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Abstract. The main goal of this paper is to study compactifi-
cations of polynomial slow-fast systems. More precisely, the aim
is to give conditions in order to guarantee normal hyperbolicity
at infinity of the Poincaré–Lyapunov sphere for slow-fast systems
defined in Rn. For the planar case, we prove a global version of the
Fenichel Theorem, which assures the persistence of invariant man-
ifolds in the whole Poincaré–Lyapunov disk. We also discuss the
occurrence of non normally hyperbolic points at infinity, namely:
fold, transcritical and pitchfork singularities.

1. Introduction

Slow-fast systems are well-known in the literature due to their vast
importance in applied sciences. For instance, the van der Pol system
[25] was introduced in order to study a vacuum tube triode circuit.
Applications in biology can be found in [12] and in references therein,
and we refer the book [16] for applications in other branches of sciences.

A system of ODEs of the form

(1) εẋ = P (x,y, ε), ẏ = Q(x,y, ε),

is called slow-fast system, where x ∈ R, y = (y2, . . . , yn) ∈ Rn−1,
0 < ε ≪ 1. For our purposes, it will supposed that

P : Rn+1 → R, Q = (Q2, . . . , Qn) : Rn+1 → Rn−1

are polynomial functions with respect to the x,y variables and analytic
with respect to ε. Throughout this paper, x and y will be called fast
and slow variables, respectively. Setting ε = 0 in equation (1), we
obtain the so called slow system given by

(2) 0 = P (x,y, 0), ẏ = Q(x,y, 0),
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which is not an ODE, but it is an algebraic differential equation (ADE).
Solutions of (2) are contained in a codimension one affine algebraic
variety

C0 =
{
(x,y) ∈ R× Rn−1, P (x,y, 0) = 0

}
,

which will be called critical set or critical manifold.
In equation (1), the dot · represents the derivative of x(τ) and y(τ)

with respect to τ . By taking εt = τ , system (1) can be written as

(3) x′ = P (x,y, ε), y′ = εQ(x,y, ε).

The apostrophe ′ in (3) denotes the derivative of x(t) and y(t) with
respect to t. Setting ε = 0 in equation (3) we obtain

(4) x′ = P (x,y, 0), y′ = 0.

which will be called fast system. System (4) can be seen as a system
of ordinary differential equations, with y ∈ Rn being a parameter and
the critical set C0 is a set of equilibrium points of (4).

Observe that systems (1) and (3) are equivalent if ε > 0, since they
differ by time scale. The main challenge is to study systems (2) and (4)
in order to obtain information of the full system (1). For this purpose,
the key tool used in this paper is Geometric Singular Perturbation
Theory (GSPT for short). Neil Fenichel’s seminal work [9] assures
that, under the hypothesis of normal hyperbolicity, compact limit sets
persist for small perturbations. See Subsection 2.1 for further details.

This paper is devoted to study conditions in order to assure normal
hyperbolicity near infinity. This problem was motivated by [23], in
which all possible global phase portraits of quadratic planar slow-fast
systems were given. In such reference, the authors conjectured a global
version of Fenichel Theorem for quadratic planar slow-fast systems.
The contribution of our paper is to give an answer of this problem for
polynomial slow-fast systems in general.

The Poincaré compactification is a well known approach used in the
study of global dynamics of polynomial vector fields. The main ideas
were introduced in [21] by Henri Poincaré for the 2-dimensional case.
We refer to [1, 5, 11, 20] for details of such technique, including the
case in which the polynomial vector field is defined in Rn.
In our study, it is considered Poincaré–Lyapunov compactification

(PL-compactification for short) of polynomial vector fields in Rn. The
PL-compactification can be seen as a generalization of the well known
Poincaré compactification technique, whose construction is very similar
to the classical Poincaré compactification, in the sense that we make it
quasi-homogeneous instead of homogeneous (see [5, 18]).
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Such technique was utilized in several papers by Freddy Dumortier
and his collaborators, for example studying Liénard equations near
infinity (see for instance [2, 3, 4, 8]). In [17, 22] it was given all
possible phase portraits in the Poincaré–Lyapunov disk (PL-disk for
short) of polynomial vector fields having isolated singularities with
quasi-homogeneous degree 4 and 5, respectively. Structural stability of
quasi-homogeneous polynomial vector fields in the PL-disk was studied
in [19]. Global dynamics of Benôıt system (which is three dimensional)
in the Poincaré–Lyapunov ball (PL-ball for short) was considered in
[18]. See [5, Chapters 5 and 9] for an introduction on such method.

Let Y be a polynomial vector field and let ω = (ω1, . . . , ωn) ∈ Zn be
a vector of positive integers, which will be called weight vector. The
Poincaré–Lyapunov compactification Y ∞ of Y is an analytic vector
field defined in a compact n-dimensional manifold called Poincaré–
Lyapunov sphere (PL-sphere), which is denoted by Sn

ω and it is home-
omorphic to Sn = {

∑n+1
i=1 z2i = 1} ⊂ Rn+1. The phase space Rn is iden-

tified with the northern hemisphere of Sn
ω, and the set {zn+1 = 0} ⊂ Sn

ω

plays the role of infinity. See subsection 2.2 for details.
In the study of global dynamics of polynomial vector fields, the PL-

compactification Y ∞ is a vector field defined in Sn
ω, however, its global

phase portrait is often sketched in the PL-ball. Throughout this paper,
the n-dimensional PL-ball will be denoted by Bn

ω. In particular, the PL-
disk will be denoted by Dω = B2

ω. The interior of Dω plays the role
of R2, while its boundary plays the role of infinity. Analogously, the
interior of the 3-dimensional PL-ball B3

ω plays the role of R3 and its
boundary represents infinity. See figure 1.

Dω B3
ω

Figure 1. PL-disk (left) and 3-dimensional PL-ball (right).

Many interesting phenomena can occur at infinity of the phase space.
For instance, consider the slow-fast system

(5) x′ = y2z − x2y

2
− x3

3
, y′ = 0, z′ = ε(ay3 − xy2).
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After Poincaré compactification, in one of the three charts the fol-
lowing system is obtained

(6) u′ = v − u2

2
− u3

3
, v′ = ε(a− x),

which is the van der Pol system studied in [6] (see also figure 2). More
generally, system

(7) x′ = yk1z − x2yk2

2
− x3yk3

3
, y′ = 0, z′ = ε(ayk4 − xyk5)

presents a van der Pol system at infinity after a PL-compactification
with weights ω = (ω1, ω2, ω3) if, and only if, the positive integers
k1, . . . , k5 satisfy

k1 =
δ + ω1 − ω3

ω2

,

k2 =
δ − ω1

ω2

,

k3 =
δ − 2ω1

ω2

,

k4 =
δ + ω3

ω2

,

k5 =
δ − ω1 + ω3

ω2

.

