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ARTICLE INFO ABSTRACT

Communicated by Cummings Russell Dynamic stall is an aerodynamic regime characterized by loss of airfoil lift, drag increment, and abrupt changes
in the pitching moment. Such effects can couple with structural dynamics where perturbations can be easily
amplified, making this a critical phenomenon that jeopardizes operational safety. Hence, there is always the need
to constantly study the basics of dynamic stall and provide newer predictive models that can take advantage of
the current interest peak in artificial intelligence. The present work builds upon that need, exploring the ability
of a simple feed-forward network to predict the oscillation cycle of a pitching airfoil experiencing from light to
deep stall of a NACA0012 airfoil close to a Reynolds number of approximately 1.4 x 10°. The proposed neural
network uses the angle of attack and its rate of change as inputs, then estimates the whole aerodynamic cycle
at once, outputting an aggregated vector of drag, lift, and pitching moment coefficients. The training phase
was conducted using a database containing several conditions obtained from experimental tests, with a strict
convergence criterion of R? = 0.99 for both training and test datasets. Results show that the neural network, even
in the least-performing conditions, can capture the aerodynamics and overall tendencies, even if some dynamics
are underrepresented in the training dataset. The present work brings down the complexity of methodology while
demonstrating that a simplistic architecture can still offer an accurate dynamic stall model.
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1. Introduction However, while there is considerable research on dynamic stall and its
adverse effects, currently there is no fast and reliable way to estimate
unsteady aerodynamics given a specific periodic oscillation [3]. The
current spike in interest in artificial intelligence (AI) concepts can accel-
erate the intersection between aerodynamics and neural networks-based
models, as these have the potential to capture and generalize the under-

lying patterns and phenomena that govern dynamic stall behavior [4].

Unsteady aerodynamics, as a subject area, combines several essen-
tial study fields and applications that act as the foundation for many
systems and technologies. One of these critical research fields concerns
the dynamic stall regime, which is receiving enormous attention mainly
due to its significant impact on the performance and safety of various

systems.

At the earlier stages of dynamic stall exploration, it was suggested
that if dynamic stall phenomena were better understood, there would be
an easier way to improve airfoil design [1]. Dynamic stall is an unsteady
aerodynamic phenomenon that occurs when an airfoil rapidly exceeds
a critical stall angle, leading to flow separation and the formation of a
dynamic stall vortex (DSV). This process usually involves four phases:
a phase of flow attachment, onset of flow separation, followed by vor-
tex formation and lift enhancement, vortex shedding with abrupt lift
loss, and then, flow reattachment as the angle of attack decreases [2].
These phases result in significant oscillations in drag, lift, and moment,
which, as aforementioned, have a significant influence on performance.
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The capacity of Al modeling to predict unsteady flows was leveraged
by Miotto and Wolf [5], who considered a convolutional neural network
(CNN) to model the aerodynamic response from flowfield images. In
fact, the results showed that the neural network could correlate impor-
tant flow characteristics with the airfoil response, indicating that such a
methodology could be an alternative to traditional high-cost modeling.
Aside from load prediction, convolutional neural networks also have the
potential to predict the evolution of coherent structures around an air-
foil [6], which can further enhance the correlations between loads and
flow features. Additional airfoil characteristics, such as the airfoil pres-
sure distribution response regarding the variation of the angle of attack,
can also take advantage of machine learning [7].
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Also focused on Al modeling driven by flow field images and physical
representations, Mi and Cheng [8] developed a straightforward method
that avoids considering aerofoil geometry information while eliminating
the necessity of discretely predicting the flow field. Others, for instance,
Damiola et al. [9], used a state-space neural network to model the un-
steady lift force of a pitching airfoil, capturing highly nonlinear flow
features like stall vortex formation, with the authors reinforcing that
the followed procedure is valuable for engineering applications involv-
ing design optimization and real-time control. Kasmaiee et al. [10] used
neural networks to train the aerodynamic coefficients as a function of
control parameters from a suction-based active flow control system, be-
ing these the suction location, velocity, opening length, and suction jet
angle relative to the airfoil surface. With the use of artificial intelligence,
the authors report a considerable drag reduction with a lift improve-
ment, all achieved with the suppression of the dynamic stall vortex.
Dynamic stall mitigation can also come from shape optimization, as
shown by Liu et al. [11], who developed a surrogate model based on
deep learning connected with a multi-island genetic algorithm. With this
methodology, the rotor airfoil was successfully optimized, and a notice-
able reduction in the drag and pitching moment peaks was obtained.

