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Abstract
In this paperwepresent a simplemicroscopic stochasticmodel describing short termplasticity
within a large homogeneous network of interacting neurons. Each neuron is represented by
its membrane potential and by the residual calcium concentration within the cell at a given
time. Neurons spike at a rate depending on their membrane potential. When spiking, the
residual calcium concentration of the spiking neuron increases by one unit. Moreover, an
additional amount of potential is given to all other neurons in the system. This amount
depends linearly on the current residual calcium concentration within the cell of the spiking
neuron. In between successive spikes, the potentials and the residual calcium concentrations
of each neuron decrease at a constant rate.We show that in this framework, short timememory
can be described as the tendency of the system to keep track of an initial stimulus by staying
within a certain region of the space of configurations during a short but macroscopic amount
of time before finally being kicked out of this region and relaxing to equilibrium. The main
technical tool is a rigorous justification of the passage to a large population limit system and
a thorough study of the limit equation.
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1 Introduction

In this paperwepresent a simplemicroscopic stochasticmodel describing short termplasticity
within a large network of interacting neurons. In this framework it is possible to describe
short time memory of the system in a precise mathematical way. Namely, short time memory
can be seen as the tendency of the system to keep track of an initial stimulus by staying
within a certain region of the space of configurations during a short but macroscopic amount
of time before finally being kicked out of this region and relaxing to equilibrium.

In our model, the successive times at which the neuron emits an action potential are
described by a point process. The stochastic spiking intensity of the neuron, i.e., the infinites-
imal probability of emitting an action potential during the next time unit, conditionally on
the past, depends on the past history of the neuron and it is affected by the activity of other
neurons in the network, either in an excitatory or an inhibitory way.

Short termsynaptic plasticity (STP) refers to a change in the synaptic efficacyon timescales
which are of the order of milliseconds, that is, comparable to the timescale of the spiking
activity of the network. We express this through the fact that the stochastic spiking intensity
also depends on the synaptic efficacy of the neuron at that time. This synaptic efficacy changes
over time as a function of the residual calcium concentration within the cell. In our model
the residual calcium concentration increases by one unit any time the neuron spikes and
decreases at a constant rate in between successive spikes.

Since at least the last 2 decades, many papers have been devoted to STP. Probably starting
with Markram and Tsodyks [13] and Tsodyks et al. [21], a lot of these papers propose
relatively simple phenomenological models and study, mostly numerically, their properties.
Kistler and van Hemmen [12] consider a deterministic model which is an adaptation of
the model of Tsodyks and Markram [20] to the spike response model. They work within a
homogenous strongly connected network and study the impact of STP on the stability of limit
cycles. Our model, though stochastic, is close to this. Several recent papers are devoted to
the study of the effect of STP on working memory, see Barak and Tsodyks [1], Mongillo et
al. [14] and the recent article by Seeholzer et al. [18]. Finally, for a recent survey on STP, we
refer the interested reader to the Scholarpedia article [22], and for a rather complete survey
on the biological aspects, to Zucker and Regehr [23].

Our model can be seen as a huge system of interacting pairs of coupled Hawkes processes.
Hawkes processes provide good models for systems of spiking neurons by the structure of
their intensity processes and have been widely studied, see for instance Chevallier et al.
[4], Chornoboy et al. [5], Hansen et al. [9], Reynaud-Bouret et al. [16] and Ditlevsen and
Löcherbach [6].

In our model we make the following basic mathematical assumptions. First of all, we
work within a mean-field system in which each neuron interacts with all other neurons in a
homogenous way. Second, we only consider excitatory synapses. Finally, our model of STP
only describes facilitation, not depression. In this framework we study in a rigorous way the
intermediate time behavior of the process. This is the content of our main result, Theorem
2.5. The main step of the proof of this theorem is a rigorous justification of the passage to a
large population limit model.

Describing short termmemory as the tendency of the system to stay within a certain region
of the state space representing some initial stimulus is not a new idea, neither is the idea that
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a proof of this behavior should be done through the analysis of the limit system. Similar ideas
appear already in Barak and Tsodyks [1], Mongillo et al. [14] and Seeholzer et al. [18], see
also the recent paper by Schmutz et al. [17]. Nevertheless to the best of our knowledge our
paper is the first in which these results are rigorously mathematically proved.

Organisation of the paper This paper is organised as follows. In Sect. 2, we introduce our
model and state the main results of the paper. This section is complimented by a simulation
study. The proofs are given in Sects. 3–7.

2 Overview of the Paper

2.1 Notation

The following notation is used throughout the paper.

• IfM is a countingmeasure onR+×R+,we shall use the following notation for integration
over semi-closed boxes.

∫ t
0

∫∞
0 f (s, z)M(ds, dz) = ∫

R+
∫
R+ 1]0,t](s) f (s, z)M(ds, dz),

for any positive measurable function f .
• If g is a probability measure on (R+,B(R+)) and

∫
R+ | f |dg < ∞, then we write

∫∞
0 f (r)g(dr) for the integral

∫
R+ f dg.

• For any bounded function f : R+ → R we write ‖ f ‖∞ = supx∈R+ | f (x)|.

2.2 Description of theModel

We consider a system of N interacting neurons with membrane potentials (UN
t (1), . . . ,

UN
t (N )) together with the corresponding residual calcium concentration within each neuron

(RN
t (1), . . . , RN

t (N )). Each neuron i, independently of the others, spikes at rate ϕ(UN
t−(i)).

When spiking, it gives an additional amount αRN
t−(i)/N of potential to all neurons. (R is

dimensionless and α is a potential). α > 0 is a measure of the interaction strength, and
the interaction is modulated by the current value of the calcium concentration of the spiking
neuron.At the same time, the residual calciumconcentrationof the spikingneuron is increased
by 1. This models the short term plasticity. In between successive spikes, the potential of
each neuron decreases at rate β > 0, and their residual calcium concentrations decrease at
constant rate λ > 0. β and λ are homogeneous to the inverse of a time.

To define the process, consider a family of i.i.d. Poisson randommeasures (Mi (ds, dz))i≥1

onR+ ×R+ having intensity measure dsdz each. Here, ds is homogeneous to a time and dz
to the inverse of a time. Finally we consider an i.i.d. family (UN

0 (i), RN
0 (i))i=1,...,N of R2+-

valued random variables, independent of the Poisson measures and distributed according to
some probability measure η0(du, dr) on R2+. Then the system of interaction neurons is rep-
resented by the Markov process (UN

t , RN
t ) = (UN

t (1), . . . ,UN
t (N ), RN

t (1), . . . , RN
t (N ))

taking values in R2N+ and solving, for i = 1, . . . , N , for t ≥ 0,

UN
t (i) = UN

0 (i) − β

∫ t

0
UN
s (i)ds + α

N

N∑

j=1

∫ t

0

∫ ∞

0
RN
s−( j)1{z≤ϕ(UN

s−( j))}M
j (ds, dz),

RN
t (i) = RN

0 (i) − λ

∫ t

0
RN
s (i)ds +

∫ t

0

∫ ∞

0
1{z≤ϕ(UN

s−(i))}M
i (ds, dz). (2.1)
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The coefficients of this system are the positive constants α, β, λ > 0 together with the spiking
rate function ϕ. The generator of the process (UN

t , RN
t ) is given for any smooth test function

f : R2N+ → R by

AN f (u, r) = −
N∑

i=1

(
βui∂ui f (u, r) + λr i∂r i f (u, r)

)

+
N∑

i=1

ϕ(ui )
[
f (π i (u, r)) − f (u, r)

]
,

where

π i (u, r)( j) := (u j + αr i/N , r j ) if j �= i, π i (u, r)(i) := (ui + αr i/N , r i + 1).