Figure 2. Critical manifold of slow-fast system (5) (left) and
its phase portrait at infinity (right), which is given by the van der
Pol equation (6). The critical manifold is highlithed in green and
the canard cycle is highlighted in red (see also [6]).

Let us briefly describe our main results. A preliminary and use-
ful result is given in Proposition 4, which discusses possible dynam-
ics at infinity of a compactified slow-fast system based on the quasi-
homogeneous degree of P and Q. Afterwards, in Theorem 7 we state
Fenichel Theorem in a suitable way in order to study the perturbed
system at infinity (boundary of the PL-ball).
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Theorem A establishes conditions that a polynomial slow-fast system
in Rn must satisfy in order to assure normal hyperbolicity at infinity.
More precisely, item (a) of Theorem A states an algebraic condition on
the polynomial P of the initial slow-fast system so that the origin of
each chart of the PL-ball is normally hyperbolic. Such condition implies
that, concerning the Newton polytope of the slow-fast vector field (see
Subsection 4.1 for a precise definition), points associated to higher order
monomials are all contained in the same (n− 1)-dimensional compact
face of the polytope. We emphasize that Theorem A item (a) concerns
the origin of each chart of the compactification.

On the other hand, in Theorem A item (c) is given a necessary
condition in order to assure normal hyperbolicity outside the origin,
and such condition is based on the transversal intersection of C0 with
infinity. Finally, Theorem A item (b) concerns a degenerate case, in
which the whole infinity is a component of the critical manifold.

In dimension 2, Theorem B gives sufficient and necessary conditions
to assure persistence of invariant manifolds in the whole PL-disk. Actu-
ally, transversality turns out to be a necessary and sufficient condition
in order to assure normal hyperbolicity at infinity. Finally, Theorem C
determines conditions that slow-fast systems defined in R3 must satisfy
to generate typical singularities of planar slow-fast systems at infinity,
namely fold, transcritical and pitchfork singularities.

This paper is structured as follows. In Section 2 is presented some
preliminaries on GSPT and Poincaré–Lyapunov compactification. Sec-
tion 3 is devoted to discuss some preliminary propositions and examples
that will be used in subsequent sections. Theorem A is proven in Sec-
tion 4, and Section 5 is devoted to proof a global version of Fenichel
Theorem in the plane (Theorem B). Finally, in Section 6 is proven
Theorem C and some examples are also given.

2. Preliminaries on geometric singular perturbation
theory and Poincaré–Lyapunov compactification

2.1. Geometric singular perturbation theory. A point p ∈ C0 is
normally hyperbolic if Px(p) ̸= 0. The set of all normally hyperbolic
points of C0 will be denoted by NH(C0). A point p ∈ NH(C0) is called
attracting or repelling point if Px(p) < 0 or Px(p) > 0, respectively.
Fenichel Theorem is a major result in Geometric Singular Pertur-

bation Theory. It assures that, given a j-dimensional compact nor-
mally hyperbolic sub-manifold K ⊂ NH(C0) (possibly with boundary)
of system (2), there exists a family of smooth manifolds Kε such that
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Kε → K0 = K according to Hausdorff distance and Kε is a normally hy-
perbolic locally invariant manifold of (1). Such result was first proved
in [9] (see also [24, Theorem 2.2] for a precise statement). In Theorem
7, we stated the Fenichel Theorem in a suitable way in order to assure
persistence of invariant manifolds at infinity.

The Fenichel Theorem can be seen as a “generalization” of the theo-
rem of stable and unstable manifolds. The local invariance of Kε means
that it may exist boundaries through which trajectories can leave. Just
as in center manifold theory, in general the locally invariant manifold
Kε is not unique. Indeed, it may exist infinitely many invariant mani-

folds O(e−
K
ε )-close to the critical manifold. See Figure 3. The manifold

Kε obtained in the Fenichel Theorem is called slow manifold.

K Kε

Figure 3. Planar slow-fast system for ε = 0 (left) and for ε > 0
sufficiently small (right). The Fenichel Theorem assures the exis-
tence of a family of invariant manifolds Kε, and the flow on Kε

converges to the flow on K. Moreover, Fenichel Theorem also as-
sures the existence of a family of stable manifolds Ws

ε of Kε.

Concerning the slow system (2), “any structure in NH(C0) which
persists under regular perturbations persists under singular perturba-
tion” [9, pp. 91]. In other words, hyperbolic equilibrium points or limit
cycles of (2) in NH(C0) persist for ε sufficiently small.

The Fenichel Theorem gives an answer about the dynamics of system
(1) near normally hyperbolic manifolds for ε sufficiently small. We
refer to [6, 7, 14, 15] for further problems and techniques concerning
dynamics of (1) near non-normally hyperbolic manifolds.

2.2. Poincaré–Lyapunov compactification of polynomial vec-
tor fields. Just as in the homogeneous compactification, the vector
field Y ∞ is studied using directional charts Ui and Vi, in which

Ui = {z ∈ Sn
ω, zi > 0}, Vi = {z ∈ Sn

ω, zi < 0}, z = (z1, . . . , zn+1) ∈ Rn+1,

for each i = 1, . . . , n+ 1. See Figure 4.
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Consider a polynomial vector field Y (x) = Y (x1, . . . , xn). For every
i = 1, . . . , n, the expression of the compactified vector field Y ∞(u) =
Y ∞(u1, . . . , un) in the charts Ui is obtained from the coordinate change

x1 =
u1

uω1
n
, . . . , xi−1 =

ui−1

u
ωi−1
n

, xi =
1

uωi
n
, xi+1 =

ui

u
ωi+1
n

, . . . , xn =
un−1

uωn
n

,

and for different charts Ui the coordinate system (u1, . . . , un) has dif-
ferent meanings. However, for every i = 1, . . . , n the set {un = 0} is an
invariant set of Y ∞ which plays the role of infinity. On the other hand,
the expression of Y ∞(u) = Y ∞(u1, . . . , un) in Vi is obtained in an anal-

ogous way as in Ui, but setting xi = − 1

uωi
n

instead of xi =
1

uωi
n
. The

expression of Y ∞ in Un+1 coincides with Y , and in Vn+1 the expression
of Y ∞ coincides with Y (up to a multiplication by −1).