The dynamic stall phenomenon also plays a crucial role in horizontal-
axis wind turbines. Therefore, accurate modeling and prediction of the
dynamic stall is required. This motivated Shi et al. [12] to explore a data-
knowledge fusion method that merges physical knowledge into a neural
network. Others, as Baldan and Guardone [13], also use a physics-based
loss function linked to a convolutional neural network, showing remark-
able performance while predicting aerodynamic loads in a wide range
of conditions.

In the wind energy field context, Kiippers and Reinicke [14] pre-
sented a methodology employing a fully stochastic machine learning
model, trying to model somehow the load peaks and their uncertainty
since averaging can blur many aerodynamic features. Indeed, modeling
imprecisions are noted by the authors as a significant limitation. For
instance, a RANS approach will not truly capture cycle variations, and
scale-solving models require considerable computational power. Never-
theless, Wang et al. [15] showed that the synergy between experimental
and simulation data can reduce the prediction error up to five times
when compared to conventional CFD methodologies.

It was also noted by Damiola et al. [16] who focused on the cycle-
to-cycle variability, discussing the limitations of conventional phase-
average, which can lead to inaccuracies in some conditions. At the
root of their study, they proceed with the state-space neural network
coupled with an extended Kalman filter, showing that it could dynami-
cally embody experimental data while enhancing model accuracy. These
methodologies can be helpful in developing a neural network-based re-
duced order model (ROM) for predicting the aerodynamic forces [17] or
creating a nonlinear aeroelastic model based on artificial intelligence.
Compared to traditional aeroelastic computational fluid dynamics sim-
ulations, Al-based reduced order models provide a noticeable decrease
in computation resources without sacrificing accuracy, as Torregrosa et
al. [18] explored.

As the dynamic stall phenomenon is inherently time-dependent, var-
ious research resort to conventional time-dependent neural networks.
Zhang et al. [19] designed a recurrent neural network (RNN) to extract
the sequential force data based on the prescribed kinematics and past
airfoil dynamics. After training with a group of sinusoidal chirp signals
with varying amplitude and frequency, the RNN showed its potential by
accurately predicting the airfoil dynamics.

Model accuracy with limited data is also a desired outcome. Wang
et al. [20] used a dynamic derivative model coupled with a fuzzy neu-
ral network model, showing that even with sparse experimental data,
the model could achieve reasonable accuracy. The authors indicate that
such methods are beneficial when experimental data is limited, reducing
the dependence on high-fidelity data.

While a considerable amount of research applying Al methods has
been conducted, significant challenges remain concerning applying neu-

Aerospace Science and Technology 165 (2025) 110466

« Neurons

(o)

activated with
PRelLU

Fig. 1. FNN Architecture.

ral networks to dynamic stall modeling. A critical aspect in this field is
the lower use and lack of experimental data in the training process, with
most research resorting to numerical results, which have several limita-
tions [21]. The present work sheds some light on this aspect by using
a database of experimental data containing cases affected by airfoil dy-
namic stall behavior. Furthermore, the paper shows how a conventional
feedforward neural network (FNN) can offer a simple yet compelling so-
lution to estimate the unsteady aerodynamics of a pitching airfoil, even
with all the variability that comes with experimental measurements.

2. Methodology

The methodology used in this study involves developing a neural net-
work capable of estimating two-dimensional aerodynamic coefficients
for a diverse range of oscillating conditions. These conditions are char-
acterized by sinusoidal waves, representing systems that experience pe-
riodic dynamic stall behavior.

2.1. Neural network architecture

A feedforward neural network (FNN) is considered to reach the main
objective, where kinematics (@ and &) are taken as inputs, and the three
aerodynamic coefficients (C,;, C;, and C,,) are the outputs. The selec-
tion of an FNN was motivated by its ability to model complex, nonlinear
relationships between input features (such as angle of attack, and its
rate of change) and aerodynamic outputs, thus being a great alterna-
tive to predict dynamic stall, known for its high nonlinearity. The FNN
architecture is well-suited for regression tasks where each prediction is
based solely on the current input, making it effective for mapping the
aerodynamic response of an airfoil under unsteady conditions without
requiring internal memory of previous states, which would otherwise re-
quire more intense training processes. In fact, the use of an FNN offers
advantages in terms of computational simplicity and training efficiency,
making it suitable for engineering applications where rapid evaluation
and integration into larger simulation frameworks are required.

