consider the planar slow-fast system
(10) ' = P(x,y,e) =—x, ¢ =eQ(x,y,¢) =ce(y* —2°).

After a PL-compactification with weights w = (2,3), the systems
obtained in the fast and slow directions Uy and U, are, respectively,
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3 3
o o= e(ut-—1)+ u; :
(11) . v
= 5
3 )
(12) , ev(u® — 1)
v o= =7
3

In this example, we have 6; < oy because deg, P = 61 + 2 = 2 and
deg, Q = 6o+ 3 = 6. As expected from item (a) of Proposition 4, the
system (11) defined in Uy is not a slow-fast system. From item (d), the
infinity is filled with equilibria when € = 0 in equation (12). Observe
that in Uy the critical manifold is given by {uv® = 0}. See Figure 5.

Example 6. Consider the slow-fast system
(13) v = P(x,y,2,6) =a(y* — %), y =¢ 2 =c¢.

After a PL-compactification with weights w = (1,1,1) (classical Poincaré
compactification), one obtains in Uy, Uy and Us, respectively,

2 2

(14) v/ = u(v®* —v?)+ew?®, v =v(*—u?)+ew?, W =w*—u?),

(15) v =u(l—v*—euw?), v =ew(l-v), w=-cw

(16) ' =u(l—v?—euw?), vV =cw}l-v), w=-—cw

As expected from item (d) of Proposition 4, it follows that, at infinity
{w = 0}, only terms of P play role. Moreover, from item (a), the
compactification in the fast direction is not a slow-fast system.

FIGURE 5. Phase portrait of the slow-fast system (10) in the
PL-disk. The critical manifold is highlighted in green.
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FIGURE 6. Critical manifold of the compactified slow-fast sys-
tems (13) and (17) in the Poincaré Ball.

4. GEOMETRIC SINGULAR PERTURBATION THEORY AT INFINITY

This section is devoted to study conditions to assure normal hyper-
bolicity at infinity. We start our analysis stating a suitable version of
Fenichel Theorem at infinity, which is given in Theorem 7. Afterwards
it is shown that the Newton polytope of a polynomial slow-fast system
carries information about the normal hyperbolicity at infinity. Finally,
it is given a geometric condition that assures normal hyperbolicity,
based on the intersection of the critical manifold with infinity.

In Theorem 7, suppose n > 3, consider the polynomial slow-fast
system (3) and C§° the critical manifold of system (9) at a generic
chart Uy, for 2 <1 < n. Suppose also 6 = 0; = ¢;, for some jj (see item
(c) of Proposition 4).

Theorem 7. (Fenichel Theorem at infinity) Let K C NH(CS) be a
j-dimensional compact normally hyperbolic sub-manifold (possibly with
boundary) at infinity {v, = 0} of the slow system associated to (9). Let
W? be the (j + j°)-dimensional stable manifold of IC. Then, at infinity
{vn, = 0}, there is € > 0 sufficiently small such that for 0 < e < £ the
following hold:

(F1): There exists a family of smooth manifolds KC. such that
K. — Ko = K according to Hausdorff distance and K. is a
normally hyperbolic locally invariant manifold of (9),

(F2): There is a family of (j+ j°+k*®)-dimensional manifolds W?
such that W is local stable manifolds of K..

Analogous conclusions hold for the (j + j*)-dimensional unstable
manifold W* at infinity.
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Example 8. Consider the slow-fast system

(17) o' = P(x,y,z,¢) =a(y* — 2%), y =e2*, 2 =&y’

After Poincaré compactification, systems obtained in Uy, Us and Us
are, respectively,

(18) v/ = —uP +w? +ev®, vV =ceu® —vPv+0, W =wl® —u?),
(19) o' =u(l —v*—ev®), v =¢e(l—-v"), v =—-ev’w,
(20) W =u(®—1-cv?), v =¢(1—-2%, w =-—ctw.

By Theorem 7, at infinity {w = 0}, the dynamics near compact
normally hyperbolic sets persist for € > 0 sufficiently small. However,
for both systems (19) and (20), there are two non normally hyperbolic
points. See Figure 6.

