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Abstract. We investigate the turnaround radius in the spherical collapse model, both in
General Relativity and in modified gravity, in particular f(R) scenarios. The phases of
spherical collapse are marked by the non-linear density contrast in the instant of turnaround
d¢, and by the linear density contrast in the moment of collapse, §.. We find that the effective
mass of the extra scalar degree of freedom which arises in modified gravity models has an
impact on d; of up to ~ 16%, and that . can increase by ~ 2.3%, for structures with mass
of ~ 1013 b=t My at z ~ 0. We also compute the turnaround radius, Ry, which in modified
gravity models can increase by up to ~ 6%.
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1 Introduction

Measurements of the redshifts and distances of type la supernovae [1, 2| led to the conclusion
that the universe is undergoing accelerated expansion. The standard way to explain this
acceleration is by introducing a new energy component, in addition to dark matter, called
Dark Energy (DE)[3]. In the simplest and most popular model, ACDM, a cosmological
constant (A) plays the role of DE. However, this solution suffers from old-standing problems
[4], which motivates the investigation of other explanations for cosmic acceleration.

One such alternative is to modify General Relativity (GR) [5]. In particular, f(R)
models replace the Ricci scalar curvature R of the Einstein-Hilbert action by R + f(R). The
distinction between f(R) and ACDM has been studied in many contexts, e.g., in the formation
and evolution of stars [6], in clusters of galaxies [7], type la supernovae 8|, the matter power
spectrum [9], structure formation [10] and voids [11].



We focus on a particular class of f(R) models proposed by [12, 13], the so-called Hu-
Sawicki model. In this paper we study the Spherical Collapse Model (SCM) in these theories,
comparing it to the results in ACDM. The SCM has been studied in modified gravity by
[11, 14-19], and specifically in f(R) models by [20-24|. However, whereas those works are
concerned with the linear density contrast in the moment of collapse, d., which is key to the
halo mass function and bias, we are interested in the instant when an overdensity reaches its
maximum size — the turnaround. We calculate ¢d;, the non-linear matter density contrast at
turnaround, as well as d., both for GR and for f(R) models. In particular, we point out that
d; is more sensitive to modifications of gravity compared with §.. Namely, §; can change by up
to ~ 10% in the large field limit (when the modifications of gravity are strongest) compared
with a shift of only ~ 2% for §.. However, it should be cautioned that the exponential
dependence of the mass function on §. means that observations which are sensitive to this
quantity may be good discriminants of the gravity model as well.

The moment of turnaround is marked by the maximal radius of the spherical region,
which is called the turnaround radius R;. Observationally, this means a spherical surface of
null radial physical velocity, 77 = 0. In practice, the hierarchical nature of structure formation
means that turnaround is happening on increasingly large scales, often far from spherical
symmetry, and in regions that include smaller collapsed structures (sub-halos).

Despite the obvious limitations of the SCM, the turnaround radius R; is a useful tool
to test cosmological models [25-28|, including modified gravity models such as DGP [29].
However, these works have focused mainly in the maximum turnaround radius — the size of the
surface where the radial acceleration is null, # = 0, which corresponds to an upper bound for
the value of the turnaround radius. In that context, Capoziello et al. [30] have recently found
an expression for the maximum turnaround radius for any f(R) model, including viability
conditions for this class of MG. From an observational perspective, Lee et al. 2015 [31] have
estimated a turnaround radius for the galaxy group NGC 5353/4 which is larger than the
maximum turnaround radius which is, in principle, allowed by the ACDM model.

The main motivation for this paper is the real possibility of measuring R; in forming
structures, where one could distinguish between ACDM and models of MG. These observa-
tions provide local measurements of the strength of gravity, as a function of both time and
distance, and in relatively less dense regions, § ~ 10, where screening mechanisms should act
weakly. Moreover, in order to compare only the effects of modified gravity on the growth of
structure, we have employed a model whereby the background evolution is identical to that of
ACDM. Hence, all results presented here that deviate from the standard cosmological model
are due to the modifications of the laws of gravity, and not to a different equation of state for
the background evolution.

