

RT-MAT 95-04

On the generating function
of the decimal expansion
of an irrational real number

Paulo A. Martin
Março 1995

On the generating function of the decimal expansion of an irrational real number

Paulo A. Martin

IME-USP Caixa Postal 20570

CEP 01452-990-SP- Brazil

e-mail: agozzini@ime.usp.br

March 16, 1995

Abstract

In this paper we prove that the generating power series associated with the decimal expansion of an irrational real number is a transcendental function. Then we give a condition on the mod p reduced series which ensures that the given real number is transcendental. As an application we give another proof of the transcendence of the Morse number. 1991 Maths. Subject Classif.: 11J91, 30B10.

1 Introduction

Let α be a rational number with a decimal expansion given by $a_0, a_1 a_2 a_3 \dots$ and let us construct the power series :

$$f_\alpha(z) = \sum_{n=1}^{\infty} a_n z^n$$

It is clear that this series has 1 as radius of convergence or is a polynomial. And since the decimal expansion of a rational number

is eventually periodic, it is also clear that $f_\alpha(z)$ is the power series expansion of a rational function of z . The objective of this note is to analyze what happens if α is an irrational number. At first glance the above result could suggest that if α is an algebraic real number then the corresponding $f_\alpha(z)$ is the power series expansion of an algebraic function of z and if α is transcendental then $f_\alpha(z)$ is a transcendental function.

We prove the following:

Theorem 1 *Let α be an irrational real number. Then $f_\alpha(z)$ is a transcendental function.*

So, the power series $f_\alpha(z)$ does not capture the nature of the irrational number α , as regards to algebraicity and transcendency. But we can reduce $f_\alpha(z)$ modulo a prime p (greater than the highest digit appearing in the decimal expansion of α) and obtain a formal power series over the finite field F_p . We can also ask what happens to the reduced series $\tilde{f}_\alpha(z)$, whether it is algebraic or not over the rational function field $F_p(z)$. We have:

Theorem 2 *If α is an irrational number and $\tilde{f}_\alpha(z)$ is an algebraic function over $F_p(z)$ for some prime p as above, then α is transcendental.*

As an application of theorem 2 we give another proof of the transcendence of the Morse number, which can be defined from the following recursive process:

$$a_0 = 1 \quad b_0 = 0$$

$$a_1 = a_0 b_0$$

$$b_1 = b_0 a_0$$

.....

$$a_{n+1} = a_n b_n$$

$$b_{n+1} = b_n a_n$$

where $a_n b_n$ and $b_n a_n$ are simply the concatenation of the blocs a_n and b_n in the given order. The Morse number is defined by

$$\alpha = 0, d_0 d_1 d_2 \dots$$

where d_0, d_1, \dots, d_{2^n} are defined respectively as the 2^n digits of a_n . So,

$$\alpha = 0, 1001011001101001 \dots$$

2 Proof of theorem 1

To prove theorem 1 we need some simple lemmas:

lemma 1 *If α is an irrational number then $f_\alpha(z)$ is not the power series expansion of a rational function.*

Proof: Let $P(z)$ and $Q(z)$ be two complex polynomials such that

$$\frac{P(z)}{Q(z)} = \sum_{n=0}^{\infty} a_n z^n \quad (a_n \in \mathbb{C})$$

in some neighborhood of $z = 0$ and let σ be any automorphism of \mathbb{C} . If we denote by $P^\sigma(z)$ the polynomial obtained by applying σ to all coefficients of $P(z)$ then it is easy to see that

$$\frac{P^\sigma(z)}{Q^\sigma(z)} = \sum_{n=0}^{\infty} a_n^\sigma z^n$$

in some neighborhood of $z = 0$. If all a_n are rational numbers then

$$\frac{P^\sigma(z)}{Q^\sigma(z)} = \frac{P(z)}{Q(z)}$$

for all $\sigma \in Aut(\mathbb{C})$. So, the zeros of $P(z)$ and of $Q(z)$ are algebraic numbers and they appear with all their conjugates. We can write:

$$\frac{P(z)}{Q(z)} = \frac{c \prod(z - \zeta_i)}{d \prod(z - \delta_i)}$$

where ζ_i, δ_i are algebraic numbers and the polynomials under the product sign have rational coefficients.