Notice that (2.1) is close to the system studied in [12], when taking the Heaviside function as
a spiking rate (that is, spiking does only occur when reaching a fixed deterministic threshold,
but when hitting this threshold, it occurs with certainty, that is, at rate = ∞). In the present
paper, following the classical reference Brillinger and Segundo [3], we will however suppose
most of the time that

Assumption 2.1 ϕ : R+ → R+ is bounded and Lipschitz continuous with Lipschitz constant
Lϕ. Moreover we have ϕ(0) = 0, ϕ(x) > 0 for all x > 0.

Under minimal regularity assumptions on the spiking rate, if we work at a fixed system
size N , this process will die out in the long run as shows the following

Theorem 2.2 Grant Assumption 2.1. If ϕ is differentiable in 0, then the system stops spiking
almost surely. As a consequence, the unique invariant measure of the process (UN

t , RN
t ) is

given by the Dirac measure δ(0,0), where 0 ∈ R
N denotes the all-zero vector in RN .

This situation might however change if we consider large-population limits of the system.

2.3 Large Population Limits

In Sect. 5 we show that the solution (UN
t , RN

t )t≥0 behaves, for N large, as N independent
copies of the solution (Ut , Rt )t≥0 of the following nonlinear, in the sense of McKean, SDE

Ut = U0 − β

∫ t

0
Usds + α

∫ t

0
IE[ϕ(Us)Rs]ds,

Rt = R0 − λ

∫ t

0
Rsds +

∫ t

0

∫ ∞

0
1{z≤ϕ(Us−)}M(ds, dz). (2.2)

In the above formula, (U0, R0) is an η0-distributed random variable, independent of a Poisson
measure M(ds, dz) on R+ × R+ having intensity measure dsdz. Concerning the law η0 of
the initial condition, in the sequel we impose

Assumption 2.3 η0(du, dr) = δu0(du)g0(dr), for some fixed u0 > 0. Here, g0 is a proba-
bility measure on R+ such that

∫∞
0 r2g0(dr) < ∞.

In what follows, under Assumption 2.3, we shall write r0 := ∫∞
0 rg0(dr). Under this

condition, our Theorems 5.2 and 5.3 in Sect. 5 below provide an explicit coupling showing
that the finite system is close to the limit system.
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2.4 Modeling Short TermMemory

For smooth spiking rate functions ϕ, by Proposition 2.2, the finite size system has only
one invariant state corresponding to extinction of the system. In the large-population limit
however, this situation changes for suitable choices of the form of the spiking rate function.
More precisely, we suppose that

Assumption 2.4 ϕ is non-decreasing and differentiable with ϕ′(0) > 0. Moreover, there
exists a constant D > 0 such that the equation Dϕ2(x) = x possesses exactly three solutions
x0 = 0 < x1 < x2 in [0,∞[. (D is homogeneous to a potential times a time squared).

Let us write umax = x2, rmax = 1
λ
ϕ(umax ). We show in Proposition 6.2 below that

(umax , rmax ) is an attracting equilibrium of the limit system (2.2), for suitable choices of
α, β and λ.

Suppose now we observe a huge system of interacting neurons which is undergoing
synaptic plasticity modulated by the residual calcium concentrations within each neuron.
Hence, N is big without being infinite.We expose the system to some initial stimulus pushing
it into the vicinity of the attracting non-trivial equilibrium point (umax , rmax ) of the limit
system. At time 0, this stimulus is switched off, and we start observing the system, evolving
according to (2.1). Since this point is attracting and N large, the system is attracted to a small
neighbourhood of (umax , rmax ) and stays in this neighbourhood for a while. We interpret
this transient behavior as an expression of short term memory. Of course, in the long run, the
system will finally get kicked out of this neighbourhood and start rapidly decaying towards
the all-zero state. These ideas are formalised in the following theorem.

Theorem 2.5 Grant Assumptions 2.1 and 2.3 and supposemoreover that
∫∞
0 eur g0(dr) < ∞

for some u > 0. Fix some T > 1.
1. There exist positive constants CT and c where CT depends only on the parameters of

the model and on T and c only on the parameters of the model with the following properties.
For any ε > 0, there exists N0 such that for all N ≥ N0, for every 1 ≤ i ≤ N ,

IP

⎛

⎝sup
s≤T

⎛

⎝|UN
s (i) −Us | +

∣
∣
∣
∣
∣
∣

1

N

N∑

j=1

RN
s ( j) − IE Rs

∣
∣
∣
∣
∣
∣

⎞

⎠ ≥ N−1/5ε

⎞

⎠ ≤ CT e
−cε2

√
N .

(2.3)

2. Grant moreover Assumption 2.4 and suppose that

α ≥ Dβλ. (2.4)

Then the equation x = α
βλ

ϕ2(x) possesses three solutions x0 = 0 < x1 < x2. We put

umax = x2, rmax = 1
λ
ϕ(umax ). The points (0, 0) and (umax , rmax ) are locally attracting

equilibria of the dynamical system

ut = u0 − β

∫ t

0
usds + α

∫ t

0
ϕ(us)rsds, rt = r0 − λ

∫ t

0
rsds +

∫ t

0
ϕ(us)ds. (2.5)

3. Suppose (u0, r0) belongs to the domain of attraction of (umax , rmax ) and UN
0 (i) = u0,

RN
0 (i) = r0 for all i, N . Finally let, for ε > 0,

t1 = t1(ε) = inf{t : |ut − umax | + |rt − rmax | < ε}.
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Fig. 1 Phase plots on a log–log scale. Left, 5 trajectories (gray lines) of the mean residual calcium versus the
mean membrane potential obtained by simulating a network of 1000 neurons from 5 different initial states
(see the main text for simulation details). Right, 5 trajectories solutions of the limit ODE system (2.5) with
the same parameters and initial states (gray lines). On both plots the black curves show the null-cline of the
mean membrane potential (V shaped) and of the mean residual calcium (inverted L shape)

Then for all N ≥ N0, for all 1 ≤ i ≤ N ,

IP

⎛

⎝|UN
t1 (i) − umax | ≥ 2ε or

∣
∣
∣
∣
∣
∣

1

N

N∑

j=1

RN
t1 ( j) − rmax

∣
∣
∣
∣
∣
∣
≥ 2ε

⎞

⎠ ≤ Ct1e
−cε2

√
N .

2.5 An Example with a Simulation Study

We consider spiking rate functions of sigmoid type which are defined in terms of a parameter
a > 1 satisfying 4a < 1 + ea by

ϕ(x) = 4a

1 + e−(x−a)
− 4a

1 + ea
, x ≥ 0.

The point a is the inflexion point of ϕ, and it is easy to see that there exist x1 ∈]0, a[ and
x2 ∈]a,∞[ with ϕ2(xi ) = xi , i = 1, 2. Thus, Assumption 2.4 is satisfied with D = 1.