3. Poincaré–Lyapunov compactification of slow-fast
systems

Consider the polynomial slow-fast system (3). Recall that P and Q
are polynomial with respect to the fast variable x and the slow variables
y, but it is analytic with respect to ε. In what follows we present the
definitions of quasi-homogeneous polynomial and quasi-homogeneous
vector field, which can also be found in [16, Section 7.3].

Let ω = (ω1, . . . , ωn) ∈ Zn be a weight vector. A polynomial F :
Rn → R is quasi-homogeneous of type ω and degree k ∈ N if

F (λω1x, λω2y2, . . . , λ
ωnyn) = λk · F (x, y2, . . . , yn), ∀λ ∈ R.

We say that a polynomial vector field Y = (Y1, . . . , Yn) defined in Rn

is quasi-homogeneous of type ω and degree kω ∈ N if each component
Yj : Rn → R of Y is quasi-homogeneous of type ω and degree k + ωj.
In other words, it satisfies

Yj(λ
ω1x, λω2y2, . . . , λ

ωnyn) = λk+ωj · Yj(x, y2, . . . , yn), ∀λ ∈ R.

Example 1. Consider the planar polynomial vector field

Y (x, y) =
(
Y1(x, y), Y2(x, y)

)
= (y, x2)

which determines a cusp singularity at the origin. This vector field is
quasi-homogeneous of type ω = (2, 3) and degree 1, because

Y1(λ
2x, λ3y) = λ1+2Y1(x, y), Y2(λ

2x, λ3y) = λ1+3Y2(x, y).

The vector field associated to the slow-fast system (3) will be denoted
by Xε, whereas its PL-compactification will be denoted by X∞

ε , which
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is a vector field defined in Sn
ω ⊂ Rn+1. We will also write the polynomial

functions P,Qj as

P =

δ1∑
d=−1

Pd, Qj =

δj∑
d=−1

Qj
d,

in which Pd is the quasi-homogeneous component of type ω and degree
d + ω1, and Qj

d is the quasi-homogeneous component of type ω and
degree d + ωj. The degree of quasihomogeneity of type ω of Pd and

Qj
d will be denoted by degω Pd and degω Q

j
d. The highest degree of

quasihomogeneity of type ω of P and Qj is

degω P = max
d

{degω Pd} = δ1+ω1, degω Q
j = max

d
{degω Q

j
d} = δj+ωj.

Then, the highest quasi-homogeneous degree component of P and Qj

is, respectively, Pδ1 and Qj
δj
. The degree of quasi homogeneity type ω

of the vector field Xε will be simply denoted by degω Xε = max δl = δ.

Example 2. Let Y be the planar polynomial vector field given in the
Example 1. If ω = (2, 3), then degω Y = 1, degω Y1 = 1 + 2 = 3 and
degω Y2 = 1 + 3 = 4. Nevertheless, if we consider ω = (1, 1), then
degω Y = 1, degω Y1 = 0 + 1 = 1, and degω Y2 = 1 + 1 = 2.

In what follows, the expressions of X∞
ε in each of the 2(n+ 1) local

charts of Sn
ω are given. The notation (x,y, ε) concerns a coordinate

system in the finite part of the phase space, whereas (u,v, ε) concerns
the coordinate system near infinity, in which v = (v2, . . . , vn). We
emphasize that in different open sets Ui of the covering, the coordinates
(u,v, ε) have different meanings. See Figure 4.

In U1, X
∞
ε is written as

(8)



u′ =
δ∑

d=−1

vδ−d
n

(
εQ2

d − u
ω2

ω1

Pd

)
,

v′2 =
δ∑

d=−1

vδ−d
n

(
εQ3

d − v2
ω3

ω1

Pd

)
,

... =
...

v′n−1 =
δ∑

d=−1

vδ−d
n

(
εQn

d − vn−1
ωn

ω1

Pd

)
,

v′n = − 1

ω1

δ∑
d=−1

vδ+1−d
n Pd,
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U1

u

v2

U2

u

v2

U3

u
v2

x

y2

y3

Figure 4. Directional charts that cover the PL-ball B3
ω. Fol-

lowing the terminology of Definition 3, the slow-fast vector field
obtained in the chart U1 is the compactification in the fast direc-
tion, whereas the vector field obtained in a chart Ul is the com-
pactification in the slow direction, for l = 2, . . . , n.

where Pd, Q
j
d are computed in (1, u, v2, . . . , vn−1, ε) for all j = 2, . . . , n.

Observe that it was used the quasi homogeneity of Pd, Q
j
d in order to

obtain system (8).
For l = 2, . . . , n, in Ul the compactification is written as

(9)



u′ =
δ∑

d=−1

vδ−d
n

(
Pd − εu

ω1

ωl

Ql
d

)
,

v′i = ε
δ∑

d=−1

vδ−d
n

(
Qi

d − vi
ωi

ωl

Ql
d

)
, 1 < i < l

v′i−1 = ε
δ∑

d=−1

vδ−d
n

(
Qi

d − vi−1
ωi

ωl

Ql
d

)
, l < i ≤ n

v′n = − ε

ωl

δ∑
d=−1

vδ+1−d
n Ql

d,

where j = 2, . . . , n, and the polynomial functions Pd, Q
j
d are computed

in (u, v2, . . . , vl−1, 1, vl, . . . , vn−1, ε). Once again it was used the quasi
homogeneity of Pd, Q

j
d to obtain system (9).

The expression of X∞
ε in Un+1 is precisely the expression of (3).

In the open set Vi, X
∞
ε is obtained by replacing 1

v
ωi
n

by − 1
v
ωi
n

in the

coordinate change of chart Ui, for all i = 1, . . . , n+ 1. Furthermore, in
any local chart Ui and Vi the set {vn = 0} is an invariant set of X∞

ε

that plays the role of infinity.
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Definition 3. The vector field obtained in the chart U1 will be called
compactification of Xε in the positive fast direction. The vector field
obtained in Ul, for l = 2, . . . , n, will be called compactification of Xε

in the l-th positive slow direction.

From the expression of X∞
ε in a chart Ul for l = 1, . . . , n, one can

conclude the following proposition:

Proposition 4. Let Xε be the polynomial vector field associated to the
slow-fast system (3) and denote its PL-compactification by X∞

ε . Then,
in a chart Ul for l = 1, . . . , n, it follows that:

(a): The PL-compactification of Xε in the fast direction is not a
slow-fast system, but it is a singular perturbation problem. In
addition, for ε = 0, the set of equilibria is given by {(0, 0)} ∪
{Pδ1(1, u, v2, . . . , vn−1, 0) = 0}.