So, we see that $(c/d)^\sigma = (c/d)$ for all $\sigma \in Aut(\mathbb{C})$, and it follows that $(c/d) \in \mathbb{Q}$. We have thus proved that if a power series $\sum a_n z^n$ is the power series expansion of a rational complex function of z , then it is also the expansion of a rational function $P_1(z)/Q_1(z)$ with rational coefficients. But this proves lemma 1 because $\alpha = P_1(1/10)/Q_1(1/10)$ would be rational.

lemma 2 *If a power series with integer coefficients represents an algebraic function which is not rational then it's radius of convergence is lesser than 1.*

Proof: Let $F(z, w)$ be a polynomial of $\mathbb{C}[Z, W]$,

$$(1) \quad F(z, w) = a_0(z)w^m + a_1(z)w^{m-1} + \dots + a_m(z)$$

and let $f(z)$ be an algebraic function of z such that

$$F(z, f(z)) = 0$$

Let β_1, \dots, β_k be a maximal linearly independent (over \mathbb{Q}) subset of the complex coefficients appearing in $F(z, w)$. We can write:

$$F(z, w) = \beta_1 F_1(z, w) + \dots + \beta_k F_k(z, w)$$

where $F_i(z, w)$, $1 \leq i \leq k$, are polynomials with rational coefficients.

So,

$$\sum_{i=1}^k \beta_i F_i(z, f(z)) = 0$$

and if we put

$$F_i(z, f(z)) = \sum_{n=0}^{\infty} \alpha_i^n z^n$$

we obtain

$$\sum_{n=0}^{\infty} \left(\sum_{i=1}^k \beta_i \alpha_i^n \right) z^n$$

Since $f(z)$ has a power series with integral coefficients, α_i^n are all rational and so, by the linear independence of β_1, \dots, β_k over \mathbb{Q} , we have:

$$F_i(z, f(z)) = 0 \quad 1 \leq i \leq k$$

So without loss of generality, we can suppose that $f(z)$ satisfies a polynomial (1) with integral coefficients. If we put $g(z) = a_0(z)f(z)$ then :

$$(2) \quad g(z)^m + a_1(z)g(z)^{m-1} + a_2(z)a_0(z)g(z)^{m-2} + \dots + a_m(z)a_0(z)^{m-1} = 0$$

and the power series for $g(z)$ also has integral coefficients. Now, such a g cannot have a pole in the finite plane \mathbb{C} because equation (2) would give us different orders for this pole. Consequently $g(z)$

must be limited in the unit disc. But it is well known that if a powers series $\sum a_n z^n$ represents a limited function in the unit disc then

$$\sum |a_n|^2 < \infty$$

which is impossible if the a_n are integers, unless $\sum a_n z^n$ is a polynomial. This proves lemma 2.

We can now prove theorem 1: let α be an irrational number and $f_\alpha(z)$ the corresponding series. Then the radius of convergence of this series is 1. By lemma 1, $f_\alpha(z)$ is not a rational function and by lemma 2 it is not an algebraic function.

3 Reduction mod p

Let us now consider the formal reduced series

$$\tilde{f}_\alpha(z) = \sum_{n=1}^{\infty} \bar{a}_n z^n$$

where \bar{a}_n is the reduction of a_n mod p , and p is a prime greater than the highest digit of the decimal expansion of α . To prove theorem 2 we observe that if $\tilde{f}_\alpha(z)$ is an algebraic function over $F_p(z)$ then it can be seen, [1], that it satisfies an algebraic equation of the form :

$$p_n(z) \tilde{f}_\alpha(z)^{p^n} + \dots + p_1(z) \tilde{f}_\alpha(z)^p + p_0(z) = 0$$

with $p_i(z) \in F_p[z]$, and so the "lifted" series $f_\alpha(z)$ satisfies a functional equation of the form:

$$q_m(z) f_\alpha(z^{p^m}) + \dots + q_1(z) f_\alpha(z^p) + q_0(z) = 0$$

(see [2]), where $q_i(z)$ are polynomials in $z[z]$. So, we readily see that the digits of the decimal expansion of α verifies a system of linear

recurrence equations, or, equivalently, α can be generated by a finite automata, [1], which is not possible if α is algebraic, [3]. This proves theorem 2.

Considering the Morse number defined at the beginning of the paper, one sees that the corresponding series $\tilde{f}_\alpha(z)$ verifies :

$$(1+z)^3 \tilde{f}_\alpha(z)^2 + (1+z)^2 \tilde{f}_\alpha(z) + z = 0$$

if we reduce mod 2, [1], and so, by the above, α is transcendental.