Figure 1 illustrates 5 trajectories of the mean residual calcium versus the mean mem-
brane potential obtained by simulating a network of 1000 neurons from 5 different initial
states on the left side. The null-clines corresponding to a null membrane potential derivative
(V shaped) and a null residual calcium derivative (inverted L shaped) are also drawn. On
the right side the numerical solution of the corresponding ODE system (2.5) with the same
initial conditions as the right side are shown. A custom developed C code implementing
Ogata’s thinning method (see [15]) was used for the simulations with the Xoroshiro128+
pseudo-random number generator of Blackman and Vigna, see [2]. The ODE system (2.5)
was numerically solved using the ode program of the open source GNU plotutils pack-
age (https://www.gnu.org/software/plotutils/). The defaultmethod—Runge–Kutta–Fehlberg
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Fig. 2 3D plot of 5 trajectories of the mean residual calcium and the mean membrane potential obtained by
simulating a network of 1000 neurons from 5 different initial states

with adaptive time steps—was used. The network parameters were: α = 107.78; β = 50;
λ = 2.16 (rounded to the second decimal); a = 3. The parameters α, β, λ are chosen such
that α = Dβλ. The specific choice of α, β, λ was arbitrary and guided by aesthetic rea-
sons. For the network simulations the initial states were obtained by drawing the membrane
potential and the residual calcium of each neuron from a uniform distribution centred on a
user set mean value with a range set to 10% of the mean. The (membrane potential, resid-
ual calcium) pairs were: (2, 1); (1, 2); (10, 0.25); (0.75, 0.5); (1, 1.5). The initial values
of the ODE numerical solution were set to these mean values. The phase plots shown on
Fig. 1 use a log–log scale. The trajectory starting from (0.75, 0.5) moves towards the origin:
the network activity dies quickly in that case. All the other trajectories reach quickly (in
less than 5 time units) the fixed point corresponding to the upper-right intersection of the 2
null-clines.

Figure 2 shows the simulated trajectories of same network in 3D using linear scales. All
the codes and instructions required to reproduce these simulations and figures can be found
at the following address: https://plmlab.math.cnrs.fr/xtof/interacting_neurons_with_stp.
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2.6 Constants

In the whole paper, C stands for a (large) finite constant and c stands for a (small) positive
constant. Their values may change from line to line. They are allowed to depend only on
ϕ, α, β, λ and η0, the law of the initial condition. Any other dependence will be indicated in
subscript. For example, CT is a finite constant depending only on ϕ, α, β, λ, η0 and T . The
letter K will be reserved to denote a bound on ‖ϕ‖∞.

3 Well-Posedness of the Particle System and Proof of Theorem 2.2

Proposition 3.1 Under Assumption 2.1 a path-wise unique strongMarkov process (UN
t , RN

t )

exists which is solution of (2.1) for all t ≥ 0.

Proof This follows from Theorem 9.1 in Chapter IV of Ikeda and Watanabe (1989) [10]. ��
We now proceed with the

Proof of Theorem 2.2 The proof works along the lines of the proof of Theorem 2.3 of Duarte
and Ost [7].

Firstly, it is immediate to show that almost surely the process comes back to a compact set
infinitely often. This follows from the boundedness of ϕ and the back driving force induced
by the two drift terms −βUN

t (i)dt and −λRN
t (i)dt .

Let then T1 be the first jump time of the system. Then, as in Proposition 3.1 of [7], for any
c > 0,

inf
u0∈[0,c]N

IP(T1 = ∞|UN
0 = u0) ≥ e− N

β

∫ c
0

ϕ(x)
x dx

> 0.

Since the processUN
t almost surely comes back to a suitable compact set [0, c]N , the assertion

then follows by a Borel-Cantelli argument. The details are in [7]. ��

4 Well-Posedness of the Limit Equation

This section is devoted to the study of existence and uniqueness of the limit Eq. (2.2). A
proof of the well-posedness of the limit system (2.2)

Ut = U0 − β

∫ t

0
Usds + α

∫ t

0
IE[ϕ(Us)Rs]ds,

Rt = R0 − λ

∫ t

0
Rsds +

∫ t

0

∫ ∞

0
1{z≤ϕ(Us−)}M(ds, dz),

is not immediate due to the presence of the product term IE[ϕ(Us)Rs]ds in the first line of
the above system leading to non-Lipschitz terms. Our Assumption 2.3 has been introduced
to cope with this problem. Indeed, observe that under Assumption 2.3, the limit process Ut

is a deterministic process, and we shall write Ut = ut to highlight this fact. Notice that in
this case, the spike counting process of a typical neuron in the limit population

t →
∫ t

0

∫ ∞

0
1{z≤ϕ(us )}M(dz, ds)

is an inhomogeneous Poisson process of rate ϕ(ut ) at time t .
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Proposition 4.1 Grant Assumption 2.3 and suppose only thatϕ is Lipschitz, satisfyingϕ(x) ≤
C

√
x for all x ≥ x0, for some fixed x0 > 0. Then a path-wise unique process (ut , Rt ) exists

which is solution of (2.2).

Proof Writing rt = IE Rt , the system (ut , rt ) solves, since U0 = u0 is deterministic,

dut = −βutdt + αϕ(ut )rt dt, drt = −λrt + ϕ(ut )dt .

Wefirst show that any solution is non-exploding. For that sake, suppose w.l.o.g. that u0 > x0.
Since ϕ(x) ≤ C

√
x for all x ≥ x0, we use the change of variables gt := √

ut for all
t ≤ τ := inf{s : us ≤ x0}. Then, for all t ≤ τ,

dgt ≤ −β

2
gtdt + C

α

2
rt dt, drt ≤ −λrt + Cgtdt .

The rhs of the above inequality defines a linear equation which can be solved explicitly
implying the existence of a non-exploding solution.

To prove uniqueness of the solution, suppose that (u′
t , R

′
t ) is another solution, starting

from the same initial conditions. Due to the first part of the proof, we know that for any
T > 0, the functions rt = IE Rt , r ′

t = IE R′
t , ϕ(ut ) and ϕ(u′

t ) are bounded on [0, T ], say by
a constant KT . Then, by the Lipschitz continuity of ϕ with Lipschitz constant Lϕ,

|ut − u′
t | ≤ β

∫ t

0
|us − u′

s |ds + αLϕKT

∫ t

0
|us − u′

s |ds + αKT

∫ t

0
IE |Rs − R′

s |ds

and

IE |Rt − R′
t | ≤ λ

∫ t

0
IE |Rs − R′

s |ds + Lϕ

∫ t

0
|us − u′

s |ds,

implying that

IE |Rt − R′
t | + |ut − u′

t | ≤ CT

∫ t

0

[
IE |Rs − R′

s | + |us − u′
s |
]
ds,

and thus Rt = R′
t almost surely and ut = u′

t for all t ≤ T , whence the uniqueness of the
solution. ��

5 Convergence of the Particle System to the Limit Equation

We now show that under Assumptions 2.1 and 2.3 the finite system (2.1) converges to the
limit Eq. (2.2) in a certain sense. Recall that we suppose that (UN

0 (i), RN
0 (i))1≤i≤N are i.i.d.

η0−distributed random variables.

5.1 A Priori Bounds

In the sequel we shall use a priori upper bounds on the processes of residual calcium concen-
trations. Recall that in this part of the paper we work under the assumption that ϕ is bounded
and that K = ‖ϕ‖∞. We introduce

Jt (i) :=
∫ t

0

∫ ∞

0
1{z≤K }Mi (ds, dz), 1 ≤ i ≤ N .
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Then Jt (i), i ≥ 1, are i.i.d. standard Poisson processes of rate K each, and each RN
t (i) is

stochastically dominated by

RN
t (i) ≤ ŘN

t (i) := e−λt RN
0 (i) + e−λt

∫ t

0
eλsd Js(i). (5.1)

For each 1 ≤ i ≤ N , the process ŘN (i) is a Markov process with generator

Ǎg(r) = −λrg′(r) + K (g(r + 1) − g(r)),

for sufficiently smooth test functions g. Moreover, the processes ŘN (i), 1 ≤ i ≤ N , are
i.i.d. Taking a Lyapunov function V (x) = |x |, V (x) = x2 or V (x) = eux , respectively, it is
easy to see that for any such choice of V there exist suitable positive constants c, d, r0, such
that

ǍV (r) ≤ c1{r≤r0} − dV (r).