(b): The PL-compactification of Xε in the l-th slow direction is a
slow-fast system, for all l = 2, . . . , n.

(c): Suppose Xε is a n-dimensional vector field for n ≥ 3. Then,
for l = 2, . . . , n , the vector field X∞

ε defines a slow-fast system
at infinity {vn = 0} in a chart Ul if, and only if, δ = δ1 = δj0, for
some j0. Moreover, such slow-fast system has one fast variable
and n− 2 slow variables.

(d): If δ = δ1 > δj for all j, then εQ does not affect the dynamics
at infinity {vn = 0}. On the other hand, if δ1 < δj0 = δ for
some j0, in the limit ε = 0 the infinity is filled with equilibria.

Proof. Assertions (a) and (b) follow directly from the expressions (8)
and (9) of the vector fields in the fast and slow-directions, respec-
tively. In order to prove assertions (c) and (d), assume that Xε is a
n-dimensional vector field for n ≥ 3. From Equation (9), if δ1 > δj
for all j, then only terms of P play role at infinity {vn = 0}. In other
words, if one sets vn = 0 in Equation (9), then only terms of P will
remain, thus εQ does not affect the dynamics at infinity. The same
reasoning can be used to prove that, if δ1 < δj0 for some j0, then only
terms of εQ play role at {vn = 0}. Setting ε = 0, then {vn = 0} is
filled with equilibria. Finally, if δ = δ1 = δj0 for some j0, then terms of
both P and Qj0 play role at infinity, and therefore dynamics at infinity
of Ul is given by a slow-fast system. □

Example 5. Consider the planar slow-fast system

(10) x′ = P (x, y, ε) = −x, y′ = εQ(x, y, ε) = ε(y2 − x3).

After a PL-compactification with weights ω = (2, 3), the systems
obtained in the fast and slow directions U1 and U2 are, respectively,
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(11)


u′ = ε(u2 − 1) +

3uv3

2
,

v′ =
v4

2
,

(12)


u′ = −uv3 +

2εu(u3 − 1)

3
,

v′ =
εv(u3 − 1)

3
.

In this example, we have δ1 < δ2 because degω P = δ1 + 2 = 2 and
degω Q = δ2 + 3 = 6. As expected from item (a) of Proposition 4, the
system (11) defined in U1 is not a slow-fast system. From item (d), the
infinity is filled with equilibria when ε = 0 in equation (12). Observe
that in U2 the critical manifold is given by {uv3 = 0}. See Figure 5.

Example 6. Consider the slow-fast system

(13) x′ = P (x, y, z, ε) = x(y2 − z2), y′ = ε, z′ = ε.

After a PL-compactification with weights ω = (1, 1, 1) (classical Poincaré
compactification), one obtains in U1, U2 and U3, respectively,

(14) u′ = u(v2−u2)+εw3, v′ = v(v2−u2)+εw3, w′ = w(v2−u2),

(15) u′ = u(1− v2 − εw3), v′ = εw3(1− v), w′ = −εw4,

(16) u′ = u(1− v2 − εw3), v′ = εw3(1− v), w′ = −εw4.

As expected from item (d) of Proposition 4, it follows that, at infinity
{w = 0}, only terms of P play role. Moreover, from item (a), the
compactification in the fast direction is not a slow-fast system.

Figure 5. Phase portrait of the slow-fast system (10) in the
PL-disk. The critical manifold is highlighted in green.
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Figure 6. Critical manifold of the compactified slow-fast sys-
tems (13) and (17) in the Poincaré Ball.

4. Geometric singular perturbation theory at infinity

This section is devoted to study conditions to assure normal hyper-
bolicity at infinity. We start our analysis stating a suitable version of
Fenichel Theorem at infinity, which is given in Theorem 7. Afterwards
it is shown that the Newton polytope of a polynomial slow-fast system
carries information about the normal hyperbolicity at infinity. Finally,
it is given a geometric condition that assures normal hyperbolicity,
based on the intersection of the critical manifold with infinity.

In Theorem 7, suppose n ≥ 3, consider the polynomial slow-fast
system (3) and C∞

0 the critical manifold of system (9) at a generic
chart Ul, for 2 ≤ l ≤ n. Suppose also δ = δ1 = δj0 for some j0 (see item
(c) of Proposition 4).

Theorem 7. (Fenichel Theorem at infinity) Let K ⊂ NH(C∞
0 ) be a

j-dimensional compact normally hyperbolic sub-manifold (possibly with
boundary) at infinity {vn = 0} of the slow system associated to (9). Let
Ws be the (j + js)-dimensional stable manifold of K. Then, at infinity
{vn = 0}, there is ε̃ > 0 sufficiently small such that for 0 < ε < ε̃ the
following hold:

(F1): There exists a family of smooth manifolds Kε such that
Kε → K0 = K according to Hausdorff distance and Kε is a
normally hyperbolic locally invariant manifold of (9),

(F2): There is a family of (j+js+ks)-dimensional manifolds Ws
ε

such that Ws
ε is local stable manifolds of Kε.

Analogous conclusions hold for the (j + ju)-dimensional unstable
manifold Wu at infinity.
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Example 8. Consider the slow-fast system

(17) x′ = P (x, y, z, ε) = x(y2 − z2), y′ = εz3, z′ = εy3.

After Poincaré compactification, systems obtained in U1, U2 and U3

are, respectively,

(18) u′ = −u3 + uv2 + εv3, v′ = εu3 − u2v + v3, w′ = w(v2 − u2),

(19) u′ = u(1− v2 − εv3), v′ = ε(1− v4), w′ = −εv3w,

(20) u′ = u(v2 − 1− εv3), v′ = ε(1− v4), w′ = −εv3w.

By Theorem 7, at infinity {w = 0}, the dynamics near compact
normally hyperbolic sets persist for ε > 0 sufficiently small. However,
for both systems (19) and (20), there are two non normally hyperbolic
points. See Figure 6.

4.1. Newton polytope of a polynomial vector field. This subsec-
tion aims to recall the classical definition of Newton polytope associated
to a polynomial vector field (see also [13]). Let Y = (F1, . . . , Fn) be
a n-dimensional polynomial vector field. For each component Fi of Y ,
we introduce the notation

a = (a1, . . . , an), x = (x1, . . . , xn), xa = xa1
1 · . . . · xan

n ,

Fi(x) =
∑
ai∈Zn

cai
xa, cai

∈ R, ai = (a1, . . . , ai−1, ai − 1, ai+1, . . . , an).