4.1. Newton polytope of a polynomial vector field. This subsec-
tion aims to recall the classical definition of Newton polytope associated
to a polynomial vector field (see also [13]). Let Y = (Fy,..., F,) be
a n-dimensional polynomial vector field. For each component F; of Y,
we introduce the notation

a=(ay,...,a,), x=(x1,...,2,), x*=2a' -...-x
Fi(x) = Z Ca, X%, Ca, €R, a; = (a1,...,04,-1,0; — 1,041, ..., ap).
a;eL™

Let Y = (Fi,...,F,) be a n-dimensional polynomial vector field.
The support of Y is the set Sy given by Sy = U Sy, in which Sy; =

=1
{a; € Z", ca, # 0}. The Newton polytope Py C R"™ of a n-dimensional
polynomial vector field Y is the convex hull of the support Sy.

Example 9. Consider the vector field Y (z,y) = (Fi(z,y), Fa(z,y)) =
(z +y,2?). Thus Sy; = {(0,0),(=1,1)} and Sy> = {(2,—1)}. There-
fore Sy = {(0,0),(—1,1),(2,—1)}. See Figure 7(a).

Example 10. Consider the 3-dimensional polynomaial vector field
Y(I7 Y, Z) = (Fl(xa Y, Z>7 FQ(*T’ Y, Z>7 Fg(l’, Y, Z)) - (_1 + zy, yz2’ IZ)'

Then SY»l = {(_17070)7 (07 170)}7 SY,Q = {(07072)} a’ndSY,Zi = {(1707())}
Therefore Sy = {(—1,0,0),(1,0,0),(0,1,0),(0,0,2)}. See Figure 7(b).
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(a) ¢ \

o Py

v

FIGURE 7. Figure (a): Support (left) and Newton polytope
(right) of the planar polynomial vector field of the Example 9.
Figure (b): Support (left) and Newton polytope (right) of the 3-
dimensional polynomial vector field of the Example 10.

4.2. Normal hyperbolicity at infinity. We have already stated all
preliminary definitions and results needed to prove our main results. In
what follows, it will be studied necessary conditions in order to assure

normal hyperbolicity at infinity. Denote P(z,y,e Z Py(z,y,¢e
d=—1

which P; is a quasi-homogeneous polynomial of type w of degree d+ w;

and 01 + w; = deg,, P. The degree of quasi homogeneity type w of the

slow-fast system (3) is denoted by deg,, X. = > d;.

Theorem A. Let X. be a n-dimensional polynomial vector field asso-
ciated to system (3), whose critical manifold is Cy = {P(z,y,0) = 0}.
Then, near the boundary of the PL ball the following hold:

(a): Suppose 6 = 01. If the component P of type w and degree
01 + wy has monomials of the form

r1+1+z szy, nyi)’

satisfying 2+d? # 0 foralli = 1,...,n, and (11,79, ...,7,) and
(r1,S2,...,8n) satisfy the equation of the hyperplane {wia; +

.+ wpa, = 0}, then the origin of each chart U; is a nor-
mally hyperbolic point of Cy. In particular, the origin of Uy is
a hyperbolic node of the compactified vector field X2°.
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(b): If 6 > 61, then {v, = 0} is a non normally hyperbolic com-
ponent of Cy.

(c): If p € U is a point at infinity (with 2 <1 < n), a necessary
condition to assure mormal hyperbolicity is that Cy intersects
the infinity {v, = 0} transversely at p.

Remark 11. The hypotheses of Condition (a) of Theorem A implies
that the Newton polytope Px_. has a compact face containing the inter-
section of the hyperplane {wiay + ... 4+ wpa, = 0} with (Rs)". Such
feature of Px. turns out to be a necessary condition in order to assure
normal hyperbolicity at the origin of each chart at infinity. From a
practical way of view, one can use the Newton polytope to detect non
normally hyperbolic points at the origin of each chart. Finally, observe
that in condition (c¢) we do not require that p is the origin.