The neural network and adjacent blocks are all developed from the
ground up in GNU Octave, allowing for greater control and upgrad-
ability in the future. A generic representation of the neural network
architecture is shown in Fig. 1. Further details on its internal architec-
ture are given in the results obtained during the training phase.

For the present work, the input layer is formally given by the input
vector x that contains the periodic history of the angle of attack, a, and
the pitching velocity, &, as

x=[a & €))
Then, information from the inputs enters and keeps flowing through

the neural network until reaching the output layer, recurring to

h_ h h—1_, th
z; —Zwijai +bj, (2)
1

where z;‘ is the net input to neuron j in layer h, wlhj is the weight

connecting neuron i in layer 4 — 1 to neural j in layer h, af"l is the
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activation of neuron i in layer 4 — 1, and b;’ is the bias of neuron j in
layer A.

Concerning the activation phase, as one wants to create the ability
to predict complex and nonlinear problems, nonlinearity is introduced
into the neural network through a nonlinear function, where neurons
are activated as

a;=o0(z)) , 3)

with o(-) being the activation function, assumed in the present work as
the Parametric Rectified Linear Unit (PReLU) given by

@ z ifz>0 @
o(z)= s

cz ifz<0
with ¢ =0.1.

At the first hidden layer, a?’_l is simply considered the input vector,
x. Concerning the output layer, it follows the same recurrence pre-
sented in Equation (2). However, no activation is performed, meaning
that it uses a linear activation function, where the output is simply the
weighted sum of the previous layer plus biases, without any modifica-
tion. In the present work, the output layer should provide the drag, lift,
and moment coefficients, expressed in vectorial form as

y=[Cs € Cm]Tv )

with C; =2D/pU?S, C,=2L/pU?S, C,, =2M /pU>Sc, where D, L,
M are the lift, drag and pitching moment, p is the fluid viscosity, U is
the wind speed, S is the wing area and c is the chord length.

In its final architecture, the neural network has 200 inputs, a first hid-
den layer with 200, a second with 300, and at the output, 300 elements.
Regarding the input layer, there are 100 points with the periodic oscil-
lation of the angle of attack, followed by 100 elements corresponding
to pitching velocity. On the other hand, the output layer has a sequence
of elements representing the drag, lift, and moment coefficients, each
with 100 elements, resulting in 300 outputs. With this architecture, one
can simply input the whole cycle kinematics information and get the
expected aerodynamic behavior.

2.2. Data preparation and training phase

The neural network is trained following a supervised learning strat-
egy, assuming a known dataset. For the present work, the dynamic stall
database reported by Green and Giuni [22] is used, obtained during
experimental tests at the James Watt School of Engineering of the Uni-
versity of Glasgow. From the vast database, only the available data from
the NACAO0012 airfoil subjected to sinusoidal pitching motion while
under bidimensional conditions was selected. The total number of cor-
responding cases is 223, all with a Reynolds number close to 1.4 x 10°.
For more details, refer to Ref. [22].

Before the training phase, the database is preprocessed to standard-
ize the inputs, as the FNN is not input-flexible. Consequently, as the
neural network requires, every condition goes through an interpolation
subroutine before entering the neural network, creating an array with
100 elements. Additionally, to improve the convergence and learning
performance, all variables, from inputs to outputs, are normalized by
their respective maximum values. Furthermore, the standardization pro-
cess also required phase-correcting the kinematics, which is a hard re-
quirement during the data preparation. This procedure guarantees that
each input neuron corresponds to a specific time frame in the period.
Otherwise, estimates would be intrinsically dependent on the kinemat-
ics phase. As the FNN does not operate in time, this means that to get an
accurate estimate of a specific condition, one needs to know the kine-
matics and the phase that would maximize accuracy, which is not known
a priori. Accordingly, all conditions are time-shifted to the waveform,

a=a+ A, cosr f1), (6)
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Fig. 2. Training and test datasets in the max a and f domain. (For interpretation
of the colors in the figure(s), the reader is referred to the web version of this
article.)

where « is the mean angle of attack, A4, is the pitching angle amplitude
(degrees) and f is the pitching frequency (Hz).