Let Y = (F1, . . . , Fn) be a n-dimensional polynomial vector field.

The support of Y is the set SY given by SY =
n⋃

i=1

SY,i, in which SY,i =

{ai ∈ Zn, cai
̸= 0}. The Newton polytope PY ⊂ Rn of a n-dimensional

polynomial vector field Y is the convex hull of the support SY .

Example 9. Consider the vector field Y (x, y) =
(
F1(x, y), F2(x, y)

)
=

(x+ y, x2). Thus SY,1 = {(0, 0), (−1, 1)} and SY,2 = {(2,−1)}. There-
fore SY = {(0, 0), (−1, 1), (2,−1)}. See Figure 7(a).

Example 10. Consider the 3-dimensional polynomial vector field

Y (x, y, z) =
(
F1(x, y, z), F2(x, y, z), F3(x, y, z)

)
= (−1 + xy, yz2, xz).

Then SY,1 = {(−1, 0, 0), (0, 1, 0)}, SY,2 = {(0, 0, 2)} and SY,3 = {(1, 0, 0)}.
Therefore SY = {(−1, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 2)}. See Figure 7(b).
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(a)

(b)

Figure 7. Figure (a): Support (left) and Newton polytope
(right) of the planar polynomial vector field of the Example 9.
Figure (b): Support (left) and Newton polytope (right) of the 3-
dimensional polynomial vector field of the Example 10.

4.2. Normal hyperbolicity at infinity. We have already stated all
preliminary definitions and results needed to prove our main results. In
what follows, it will be studied necessary conditions in order to assure

normal hyperbolicity at infinity. Denote P (x,y, ε) =

δ1∑
d=−1

Pd(x,y, ε),

which Pd is a quasi-homogeneous polynomial of type ω of degree d+ω1

and δ1 + ω1 = degω P . The degree of quasi homogeneity type ω of the
slow-fast system (3) is denoted by degω Xε = δ ≥ δ1.

Theorem A. Let Xε be a n-dimensional polynomial vector field asso-
ciated to system (3), whose critical manifold is C0 = {P (x,y, 0) = 0}.
Then, near the boundary of the PL ball the following hold:

(a): Suppose δ = δ1. If the component P of type ω and degree
δ1 + ω1 has monomials of the form

c1x
r1+1 +

n∑
i=2

(
cixy

ri
i + diy

si
i

)
,

satisfying c2i+d2i ̸= 0 for all i = 1, . . . , n, and (r1, r2, . . . , rn) and
(r1, s2, . . . , sn) satisfy the equation of the hyperplane {ω1a1 +
. . . + ωnan = δ}, then the origin of each chart Ul is a nor-
mally hyperbolic point of C0. In particular, the origin of U1 is
a hyperbolic node of the compactified vector field X∞

ε .
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(b): If δ > δ1, then {vn = 0} is a non normally hyperbolic com-
ponent of C0.

(c): If p ∈ Ul is a point at infinity (with 2 ≤ l ≤ n), a necessary
condition to assure normal hyperbolicity is that C0 intersects
the infinity {vn = 0} transversely at p.

Remark 11. The hypotheses of Condition (a) of Theorem A implies
that the Newton polytope PXε has a compact face containing the inter-
section of the hyperplane {ω1a1 + . . . + ωnan = δ} with (R≥0)

n. Such
feature of PXε turns out to be a necessary condition in order to assure
normal hyperbolicity at the origin of each chart at infinity. From a
practical way of view, one can use the Newton polytope to detect non
normally hyperbolic points at the origin of each chart. Finally, observe
that in condition (c) we do not require that p is the origin.

Proof. From Proposition 4, we know that the compactification X∞
ε

defines a slow fast system in a chart Ul for l = 2, . . . , n, but it is not in
the chart U1. From Equation (9), the expression of C0 = {P (x,y, 0) =
0} in a chart Ul is

δ∑
d=0

vδ−d
n Pd

(
u, . . . , vl−1, 1, vl, . . . , vn−1, 0

)
= 0.

Therefore, normal hyperbolicity near infinity {vn = 0} means

(21) vδ−δ1
n Pδ1 = 0, vδ−δ1

n

∂Pδ1

∂u
̸= 0,

in which such functions are applied in (u, . . . , vl−1, 1, vl, . . . , vn−1, 0). So
we divide our analysis in two cases.

(a) Suppose δ = δ1. In this case, a necessary condition to assure
that the origin of the chart Ul is normally hyperbolic is to require that
the original polynomial P has monomials of the form clxy

rl
l + dly

sl
l , in

which cl, dl ∈ R, rl, sl ∈ N and c2l + d2l ̸= 0, rl =
δ
ωl

and sl =
δ+ω1

ωl
.

Indeed, if dl ̸= 0, then C∞
0 does not intersect the origin of the chart

Ul. On the other hand, if dl = 0 then cl ̸= 0 so C∞
0 is normally

hyperbolic at the origin of Ul. Recall that C∞
0 is the critical manifold

of the compactified system (9) at a generic chart Ul, for 2 ≤ l ≤ n.
Concerning the support SXε , if cl ̸= 0 then SXε contains the point

(0, . . . , 0, rl, 0, . . . , 0), in which rl is positioned in the l-th coordinate.
Finally, if dl ̸= 0 then SXε contains the point (−1, 0, . . . , 0, sl, 0, . . . , 0),
in which sl is positioned in the l-th coordinate.

The compactification of the critical set can be normally hyperbolic
in one chart and not in another. Therefore, in order to assure that,
for all l = 2, . . . , n the origin of Ul is normally hyperbolic, we must
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require that the quasi-homogeneous component of P of type ω and
degree δ1 + ω1 has monomial of the form

x
(
c1x

r1 + c2y
r2
2 + · · ·+ cny

rn
n

)
+
(
d2y

s2
2 + · · ·+ dny

sn
n

)
,

in which c2i + d2i ̸= 0 for all i = 1, . . . , n.
Observe that points of SXε related to these monomials are contained

in the hyperplane {ω1a1 + . . . + ωnan = δ}. Moreover, since all the
natural numbers ri and si concerns higher order terms of the vector field
Xε, then all the other points of the support SXε are either contained in
such hyperplane, or they are contained in the half-space {ω1a1 + . . .+
ωnan < δ}. This implies that the Newton polytope PXε has a compact
face that contains {ω1a1 + . . . + ωnan = δ} ∩ (R≥0)

n. See Figure 8. If
this is the case, in U1 the origin is a hyperbolic node of X∞

ε .