Proof. From Proposition 4, we know that the compactification X2°
defines a slow fast system in a chart U; for [ = 2,...,n, but it is not in
the chart U;. From Equation (9), the expression of Cy = {P(z,y,0) =
0} in a chart U; is

5
5—d
E v, Pd(u,...,Ul_l,l,vl,...,vn_l,O):O.

Therefore, normal hyperbolicity near infinity {v, = 0} means

8P
(21) WP =0, SN 7é 0,

in which such functions are applied in (u, ..., v;_1,1,v;,...,v,-1,0). So
we divide our analysis in two cases.

(a) Suppose § = d;. In this case, a necessary condition to assure
that the origin of the chart U; is normally hyperbolic is to require that
the original polynomial P has monomials of the form azy' + dy)", in
which ¢, d; €ER, 1,5y € Nand ¢ +d? #0, r; = w_z and s; = 52“’1

Indeed, if d; # 0, then C§° does not intersect the origin of the chart
U;. On the other hand, 1f d; = 0 then ¢ # 0 so C§° is normally
hyperbolic at the origin of Ui. Recall that Cg° is the Critical manifold
of the compactified system (9) at a generic chart Uj, for 2 <1 < n.

Concerning the support Sy_, if ¢; # 0 then Sx. contains the point
(0,...,0,7r,0,...,0), in which r; is positioned in the [-th coordinate.
Finally, if d; # 0 then Sy, contains the point (—1,0,...,0,s;,0,...,0),
in which s; is positioned in the [-th coordinate.

The compactification of the critical set can be normally hyperbolic
in one chart and not in another. Therefore, in order to assure that,
for all [ = 2,...,n the origin of U; is normally hyperbolic, we must
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require that the quasi-homogeneous component of P of type w and
degree d; + w; has monomial of the form

x(@p’c” +coyy® -+ Cny2"> + (d2y§2 +e dnyfﬁ>7

in which ¢Z +d? #0 foralli=1,...,n.

Observe that points of Sx_ related to these monomials are contained
in the hyperplane {wja; + ... 4+ wpa, = 0}. Moreover, since all the
natural numbers r; and s; concerns higher order terms of the vector field
X., then all the other points of the support Sy, are either contained in
such hyperplane, or they are contained in the half-space {wja; + ...+
Wnay, < 0}. This implies that the Newton polytope Py, has a compact
face that contains {wya; + ... 4+ wpa, = 0} N (Rsg)™. See Figure 8. If
this is the case, in U; the origin is a hyperbolic node of X2°.

IS

*—

FIGURE 8. Figure (a): On the left, an example of Newton poly-
tope of that gives rise to non normally hyperbolic points at infinity.
On the other hand, the slow-fast system associated to the Newton
polytope on the right will present normally hyperbolic points at
the origin of Uy and Uy (under a suitable choice of w). Figure (b):
description analogous to the Figure (a), but in dimension 3.

(b) Suppose § > ;. By (21), the infinity {v, = 0} is a non normally
hyperbolic component of the critical manifold, for each Uj.

(c) Denote by Cg° the critical manifold Cy in a chart U, for each
[ = 2,...,n. The infinity is represented by the hyperplane {v, = 0},
and the vector (0,...,0,1) is normal to it, for every point p € {v, = 0}.
On the other hand, the vector VFPs(p) is normal to C§° at p. If C§°
is normally hyperbolic at p, from equation (21) we know that the first
coordinate of V Ps(p) is non zero. Therefore, (0,...,0,1) and VPs(p)
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are linearly independent, which implies that 7,,C5° h T,{v, = 0}. We
conclude that a necessary condition to assure normal hyperbolicity at
infinity is that Cg° intersects {v, = 0} transversely. See Figure 9. [

Co°

{Un = 0} > «

FIGURE 9. Critical manifold C§° (highlighted in green) inter-
sects the infinity transversally.

Remark 12. From Propositon 4 item (d), in each chart U; we know
that, if § > 01, by setting € = 0, the infinity {v, = 0} is filled with
equilibrium points. Due to item (b) of Theorem A, now we know that,
in fact, the infinity is a component of the critical manifold Cy.