For the specific training of the current neural network, one strives
to minimize the FNN’s outputs and the dataset targets, making this a
typical regression problem. The mean squared error (MSE) is used as
the loss function, £, given by

N
LSy
= Nizzl(yl % %)

which should be minimized through optimization, where y; is the true
value, y; is the FNN estimate and N is the sample size.

In the present work, training is performed with the gradient descent
coupled with the Adaptive Moment Estimation (Adam) extension which
incorporates adaptive momentum to improve the convergence speed
and accuracy of training [23]. The complete FNN implementation is
available at the repository neuroStall [24] under the MIT license.

3. Results and discussion

This section shows the training and testing phase results, focusing
on the architecture selection, training quality, and overall performance
of the proposed FNN regarding its potential to predict the temporal evo-
lution of aerodynamic coefficients when the airfoil operates in dynamic
stall regimes. The dynamic stall database reported by Green and Giuni
[22] from the University of Glasgow was selected to proceed with the
training and testing phases.

3.1. Training process

The training phase starts by randomly creating two subsets of data
from the 223 cases in the database from the University of Glasgow. The
first group, the training group, contains 80 % of the database and is used
to properly train the neural network by minimizing equation (7). The
second group, with 20 % of the database, is used to evaluate the gen-
eralization capabilities of the FNN and monitor the occurrence of an
overfitting regime. These two data subsets are shown in Fig. 2, where the
combination of motion frequency and maximum angle of attack reached
during the oscillation can be seen.

Regarding the convergence and training completion, it was consid-
ered that the neural network should be trained under one thousand
epochs with the R? of all test cases reaching at least 0.99. This procedure
required a brief iterative study to identify a neural network architecture
that could achieve such requirements. One aspect that should be men-
tioned is that the training vector is shuffled before each training epoch
to remove any case sequence biases. Due to the random selection of con-
ditions, such a condition can generate different convergence rates and
curves from those presented in this Section if one wants to rerun the
training phase.
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Fig. 3. MSE and R? during training considering one hidden layer with 200 neu-
rons.
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Fig. 4. MSE and R? during training considering one hidden layer with 300 neu-
rons.

A sensitivity test regarding the number of internal neurons was car-
ried out. An FNN possessing only one internal layer with 200 elements
was considered first. Afterward, the number of neurons was increased
to 300, showing the results in Figs. 3 and 4, respectively. As one can see,
the FNN with one hidden layer, regardless of the number of elements,
could not achieve the trained status, as it did not meet the established
criteria under 1000 epochs.

An FNN with just one hidden layer did not favor the training process
and must be upgraded to include an additional hidden layer. Now, with
two hidden layers, the neural network is trained with a first layer con-
taining 200 neurons and a second layer with 300 neurons that connect
to the 300 outputs. The MSE and R? evolution over time are shown in
Fig. 5. With the additional hidden layer, the FNN training convergence
was achieved by verifying the established threshold, which was short

Aerospace Science and Technology 165 (2025) 110466

107 Training group
——  Test group
Ll
2107 2
107° ‘
0 200 400 600 800 1000
Epoch, ¢
1 — _
L Ll A L AL A A
0.9
R2
0.8 Training group
———  Test group

0 200 400 600 800 1000
Epoch, ¢

Fig. 5. MSE and R? during training considering two hidden layers with 200 and
300 neurons.

of 900 epochs, without reaching an overfitted state. While the R? is at
least 0.99 for all cases put together, we should also note that some indi-
vidual cases do not meet the threshold. These will be quantified further,
viewing a broader analysis of the FNN performance.

Following the sensitivity analysis, the FNN training moves to the
phase where we evaluate its capability to predict the aerodynamic be-
havior of oscillating cases. One quick and visual way to verify the pre-
dictive capabilities of the neural network is to plot the estimated and
desired values (ground truth) for the two subsets of data (cf. Fig. 6),
where the three aerodynamic coefficients are plotted separately.