A standard Lyapunov argument then implies that for all t ≥ 0,

IEr V (ŘN
t (i)) ≤ e−dtr + c

d
,

and hence

sup
t≥0

IEV (RN
t (i)) ≤ sup

t≥0
IEV (ŘN

t (i)) < ∞, (5.2)

provided IE(V (RN
0 (i))) < ∞.

In particular, under our assumptions,

sup
t≥0

IE(RN
t (i)) ≤ κR := IE(RN

0 (1)) + K

λ
, (5.3)

implying that

sup
t≥0

IE(UN
t (i)) ≤ κU := IE(UN

0 (1)) + αK

β
κR . (5.4)

5.2 Tightness in Skorokhod Space

We consider a probability distribution η0 on R
2+ such that

∫
R
2+(u + r)η0(du, dr) < ∞,

and for each N ≥ 1, the unique solution (UN
t , RN

t )t≥0 to (2.1) starting from some i.i.d. η0-
distributed initial conditions (UN

0 (i), RN
0 (i)).Wewant to show that the sequence of processes

(UN
t (i), RN

t (i))t≥0 is tight in D(R+,R2+), for any i ≥ 1. Here, the set D(R+,R2+) of
càdlàg functions on R+ taking values in R2+ is endowed with the topology of the Skorokhod
convergence on compact time intervals, see [11].

Proposition 5.1 Grant Assumption 2.1 and let (UN
0 (i), RN

0 (i))1≤i≤N be i.i.d. satisfying that
IE(UN

0 (i)) < ∞ and IE(RN
0 (i)) < ∞.

(i) The sequence of processes (UN
t (1), RN

t (1))t≥0 is tight in D(R+,R2+).

(ii) The sequence of empirical measures μ̂N = N−1∑N
i=1 δ(UN

t (i),RN
t (i))t≥0

is tight in

P(D(R+,R2+)).
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Proof Point (ii) follows from point (i) and the exchangeability of the system, see [19, Propo-
sition 2.2-(ii)]. We thus only prove (i). To show that the family ((UN

t (1), RN
t (1)))t≥0)N≥1

is tight in D(R+,R2+), we use the criterion of Aldous, see [11, Theorem 4.5 page 356]. It is
sufficient to prove that

(a) for all T > 0, all ε > 0, limδ↓0 lim supN→∞ sup(S,S′)∈Aδ,T
IP(|UN

S′ (1) − UN
S (1)| +

|RN
S′ (1) − RN

S (1)| > ε) = 0, where Aδ,T is the set of all pairs of stopping times (S, S′) such
that 0 ≤ S ≤ S′ ≤ S + δ ≤ T a.s.,

(b) for all T > 0, limL↑∞ supN IP(supt∈[0,T ](|UN
t (1)| + |RN

t (1)|) ≥ L) = 0.
To check (a), consider (S, S′) ∈ Aδ,T and write

IE |UN
S′ (1) −UN

S (1)| ≤ β

∫ S′

S
IE |UN

s (1)|ds + α

N

N∑

j=1

∫ S′

S
IE[ϕ(UN

s ( j))RN
s ( j)]ds

≤ β

∫ S′

S
IE |UN

s (1)|ds + αKκRδ ≤ βκU δ + αKκRδ → 0

as δ → 0. The expression IE |RN
S′ (1) − RN

S (1)| is treated analogously. Moreover, (b) imme-
diately follows from the a priori bounds (5.3) and (5.4), since κR and κU do not depend on
N . ��

At this point, one usually concludes the proof that the sequence of processes (UN
t (i),

RN
t (i))t≥0 converges weakly to (Ut , Rt )t≥0 in D(R+,R2+) by showing that any possible

limit point of the sequence is necessarily solution of the limit equation. Classically, this is
shown by proving that any limit law must be solution of the associated martingale problem.
Uniqueness of the solution of the martingale problem then implies the desired convergence.

In our specific situation however, we are able to identify any possible limit thanks to a
coupling argument that we shall present in the next subsection. This coupling argument has
another advantage. It enables us to give a precise rate of convergence.

5.3 A Coupling Approach

We propose a coupling approach, which is inspired by the ideas presented in Sznitman [19].
The non-Lipschitz term IE[ϕ(Us)Rs]ds appearing in the limit system (2.2) demands how-
ever to adapt this approach to the present situation. Throughout this section we work under
Assumption 2.3 implying that UN

0 (i) = u0 for all N and 1 ≤ i ≤ N . As a consequence,
coming back to (2.1), we see that

UN
t (i) = UN

t (1) =: UN
t

for all 1 ≤ i ≤ N , that is, the membrane potential processes of all neurons within the system
are all equal, and only the values of the calcium concentrations differ. We can therefore
rephrase (2.1) as

UN
t = u0 − β

∫ t

0
UN
s ds + α

N

N∑

j=1

∫ t

0

∫ ∞

0
RN
s−( j)1{z≤ϕ(UN

s−)}M
j (ds, dz),

RN
t (i) = RN

0 (i) − λ

∫ t

0
RN
s (i)ds +

∫ t

0

∫ ∞

0
1{z≤ϕ(UN

s−)}M
i (ds, dz), 1 ≤ i ≤ N . (5.5)
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In order to control the speed of convergence to the limit system, we now first replace (5.5)
by an approximating system which is given as follows.

Ũ N
t = u0 − β

∫ t

0
Ũ N
s ds + α

∫ t

0
ϕ(Ũ N

s )

⎛

⎝ 1

N

N∑

j=1

R̃N
s ( j)

⎞

⎠ ds,

R̃N
t (i) = RN

0 (i) − λ

∫ t

0
R̃N
s (i)ds +

∫ t

0

∫ ∞

0
1{z≤ϕ(Ũ N

s−)}M
i (ds, dz), (5.6)

where Mi (ds, dz) is the Poisson random measure driving the dynamics of RN (i).
Our aim is to show that (5.6) is close to the original system (5.5). To do so, we introduce

the distance


N
t = IE

([
|Ũ N

t −UN
t | + |R̃N

t (1) − RN
t (1)|

])
. (5.7)

Theorem 5.2 Grant Assumptions 2.1 and 2.3. Fix T > 1. Then for all t ≤ T ,


N
t ≤ CT N

−1/2. (5.8)

Proof Weworkon thefixed time interval [0, T ] andwe supposew.l.o.g. that KT ≥ 1.Rewrite
first the equation of UN

t in the following way. For M̃ j (ds, dz) := M(ds, dz) − dsdz, we
have

UN
t = u0 − β

∫ t

0
UN
s ds + α

N

N∑

j=1

∫ t

0

∫ ∞

0
RN
s− ( j) 1{z≤ϕ

(
UN
s−
)}M̃

j (ds, dz)

+α

∫ t

0
ϕ
(
UN
s

)
⎛

⎝ 1

N

N∑

j=1

RN
s ( j)

⎞

⎠ ds

=: u0 − β

∫ t

0
UN
s ds + α

∫ t

0
ϕ
(
UN
s

)
⎛

⎝ 1

N

N∑

j=1

RN
s ( j)

⎞

⎠ ds + MN ,1
t ,

where

MN ,1
t := α

N

N∑

j=1

∫ t

0

∫ ∞

0
RN
s−( j)1{z≤ϕ(UN

s−)}M̃
j (ds, dz). (5.9)

Therefore, writing

R̄N
t := 1

N

N∑

j=1

R̃N
t ( j), (5.10)

we have for a constant C that might change from one occurrence to another

|Ũ N
t −UN

t | ≤ β

∫ t

0
|Ũ N

s −UN
s |ds + α

∫ t

0

1

N

∑

j

|ϕ(UN
s )RN

s ( j)

−ϕ(Ũ N
s )R̃N

s ( j)|ds + |MN ,1
t |
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≤ β

∫ t

0
|Ũ N

s −UN
s |ds + α

∫ t

0
|ϕ(UN

s ) − ϕ(Ũ N
s )|R̄N

s ds

+C
∫ t

0

1

N

∑

j

|RN
s ( j) − R̃N

s ( j)|ds + |MN ,1
t |, (5.11)

where we have used the boundedness of ϕ.