In what follows we present an example showing that transversality
is not a sufficient condition to assure normal hyperbolicity at infinity.

Example 13. Consider the polynomial slow-fast system
(22) r=y+z, yY=clx+z2), Z=clx+y).

The critical manifold associated to (22) is Co = {y + z = 0}, which
intersects the infinty transversaly. After Poincaré compactification, one
obtains the following slow-fast system in both charts Uy and Us:

u=1+v—culutv), vV=c(ld+u—uw—12v?), w=—cw(lu+v).

In both charts Uy and Us, the infinity and the critical manifold are
given by {w = 0} and C§° = {v+1 = 0}, respectively. This implies that
NH(C) = 0. Geometrically, in Uy and Us the set C§° is a horizontal
line. See Figure 10.

It is very difficult to study conditions to assure normal hyperbolicity
for the whole infinity in arbitrary dimension. However, it can be given
an answer for the 2-dimensional case (see Theorem B). It will be clear
that, in dimension 2, the transversality condition presented in Theorem
A is sufficient and necessary to assure normal hyperbolicity at infinity.
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. A
00y 00
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TRt
10710

FIGURE 10. Compactification of C related to system (22). The
critical manifold Cj is highlighted in green.

5. PLANAR POLYNOMIAL SLOW-FAST SYSTEMS

Consider the 2-dimensional polynomial slow-fast system

(23) ' =P(x,y,e), ¢ =eQ(x,y,¢).

As usual, P; and Q)4 are quasi-homogeneous components of type w
and degree d 4+ w; and d + ws, respectively. The highest quasihomoge-
neous degree component of P and () is, respectively, P5, and ()5,. Due
to statements (a) and (b) of Proposition 4, for our purposes in this
section we will further suppose that d; = d5 = 6.

The polynomial functions P and @) will be written as

0

P(z,y,e ZP-’ry, Qz,y,€) = > Qj(z,y,2),

i=—1 =1

itwy(1-r) J Jjtwa—wys
P(x,y,e E Ceri'y 2, Qj(w,y,€) E desjr’y =2,
s=0

in which § = degw X, and the notation ¢, ,;, d.,; indicates that such
coefficients depend analytically on €. Moreover, for each ¢ and 7, the
powers of the monomials of P;(z,y,¢) and Q;(x,y, ) satisfies, respec-
tively, aw; + bws = 1 + wy and aw; + bws = 7 + wo.

The compactification X2° in the fast and slow direction is given by,
respectively,
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5
o= Zv‘s_i<—uR(1,u,5)+€Qi(1,u,5)>,
(24) T
Vo= — Z v TP(1, u, €),

i=—1

5
uo= — Z v‘;’i(—usQi(u,l,é) —|—H~(u,1,£)>
(25) =

5
Vo= —¢ Z Qi (u, 1, €).
i=—1
Before we start our analysis in the charts U; and Us, let us introduce
a useful Lemma, that can be found for instance in [10, pp. 72]. Recall
that zo is a simple root of P € Rz| if P(x) = (x — ) - P(x) and zg is
not root of P(x).

Lemma 14. Let P be a polynomial over R. Then xq is a simple root
of P if, and only if, P(x¢) =0 and P'(zo) # 0.

Let us start our study by considering the compactification in the
slow direction (25).

Proposition 15. Let (23) be a planar polynomial slow-fast system and
consider its PL-compactification in the slow direction (25). Then (@, 0)
is an equilibrium point at infinity {v = 0} for e =0 if, and only if, the
critical manifold Cy intersects the infinity at (u,0).

Proof. Recall that 6 = deg, X.. Therefore, in Uy, Cy is given by
{Ps(u,1,0) = 0}, which is a curve of equilibria of system (25) when
e = 0. Such curve intersects infinity at points of the form (@, 0), with
@ being a root of the polynomial Ps(u, 1,0). O

Proposition 16. Let p = (4,0) € {v = 0} be an equilibrium point of
(25) at infinity. Then the following statements are equivalent:
(a): p is normally hyperbolic for (25) when e = 0.
(b): @ is a hyperbolic equilibrium point of the ODE w = Ps(u, 1,0).
(c): @ is a simple root of the polynomial Ps(u,1,0).
(d): The critical manifold intersects the infinity transversely.