This paper is organized as follows: in Section 2 we present f(R) theories, in particular
the Hu-Sawicki model. Then in Section 3 we describe the SCM, its main features, and a
qualitative discussion of how spherical collapse is influenced by modifications of gravity in the
limits of small and large field. In Section 4 we examine in detail the dynamics of spherical
collapse, including the radial, time and mass dependence. Then, in Section 5, we estimate
the changes in the density at turnaround, J;, including the dependence with time and with
mass. In Section 6 we summarize the main results of this work: the changes in the turnaround
radius in the Hu-Sawicki model, and how they scale with the time of turnaround and with
the mass of the structure. Finally, in section 7 we present our main conclusions. We also
detail some features of our methods in Appendix A, where we describe the construction of
the physical initial profile, in Appendix B, where we plot some particular density profiles at



several stages during its evolution and in the Appendix C we presented the evolution of the
shell on the turnaround and compared it with the maximum turnaround radius.

2 DModified gravity and structure formation

2.1 f(R) theories

The simplest way to change GR is by modifying the Einstein-Hilbert action with a function
of the Ricci scalar R. There is a class of such models called f(R) theories — see [32, 33| for a
review — whose action is written as:

S — /d4 [R;fé)jucm], (2.1)

where L,, is the matter Lagrangian density. The modified Einstein equations are:
f
Gap + fRRap — (2 —0OfR | gap — VaVafr =81GT,p, (2.2)

where fr = d];(g ), Gop is the Einstein tensor, and T, is the energy-momentum tensor. If we
replace f(R) — —2A, the ACDM model is recovered.

From the trace of (2.2) we obtain a Klein-Gordon equation for fr, which can be regarded
as a scalar field. This field is coupled to the metric in the form:

30fr — R+ frR — 2f = —87G T, (2.3)

where T is the trace of the energy-momentum tensor. The effective potential [32] is defined
as:

OVer
Ofr

and the mass of the scalar field is:

szR:é(R—fRR—I—Qf—&rGT), (2.4)

m2 ;62%321[”/13_3] : (2.5)
e 0f3 IRR
This expression can be simplified if we impose the condition that |Rfrr| = fr << 1, which
is necessary for mimic the ACDM background expansion history.
1
2~ (2.6)
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The inverse of this mass scale defines the comoving Compton wavelength \. = # that
R

describes the range of the scalar field interactions. Since the scalar field, according to Eq.
(2.4), couples to all forms of matter whose energy-momentum tensors have non-zero traces,
we can regard it as giving rise to a fifth force, in addition to the gravitational force described
by GR. When the scalar mass is small, the reach of the fifth force is longer, and conversely, if
the mass is large (e.g., in regions of high density), A. is small and the range of the fifth force
is more limited. The mechanism whereby the scalar field acquires a mass in dense regions
such as stars and planets is known as the chameleon mechanism [34], and for this reason these
modified gravity models can evade solar-system tests of GR.



Typically we are interested in matter configurations which can present large spatial
gradients, but that are far from the relativistic regime — i.e., the spatial gradients dominate
over time derivatives. In this “quasistatic” regime, after subtracting the background, Eq. (2.3)
becomes:

2
V25 fp = % [6R — 87GSpp] | (2.7)

where §fr = fr(R) — fr(R), SR = R — R, and dp,, = pm — pm (bars represent spatial
averages). Furthermore, when we consider the time-time component of Eq. (2.2), in the
Newtonian gauge, we obtain the modified Poisson equation in comoving coordinates:

167G
3

The previous equations, combined with the relativistic fluid equations for the matter density
fields, form a closed system.

If the perturbation of the scalar field is small, then a linear approximation leads to
OR ~ (dR/dfr)dfr. [Notice that the chameleon mechanism cannot be applied within the
linear approximation for the scalar field.] In Fourier space we have, then:

2
V2 = a%5pm — %53( r). (2.8)

— k20 = [1 + €(a, k)] 47Ga>5py, (2.9)

where:

(a,k) = 1 K (2.10)
€ = | —— 1. )
’ 3 an%R + k2

For this reason, a common approach to represent the effects of the f(R) model is to describe it
as a modification of Newton’s constant (G, which, in the linear approximation and in Fourier
space, is written as Gery = G[1+¢€(a,k)]. The term €(a, k) in Eq. (2.10) describes the
modifications of Einstein’s gravity, in such a way that, when it vanishes, we recover GR.
This limit can also be reached when the scale of interest, A, is larger than the Compton
wavelength A, i.e., or equivalently a2mffR >> k2. This is the so-called small-field (SF) limit.