In the above expression, we have to control the termα
∫ t
0 |ϕ(UN

s )−ϕ(Ũ N
s )|R̄N

s ds.For that

sake, fix a constant a ≥ sups≥0 IE ŘN
s (1) + 1. Notice that by (5.2), applied with V (x) = x2,

we can choose a such that it does not depend on T . Then, by the Lipschitz continuity of ϕ,

α

∫ t

0
|ϕ(UN

s ) − ϕ(Ũ N
s )|R̄N

s ds

≤ aαLϕ

∫ t

0
|UN

s − Ũ N
s |ds + α

∫ t

0
|ϕ(UN

s ) − ϕ(Ũ N
s )|R̄N

s 1{R̄N
s ≥a}ds.

Since ϕ is bounded, the last expression in the above term is bounded by

α‖ϕ‖∞
∫ t

0
R̄N
s 1{R̄N

s ≥a}ds.

We use Hölder’s inequality to obtain

IE(R̄N
s 1{R̄N

s ≥a}) ≤
(
IE[(R̄N

s )2]
)1/2 (

IP(R̄N
s ≥ a)

)1/2
.

(5.2) applied with V (x) = x2 and Chebyshev’s inequality yield, by independence of the
processes ŘN (i), 1 ≤ i ≤ N ,

IP
(
R̄N
s > a

)
≤ IP

(
N∑

i=1

ŘN
s (i) > Na

)

≤ IP

(
N∑

i=1

ŘN
s (i) − IE ŘN

s (i) > N

)

≤ 1

N
Var

(
ŘN
s (1)

)
≤ C

N
,

since a ≥ IE ŘN
s (i) + 1. Therefore

α‖ϕ‖∞
∫ t

0
IE[R̄N

s 1{R̄N
s ≥a}]ds ≤ CtN−1/2.

We conclude that for all t ≤ T ,

IE
(
|Ũ N

t −UN
t |
)

≤ β

∫ t

0
IE |Ũ N

s −UN
s |ds + aαLϕ

∫ t

0
IE |UN

s − Ũ N
s |ds

+CtN−/1/2 + C
∫ t

0
IE |RN

s (1) − R̃N
s (1)|ds + IE |MN ,1

t |

≤ C
∫ t

0

N

s ds + CT√
N

+ IE |MN ,1
t |, (5.12)

where we have used the exchangeability of the system.
To deal with the martingale part, write

MN ,1
t = α

N

N∑

j=1

MN ,1, j
t , for MN ,1, j

t =
∫ t

0

∫ ∞

0
RN
s−( j)1{z≤ϕ(UN

s−)}M̃
j (ds, dz).
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Notice that MN ,1, j
t and MN ,1,k

t almost surely never jump together for j �= k, hence, using
once more (5.2) with V (x) = x2,

IE(MN ,1
t )2 = α2

N 2

N∑

j=1

IE(MN ,1, j
t )2 ≤ CN−1

∫ t

0
IE
(
(RN

s (1))2ϕ(UN
s )
)
ds ≤ C

t

N
.

As a consequence, for all t ≤ T ,

IE |MN ,1
t | ≤ CT 1/2N−1/2.

Finally, using once again the Lipschitz continuity of ϕ,

IE
(
|R̃N

t (1) − RN
t (1)|

)
≤ λ

∫ t

0
IE |R̃N

s (1) − RN
s (1)|ds + C

∫ t

0
IE |Ũ N

s −UN
s |ds,

whence


N
t ≤ C(α, K , g0)T N−1/2 + C

∫ t

0

N ,a

s ds,

implying that


N
t ≤ CT N−1/2eCt

for all t ≤ T , which concludes the proof. ��
We are now going to control the distance between the approximating system (5.6) and the

limit system (2.2). Recall that

R̄N
t := 1

N

N∑

i=1

R̃N
t (i).

Then

d R̄N
t = −β R̄N

t dt +
∫ ∞

0
1{z≤ϕ(Ũ N

t−)}M
N
(dt, dz), where M

N = 1

N

N∑

i=1

Mi .

Compensating each Poisson random measure, this yields

d R̄N
t = −β R̄N

t dt + ϕ(Ũ N
t )dt + dMN ,2

t ,

where

MN ,2
t = 1

N

N∑

i=1

∫ t

0

∫ ∞

0
1{z≤ϕ(Ũ N

s−)}M̃
i (ds, dz) (5.13)

is a square integrable martingale. We can thus rewrite (5.6) as

Ũ N
t = u0 − β

∫ t

0
Ũ N
s ds + α

∫ t

0
ϕ(Ũ N

s )R̄N
s ds, (5.14)

R̄N
t = R̄N

0 − λ

∫ t

0
R̄N
s ds +

∫ t

0
ϕ(Ũ N

s )ds + MN ,2
t . (5.15)

Moreover, since U0 = u0 is deterministic, writing rt := IE Rt and recalling that ut is
deterministic, the dynamics of the limit equation boils down to

{
dut = −βutdt + αϕ(ut )rt dt
drt = −λrt dt + ϕ(ut )dt

}

. (5.16)
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We obtain

Theorem 5.3 Grant the assumptions of Theorem 5.2. Fix T > 1. Then for all t ≤ T

IE
[
|ut − Ũ N

t | + |rt − R̄N
t |
]

≤ CT N
−1/2

and consequently for the original particle system,

IE[|ut −UN
t |] + IE

⎡

⎣
∣
∣
∣
1

N

N∑

j=1

RN
t ( j) − rt

∣
∣
∣

⎤

⎦ ≤ CT N
−1/2.

Proof (5.16) together with (5.14) implies

|ut − Ũ N
t | ≤ β

∫ t

0
|us − Ũ N

s |ds + α

∫ t

0
|ϕ(Ũ N

s )R̄N
s − ϕ(us)rs |ds

≤ β

∫ t

0
|us − Ũ N

s |ds + C
∫ t

0
| Ũ N

s − us |rsds + αK
∫ t

0
|rs − R̄N

s |ds.
(5.17)

We pass to expectation and use the fact that rs is deterministic and bounded by rs ≤ r0 + K
λ
,

to deduce from this that

IE |ut − Ũ N
t | ≤ C

∫ t

0

(
IE |us − Ũ N

s | + IE |rs − R̄N
s |
)
ds.

