

Anais do XI ENAMA

Comissão Organizadora

Abiel Macedo - UFG
Edcarlos da Silva - UFG
Jesus da Mota - UFG
Lidiane Lima - UFG
Ronaldo Gardia - UFG
Durval Tonon - UFG
Rodrigo Euzébio - UFG
Sandra Malta - LNCC

Home web: <http://www.enama.org/>

Realização: Instituto de Matemática e Estatística - IME - UFG

Apoio:

ON A QUASILINEAR SCHRÖDINGER-POISSON SYSTEM

GIOVANY M. FIGUEIREDO^{1,†} & GAETANO SICILIANO^{2,‡}.

¹Departamento de Matemática - Universidade de Brasília, Brazil, ²Instituto de Matemática e Estatística - Universidade São Paulo, Brazil.

†giovany@unb.br, ‡sicilian@ime.usp.br

Abstract

We consider a quasilinear Schrödinger-Poisson system in \mathbb{R}^3 under a critical nonlinearity and depending on a parameter $\varepsilon > 0$. We prove existence of solutions and study the behaviour whenever ε tend to zero, recovering a solution of the classical Schrödinger-Poisson system.

1 Introduction

In the recent papers [2, 4] Kavian, Benmlih, Illner and Lange have attracted the attention on a new kind of elliptic system, which was already known in the physical literature: the *quasi-linear Schrödinger-Poisson system*, (see [1] where the authors proposed and discussed this new model from a physical point of view).

The existing literature on this problem is restricted to very few papers, in contrast to the literature concerning the well known and “classical” Schrödinger-Poisson system. The advantage of working with the classical Poisson equation is that the solution is explicitly given by the convolution $\phi^{\text{Poiss}}(u) = |\cdot|^{-1} * u^2$ (up to a multiplicative factor) so that many good properties of the solution are known; in particular the homogeneity $\phi^{\text{Poiss}}(tu) = t^2 \phi^{\text{Poiss}}(u)$, $t \in \mathbb{R}$. As a matter of fact, the main difficult dealing with the quasilinear Poisson equation of type

$$-\Delta\phi - \Delta_4\phi = u^2$$

is due exactly to the lack of good properties for the solution ϕ .

Here we consider a system where the Schrödinger equation has a critical nonlinearity and the electrostatic potential satisfy a quasilinear equation. More specifically, we are concerning here with the following system

$$\begin{cases} -\Delta u + u + \phi u = \lambda f(x, u) + |u|^{2^*-2}u & \text{in } \mathbb{R}^3, \\ -\Delta\phi - \varepsilon^4 \Delta_4\phi = u^2 & \text{in } \mathbb{R}^3, \end{cases} \quad (P_{\lambda, \varepsilon})$$

where $\lambda > 0$ and $\varepsilon > 0$ are parameters, $2^* = 6$ is the critical Sobolev exponent in dimension 3, $f : \mathbb{R}^3 \times \mathbb{R} \rightarrow \mathbb{R}$ is a continuous function that satisfies the following assumptions

1. $f(x, t) = 0$ for $t \leq 0$,
2. $\lim_{t \rightarrow 0} \frac{f(x, t)}{t} = 0$, uniformly on $x \in \mathbb{R}^3$,
3. there exists $q \in (2, 2^*)$ verifying $\lim_{t \rightarrow +\infty} \frac{f(x, t)}{t^{q-1}} = 0$ uniformly on $x \in \mathbb{R}^3$,
4. there exists $\theta \in (4, 2^*)$ such that

$$0 < \theta F(x, t) = \theta \int_0^t f(x, s) ds \leq t f(x, t), \quad \text{for all } x \in \mathbb{R}^3 \text{ and } t > 0.$$

2 Main results

The results we obtain are the following.