On the other hand, if A << A, (azm?R << k?), the effects of the fifth force are maximal, and
€(a, k) = 1/3. This is known as the large-field (LF) limit.

2.2 Hu-Sawicki model
The Hu-Sawicki model [13, 35| can be written as:

o c1(B/m?)"

f(R)=—-m W, (2.11)

where ¢;, c2 and n are dimensionless free parameters and m? = 87Gpy/3. In the high
curvature regime, expanding Eq. (2.11) and taking n = 1, we obtain:

R
R )
where the dominant constant term has been matched to a cosmological constant, Ry = R(z =

0) and fro = fr(Ro). In this way, we recover the ACDM model if |frg| = 0. It is also useful
to rewrite the mass of the scalar field in Eq. (2.6) as:

o Ho Qo 420 (Quo(1 4 2) + 400\ P
L 2| frol Qo + 400 '

f(R) = —167Gpa — fro (2.12)

(2.13)



In the following we will study the evolution of matter perturbations, as described by the
equations of the previous Section, in the context of the Hu-Sawicki model. When necessary,
we assume a cosmological model with parameters €, = 0.31, Qx = 0.69, og = 0.86 and
ngs = 0.96.

3 Spherical collapse in f(R)

Starting from the Euler equation together with the continuity equation for a nonrelativistic
pressureless fluid, and assuming an initial spherically symmetric density profile, the nonlinear
equation that describes the evolution of the density contrast is:

g (3, HY, 40% 1+,
5+<a+H ) 3(1+6)_H2a4vq>, (3.1)

where ’ = d/da. Following the prescription of [10] to express the potential in configuration
space, Eq. (2.9) can be rewritten as:

Bk iz -
O(F,a) = —4rGa2py / e TR L ek )6 ). (3.2)
s
Under the assumption of spherical symmetry, and using H(a) = HoE(a), Eq. 3.1 can then
be recast as:

b (3, B\ 4% 30149 _5/00 9 sin(kr)
5+<a+E O ey = aprae teoa " [ AR Lk alah )T (35)

By solving this equation, as well as its linearized version, we are able to determine all relevant
properties of spherical collapse in f(R) modified gravity.

3.1 Dynamics of the matter density contrast

In order to compute the density contrast 6(r) it is necessary to consider, firstly, an initial
density profile §;(r), which will be evolved from an early time, where we chose z; = 500, be-
cause in this time the MG is not distinguishable from GR, until the collapse time. The source
term of the right-hand side of Eq. (3.3) includes the gravitational interactions, including the
modified gravity corrections through e(k,a). We start with the profile in Fourier space at
each time step, compute the corrections, recalculate the Fourier space integral, and so on,
until the turnaround — or until collapse.

Following [21], we implemented two initial profiles. The first was a generic initial density
profile (Tanh), characterized by the size of the top-hat-like function 7, and the steepness of
the transition s, such that in the limit s — 0 we recover the top-hat profile:

5i(r) = 5270 [1 ~ tanh <7"/’”‘;_1>} . (3.4)

The mass inside the profile is well approximated by M;, = (47/3)por}, since the extra con-
tribution of d(7) to the mean initial density of the spherical region is negligible at the initial
surface.

The second profile we consider is a physical mean density profile (Phy) around a Gaussian
density peak of height v = §;0/0;(R):

di(r, R) = (0(z;,x, R)|peak, v) (3.5)



where is a Gaussian random field smoothed with a top-hat window function W (kR) inside a
comoving scale R — for details, see [36]. The initial density profile can then be written as:

sin kr

T(k) (3.6)

™

2 o
6i(r,R) = / dkk?6o(k, R)
0

where T'(k) is the matter transfer function and d¢(k, R) is the primordial shape function in k
space, which is given by [21]:

So(k, R) = (5i,oi7r(n5 +5) R R (kR - F(v,ng, k, R), (3.7)
where ng is the scalar spectral index and the expression for the function F(v,ng, k, R) is
presented in Appendix A. For details about the construction of this initial density profile, see
Appendix C of Ref. [21]. It is important to note that this profile is the mean of many density
profiles around peaks of the density field, obtained from a Gaussian realization. We also study
how the dynamics of different spherical profiles change by varying the shape parameter s of
the Tanh profile.