(a)

(b)

Figure 8. Figure (a): On the left, an example of Newton poly-
tope of that gives rise to non normally hyperbolic points at infinity.
On the other hand, the slow-fast system associated to the Newton
polytope on the right will present normally hyperbolic points at
the origin of U1 and U2 (under a suitable choice of ω). Figure (b):
description analogous to the Figure (a), but in dimension 3.

(b) Suppose δ > δ1. By (21), the infinity {vn = 0} is a non normally
hyperbolic component of the critical manifold, for each Ul.

(c) Denote by C∞
0 the critical manifold C0 in a chart Ul, for each

l = 2, . . . , n. The infinity is represented by the hyperplane {vn = 0},
and the vector (0, . . . , 0, 1) is normal to it, for every point p ∈ {vn = 0}.
On the other hand, the vector ∇Pδ(p) is normal to C∞

0 at p. If C∞
0

is normally hyperbolic at p, from equation (21) we know that the first
coordinate of ∇Pδ(p) is non zero. Therefore, (0, . . . , 0, 1) and ∇Pδ(p)
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are linearly independent, which implies that TpC
∞
0 ⋔ Tp{vn = 0}. We

conclude that a necessary condition to assure normal hyperbolicity at
infinity is that C∞

0 intersects {vn = 0} transversely. See Figure 9. □

{vn = 0}

C∞
0

Figure 9. Critical manifold C∞
0 (highlighted in green) inter-

sects the infinity transversally.

Remark 12. From Propositon 4 item (d), in each chart Ul we know
that, if δ > δ1, by setting ε = 0, the infinity {vn = 0} is filled with
equilibrium points. Due to item (b) of Theorem A, now we know that,
in fact, the infinity is a component of the critical manifold C0.

In what follows we present an example showing that transversality
is not a sufficient condition to assure normal hyperbolicity at infinity.

Example 13. Consider the polynomial slow-fast system

(22) x′ = y + z, y′ = ε(x+ z), z′ = ε(x+ y).

The critical manifold associated to (22) is C0 = {y + z = 0}, which
intersects the infinty transversaly. After Poincaré compactification, one
obtains the following slow-fast system in both charts U2 and U3:

u′ = 1 + v − εu(u+ v), v′ = ε(1 + u− uv − v2), w′ = −εw(u+ v).

In both charts U2 and U3, the infinity and the critical manifold are
given by {w = 0} and C∞

0 = {v+1 = 0}, respectively. This implies that
NH(C∞

0 ) = ∅. Geometrically, in U2 and U3 the set C∞
0 is a horizontal

line. See Figure 10.

It is very difficult to study conditions to assure normal hyperbolicity
for the whole infinity in arbitrary dimension. However, it can be given
an answer for the 2-dimensional case (see Theorem B). It will be clear
that, in dimension 2, the transversality condition presented in Theorem
A is sufficient and necessary to assure normal hyperbolicity at infinity.



18 O. H. PEREZ AND P. R. DA SILVA

Figure 10. Compactification of C0 related to system (22). The
critical manifold C0 is highlighted in green.

5. Planar polynomial slow-fast systems

Consider the 2-dimensional polynomial slow-fast system

(23) x′ = P (x, y, ε), y′ = εQ(x, y, ε).

As usual, Pd and Qd are quasi-homogeneous components of type ω
and degree d+ ω1 and d+ ω2, respectively. The highest quasihomoge-
neous degree component of P and Q is, respectively, Pδ1 and Qδ2 . Due
to statements (a) and (b) of Proposition 4, for our purposes in this
section we will further suppose that δ1 = δ2 = δ.

The polynomial functions P and Q will be written as

P (x, y, ε) =
δ∑

i=−1

Pi(x, y, ε), Q(x, y, ε) =
δ∑

j=−1

Qj(x, y, ε),

Pi(x, y, ε) =
i∑

r=0

cε,r,ix
ry

i+ω1(1−r)
ω2 , Qj(x, y, ε) =

j∑
s=0

dε,s,jx
sy

j+ω2−ω1s
ω2 ,

in which δ = degω Xε and the notation cε,r,i, dε,s,j indicates that such
coefficients depend analytically on ε. Moreover, for each i and j, the
powers of the monomials of Pi(x, y, ε) and Qj(x, y, ε) satisfies, respec-
tively, aω1 + bω2 = i+ ω1 and aω1 + bω2 = j + ω2.

The compactification X∞
ε in the fast and slow direction is given by,

respectively,
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(24)


u′ =

δ∑
i=−1

vδ−i
(
− uPi(1, u, ε) + εQi(1, u, ε)

)
,

v′ = −
δ∑

i=−1

vδ−i+1Pi(1, u, ε),

(25)


u′ = −

δ∑
i=−1

vδ−i
(
− uεQi(u, 1, ε) + Pi(u, 1, ε)

)
v′ = −ε

δ∑
i=−1

vδ−i+1Qi(u, 1, ε).

Before we start our analysis in the charts U1 and U2, let us introduce
a useful Lemma, that can be found for instance in [10, pp. 72]. Recall

that x0 is a simple root of P ∈ R[x] if P (x) = (x− x0) · P̃ (x) and x0 is

not root of P̃ (x).

Lemma 14. Let P be a polynomial over R. Then x0 is a simple root
of P if, and only if, P (x0) = 0 and P ′(x0) ̸= 0.

Let us start our study by considering the compactification in the
slow direction (25).

Proposition 15. Let (23) be a planar polynomial slow-fast system and
consider its PL-compactification in the slow direction (25). Then (ũ, 0)
is an equilibrium point at infinity {v = 0} for ε = 0 if, and only if, the
critical manifold C0 intersects the infinity at (ũ, 0).

Proof. Recall that δ = degω Xε. Therefore, in U2, C0 is given by
{Pδ(u, 1, 0) = 0}, which is a curve of equilibria of system (25) when
ε = 0. Such curve intersects infinity at points of the form (ũ, 0), with
ũ being a root of the polynomial Pδ(u, 1, 0). □

Proposition 16. Let p = (ũ, 0) ∈ {v = 0} be an equilibrium point of
(25) at infinity. Then the following statements are equivalent:

(a): p is normally hyperbolic for (25) when ε = 0.
(b): ũ is a hyperbolic equilibrium point of the ODE u̇ = Pδ(u, 1, 0).
(c): ũ is a simple root of the polynomial Pδ(u, 1, 0).
(d): The critical manifold intersects the infinity transversely.