Fig. 6 reveals that the training group exhibits a point cloud around
the y = x function, indicating that the neural network’s output is near
the actual values, regardless of the aerodynamic coefficient. The same
can be seen in the test group, which indicates that the neural network
is effectively generalizing from the training data. Nevertheless, one can
still notice cloud dispersion, which is likely a consequence of the nature
of experimental data, such as measurement noise, artifacts, or experi-
mental inconsistencies.

For a more precise quantitative analysis, Fig. 7 shows the R> fre-
quency distribution for each individual case in the training and test
groups. As observed, both sets have a similar distribution, reinforcing
that the neural network is generalizing well in the test group. Indeed,
one can notice that some cases occurring in both groups did not reach
the R? =0.99 threshold, which might indicate that some of these exam-
ples belong to underrepresented regions or that some specific dynamics
are not being learned well. Nevertheless, all cases have at least a R> of
at least 0.90, indicating that the estimates given by the neural network
are a good fit compared to measured data.

However, when the R2 is used in this manner, where all cases and
aerodynamic coefficients are aggregated, each with the same impor-
tance, an important reminder must be made. Could this consideration
add a substantial bias during training, as C,, values are typically much
smaller than those of C; and C;, consequently reducing the C,, impor-
tance in the R? value? While this was not a significant limitation in
the present work, judging by the training group in Fig. 6, it could be
considered for future research either segregating each coefficient with a
smaller neural network or preparing a training that considers weighted
error metrics to provide the same level of impact to the R? calcula-
tion.



E.A.R. Camacho, A.R.R. Silva and F.D. Marques

Training Group

Aerospace Science and Technology 165 (2025) 110466

Test Group

Ca < Oy
Cy x C
Crm *Cm
02 04 06 038 1 02 04 06 08 1
Fig. 6. FNN estimates vs targets of both training and test groups.
Training Group Test Group
! !
60 - 20
40
10
20
0 i Do Deefl oAb n n 0 nmn n f n n
09 092 094 096 0.98 1 09 092 094 096 0.98 1
R? R?
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Fig. 8. Case 221 from the test pool with R? = 0.9373.

3.1.1. Least-performing examples

To properly assess the FNN’s predictive performance, a group of
graphs was selected to observe the aerodynamic coefficients as a func-
tion of the angle of attack. This section presents the top five least-
performing cases (with the lowest R?) to identify the FNN’s most signif-
icant shortcomings.

Fig. 8 illustrates case 221, which has the lowest R? (=0.9373) from
the test group. Regarding drag, the FNN does provide a good approx-
imation, but there is a visible overestimation of the maximum drag
experienced at higher angles of attack. A similar effect is seen on the lift
coefficient during the descending phase of the airfoil, which smooths
out the oscillation seen between 20° and 25° and overestimates the lift
generation during the whole descent. Nevertheless, the ascending phase
is accurately represented with a great prediction of the peak lift. The
pitching moment suffers from an identical problem, where it overesti-
mates its magnitude for a vast portion of the period while interestingly
capturing the intense nose-down peak moment. Nevertheless, while spe-
cific effects need to be addressed, the neural network provides an overall
good approximation compared to the experimental measurements.

The second lowest R? (= 0.9392) is presented in Fig. 9 for case 196,
exhibiting similar challenges as the case before. Drag is slightly over-
estimated, accompanied by a higher lift, mainly during the descending
phase. While the moment coefficient indicated by the FNN resembles

the infinity pattern, it fails to accurately predict the pitching moment
magnitude.

In the following cases, 202 and 206, respectively, shown in Figs. 10
(R? =0.9463) and 11 (R? = 0.9668), additional challenges in the aero-
dynamic prediction are seen. In contrast to the previous conditions,
where, for instance, the lift peak was somewhat well predicted, here,
some of the phases where abrupt changes occur are smoothed out, which
indicates that, in some conditions, the FNN will be somewhat limited
when predicting local or fast-occurring phenomena such as vortex shed-
ding.