3.2 Properties of Spherical Collapse

Since the mass inside the spherical region M = 47pr3/3 is constant, the radius of that region
is related to the density contrast by 735(1 + §) = 3M/4x. The moment of turnaround is
defined by the condition that 7| o, = 0, which leads to an equation for the scale factor at that
instant:

3
Z (6 +1) =4 (3.8)
ag

With a;, we obtain the density contrast in the moment of turnaround, §; = d(a¢).

At a later time that structure collapses, at an instant a = a., when the linearized density
contrast takes its “critical” value, 6. = d;(a.). Here we consider that the collapse happens when
the non-linear density contrast at the innermost shell (r = 0) reaches the value §, = 200 — see
[37]. We have found this to be a suitable criterium for our time-dependent density profiles,
and although that seems to be in good agreement with N-body simulation fits for the halo
mass function [37], one may have to modify that threshold depending on the details of the
model. In any case, since our work focuses on the turnaround, not on the precise nature of
the collapse or the mass function, the exact value of this threshold is not of great consequence
for our results.

3.3 Small- and large-field limit

We now describe how the modified gravitational force, which can increase by a factor of up
to 1/3, impact the parameters J. and §;. We do this both in the context of the small-field
(SF) limit, which represents unmodified gravity and is characterized by ¢ — 0 (GR), and
in the large-field (LF) limit, which represents the maximal effects of modified gravity, and
is characterized by € — 1/3, in the context of the linear approximation. Those quantities
(which in these two limits are independent of scale and mass) were computed in the case of
structures that collapse and reach the turnaround at z =0 (a = 1), in the two limits.

The results are shown in table 1 for both profiles, Tanh and Phy. A,.; shows the
fractional differences between the values in each case relative to the values with € = 0. Notice
that the density contrast at the moment of collapse J. increases by ~ 1.0%. On the other



Tanh(s=0.4) /Phy ac a ot ¢

e=0 1.0 0.609/0.609 6.1025/6.1104  1.598/1.598
e=1/3 1.0 0.614/0.613  4.930/4.928  1.609/1.609
A el - - 0.192/0.194  0.0069,/0.0069
e=0 1.810/1.811 1.0 10.912/10.912  1.586/1.586
e=1/3 1.822/1.824 1.0 8.641/8.647  1.597/1.598
Ael - - 0.208/0.203  0.0068/0.0076

Table 1: Values of §. and d; in the small-field limit € = 0 and in the large-field limit e = 1/3, for
structures of M ~ 10'* h=! M, with turnaround and collapse at a = 1 (z = 0), for the Tanh profile
with s = 0.4, and for the Phy profile. A,.; is the relative difference between the quantities in the
large-field and in the small-field limits.

hand, the density contrast at the moment of turnaround, d;, decreases by ~ 20%, in both
profiles.

Although Table 1 refers to structures which collapse or reach turnaround at z = 0, it
is also interesting to study how spherical collapse takes place at different times in modified
gravity. This is shown in figures 1 and 2 (the wiggles seen in these and subsequent plots arise
from the discretization of our numerical integration, but they do not affect the mean trends
seen in those plots). It can be seen from Fig. 1 that the linear density contrast at collapse,
d¢, is larger (by up to ~ 1.0% — see the lower panel) when ¢ = 1/3 at z. = 0. This follows
from the enhancement of the gravitational force, which aggregates matter more effectively.
The results for both profiles are very similar, as they should be, since the birkhoff theorem is
valid in the two limiting cases and any difference observed is due to numerical effects.

On the other hand, the non-linear density contrast at moment of turnaround, ¢, de-
creases in the LF limit — see the left plot of Fig. 2. This can be understood as a result of
the increased gravitational force, which makes the turnaround happen sooner compared with
the situation when gravity is weaker. The bottom chart shows that the maximum relative
difference is ~ 21%, which occurs for structures whose turnarounds happen around z ~ 0.

4 Effects of f(R) on collapse

Until now we have been considering only the SF and the LF limits, characterized by € = 0
and € = 1/3, respectively. However, the effects of MG on the spherical collapse at different
scales change as a function of time through € = €(k, a).