Proof. Observe that (a) < (b) because 2 P5(1, 1,0) # 0 if, and only if,
@ is a hyperbolic equilibrium point of the ODE @ = Ps(u, 1,0). In addi-
tion, from Lemma 14, it follows that (a) <> (c) because 2 P5(i, 1,0) # 0
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and Pj(u,1,0) = 0 if, and only if, @ is a simple root of Ps(u, 1,0). The
equivalence (a) < (d) follows because 2 Ps(@,1,0) # 0 means that
VPs(1,1,0) and 7 = (0,1) are linearly independent, in which 7 is
normal to the line that represents the infinity. U

Due to Propositions 15 and 16, the transversality condition presented
in Theorem A is a sufficient and necessary condition to assure normal
hyperbolicity at infinity in the 2-dimensional case.

Corollary 17. A necessary condition for the existence of simple roots
of Ps(u,1,0) is coo5 # 0 or co15 # 0.

Proof. From the expression of P;(z,y,¢), if cops # 0, then the com-
[

+w
ponent Ps of P has a monomial of the form 007075yT21. On the other
hand, if, ¢ 1,5 # 0, then the component P5 of P has a monomial of the
[

form ¢ szy~2. In both cases, by setting (u, 1,0), the origin of U, will
be either a regular point or a hyperbolic equilibrium point of (25). O

Since we have studied the dynamics of the compactification in the
slow direction, it is sufficient to study the dynamics near the origin of
the compactification in the fast direction (24). Recall that (24) is not
a slow-fast system.

Proposition 18. Let (23) be a planar polynomial slow-fast system and
consider its compactification in the fast direction (24). Then, fore =0,
the following statements are true:
(a): The origin of the chart Uy is an equilibrium point of (24).
(b): The critical manifold Cy intersects the origin of Uy if, and
only if, ¢y s 5 = 0. In this case, the origin is a non-hyperbolic
w1

equilibrium point of (24).
(c): The origin of Uy is an hyperbolic node of (24) if, and only
Zf; CO,L,(S % 0.

Proof. Recall the expression of Pj(x,y,e). It is straightforward from
equation (24) that the origin of U; is an equilibrium point for ¢ =
0. Therefore, items (b) and (c) aims to understand features of such
equilibrium. Furthermore, in this chart we must study the polynomial
P applied in points of the form (1, u,0).

In the chart U; the critical manifold Cj is the zero set of Ps(1,u,0),
which represents a curve of singularities for ¢ = 0. Therefore, Cj
intersects the origin of U; if, and only if, ¢, s 5 = 0. Moreover, the

origin will be non hyperbolic for (24) if such a point is contained in Cj.
This proves item (b) Finally, assuming € = 0, it can be easily checked
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that ¢, s 5 # 0 if, and only if, the origin of U; is a hyperbolic node of
(24), which proves item (c). O

Now, we are able to state, for the planar case, a global version of the
Fenichel Theorem, which assures the persistence of invariant manifolds
in the whole Poincaré—Lyapunov disk. The proof of Theorem B is given
by combining Fenichel Theorem (for the finite part) and Propositions
15, 16 and 18 (for the infinite part). In its statement, the compactified
critical manifold is denoted by Cgy, which is the union of the finite and
infinite parts of Cj.

Theorem B. Consider the planar polynomial slow-fast system (23).
Suppose that NH(Cy) = Cy, Cy intersects the infinity of D, trans-
versely, and it does not intersect the origin of Uy, Vi. Then there exist
0 < € < 1 such that for 0 < € < € the following hold in the whole D,,:

(G1): There exist a family of smooth manifolds C. such that
C. — Cy according to Hausdorff distance and C. 1is locally
invariant of (23).