Theorem 2.1. *Assume that conditions (1)-(4) on f hold. Then, there exists $\lambda^* > 0$, such that*

$$\forall \lambda \geq \lambda^*, \varepsilon > 0 : \text{problem } (P_\varepsilon) \text{ admit a solution } (u_{\lambda,\varepsilon}, \phi_{\lambda,\varepsilon}) \in H^1(\mathbb{R}^3) \times (D^{1,2}(\mathbb{R}^3) \cap D^{1,4}(\mathbb{R}^3)).$$

Moreover $\phi_{\lambda,\varepsilon}, u_{\lambda,\varepsilon}$ are nonnegative and for every fixed $\varepsilon > 0$:

1. $\lim_{\lambda \rightarrow +\infty} \|u_{\lambda,\varepsilon}\|_{H^1} = 0$,
2. $\lim_{\lambda \rightarrow +\infty} \|\phi_{\lambda,\varepsilon}\|_{D^{1,2} \cap D^{1,4}} = 0$,
3. $\lim_{\lambda \rightarrow +\infty} |\phi_{\lambda,\varepsilon}|_\infty = 0$.

We study also the behaviour with respect to ε of the solutions given in Theorem 2.1, indeed we prove they converge to the solution of the Schrödinger-Poisson system.

Theorem 2.2. *Assume that conditions (1)-(4) hold. Let $\lambda^* > 0$ be the one given in Theorem 2.1 and $\bar{\lambda} \geq \lambda^*$ be fixed. Let $\{(u_{\bar{\lambda},\varepsilon}, \phi_{\bar{\lambda},\varepsilon})\}_{\varepsilon > 0}$ be the solutions given above in correspondence of such fixed $\bar{\lambda}$. Then*

1. $\lim_{\varepsilon \rightarrow 0^+} u_{\bar{\lambda},\varepsilon} = u_{\bar{\lambda},0}$ in $H^1(\mathbb{R}^3)$,
2. $\lim_{\varepsilon \rightarrow 0^+} \phi_{\bar{\lambda},\varepsilon} = \phi_{\bar{\lambda},0}$ in $D^{1,2}(\mathbb{R}^3)$,

where $(u_{\bar{\lambda},0}, \phi_{\bar{\lambda},0}) \in H^1(\mathbb{R}^3) \times D^{1,2}(\mathbb{R}^3)$ is a positive solution of the Schrödinger-Poisson system

$$\begin{cases} -\Delta u + u + \phi u = \bar{\lambda} f(x, u) + |u|^{2^*-2} u & \text{in } \mathbb{R}^3, \\ -\Delta \phi = u^2 & \text{in } \mathbb{R}^3. \end{cases}$$

The important point of Theorem 2.1 is the vanishing of the solutions whenever λ is larger and larger. Moreover, thanks to a Moser iteration scheme, we get $u_{\lambda,\varepsilon}, \phi_{\lambda,\varepsilon} \in L^\infty(\mathbb{R}^3)$. This allow us to treat also the supercritical case, that is when $p > 2^*$ and indeed we have similar results.

Our approach is variational; indeed a suitable functional can be defined whose critical points are exactly the solutions of (P_ε) . Then suitable estimates permits to pass to the limit in ε .

In proving our results, we have to manage with various difficulties. Firstly, the fact that the problem is in the whole \mathbb{R}^3 and no symmetry conditions on the solutions and on the datum f are imposed; even more we are in the critical case, then there is a clear lack of compactness. We are able to overcome this difficulty thanks to the Concentration Compactness of Lions and taking advantage of the parameter λ .

Secondly, we have to face with the fact that the solution in the second equation of (P_ε) , which is quasilinear, has not an explicit formula, neither has homogeneity properties. To circumvent this last difficulty, a suitable truncation is used in front of the “bad” part of the functional.

References

- [1] N. Akhmediev, A. Ankiewicz and J.M. Soto-Crespo, *Does the nonlinear Schrödinger equation correctly describe beam equation?* Optics Letters **18** (1993), 411- 413.
- [2] K. Benmilh, O. Kavian, *Existence and asymptotic behaviour of standing waves for quasilinear Schrödinger-Poisson systems in \mathbb{R}^3* , Ann. I. H. Poincaré - AN **25** (2008) 449–470.
- [3] R. Illner, O. Kavian and H. Lange, *Stationary Solutions of Quasi-Linear Schrödinger-Poisson System*, Journal Diff. Equations **145** (1998) 1-16.