When we include the scale- and time-dependent MG term, it is necessary to solve the
equation (3.3) by computing the Fourier integral of the right-hand term at each step in time.
In other words, each scale will be affected by all other scales. Our approach was based on the
method implemented by [10] in the context of the spherical collapse model in MG using the
initial profile suggested by [21]. Therefore, the dependence of §. and §; with the parameter
| fro|, which describes the intensity of scalar field fr today, and therefore of the gravitational
field, must be explored together with its mass dependence — especially since Birkhoff’s theorem
does not apply in the context of modified gravity.

For |fro|, we have chosen putative values of 107*, 107® and 1079, since they cover
the usual range of values which are tested in MG models. We also explore the range of
masses 10 Mg h™! < M < 106 M, h~=!, which includes structures of interest in the nearby
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Figure 1: Critical linear density d, of structures with mass M = 104 h=1 M, which collapse
in different moments, in the small-field limit (e = 0, black-dashed) and in the large-field limit
(e = 1/3, blue), for the Tanh (left) and Phy (right) profiles. In the bottom we show the
relative difference between the values on each limit.

Universe. It is important to note that in this range we could expect effects due to the
chameleon mechanism, which is not considered here as the overdensities at the turnaround
radius are typically of order one.

4.1 Time dependence

Fig. 3 shows 4. for several MG parameters: |fro| = 10~* (orange), |fro| = 1072 (red),
|fro| = 107¢ (blue), e = 0 (black) and € = 1/3 (gray). In the case of the Tanh profile (left
panels) we also study how the shape of the profile affects the turnaround and collapse, by
employing two different slopes: s = 0.8 (dotted) and s = 0.4 (solid).

An interesting effect appears here, which was first seen by [10, 11, 20, 21]: the values
of the density contrast at collapse are below the SF limit. This shows that, by considering
the time- and scale-dependence of MG, we are able to reveal effects which do not appear in
the simplified cases of the LF and SF limits. Moreover, the relative difference of §. in MG
with respect to ACDM reaches a maximum of ~ 3.0% for |fro| = 107° with s = 0.4, while
for | fro| = 1079 it does not exceed ~ 2.7%. We also note that the influence of the slope is
largest at z ~ 0 for | fro| = 1074, reaching ~ 2.0% for s = 0.8, and smallest for |fro| = 107°,
when the relative change is at most ~ 2.5% with s = 0.8.

Another manifestation of the changing effects of MG is the fact that sometimes the
curves in Fig. 3 cross each other. This can be understood as a result of the dynamical
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Figure 2: Non-linear density contrast at turnaround, J;, for structures with masses M =
10" h=' M., which reach turnaround at different moments. Captions are the same as in Fig.

1.

relationship between the Compton wavelength of the scalar field, A., which depends both on
fro as well as on time, and the size of the perturbation. The net, total effect on 6. depends
on the balance between these length scales integrated over time!.

4.2 Mass dependence

Fig. 4 shows the dependence of §. with mass. The sensitivity to MG effects peaks at a level
of ~ 2.7%, when §. ~ 1.55. This takes place for masses ~ 2 x 103 Mo bt if | fro| = 1075,
for M ~ 5 x 10" Mg h™Vif | fro| = 1072, and for M > 5 x 10'> Mg h=1 if | fro| = 107*. Not
coincidentally, the mass inside a volume with characteristic size of the Compton wavelength
of the scalar field is ~ 1.2 x 103 Mg h™! when |fgo| = 1075, ~ 3.8 x 10 My h~! when
|fro| = 107%, and ~ 1.2 x 10'¢ Mg h~! when |fgo| = 10~%. Since the influence of MG is
maximal when that mass scale is similar to the halo mass, these scales mark the turnover
of the curves seen in Fig. 4. These plots also show how varying the slope of initial profile
impact 0., with the largest effects appearing for smooth profiles (s = 0.8). This effect is also
a consequence of the scale dependence of strength of the modifications of gravity and the

13We stress the fact that the crossing seen in Fig. 3, as well as in Fig. 4, only take place because, for the
density contrast at collapse, one typically employs the moment of the collapse as marked by the non-linear
equations, and then compute the linear density contrast at that instant. If we follow the non-linear quantities
at any time, they do not show any such crossings.
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Figure 3: Top panels, from left to right: values of . for the Tanh and Phy profiles, respectively,
for 0 < z < 3, and for MG parameters | fro| = 10~ (orange), | fro| = 1072 (red), | fro| = 107¢ (blue)
ACDM, e = 0 (Black) and € = 1/3 (Gray). The Tanh profile with a smooth slope (s = 0.8) is plotted
as the dotted lines, and the hard slope (s = 0.4) is plotted as the solid lines. Lower panels: relative
differences between the values of the top panels with respect to ACDM.

concentration of the initial profile. Here also, as it happened with the time dependence, the
SF limit is violated in both initial profiles.