References

- [1] G. Christol et coll., Suites Algébriques, automates et substitutions, Bull. Soc. Math. France 108, (1980), 401-419.
- [2] J. Denef and L. Lipshitz, Algebraic power series and diagonals, J. Number Theory 26, (1987), 46-67
- [3] M. Dekking, Mendes-France and A. van der Poorten, Folds!, The Mathematical Intelligencer, 4, (1982), 130-138.

TRABALHOS DO DEPARTAMENTO DE MATEMÁTICA
TÍTULOS PUBLICADOS

94-01 BIANCONI, R. A note on the construction of a certain class of Kleinian groups. 9p.

94-02 HENTZEL, I.R., JACOBS, D.P., PERESI, L.A. & SVERCHKOV, S.R. Solvability of the ideal of all weight zero elements in Bernstein Algebras. 11p.

94-03 CORREA, I. & PERESI, L.A. Bernstein-Jordan Algebras of dimension five, 6p.

94-04 ABADIE, B. The range of traces on the K_0 -group of quantum Heisenberg manifolds. 13p.

94-05 BIANCONI, R., GUSEVSKII, N. and KLIMENKO, H. Schottky type groups and Kleinian groups acting on S^3 with the limit set a wild Cantor set. 30p.

94-06 GORODSKI, C. Minimal Hyperspheres in Rank Two Compact Symmetric Spaces. 20 p.

94-07 BARROS, L.G.X. de and WATSON, B. On Modular Loop Algebras of RA2 Loops. 19p.

94-08 BARROS, L.G.X. de Loop Rings of I.P. Loops. 12p.

94-09 BIANCONI, R. A note on the non-interpretability of a discrete order in an o-minimal (dense) structure. 9p.

94-10 GOODAIRE, E.G. and POLCINO MILIES, C. On the loop of units of an alternative loop ring, 10p.

94-11 GOODAIRE, E.G. and POLCINO MILIES, C. Finite subloops of units in an alternative loop ring. 8p.

94-12 JURIAANS, S.O. Trace Properties of Torsion Units in Group Rings. 7p.

94-13 FALBEL, E. and GORODSKI, C. On Contact Sub-Riemannian Symmetric Spaces. 22p.

94-14 GORODSKI, C. Minimal Sphere Bundles in Euclidean Spheres. 32p.

94-15 COELHO, F.U., MARCOS, E.N., MERKLEN, H.A. and SKOWRONSKI, A. Module categories with infinite radical cube zero. 28p.

94-16 CHAVES, R.M.B. On two parameter envelopes of N-Spheres in a real space form. 17p.

94-17 BARROS, L.G.X and JURIAANS, S.O. Units in Integral Loop Rings. 13p.

94-18 BRASIL, JR. A. Hypersurfaces in $S^4(1)$ with constant mean curvature and constant Gauss-Kronecker curvature. 7p.

94-19 COSTA R., NEUBURG, M. and SUAZO, A. Some Results in the Theory of Bernstein Algebras. 19p.

94-20 FALBEL E., GORODSKI C. Sub-Riemannian Homogeneous Spaces in Dimensions 3 and 4. 32p.

94-21 BARROS, L. G. X. de and POLCINO MILIES, C. Loops Algebras of Code Loops. 13p.

94-22 CARRARA, V.L., RUAS, M.A.S. and SAEKI, O. A note on codimension two submanifolds with at most four critical points. 11p.

94-23 COELHO F.U., MARCOS E.N., MERKLEN H.A., and SKOWRONSKI, A. Domestic Semiregular Branch Enlargements of Tame Cancealed Algebras. 14p.

94-24 DOKUCHAEV M. A., and JURIAANS, O. Finite Subgroups in Integral Group Rings. 20p

94-25 FALBEL E., GORODSKI C. and VELOSO J.M. Conformal Sub-Riemannian Geometry in Dimension 3. 12p.

95-01 BARROS, L.G.X. de and Juriaans, S.O. Loops whose Loop Algebras are Flexible. 25p.

95-02 GUIDORIZZI, H.L. - Jordan canonical form: an elementary proof, 12 p.

95-03 CATALAN A., and COSTA R. E-Ideals in Baric Algebras. 14p.

95-04 MARTIN, P.A. On the generating function of the decimal expansion of an irracional real numbers. 7p.

NOTA: Os títulos publicados dos Relatórios Técnicos dos anos de 1980 a 1993 estão à disposição no Departamento de Matemática do IME-USP. Cidade Universitária "Armando de Salles Oliveira" Rua do Matão, 1010 - Butantã Caixa Postal - 20.570 (Ag. Iguatemi) CEP: 01498 - São Paulo - Brasil