Fig. 12 (R? = 0.9795) depicts case 193, where the airfoil is at a pre-
stall region. It is observed that the neural network performs quite well
when compared to when it is subjected to higher angles of attack. It
is essential to discuss these discrepancies from different regions of the
angle of attack, which are likely to be influenced by the inherent vari-
ability and measurement noise that is typically present in experimental
data. Indeed, and revisiting the previous cases, at lower angles of at-
tack, the neural network performs very well, indicating that the FNN,
as it is, is capable of predicting regions with smooth aerodynamic behav-
ior, which suggests minimal data variability. However, when revisiting
the post-stall regions, discrepancies quickly grow, implying that the net-
work struggles in these areas either due to data sparsity, the complexity
of the underlying physics, or, most likely, data variability due to the ran-
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Fig. 12. Case 193 from the test pool with R? = 0.9795.

dom nature of dynamic stall coupled with turbulent flow. This condition
comes as a consequence of employing a deterministic neural network,
which struggles to truly capture variability in experimental data, as it
will always tend to generalize by learning the mean trend rather than
capturing measurement fluctuations.

While this subsection focused on the lowest-performance cases, one
should not ignore the FNN’s already good performance. The test group
had all cases with an R? of at least 0.90.

3.1.2. Best-performing and intermediate examples

When looking at the five cases with the highest coefficient of deter-
mination, RZ, it is no surprise that, based on the observations made in
the previous section, some of the best conditions are in the lower angle
of attack region, where the attached flow is present.

In Figs. 13 through 15, one can observe that the predictions made by
the neural network are very close to the measurements, indicating once
again that this region is adequately modeled by the feedforward neural
network, where data variability that may arise from highly nonlinear
dynamics stall phenomena is not present.

Interestingly, the other two best-performing cases (namely, 16 and
145) touch high angles of attack regions with highly nonlinear effects
(cf. Figs. 16 and 17). As observed, in such conditions, the neural net-
work can anticipate all aerodynamic coefficients, capturing the drag’s
intricacies, the rapid increase in lift after 20° followed by the sharp de-
cline typically associated with the vortex shedding process. One can also
see the outstanding FNN capability in the moment coefficient of these
particular cases, comprehending the complex aerodynamic pattern and
accurately predicting the nose-down peak value.
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Experimental and FNN data with @ = 3.73°, A, = 14.0° and f = 4.11 Hz
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In addition to the best-performing prediction cases, five intermediate
cases were evenly selected from the test group for a broader observation
of the predictive capabilities of the FNN, shown in Figs. 18 to 22.

Results indicate that the FNN provides a straightforward way to
quickly predict the aerodynamics of airfoils subjected to periodic wave-
forms. The neural network model captures the overall tendency of the
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Wi b1 Wa

b Wy by

Fig. 23. FNN weights and biases.

aerodynamic coefficients during the oscillation cycle. Nonetheless, as
seen before, in some instances, the aerodynamic coefficients can be
slightly over- or under-estimated, significantly farther from the linear
lift region.

3.2. The FNN model features

For the final phase of the analysis, an internal view of the neural
network is provided to discuss its architecture. Fig. 23 shows the in-
sides of the neural network, where the weights and biases arrays are
normalized by their respective maximum absolute value. Blacker ele-
ments correspond to higher weight and bias values.

Looking at the first layer (W] and b,), which is directly connected
to the inputs, one can see that the weights are divided into two major
vertical regions that correspond to the elements multiplied by the a« and
& vectors. When comparing these two regions, the & band is much more
activated, with higher values located at the columns that correspond to
the t/T = 0.0, 0.5, and 1.0, corresponding to when the airfoil changes
the pitching direction and has maximum acceleration.

The slight over-dependence on the pitching velocity is no surprise
since & significantly influences unsteady aerodynamic effects such as
vortex formation and shedding. These flow effects that introduce hys-
teresis in the aerodynamic coefficient are known to depend not just on
the instantaneous angle of attack, a, but on how quickly it changes.

The second (hidden) layer, which acts as an intermediate feature
extractor that combines the relationships between the inputs and the
aerodynamic coefficients, appears to be highly entropic without clear
patterns. This could be due to the complexity of the dynamic stall phe-
nomenon, where many nonlinear effects and interactions exist, or the
FNN’s adaptation to capture subtle details in the data.

Identical to the first layer, the third layer is divided into regions,
specifically three distinct horizontal bands, which correspond to the
drag, lift, and pitching moment coefficients. This output segmentation
indicates that the FNN is learning specialized features for each aerody-
namic coefficient. Nevertheless, the distinct areas are not synonyms of
complete independence, as the second layer can act as a mixer, mainly
because the three aerodynamic coefficients are aerodynamically con-
nected.