5 Effects of f(R) on turnaround

5.1 Time dependence

The density contrast at the moment of turnaround, §;, depicted in Fig. 5, is lower compared
with the ACDM value by approximately ~ 20%, ~ 18% and ~ 10% for |fro| = 1074,
|fro| = 1075 and |fgo| = 1075, respectively, at z ~ 0. However, as opposed to the case for
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Figure 4: Top panels, from left to right: values of . for the Tanh and Phy profiles, respectively, as
a function of mass. Captions are identical to those of Fig. 3.

the critical density, d; does not surpass the SF limit (¢ = 1/3), and there is a remarkable
consistency between the densities at turnaround amongst the different profiles.
Nevertheless, the effect of modified gravity on d; depends on the profile (and the slope
in the case of the Tanh profile), and the deviation from ACDM is larger for higher values
of fro. Also of importance is the fact that the relative differences increase at low redshifts.
These results show how the sensitivity of observables related to d; can be exploited in order to
distinguish between MG and ACDM. This issue will be further explored in the next Section.

5.2 Mass dependence

The dependence of d; with mass is presented in Fig. 6. The sensitivity is higher in the low
end of the mass range, where all values of | fro| approach the LF limit, which is ~ 20% lower
than for ACDM — recall that for §. this difference was at most ~ 3%, with s = 0.8. These
plots also show that the slope of the initial profile has an effect, especially for higher masses,
and the largest difference with respect to ACDM appears when s = 0.4.

6 Turnaround radius in f(R) model

The size of a structure at the moment of turnaround, the so-called turnaround radius (Ry),
is a more direct observable compared with the density at turnaround, and its suitability as
a cosmological test was studied by Refs. [25-27]. We have defined R; as the radius of the
spherical shell around a structure that separates objects which fall towards the center from
objects that follow the Hubble flow — i.e., objects at this distance from the center should
have null velocities. Theoretically, the competition between the gravitational attraction and
the expansion due to the Hubble flow implies that there is a maximum size of R; for a
structure of mass M, given by in ACDM Rt ez = (3G]\4/Ac2)1/3 [26]. Therefore, it has
been proposed that independent measurements of R; and M could be used to test the value
of A. Furthermore, estimates of R; for the galaxy group NGC5353/4 found hints of a possible
violation of the maximum limit proposed in [31].
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Figure 5: Non-linear density contrast at turnaround, for the Tanh (left panels) and Phy
(right panels) profiles, for 0 < z < 3. Lower panels: relative differences between the values
on the top panels with respect to ACDM.

These ideas have not yet been sufficiently explored in the context of MG. In [38|, R; was
defined in terms of two perturbative potentials, which are directly affected by modifications
of gravity. On the other hand, [39] have calculated an expression for Ry mqe in the context of
the Galileon cubic model. In f(R) models, the effects on the maximum turnaround radius,
Ri maz, was explored in [30]. On the other hand, they compute the radius of the last shell
which collapses as a function of the mass of the structure, assuming only spherical symmetry.
We, in contrast, focus on the effect of MG in the shell which reaches the turnaround, as a

function of time and of mass.
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Figure 6: Density contrast at turnaround as a function of mass, for the Tanh (left panel)
and Phy (right panel) profiles.

6.1 R; and time dependence

We have seen that the properties of the turnaround and collapse of cosmic structures are
sensitive to the modifications of gravity introduced in the f(R) Hu-Sawicki model. In Fig. 7
we show the turnaround radius R; as a function of redshift in the several cases we have been
considering: the SF limit (e = 1/3), |fro| = 107%, 1075, 107% and 0. As before, we also show
results for the Tanh profile (left panels), with the two slopes s = 0.8 (dotted) and s = 0.4
(solid), as well as for the Phy profile (right panels).