Proof. Observe that (a) ⇔ (b) because ∂
∂u
Pδ(ũ, 1, 0) ̸= 0 if, and only if,

ũ is a hyperbolic equilibrium point of the ODE u̇ = Pδ(u, 1, 0). In addi-
tion, from Lemma 14, it follows that (a)⇔ (c) because ∂

∂u
Pδ(ũ, 1, 0) ̸= 0
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and Pδ(ũ, 1, 0) = 0 if, and only if, ũ is a simple root of Pδ(u, 1, 0). The
equivalence (a) ⇔ (d) follows because ∂

∂u
Pδ(ũ, 1, 0) ̸= 0 means that

∇Pδ(ũ, 1, 0) and n⃗ = (0, 1) are linearly independent, in which n⃗ is
normal to the line that represents the infinity. □

Due to Propositions 15 and 16, the transversality condition presented
in Theorem A is a sufficient and necessary condition to assure normal
hyperbolicity at infinity in the 2-dimensional case.

Corollary 17. A necessary condition for the existence of simple roots
of Pδ(u, 1, 0) is c0,0,δ ̸= 0 or c0,1,δ ̸= 0.

Proof. From the expression of Pi(x, y, ε), if c0,0,δ ̸= 0, then the com-

ponent Pδ of P has a monomial of the form c0,0,δy
δ+ω1
ω2 . On the other

hand, if, c0,1,δ ̸= 0, then the component Pδ of P has a monomial of the

form c0,1,δxy
δ
ω2 . In both cases, by setting (u, 1, 0), the origin of U2 will

be either a regular point or a hyperbolic equilibrium point of (25). □

Since we have studied the dynamics of the compactification in the
slow direction, it is sufficient to study the dynamics near the origin of
the compactification in the fast direction (24). Recall that (24) is not
a slow-fast system.

Proposition 18. Let (23) be a planar polynomial slow-fast system and
consider its compactification in the fast direction (24). Then, for ε = 0,
the following statements are true:

(a): The origin of the chart U1 is an equilibrium point of (24).
(b): The critical manifold C0 intersects the origin of U1 if, and

only if, c0, δ
ω1

,δ = 0. In this case, the origin is a non-hyperbolic

equilibrium point of (24).
(c): The origin of U1 is an hyperbolic node of (24) if, and only

if, c0, δ
ω1

,δ ̸= 0.

Proof. Recall the expression of Pi(x, y, ε). It is straightforward from
equation (24) that the origin of U1 is an equilibrium point for ε =
0. Therefore, items (b) and (c) aims to understand features of such
equilibrium. Furthermore, in this chart we must study the polynomial
P applied in points of the form (1, u, 0).

In the chart U1 the critical manifold C0 is the zero set of Pδ(1, u, 0),
which represents a curve of singularities for ε = 0. Therefore, C0

intersects the origin of U1 if, and only if, c0, δ
ω1

,δ = 0. Moreover, the

origin will be non hyperbolic for (24) if such a point is contained in C0.
This proves item (b) Finally, assuming ε = 0, it can be easily checked
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that c0, δ
ω1

,δ ̸= 0 if, and only if, the origin of U1 is a hyperbolic node of

(24), which proves item (c). □

Now, we are able to state, for the planar case, a global version of the
Fenichel Theorem, which assures the persistence of invariant manifolds
in the whole Poincaré–Lyapunov disk. The proof of Theorem B is given
by combining Fenichel Theorem (for the finite part) and Propositions
15, 16 and 18 (for the infinite part). In its statement, the compactified
critical manifold is denoted by C0, which is the union of the finite and
infinite parts of C0.

Theorem B. Consider the planar polynomial slow-fast system (23).
Suppose that NH(C0) = C0, C0 intersects the infinity of Dω trans-
versely, and it does not intersect the origin of U1, V1. Then there exist
0 < ε̃ ≪ 1 such that for 0 < ε < ε̃ the following hold in the whole Dω:

(G1): There exist a family of smooth manifolds Cε such that
Cε → C0 according to Hausdorff distance and Cε is locally
invariant of (23).

(G2): If p0 ∈ C0 and Ws is its stable manifold, then there is a
family Ws

ε of stable manifolds of pε ∈ Cε, in which pε → p0.
The same conclusion holds if one consider the unstable manifold
Wu of p0 ∈ C0.

Example 19. Consider the slow fast system

(26) x′ = x2 + xy − 1, y′ = εQ(x, y, ε),

in which Q(x, y, ε) is a polynomial function of degree less than or equal
to 2. We apply the classical Poincaré compactification. Note that
degω Xε = δ = 1 and degω Q = δ2 ≤ 1. In U1 and U2, the dynam-
ics at infinity are respectively given by

(27) u′ = u(−1− u+ v2) + εv2−δ2Q(1, u), v′ = v(−1− u+ v2),

(28) u′ = u+ u2 − v2 − εuv2−δ2Q(u, 1), v′ = −εv3−δ2Q(u, 1).

All points of C0 = {x2+xy = 1} are normally hyperbolic. The origin
of U1 is a hyperbolic node and C0 is normally hyperbolic at infinity (see
Proposition 16). Therefore, as a consequence of Theorem B, global
dynamics of system (26) persist for ε sufficiently small. See figure 11.

6. Non normally hyperbolic points at infinity

In this section is discussed some examples of 3-dimensional polyno-
mial slow fast systems that present non normally hyperbolic singular-
ities at infinity, namely: fold, transcritical and pitchfork singularities
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Figure 11. Poincaré compactification of system (26). The crit-
ical manifold C0 is highlighted in green and the dots denote equi-
libria at infinity.

(see [14, 15]). OSince the phase-space is 3-dimensional, the slow-fast
system at infinity is 2-dimensional.

