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Abstract 

In this paper we prove that the generating power series associated with the 

decimal expansion of an irrational real number is a transcendental function. 

Then we give a condition on the mod p reduced series which ensures that the 

given real number is transcendental .As an application we give another proof 

of the iranscendence of the Morse number. 1991 Maths. Subject Classif.: 

11J91, 30B10. 

1 Introduction 

Let a be a rational number with a decimal expansion given by 

a 0, a 1a2a3 •.• and let us construct the power series : 
00 

J0 (z) = L OnZn 
n=l 

It is clear that this series has 1 as radius of convergence or is a 

polynomial. And since the decimal expansion of a rational number 



is eventually periodic, it is also clear that /a(z} is the power series 

expansion of a rational function of z. The objective OS this note 

is to analyze what happens if a is an irrational number. At first 

glance the above result could suggest that if a is an algebraic real 

number then the corresponding fa(z) is the power series expansion 

of an algebraic function of z and if a is transcendental then la(z) is 

a transcendental function. 

We prove the following: 

Theorem 1 Let a be an irrational real number. Then fa(z) is a 

transcendental function. 

So, the power series fa(z) does not capture the nature of the 
irrational number o, as regards ~o algebraicity and transcendency. 

But we can reduce la( z) module a prime p (greater then the highest 

digit appearing in the decimal expansion of a) and obtain a formal 

power series over the finite field Fp. We can also ask what happens 

to the reduced ~eries Ia(z), whether it is algebraic or not over the 

rational function field Fp(z). We have: 

Theorem 2 If a is an irrational number and fo(z) is an algebraic 

function over Fp(z) for some prime p as above, then a is transcen­

dental. 

As an application of theorem 2 we give another proof of the tran­

scendence of the Morse number, which can be defined from the fol­

lowing recursive process: 

ao = 1 bo = 0 
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where anbn and bnan are simply the concatenation of the blocs an 

and bn in the given order. The Morse number is defined by 

where do, d1, ... , d2 .. are defined respectively as the 2n digits of an. So, 

a = 0, 1001011001101001. .. 

2 Proof of theorem 1 

To prove theorem 1 we need some simple lemmas: 

lemma 1 If a is an irrational number then f 0 (z) is not the power 

series expansion of a rational function. 

Proof: Let P( z) and Q( z) be two complex polynomials such that 

P(z) oo n 

Q( ) 
= Lanz 

Z n=O 

in some neighborhood of z = 0 and let o be any authomorphism of 

c. If we denote by P" ( z) the polynomial obtained by applying u to 

all coefficients of P( z) then it is easy to see that 

~(z) = E ao-zn 
Qo-(z) n=O n 
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in some neighborhood of z = 0. If all an are rational numbers then 

F(z) P(z) 
Q11(z) = Q(z) 

for all u E Aut(c). So, the zeros of P(z) and of Q(z) are algebraic 
numbers and they appear with all their conjugates. We can write: 

P(z) cn(z - (i) 
Q(z) = dTT(z - hi) 

where (i, 6i are algebraic numbers and the polynomials under the 
product sign have rational coefficients. 

So, we see that (c/dY7 = (c/d) for all u E Aut(c), and it fol­
lows that (c/d) E Q. We have thus proved that if a power series 
E anzn is the power series expansion of a rational complex function 
of z, then it is also the expansion of a rational function Pi(z)/Q1(z) 
with rational coefficients. But this proves lemma 1 because o = 
Pi(l/l0)/Q1(l/l0) would be rational. 

lemma 2 If a power series with integer coefficients represents an al­
gebraic function which is not rational then it's radius of convergence 
is lesser then l. 

Proof: Let F(z, w) be a polynomial of c[Z, W], 

(1) 

and let /(z) be an algebraic function of z such that 

F(z, f(z)) = 0 
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Let /31, ... ,/3,: be a ma."'l::imal linearly independent (over Q) subset 
of the complex coefficients appearing in F(z, w). We can write: 

where Fi( z, w ), 1 ::; i ::; k, are polynomials with rational coefficients. 
So, 

k 
L /3iFi(z, f(z)) = 0 
i=l 

and if we put 
CX) 

Fi(z, f(z)) = L OinZn 
n=O 

we obtain 
00 I.: 
L (Lf3a\)zn 
n=O i=l 

Since /(z) has a power series with integral coefficients, oin are all 
rational and so, by the linear independence of /31, ... , /31: over Q, we 
have: 

~(z,f(z}) = 0 

So without loss of generality ,we can suppose that /(z) satisfies a 
polynomial ( 1) with integral coefficients. If we put g( z) = ao( z )J( z) 
then: 

and the power series for g(z) also has integral coefficients. Now, 
such a g cannot have a pole in the finite plane c because equation . 
(2) would give us different orders for this pole. Consequently g(z) 
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must be limited in the unit disc. But it is well known that if a powers 

series I: anzn represents a limited function in the unit disc then 

which is impossible if the an are integers, unless I: anzn is a polyno­

mial. This proves lemma 2. 

We can now prove theorem 1: let a, be an irrational number and 

/ 0 (z) the corresponding series. Then the radius of convergence of 

this series is 1. By lemma 1, f 0 (z) is not a rational function and by 

lemma 2 it is not an algebraic function. 

3 Reduction mod p 

Let us now consider the formal reduced series 

- 00 
!a(z) = E anzn 

n=l 

where an is the reduction of an mod p, and p is a prime greater than 

the highest digit of de decimal expansion of a. To prove theorem 2 

we observe that if"£(::) is an algebraic function over Fp(z) then it 

can be seen,[1], that it satisfies an algebraic equation of the form : 

with Pi(z) E Fp[Z), and so the "lifted" series J0 (z) satisfies a func­

tional equation of the form: 

Qm(z)fu(zPm) + ... + Q1(z)f0 (::P) + Qo(z) = 0 

(see [2]), where q;{z) are polynomials in z[z]. So, we readily see that 

the digits of the decimal expansion of a ~erifies a system of linear 
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recurrence equations, or, equivalently, a can be generated by a finite 
automata, {lt which is not possible if a is algebraic, {3]. This proves 
theorem 2. 

Considering the Morse number defined at the beginning of the 
paper, one sees that the corresponding series f 0 (z) verifies: 

if we reduce mod 2, [1], and so, by the above, a is transcendental. 
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