Since the density of a spherically symmetric structure with an inner constant mass can
be written as p,,(a) = 3M /47w R3(a), the physical turnaround radius also can be expressed as:

3 1/3

M/3 6.1
AT Qmope[l + 01 (a, M)] “ ’ (6.1)

Rt(a, M) =

where we used pp(a) = pm(a)[14(a, M)], with p(a) = pmoa™> and p. = 2.77 h? M Mpc 3.
The turnaround radius Ry(a, M) represents the radius of a shell whose inner mass is M, and
whose density contrast d.(a, M) is the density contrast when the first shell, near the center of
the profile, reaches its maximum expansion. This moment corresponds to a scale factor ay,
so we can also write R(a, M) — Ry(a, M) — and analogously, 0(as, M) — 6:(a, M).

The left panel in Fig. 7 shows R; for structures with M ~ 10'4A~1 M, in the redshift
range 0 < z < 3, for both initial profiles — Tanh (left) and Phy (right). As can be seen
from the plots, the maximum size of these structures is always larger with respect to the
SF/ACDM limit. This can be explained as a consequence of the enhancement of the grav-
itational strength, which leads to a larger reach of gravity. However, as happened for &,
this change is confined between the two limiting cases, LF and SF. In the bottom panels we
show the relative difference between the values of the turnaround radii with and without the
modifications on gravity. The largest relative difference occurs at z = 0, where AR; is of
approximately 7.0%, ~ 6.0% and ~ 3.0% higher than the ACDM values for |fgo| = 1074,
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|fro| = 1075 and | fro| = 107°, respectively. Another interesting feature is that by decreasing

the steepness of the profile (s), one also increases slightly R;.
Therefore, the main conclusion of this Section is that measurements of the turnaround
radius that can reach O(5 — 10%) precision at z ~ 0 can be used as a test of Hu-Sawicky

f(R) models.
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Figure 7: Turnaround radius as a function of redshift, for structures with a mass of M =
10'4h=1 Mg, for the Tanh (left) and Phy (right) profiles.

6.2 R, and mass dependence

A useful way of expressing the turnaround radius is through the relation between R; and the
mass of the structure M |25, 26]. In order to study the joint effects of the mass dependence,
with varying strengths of the modifications of gravity, we show in Fig. 8 the turnaround
radius for the mass range 10''h~' M, < M < 10'6h=1 M), for structures which reach their
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turnarounds at z ~ 0. As before, we consider the modified gravity parameter values |fro| =
10~* (orange), |fro| = 1072 (red), |fro| = 1076 (blue), ¢ = 0 (black), the SF limit (gray),
and € = 1/3 (the LF limit), both for the Tanh profile (left) with slopes s = 0.8 (dotted) and
s = 0.4 (solid), and for the Phy profile (right panels).

Fig. 8 shows that the increase in R; is greater for smaller mass, in all MG models
considered for this work. For smaller masses, corresponding to M ~ 10'2h~! M), the de-
viation of R; reaches ~ 7% with respect to the value in standard gravity, for all values of
MG parameters, and in both profiles. As for the dependence on the slope of the initial pro-
file, the turnaround radius is larger for increasing valus of s, but never exceeds ~ 7% of the
standard value. Therefore, observations of structures with masses from ~ 102h=1 M to
~ 10"h~1 M, that achieve a precision of 4 — 8% or better, can serve as a test of the type of
MG model considered here.

7 Conclusions

The main focus of this work was to analyze whether the moment of turnaround could be
used as way to test f(R) models of modified gravity, namely the Hu-Sawicki model. We
studied both the density contrast at turnaround, ¢&;, as well as the linear density contrast at
the moment of collapse, é.. Because of the scale-dependence of the modifications of gravity
in f(R) models, spherical collapse is a more complex mechanism compared with the top-
hat density profile framework that describes the collapse of pressureless matter in ACDM.
In contrast with the standard case, in MG the evolution depends both on the mass of the
structure as well as on the density profile. We have modelled these features by considering a
wide range of masses, as well as several different density profiles.

We have found that §; is affected by modifications of gravity, in such a way that its value
decreases with respect to the ACDM values by up to ~ 15% if the modified gravity strength
parameter |fro| = 107°, for structures which reach their maximum sizes today.

We also computed the turnaround radius in a variety of cases. Even for the weakest
version of MG parameters that we considered, where |fro| = 1079, R; increases by ~ 7% for
structures of M ~ 102 h=! M. These results show the potential of observations that allow
us to pinpoint regions that are experiencing turnaround today as a tool to study modifications
of gravity on the scales of galaxy groups, clusters and super-clusters.