Firstly, recall normal forms of such singularities in the literature.
According to [14, 15], the non degeneracy conditions that a planar
slow-fast system (3) must satisfy in order to present (respectively) a
fold, transcritical and pitchfork singularity is given (respectively) by
equations (29), (30) and (31) as follows.

fx(0, 0, 0) = 0, fxx(0, 0, 0) ̸= 0,

fy(0, 0, 0) ̸= 0 and g(0, 0, 0) ̸= 0.
(29)

f(0, 0, 0) = fx(0, 0, 0) = fy(0, 0, 0) = 0,

detHes(f) < 0, fxx(0, 0, 0) ̸= 0 ̸= g(0, 0, 0),
(30)

in which Hes(f) denotes the Hessian matrix of f evaluated at (0, 0, 0).

f(0, 0, 0) = fx(0, 0, 0) = fxx(0, 0, 0) = fy(0, 0, 0) = 0,

fxxx(0, 0, 0) ̸= 0, fxy(0, 0, 0) ̸= 0, g(0, 0, 0) ̸= 0.
(31)

Theorem 20 gathers results on normal forms of slow-fast systems,
based on the non degeneracy conditions above. The notationO denotes
higher order terms, whereas λ denotes a constant that depends on the
non-degeneracy conditions of each singularity (see [14, 15] for details).

Theorem 20. There exists a smooth coordinate change such that for
(x, y) sufficiently small a planar slow-fast system is written as

(a): If system (3) satisfies the non-degeneracy conditions (29) of
a planar generic fold:

(32) x′ = y + x2 +O(x3, xy, y2, ε), y′ = ε
(
± 1 +O(x, y, ε)

)
,
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(b): If system (3) satisfies the non-degeneracy conditions (30) of
a generic transcritical singularity:

(33)

x′ = x2−y2+λε+O(x3, x2y, xy2, y3, εx, εy, ε2), y′ = ε
(
1+O(x, y, ε)

)
,

(c): If system (3) satisfies the non-degeneracy conditions (31) of
a pitchfork singularity:

(34)

x′ = x(y−x2)+λε+O(x2y, xy2, y3, εx, εy, ε2), y′ = ε
(
±1+O(x, y, ε)

)
.

The main goal of this section is to study conditions that a 3-dimensional
polynomial slow-fast system of the form

(35) x′ = P (x, y, z, ε), y′ = εQ(x, y, z, ε), z′ = εR(x, y, z, ε)

must satisfy in order to present a fold, transcritical or pitchfork singu-
larity at infinity after Poincaré–Lyapunov compactification with weight
ω = (ω1, ω2, ω3). Without loss of generality, in what follows is studied
conditions to assure that the origin of the chart U2 is one of the non
normally hyperbolic points given by Theorem 20. Moreover, if Xε is
the vector field associated to (35), then degω Xε = δ.

Theorem C. Consider the 3-dimensional slow fast system (35) and its
Poincaré–Lyapunov compactification X∞

ε with weight ω = (ω1, ω2, ω3).
If degω Xε = δ, then the following hold for every positive integer k1, k2:

(a): If Pδ(x, y, z, ε) = x2yk1 − yk2z, then the critical manifold of
X∞

ε has a fold singularity at the origin of U2 if, and only if,
k1ω2 = δ − ω1 and k2ω2 = δ + ω1 − ω3.

(b): If Pδ(x, y, z, ε) = x2yk1 − yk2z2, then the critical manifold of
X∞

ε has a transcritical singularity at the origin of U2 if, and
only if, k1ω2 = δ − ω1 and k2ω2 = δ + ω1 − 2ω3.

(c): If Pδ(x, y, z, ε) = xyk1z − x3yk2, then the critical manifold of
X∞

ε has a pitchfork singularity at the origin of U2 if, and only
if, k1ω2 = δ − ω3 and k2ω2 = δ − 2ω1.

Proof. The proof is given by straightforward computations. We present
the computation of item (a). The other items are completely analogous.
Consider system (35). We recall from Proposition 4 item (c) that

the vector field in U2 is a slow-fast system if, and only if, degω Xε =
degω P = degω Q or degω Xε = degω P = degω R.
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Given the weight vector ω = (ω1, ω2, ω3), the expression of the com-
pactified slow-fast system in the chart U2 is

(36)


u′ = wω1P − εuω1

ω2
wω2Q,

v′ = ε
(
wω3R− v ω3

ω2
wω2Q

)
,

w′ = −εwω2+1

ω2
Q,

in which P,Q and R are applied in ( u
wω1

, 1
wω2

, v
wω3

, ε).
The highest quasi-homogeneous component of P is Pδ(x, y, z, ε) =

x2yk1 −yk2z, then, after multiplying the vector field by wδ, system (36)
is rewritten as
(37)

u′ =
( u2wδ

wω1+k1ω2
− vwδ

wω3+k2ω2−ω1

)
+

δ−1∑
d=−1

wδ−dPd − εu
ω1

ω2

δ∑
d=−1

wδ−dQd,

v′ = ε
δ∑

d=−1

wδ−d
(
Rd − v

ω3

ω2

Qd

)
,

w′ = − ε

ω2

δ∑
d=−1

wδ+1−dQd,

in which the polynomial functions P,Q and R are applied in (u, 1, v, ε).
Therefore, setting w = 0 and ε = 0 in equation (37), it follows that
the origin of the chart U2 is a generic fold singularity if, and only if,
k1ω2 = δ − ω1 and k2ω2 = δ + ω1 − ω3. □

Theorem C gives conditions on the highest quasi-homogeneous de-
gree of the polynomial P and on the weights ω = (ω1, ω2, ω3) in order
to assure that the origin of the chart U2 is one of the non normally hy-
perbolic singularities given by Theorem 20. However, it is important
to remark that, depending on the weight vector ω, it is not possible to
generate such singularities. This fact will be clear in the next examples.

Example 21. Under the hypothesis of Theorem C, suppose that ω1 = 1
and ω2 = ω3 = 2. For any positive integers k1 = k2 =

δ−1
2
, the origin of

U2 is a fold singularity of X∞
ε . However, if ω1 = 3, ω2 = 2 and ω1 = 1,

then it does not exist k1, k2 ∈ Z satisfying conditions (a) of Theorem
C. See Figure 12.

Example 22. Suppose that ω1 = ω3 and ω2 = 1. For any positive
integers k1 = k2 = δ−ω1, the origin of U2 is a transcritical singularity
of X∞

ε . See Figure 12.

Example 23. Suppose that ω1 = 2 and ω2 = ω3 = 1. For any positive
integers k1 = δ − 1 and k2 = δ − 4, the origin of U2 is a pitchfork
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singularity of X∞
ε . Nevertheless, if ω1 = 3, ω2 = 2 and ω1 = 1, then it

does not exist k1, k2 ∈ Z satisfying conditions (c) of Theorem C. See
Figure 12.

Figure 12. Generic non normally hyperbolic singularities at
infinity. From the left to the right: fold (Example 21), transcritical
(Example 22) and pitchfork (Example 23). The critical manifold
is highlighted in green.
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