(G2): If po € Cy and W* is its stable manifold, then there is a
family W2 of stable manifolds of p. € C., in which p. — po.
The same conclusion holds if one consider the unstable manifold
W* of py € Cy.

Example 19. Consider the slow fast system
(26) =2t tay—1, Y =eQ(x,ye),

in which Q(x,y,¢€) is a polynomial function of degree less than or equal
to 2. We apply the classical Poincaré compactification. Note that
deg, X =0 =1 and deg, Q) = 9, < 1. In Uy and Us,, the dynam-

1cs at infinity are respectively given by

27) o =u(—1—u+vH) +e2Q(1,u), v =uv(-1—u+v?),

(28) o =u+u? —0v? —euw? 2Q(u,1), v = —ev>%2Q(u,1).

All points of Cy = {x*+xy = 1} are normally hyperbolic. The origin
of Uy is a hyperbolic node and Cy is normally hyperbolic at infinity (see
Proposition 16). Therefore, as a consequence of Theorem B, global
dynamics of system (26) persist for € sufficiently small. See figure 11.

6. NON NORMALLY HYPERBOLIC POINTS AT INFINITY

In this section is discussed some examples of 3-dimensional polyno-
mial slow fast systems that present non normally hyperbolic singular-
ities at infinity, namely: fold, transcritical and pitchfork singularities
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FIGURE 11. Poincaré compactification of system (26). The crit-
ical manifold Cj is highlighted in green and the dots denote equi-
libria at infinity.

(see [14, 15]). OSince the phase-space is 3-dimensional, the slow-fast
system at infinity is 2-dimensional.

Firstly, recall normal forms of such singularities in the literature.
According to [14, 15], the non degeneracy conditions that a planar
slow-fast system (3) must satisfy in order to present (respectively) a
fold, transcritical and pitchfork singularity is given (respectively) by
equations (29), (30) and (31) as follows.

fI(O,O,O) =0, frm(oa()vO) # 0,
f4(0,0,0) #0 and g(0,0,0) # 0.

£(0,0,0) = £,(0,0,0) = £,(0,0,0) =0,
det Hes(f) <0, f.2(0,0,0) # 0 # ¢(0,0,0),
in which Hes(f) denotes the Hessian matrix of f evaluated at (0,0, 0).

£(0,0,0) = £.(0,0,0) = £..(0,0,0) = £,(0,0,0) = 0,
fe22(0,0,0) # 0, f.,,(0,0,0) # 0, ¢(0,0,0) # 0.

Theorem 20 gathers results on normal forms of slow-fast systems,
based on the non degeneracy conditions above. The notation O denotes
higher order terms, whereas A denotes a constant that depends on the
non-degeneracy conditions of each singularity (see [14, 15] for details).

(29)

(30)

(31)

Theorem 20. There exists a smooth coordinate change such that for
(x,y) sufficiently small a planar slow-fast system is written as

(a): If system (3) satisfies the non-degeneracy conditions (29) of
a planar generic fold:

(32) @' =y+2°+0% 2y, e), Y = 6( +1+ O(x,y,€)>,
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(b): If system (3) satisfies the non-degeneracy conditions (30) of
a generic transcritical singularity:

(33)
=22 e+ 023, 2%y, P, P ex ey, %),y = e(l—l—@(m,y,e)),
(c): If system (3) satisfies the non-degeneracy conditions (31) of
a pitchfork singularity:
(34)
o' = x(y—2?)+Ae+0(2Py, 2,y e, ey, %),y = 6<i1+(9(1’, Y, 6))-

The main goal of this section is to study conditions that a 3-dimensional
polynomial slow-fast system of the form

(35) ¥ = P(x,y,z,¢), y =eQ(x,y,z2,¢), 2 =cR(z,y,z¢)

must satisfy in order to present a fold, transcritical or pitchfork singu-
larity at infinity after Poincaré—Lyapunov compactification with weight
w = (w1, ws,ws). Without loss of generality, in what follows is studied
conditions to assure that the origin of the chart U, is one of the non
normally hyperbolic points given by Theorem 20. Moreover, if X, is
the vector field associated to (35), then deg, X. = 0.