Moreover,

|rt − R̄N
t | ≤ |r0 − R̄N

0 | + λ

∫ t

0
|rs − R̄N

s |ds + Lϕ

∫ t

0
|Ũ N

s − us |ds + |MN ,2
t |. (5.18)

We use that MN ,2
t has quadratic variation

< MN ,2 >t= 1

N

∫ t

0
ϕ(Ũ N

s )ds ≤ Kt

N

to obtain

IE |rt − R̄N
t | ≤ IE |r0 − R̄N

0 | + λ

∫ t

0
IE |rs − R̄N

s |ds + C
∫ t

0
IE |Ũ N

s − us |ds + CT
1√
N

,

(5.19)

implying the assertion, since IE |r0 − R̄N
0 | ≤ CN−1/2. ��

Theorems 5.2 and 5.3 enable us finally to conclude that

Theorem 5.4 Grant the assumptions of Theorem 5.2. Then we have that for all i ≥ 1, the
sequence of processes (UN

t (i), RN
t (i))t≥0 converges weakly to (ut , Rt )t≥0 in D(R+,R2+).

Proof Take any weakly convergent subsequence of (UN
t (i), RN

t (i)) and call Z = (V , S)

its weak limit. We suppose that (V , S) is defined on a filtered probability space
(�′,A′, (Ft

′)t≥0, P ′), where

Ft
′ =

⋂

s>t

Fs
0,Fs

0 = σ(Vt , St , t ≤ s).
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Theorems 5.2 and 5.3 imply that V = u almost surely (since u is deterministic). Moreover it
is straightforward to show that the limit (u, S) must be solution of the following martingale
problem. For any smooth and bounded test function ψ, any s1 < s2 < · · · < sk ≤ s < t, for
continuous and bounded test functions ψi , we have

IE

[(

ψ(St ) − ψ(Ss) − λ

∫ t

s
ψ ′(Sv)Svdv −

∫ t

s
ϕ(uv)[ψ(Sv + 1) − ψ(Sv)]dv

)

k∏

i=1

ψi (Zsi )

]

= 0. (5.20)

By [11, Theorem II.2.42, page 86], and using the right-continuity of S, this implies that
S is a (P ′, (Ft

′)t≥0)−semi-martingale with characteristics B = −λ
∫ ·
0 Ssds, ν(ds, dx) =

ϕ(us)dsδ1(dx),Ct = 0.Moreover, [11, Theorem III.2.26, page 157] implies that there exists
a Poisson random measure π defined on (�′,A′, (Ft

′)t≥0, P ′), such that S is solution of

St = S0 − λ

∫ t

0
Svdv +

∫ t

0

∫ ∞

0
1{z≤ϕ(us )}π(ds, dz),

where S0 is g0−distributed. In other words, S
L= R. Hence any weak limit has the same law,

implying the weak convergence of (UN
t (i), RN

t (i)). ��

6 Stationary Solutions of the Limit Equation

For smooth spiking rate functions ϕ, by Theorem 2.2, the finite size system has only one
invariant state corresponding to extinction of the system. The limit system can however
display several invariant states as we show now, including persistent behavior where the
spiking activity of the system survives forever.

Recall that passing to expectation and writing ut = IEUt , rt = IE Rt , we have reduced
the limit system to

{
dut = −βutdt + αϕ(ut )rt dt
drt = −λrt dt + ϕ(ut )dt

}

. (6.1)

Any stationary solution (u∗, r∗) of (6.1) must satisfy

λr∗ = ϕ(u∗) and βu∗ = αϕ(u∗)r∗ = α

λ
ϕ2(u∗), (6.2)

implying that

u∗ = α

βλ
ϕ2(u∗). (6.3)

Of course, (0, 0) is always a stationary solution since ϕ(0) = 0.However, for suitable choices
of

κ := α

βλ

(κ is homogeneous to a potential times a time squared) and of the form of ϕ, also other
stationary solutions appear, some of them being attracting. Let us come back to the example
already presented in Sect. 2.
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Example 6.1 We consider spiking rate functions of sigmoid type. They are defined in terms
of a parameter a > 1 satisfying that

4a

1 + ea
< 1.

Let

ϕ(x) = 4a

1 + e−(x−a)
− 4a

1 + ea
, x ≥ 0.

Then ϕ(0) = 0, 0 < ϕ′(0) < 1, ϕ′′ > 0 on [0, a[ and ϕ′′ < 0 on ]a,∞[, thus a is the
inflexion point of ϕ. We have that

ϕ(a) = 4a

(
1

2
− 1

1 + ea

)

≥ 4a

(
1

2
− 1

4

)

= a,

since 4a
1+ea < 1 and a > 1 imply that 1

1+ea < 1
4 . Notice that ϕ2(0) = 0, (ϕ2)′(0) = 0

and ϕ2(a) = a2 > a (recall that a > 1). This implies that for some x1 ∈]0, a[ we have
ϕ2(x1) = x1. Finally, boundedness of ϕ2 implies the existence of a second point x2 > a with
ϕ2(x2) = x2.

Our Assumption 2.4 implies the existence of at least two non trivial solutions of κϕ2(x) =
x in ]0,∞[, for all κ ≥ D.This means that two non-trivial stationary solutions for (6.1) exist.
Let umax > 0 be themaximal solution of κϕ2(x) = x in ]0,∞[ andwrite rmax := 1

λ
ϕ(umax ).

The point (umax , rmax ) is locally attracting as shows the following proposition.

Proposition 6.2 Grant Assumption 2.4 and suppose that κ ≥ D. Then (0, 0) and
(umax , rmax ) are locally attracting equilibria of (6.1).

Proof Write�(u) = u/ϕ(u). Then {r = 1
λ
ϕ(u)} is the null-cline of rt and {r = β

α
�(u), u >

0}∪{r = u = 0} the null-cline of ut .We suppose w.l.o.g. that κϕ2(x) = x possesses exactly
two non trivial solutions 0 < x1 < x2 = umax in ]0,∞[. Then we have five regions

R1 =
{

(u, r) : u ≤ x1,
1

λ
ϕ(u) ≤ r ≤ β

α
�(u)

}

, R2 =
{

(u, r) : r ≤ 1

λ
ϕ(u) ∧ β

α
�(u)

}

,

R3 =
{

(u, r) : u ≥ x2,
1

λ
ϕ(u) ≤ r ≤ β

α
�(u)

}

, R4 =
{

(u, r) : r ≥ 1

λ
ϕ(u) ∨ β

α
�(u)

}

and finally

R5 =
{

(u, r) : x1 ≤ u ≤ x2,
β

α
�(u) ≤ r ≤ 1

λ
ϕ(u)

}

,

see Fig. 3. On R1 ∪ R3, both ut and rt decrease. On R2, only rt increases while ut decreases.
Thus, for sufficiently small u0, trajectories starting within R2 will enter R1 after some time
and then be attracted to (0, 0). The other trajectories starting within R2 will either enter R5
or R3. In both cases, they finish being attracted to (umax , rmax ). The same argument applies
to trajectories starting in R4, where ut increases, while rt decreases. ��

Let us finally shortly discuss the role of κ on the number of stationary limit states.