A closer look at the individual bands also indicates that the third
layer is more activated closer to the middle of these regions, correspond-
ing to the time frame around /T = 0.50. Based on the training data and
its structure, this is when the airfoil experiences high angles of attack,
leading to the occurrence of the dynamic stall, which affects all coeffi-
cients. Accordingly, this last layer ends up highlighting highly unsteady
separation effects which drastically increase drag, intensely affect C,
due to vortex-induced lift peaks and hysteresis, and cause considerable
C,, shifts due to irregular and time-varying pressure distribution around
the airfoil.

With this final analysis, one can get a simplistic yet powerful view
of the FNN’s insides, verify the relative importance between the inputs,

and understand, from a superficial perspective, how the flow of infor-
mation travels through the FNN. While the use of a feedforward neural
network that predicts the whole aerodynamic cycle instantly offers a
great way for preliminary design, especially when analyzing periodic
regimes, for instance rotor aerodynamics, one should not neglect the
limitations of such an approach. The current architecture has as its in-
puts a and &, meaning that no information regarding flow conditions
is given. However, as is commonly known, the Reynolds number influ-
ences the evolution of dynamic stall phenomena. Hence, as a recommen-
dation for a future update, one could incorporate a new input vector, for
instance @c /U, that, through the flow speed, introduces the effect of the
Reynolds number. An additional limitation is that the aerodynamic pre-
dictions are based solely on kinematics, which can be restrictive under
certain conditions. Prediction accuracy could be enhanced by incorpo-
rating kinematic data and the historical aerodynamic behavior, which
is a priority for future research. Moreover, the present architecture will
provide phase-locked results without the possibility of real-time updates
of aerodynamic coefficients, as explained in subsection 2.2. Neverthe-
less, as observed in the results, the FNN does capture temporal effects
with its large network of connections from each time frame.

4. Conclusions

Studying dynamic stall phenomena is crucial to expediting airfoil
design, identifying unwanted aerodynamic regimes, and, at a practical
level, improving operational safety. While the root causes of the dy-
namic stall are well understood, there is still no reliable and inexpensive
method to predict the aerodynamic loads. This implies that, for instance,
the hidden patterns in experimental data are not being uncovered and
that known limitations in numerical methodology are still being perpet-
uated.

Artificial intelligence techniques can help unlock the uncovered con-
nections, offering a straightforward way to quickly understand the par-
ticular problem of oscillating airfoils without extensive and complex
modeling. The present work has this objective: to show that the dynamic
stall can be estimated even with a straightforward neural network archi-
tecture. A feed-forward network is selected to achieve such an objective,
using the kinematics, including the angle of attack and pitch rate, as
inputs. Since this is not a neural network acting in time, all cycle infor-
mation is given at once, meaning that the complete cycle aerodynamics
that includes drag, lift, and pitching moment are obtained simultane-
ously. The training phase was performed using experimental dynamic
stall data from a known database from the University of Glasgow, con-
taining many cases ranging from light to deep stalls with various pitch-
ing amplitudes and frequencies. With a supervised learning approach,
using the gradient descent coupled with the Adam algorithm, the neural
network achieved a R? = 0.99 for both testing and test datasets. Re-
sults are clear, showing that the neural network is a reliable tool to
estimate the aerodynamic cycle even in the least-performing cases. The
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good performance metrics indicate that the FNN understands the under-
lying dynamics of time-dependent stalls even with diverse conditions.
Indeed, no case from either dataset experienced a R less than 0.90. The
final phase of the results shows a brief analysis of the weights where one
can look at the insides of the neural network, which revealed a more
considerable activation in the pitch rate compared to the angle of at-
tack and a strong segmentation in the last hidden layer, indicating that
specialized features for each aerodynamic coefficient are being learned.

Taking advantage of artificial intelligence to study unsteady aerody-
namics should be fomented, where a simple neural network can capture
the fundamentals of the dynamic stall with the ability to be trained with
new data as obtained. Future research should be focused on the tran-
sient essence of the problem by exploring neural networks that act in
time, such as recurrent or physics-informed neural networks, as well as
exploring different kinematics for a more versatile use.
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