Theorem C. Consider the 3-dimensional slow fast system (35) and its
Poincaré-Lyapunov compactification X° with weight w = (wy, wa, ws3).
If deg, X. = 0, then the following hold for every positive integer ky, ks :

(a): If Ps(z,y,2,¢) = 2*y™ — y*2z, then the critical manifold of
X2 has a fold singularity at the origin of Us if, and only if,
k1w2 =0 — w1 and k’QUJg =9 + W — ws.

(b): If Ps(z,y, z,€) = 2*y™ — y*222, then the critical manifold of
X2° has a transcritical singularity at the origin of Uy if, and
only if, kiws = 6 — w1 and kews = § + wy — 2ws3.

(c): If Ps(x,y, z,€) = wyFrz — a3y then the critical manifold of
X2 has a pitchfork singularity at the origin of Uy if, and only
Zf, ]ﬁOJQ =0 — w3 and k2w2 =0 — 2&11.

Proof. The proof is given by straightforward computations. We present
the computation of item (a). The other items are completely analogous.

Consider system (35). We recall from Proposition 4 item (c) that
the vector field in U, is a slow-fast system if, and only if, deg, X. =
deg, P = deg, @ or deg, X, = deg,, P = deg,, R.
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Given the weight vector w = (w1, ws, ws), the expression of the com-
pactified slow-fast system in the chart Us is

u' = w'P —cut w“’?Q
(36) Vo= e(wrR—vzwQ),

/ ww2+1 2

w = —¢ wo Qa

in which P,Q and R are applied in (-2, =, -2 €).

W19 W2 ) W3
The highest quasi-homogeneous component of P is Ps(x,y, z,¢) =

x2y* —y*2 2 then, after multiplying the vector field by w?, system (36)

1s rewritten as

(37)
(
2,8
o uw 5—d 5—d
u - (ww1+k1w2 - ww3+k2w2 w1 + Z w Pd 8u_ Z w Qd’
d=—1 2 =1
5
w
o= ¢ Z wé_d(Rd — U—3Qd),
d=—1

wl - _ = Z w5+1 dQ

L 2 4=

in which the polynomial functions P, () and R are applied in (u, 1,v,¢).
Therefore, setting w = 0 and € = 0 in equation (37), it follows that
the origin of the chart Uj is a generic fold singularity if, and only if,
klcUQZ(S—wl and ]{32&}2:(5—'—(,&11—&13. O

Theorem C gives conditions on the highest quasi-homogeneous de-
gree of the polynomial P and on the weights w = (w;, ws,ws) in order
to assure that the origin of the chart U, is one of the non normally hy-
perbolic singularities given by Theorem 20. However, it is important
to remark that, depending on the weight vector w, it is not possible to
generate such singularities. This fact will be clear in the next examples.

Example 21. Under the hypothesis of Theorem C, suppose that wy =1
and wy, = w3 = 2. For any positive integers ki = ko = , the origin of
Us s a fold singularity of X2°. However, if wy = 3,w2 = 2 and wy; =1,

then it does not exist ki, ko € 7 satisfying conditions (a) of Them"em
C. See Figure 12.

Example 22. Suppose that w; = w3 and wy = 1. For any positive
integers k1 = ko = 6 — wy, the origin of Uy is a transcritical singularity
of X2°. See Figure 12.

Example 23. Suppose that wy = 2 and wy, = w3 = 1. For any positive
integers ky = 0 — 1 and ko = d — 4, the origin of Uy is a pitchfork
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singularity of X2°. Nevertheless, if wy = 3,wy = 2 and wy; = 1, then it
does not exist k1, ky € Z satisfying conditions (c) of Theorem C. See
Figure 12.

FIGURE 12. Generic non normally hyperbolic singularities at
infinity. From the left to the right: fold (Example 21), transcritical
(Example 22) and pitchfork (Example 23). The critical manifold
is highlighted in green.
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