Proposition 6.3 Grant Assumption 2.4. There exists κc ≤ D such that for all κ < κc, no
non-trivial solution to (6.3) exist, and for all κ > κc, at least two non-trivial solutions exist.
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Fig. 3 Phase portrait of the dynamical system given in (6.1) with ϕ as in Example 6.1 and α = 107.78;
β = 50; λ = 2.16; a = 3. Left: Plot showing the unstable equilibrium (x1, r1), r1 = 1

λϕ(x1). The black
curve starting from (0, 0) is the null-cline of r , the other black curve the null-cline of u. Trajectories starting
in R1 are attracted to (0, 0). Middle: Plot showing the stable equilibrium (x2, r2), the upper black curve is the
null-cline of r . The arrows represent the tangent vectors of the flow, their length correspond to 1/100 of their
true length. Right: Plot on a log–log scale showing both equilibria

7 Deviation Inequalities and Proof of Theorem 2.5

We are now able to conclude the paper with the proof of Theorem 2.5. In what follows we
shall use the martingales MN ,1 and MN ,2 which have been defined in (5.9) and (5.13). We
also introduce

MN ,3
t = 1

N

N∑

i=1

∫ t

0

∫

R+
|1{z≤ϕ(UN

s−)} − 1{z≤ϕ(Ũ N
s−)}|M̃i (ds, dz).

Finally we use the definition of R̄N
t , given in (5.10) above.

The first item of Theorem 2.5 will then be a consequence of

Theorem 7.1 Fix T > 1 and grant the assumptions of Theorem 5.2. Suppose moreover that∫∞
0 eur g0(dr) < ∞ for some u > 0. Then for any R > 0, there exists a constant CR

depending only on the parameters of the model and on R, such that

sup
s≤T

(

|UN
s − us | +

∣
∣
∣
∣
∣
1

N

N∑

i=1

RN
s (i) − rs

∣
∣
∣
∣
∣

)

≤ (CR)T+1

(∫ T

0
1{R̄N

s >R} R̄
N
s ds + |R̄N

0 − r0| + sup
s≤T

|MN ,1
s | + sup

s≤T
|MN ,2

s | + sup
s≤T

|MN ,3
s |

)

.

(7.1)
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Consequently for all ε > 0 there exists N0 = N0(T , ε), such that for all N ≥ N0, we obtain
the following deviation bound

IP

(

sup
s≤T

(

|UN
s − us | +

∣
∣
∣
∣
∣
1

N

N∑

i=1

RN
s (i) − rs

∣
∣
∣
∣
∣

)

≥ N−1/5ε

)

≤ CT e
−cε2

√
N . (7.2)

Proof In the sequel we shall suppose w.l.o.g. that KT ≥ 1.
Step 1 Fix some 0 < t0 < T and let t > 0 such that t0 + t ≤ T . Then Eq. (5.11) implies, for
any R > 0,

sup
t0≤s≤t0+t

|UN
s − Ũ N

s | ≤ |UN
t0 − Ũ N

t0 | + t · (β + αLϕR
)

sup
t0≤s≤t0+t

|UN
s − Ũ N

s |

+αK
∫ T

0
1{R̄N

s >R} R̄
N
s ds + Ct

1

N

N∑

i=1

sup
t0≤s≤t0+t

|RN
s (i) − R̃N

s (i)| + sup
t0≤s≤t0+t

|MN ,1
s |.

(7.3)

Applying the same argument to RN and R̃N , we also have that

1

N

N∑

i=1

sup
t0≤s≤t0+t

|RN
s (i) − R̃N

s (i)| ≤ 1

N

N∑

i=1

|RN
t0 (i) − R̃N

t0 (i)|

+ λt

(
1

N

N∑

i=1

sup
t0≤s≤t0+t

|RN
s (i) − R̃N

s (i)|
)

+ sup
t0≤s≤t0+t

|MN ,3
s | + Lϕ t sup

t0≤s≤t0+t
|UN

s − Ũ N
s |.

Choosing s1 sufficiently small such that λs1 ≤ 1
2 and also 2Lϕs1 ≤ 1, we deduce from this

that for all t ≤ s1,

1

N

N∑

i=1

sup
t0≤s≤t0+t

|RN
s (i) − R̃N

s (i)| ≤ 2

N

N∑

i=1

|RN
t0 (i) − R̃N

t0 (i)| + 2 sup
t0≤s≤t0+t

|MN ,3
s |

+ sup
t0≤s≤t0+t

|UN
s − Ũ N

s |, (7.4)

and replacing in (7.3), we obtain

sup
t0≤s≤t0+t

|UN
s − Ũ N

s | ≤ |UN
t0 − Ũ N

t0 | + 2Ct

N

N∑

i=1

|RN
t0 (i) − R̃N

t0 (i)|

+ t · (β + αLϕR + C
)

sup
t0≤s≤t0+t

|UN
s − Ũ N

s |

+αK
∫ T

0
1{R̄N

s >R} R̄
N
s ds + 2Ct sup

s≤t
|MN ,3

s | + sup
s≤t

|MN ,1
s |.

Consequently we may choose s2 ≤ s1 such that

s2 · (β + αLϕR + C
) ≤ 1

2
and also 2Cs2 ≤ 1.
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Therefore, for all t ≤ s2, for a suitable constant C,

sup
t0≤s≤t0+t

|UN
s − Ũ N

s | ≤ 2|UN
t0 − Ũ N

t0 | + 2

N

N∑

i=1

|RN
t0 (i) − R̃N

t0 (i)|

+C

(∫ T

0
1{R̄N

s >R} R̄
N
s ds + sup

t0≤s≤t0+t
|MN ,3

s | + sup
t0≤s≤t0+t

|MN ,1
s |

)

,

and replacing this once more in (7.4), we finally obtain for all t0, t such that t0 + t ≤ T ,

sup
t0≤s≤t0+t

|UN
s − Ũ N

s | + 1

N

N∑

i=1

sup
t0≤s≤t0+t

|RN
s (i) − R̃N

s (i)|

≤ C |UN
t0 − Ũ N

t0 | + C

N

N∑

i=1

|RN
t0 (i) − R̃N

t0 (i)|

+C

(∫ T

0
1{R̄N

s >R} R̄
N
s ds + sup

s≤T
|MN ,3

s | + sup
s≤T

|MN ,1
s |

)

(7.5)

for all t ≤ s2.
Step 2 We apply the above inequality (7.5) with t0 = 0, t0 = s2, . . . , t0 = �s2, for

� = [T /s2], where [x] denotes the integer part of x > 0, and with t = s2 (except in the last
case t0 = �s2 where we take t = T − �s2). Write for short

YT := C

(∫ T

0
1{R̄N

s >R} R̄
N
s ds + sup

s≤T
|MN ,3

s | + sup
s≤T

|MN ,1
s |

)

and


(k) := sup
ks2≤s≤(k+1)s2∧T

|UN
s − Ũ N

s | + 1

N

N∑

i=1

sup
ks2≤s≤(k+1)s2∧T

|RN
s (i) − R̃N

s (i)|, 0 ≤ k ≤ �.

(7.5) implies that


(k + 1) ≤ C
(k) + YT , for all k < �

(choose t0 = (k + 1)s2 in (7.5)). Since UN
0 = Ũ N

0 = u0 and RN
0 (i) = R̃N

0 (i), for all
1 ≤ i ≤ N , we have moreover that 
(0) ≤ YT . Therefore,


(�) ≤ (1 + C + . . .C�)YT ≤ C�+1YT

(we suppose w.l.o.g. that C ≥ 1). Finally, � ≤ T /s2 and s2 = s2(R) not depending on T

imply that, for CR = C
1

s2(R) depending only on the parameters of the model and on R, but
not on T ,

sup
s≤T

|UN
s − Ũ N

s | + 1

N

N∑

i=1

sup
s≤T

|RN
s (i) − R̃N

s (i)| ≤

≤ (CR)T+1

(∫ T

0
1{R̄N

s >R} R̄
N
s ds + sup

s≤T
|MN ,3

s | + sup
s≤T

|MN ,1
s |

)

. (7.6)

This is the first part of (7.1).
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Step 3 We now turn to the second step in our approximation procedure. It is treated
analogously to the two previous steps. We have by (5.17), for all t0, t such that t0 + t ≤ T ,

sup
t0≤s≤t0+t

|Ũ N
s − us | ≤ |Ũ N

t0 − ut0 | + t

(

β + C

(

r0 + K

λ

))

sup
t0≤s≤t0+t

|Ũ N
s − us |

+αKt sup
t0≤s≤t0+t

|rs − R̄N
s |,

where we have used that for all s ≤ T , rs ≤ r0 + K
λ
.