Finally, we also point out that in this work the mass of the collapsing structure was
measured in terms of the total matter inside the radius corresponding to the turnaround
radius. However, due to the hierarchichal nature of structure formation, we expect turnaround
to be happening continuously around structures which have already collapsed, on increasingly
larger scales. Therefore, in realistic observations one would look for the turnaround radius in
the outermost regions around collapsed (or virialized) halos. In that sense, the relevant mass
to parametrize the turnaround radius would be the mass of the central halo, and not the
total mass (which is very hard to measure due to the sparsity of the outermost regions). The
relationship between these two masses, and how one can describe the turnaround in terms of
a central /virial mass, will be the subject of a forthcoming paper.

A Initial physical profile

We follow the same approach of appendix C of [21] to construct the initial physical profile,
which was constructed using the peaks theory of Bardeen et al., 1986. [36]. In this appendix
we will review this construction of this profile for completeness.
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Figure 8: Top panel: turnaround radius R; for masses in the range 10" A~1 My < M <
10' h=1 Mg, , for the Phy(left) and Tanh(right) profiles. For structures with turnaround
today. The conventions for colors and lines are the same as previous figures.

We are interested in the mean density profile around some density peak of height v =
do/0(R) of some Gaussian density field, that can be totally characterized by it matter power
spectrum P(k, R) smoothed in some scale R by some window function W(kR) (for these
calculations was used a Gaussian window function).

Following these ideas, the F'(v,ng, k, R) function, that is used to compute the initial
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density profile in (3.7), is given by:
F(v,ng, k,R) =

_1(ns+3
e 8\ nsg+5

)3/2V2 l<7l5+3)3/21/2
(12n, + 60)es\n335) " 4 (0.632n, + 13.52)n, + 44.6

(ns + 5)2 (2\/(0-25715+0.75)u2+0.45n5+8.25

Ing+ 3
+ 1
i3 Ng+ 5
ns+5 ns+57/

ns+3

nst5 9152 (ns + 3) (—2k*R* + ns + 3) 4
— 2k*R* —ng — 3)+ .
T () | ) o (77) (e 5T ()

(A1)
B Evolution of density profiles

In Fig. 9 we show the shape of the initial profile, for a mass of M = 1.26x 10 h=1 My, as well

as the profile shapes at two later instants, as the structure evolves, reaches an intermediate
moment near the turnaround and approaches the moment of collapse. The evolved profile in
the GR case (small-field limit of MG theories) is shown in blue, and MG in the large-field
limit is shown in red, both for the Tanh (left, with slope s = 0.4) and Phy (right) profiles.
We have selected the profile at the moments when the central density has the same values for
both limits, which shows explicitly that the profiles follow self-similar evolutions, but with

different speeds in each limit. We also note, once again, that the differences in the redshifts
between the two profiles are due to numerical difficulties to evolve Eq. (3.3) in the case of
the physical (Phy) profile.
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Figure 9: Evolution of initial density profile, Tanh (left panel) and Phy (right panel), at

initial (solid), intermediate (dashed) and collapse (dotted) moment, for GR (blue) and large-
field gravity (red).
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C Turnaround radius and the maximum turnaround radius

With the goal of understanding the behavior of the shells of a given structure, we have evolved
four Tanh profiles (all with s = 0.4), each one with different initial conditions, do = 0.005
(blue), 6o = 0.0055 (red), oo = 0.006 (orange) and 0.0065 (green), in ACDM, and with r, =7,
where the shell near the center reaches turnaround at a; = 1.87, a; = 0.95, a; = 0.76 and
a; = 0.65, respectively. Fig. 10 shows the physical radius of each shell in the turnaround
moment as a function of the mass inside this shell. We also plot the maximum turnaround
radius obtained from the expression Rymaz = (3GM /Acz)l/ s [26] (gray). We notice, in
particular, that there is no violation of the maximum limit of the turnaround radius.
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— ay(r=0)=0.95
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Figure 10: Turnaround radius of a structure for initial condition dp = 0.005 (blue),
dp = 0.0055 (red), dp = 0.006 (orange) and 0.0065 (green), in ACDM. With the maximum

turnaround radius Ry maee (gray).
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