Analogously, (5.18) implies that

sup
t0≤s≤t0+t

|R̄N
s − rs | ≤ |R̄N

t0 − rt0 | + λt sup
t0≤s≤t0+t

|rs − R̄N
s |

+ Lϕ t sup
t0≤s≤t0+t

|Ũ N
s − us | + sup

s≤T
|MN ,2

s |.

Putting the two together and using similar arguments as in the first step, for a choice of t1 ≤ s2
not depending on T and sufficiently small,

sup
t0≤s≤t0+t

|Ũ N
s − us | + sup

t0≤s≤t0+t
|R̄N

s − rs | ≤ C |Ũ N
t0 − ut0 | + C |R̄N

t0 − rt0 | + C sup
s≤T

|MN ,2
s |.
(7.7)

Iterating the above inequality for t0 = 0, . . . , t0 = kt1, with k = [T /t1] as in Step 2. above
implies then

sup
s≤T

|Ũ N
s − us | + sup

s≤T
|R̄N

s − rs | ≤ CT+1|R̄N
0 − r0| + CT+1 sup

s≤T
|MN ,2

s |. (7.8)

Finally, (7.8) together with (7.6) imply (7.1).
Step 4We use a large deviations upper bound to obtain

IP(|R̄N
0 − r0| ≥ εN−1/4) ≤ e−c

√
N ,

for ε > 0, due to our assumptions on the law g0 of RN
0 (1).

Moreover, we use similar arguments as those in the proof of Theorem 5.2 to deduce that
for any η > 0,

IP

(∫ T

0
1{R̄N

s >R} R̄
N
s ds ≥ η

)

≤ C

η

∫ T

0

√
IP(R̄N

s > R)ds.

We wish to use again a large deviations upper bound to control IP(R̄N
s > R). Since∫∞

0 eur g0(dr) < ∞, applying (5.2) with V (x) = eux gives

sup
t≥0

IEeu Ř
N
t (i) < ∞. (7.9)

Therefore we may choose R such that log
(
supt≥0 IE

(
eu Ř

N
t (i)

))
− uR := −χ < 0. Then

IP(R̄N
s > R) ≤ IP

(
N∑

i=1

ŘN
s (i) > N R

)

≤ e−NuR
(
IE
(
eu Ř

N
s (i)

))N ≤ e−χN ,

implying that

IP

(∫ T

0
1{R̄N

s >R} R̄
N
s ds ≥ η

)

≤ C

η
T e− 1

2χN .
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To deal with the square integrable martingale terms MN ,i , 1 ≤ i ≤ 3, we rely on the
Bernstein inequality of [8, Theorem 3.3]). For any square integrable purely discontinuous
martingale M, writing

[M]t =
∑

s≤t

(
Ms)
2, and < M >t for its predictable compensator,

and putting, for a fixed a,

Ha
t :=

∑

s≤t

(
Ms)
21{|
Ms |>a}+ < M >t ,

we have that

IP(M∗
t ≥ z, Ha

t ≤ L) ≤ 2 exp

(

−1

2

z2

L
ψ
(az

L

))

, (7.10)

where ψ(x) = (1 + x/3)−1 and M∗
t = sups≤t |Ms |.

Observing that MN ,2 and MN ,3 have jumps bounded by 1
N and quadratic variation

bounded by

< MN ,i >T ≤ KT

N
, i = 2, 3,

we apply (7.10) with a = 1
N and L = KT

N to obtain, for i = 2, 3,

IP(sup
s≤T

|MN ,i
s | ≥ z) ≤ 2 exp

(

−1

2

z2

KT
ψ
( z

KT

)
N

)

.

Choosing z = εKT
N1/4 , for some 0 < ε < 1, this yields, for i = 2, 3,

IP

(

sup
s≤T

|MN ,i
s | ≥ εKT

N 1/4

)

≤ 2 exp

(

−1

2
ε2ψ(1)

√
NKT

)

≤ 2 exp

(

−1

2
ε2ψ(1)

√
N

)

,

(7.11)

where we have used that KT ≥ 1, that ψ( z
KT ) ≥ ψ(1), since ψ is decreasing, and z

KT ≤ 1.

We now treat MN ,1
t . In the following we shall apply (7.10) with a = 0. Then

H0
T ≤ α2

N 2

N∑

j=1

∫ T

0

∫

R+
(RN

s−( j))21{z≤ϕ(UN
s−}M

j (ds, dz) + α2K

N 2

N∑

j=1

∫ T

0
(RN

s ( j))2ds.

Using that RN
s ( j) ≤ RN

0 ( j) + JT ( j), we get

α2

N 2

N∑

j=1

∫ T

0

∫

R+
(RN

s−( j))21{z≤ϕ(UN
s−}M

j (ds, dz)

≤ 2α2

N

⎛

⎝ 1

N

N∑

j=1

[
(RN

0 ( j))2 + (JT ( j))2
]
JT ( j)

⎞

⎠ .

This implies that H0
T possesses exponentialmoments; that is, there exists some ν > 0 such that

IEeνH0
T < ∞.Moreover, since sups IE(RN

s ( j))2 < ∞, IEH0
T ≤ 2 α2K

N T supt IE(RN
s ( j))2 =
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CT /N . Therefore, using a large deviations upper bound, choosing cT = CT +1,we deduce
that for a suitable constant C,

IP(H0
T ≥ cT /N ) ≤ Ce−cN .

Applying (7.10) with L = cT /N , z2 = ε2cT N−1/2 and a = 0, we deduce from this that

IP(sup
s≤T

|MN ,1
s | ≥ ε

√
cT N

−1/4) ≤ Ce− 1
2 ε2

√
N + Ce−cN ≤ Ce−cε2

√
N .

Consequently, choosing e.g. η = εN−1/4,

IP

(

sup
s≤T

(

|UN
s − us | +

∣
∣
∣
∣
∣
1

N

N∑

i=1

RN
s (i) − rs

∣
∣
∣
∣
∣

)

≥ N−1/4(CR)T+1[2ε + εT 1/2 + 2KT ε]
)

≤ CTe−cε2
√
N .

Taking N0 such that N
−1/4
0 (CR)T+1[2+ T 1/2 + 2KT ] ≤ N−1/5

0 , we obtain the assertion. ��
We close this section with the proof of the second item of Theorem 2.5.

Proof of the third item of Theorem 2.5 Since (umax , rmax ) is locally attracting, t1 is finite (and
deterministic). We apply the first item of Theorem 2.5 with T = t1. It implies that for all
N ≥ N0,

IP

(

|UN
t1 − ut1 | +

∣
∣
∣
∣
∣
1

N

N∑

i=1

RN
t1 (i) − rt1

∣
∣
∣
∣
∣
≥ ε

)

≤ Ct1e
−ct1 ε2

√
N ,

which implies the assertion. ��
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