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Dynamic stall is an aerodynamic regime characterized by loss of airfoil lift, drag increment, and abrupt changes 
in the pitching moment. Such effects can couple with structural dynamics where perturbations can be easily 
amplified, making this a critical phenomenon that jeopardizes operational safety. Hence, there is always the need 
to constantly study the basics of dynamic stall and provide newer predictive models that can take advantage of 
the current interest peak in artificial intelligence. The present work builds upon that need, exploring the ability 
of a simple feed-forward network to predict the oscillation cycle of a pitching airfoil experiencing from light to 
deep stall of a NACA0012 airfoil close to a Reynolds number of approximately 1.4 × 106. The proposed neural 
network uses the angle of attack and its rate of change as inputs, then estimates the whole aerodynamic cycle 
at once, outputting an aggregated vector of drag, lift, and pitching moment coefficients. The training phase 
was conducted using a database containing several conditions obtained from experimental tests, with a strict 
convergence criterion of 𝑅2 = 0.99 for both training and test datasets. Results show that the neural network, even 
in the least-performing conditions, can capture the aerodynamics and overall tendencies, even if some dynamics 
are underrepresented in the training dataset. The present work brings down the complexity of methodology while 
demonstrating that a simplistic architecture can still offer an accurate dynamic stall model.

1. Introduction

Unsteady aerodynamics, as a subject area, combines several essen

tial study fields and applications that act as the foundation for many 
systems and technologies. One of these critical research fields concerns 
the dynamic stall regime, which is receiving enormous attention mainly 
due to its significant impact on the performance and safety of various 
systems.

At the earlier stages of dynamic stall exploration, it was suggested 
that if dynamic stall phenomena were better understood, there would be 
an easier way to improve airfoil design [1]. Dynamic stall is an unsteady 
aerodynamic phenomenon that occurs when an airfoil rapidly exceeds 
a critical stall angle, leading to flow separation and the formation of a 
dynamic stall vortex (DSV). This process usually involves four phases: 
a phase of flow attachment, onset of flow separation, followed by vor

tex formation and lift enhancement, vortex shedding with abrupt lift 
loss, and then, flow reattachment as the angle of attack decreases [2]. 
These phases result in significant oscillations in drag, lift, and moment, 
which, as aforementioned, have a significant influence on performance. 
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However, while there is considerable research on dynamic stall and its 
adverse effects, currently there is no fast and reliable way to estimate 
unsteady aerodynamics given a specific periodic oscillation [3]. The 
current spike in interest in artificial intelligence (AI) concepts can accel

erate the intersection between aerodynamics and neural networks-based 
models, as these have the potential to capture and generalize the under

lying patterns and phenomena that govern dynamic stall behavior [4].

The capacity of AI modeling to predict unsteady flows was leveraged 
by Miotto and Wolf [5], who considered a convolutional neural network 
(CNN) to model the aerodynamic response from flowfield images. In 
fact, the results showed that the neural network could correlate impor

tant flow characteristics with the airfoil response, indicating that such a 
methodology could be an alternative to traditional high-cost modeling. 
Aside from load prediction, convolutional neural networks also have the 
potential to predict the evolution of coherent structures around an air

foil [6], which can further enhance the correlations between loads and 
flow features. Additional airfoil characteristics, such as the airfoil pres

sure distribution response regarding the variation of the angle of attack, 
can also take advantage of machine learning [7].
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Also focused on AI modeling driven by flow field images and physical 
representations, Mi and Cheng [8] developed a straightforward method 
that avoids considering aerofoil geometry information while eliminating 
the necessity of discretely predicting the flow field. Others, for instance, 
Damiola et al. [9], used a state-space neural network to model the un

steady lift force of a pitching airfoil, capturing highly nonlinear flow 
features like stall vortex formation, with the authors reinforcing that 
the followed procedure is valuable for engineering applications involv

ing design optimization and real-time control. Kasmaiee et al. [10] used 
neural networks to train the aerodynamic coefficients as a function of 
control parameters from a suction-based active flow control system, be

ing these the suction location, velocity, opening length, and suction jet 
angle relative to the airfoil surface. With the use of artificial intelligence, 
the authors report a considerable drag reduction with a lift improve

ment, all achieved with the suppression of the dynamic stall vortex. 
Dynamic stall mitigation can also come from shape optimization, as 
shown by Liu et al. [11], who developed a surrogate model based on 
deep learning connected with a multi-island genetic algorithm. With this 
methodology, the rotor airfoil was successfully optimized, and a notice

able reduction in the drag and pitching moment peaks was obtained.

The dynamic stall phenomenon also plays a crucial role in horizontal

axis wind turbines. Therefore, accurate modeling and prediction of the 
dynamic stall is required. This motivated Shi et al. [12] to explore a data

knowledge fusion method that merges physical knowledge into a neural 
network. Others, as Baldan and Guardone [13], also use a physics-based 
loss function linked to a convolutional neural network, showing remark

able performance while predicting aerodynamic loads in a wide range 
of conditions.

In the wind energy field context, Küppers and Reinicke [14] pre

sented a methodology employing a fully stochastic machine learning 
model, trying to model somehow the load peaks and their uncertainty 
since averaging can blur many aerodynamic features. Indeed, modeling 
imprecisions are noted by the authors as a significant limitation. For 
instance, a RANS approach will not truly capture cycle variations, and 
scale-solving models require considerable computational power. Never

theless, Wang et al. [15] showed that the synergy between experimental 
and simulation data can reduce the prediction error up to five times 
when compared to conventional CFD methodologies.

It was also noted by Damiola et al. [16] who focused on the cycle

to-cycle variability, discussing the limitations of conventional phase

average, which can lead to inaccuracies in some conditions. At the 
root of their study, they proceed with the state-space neural network 
coupled with an extended Kalman filter, showing that it could dynami

cally embody experimental data while enhancing model accuracy. These 
methodologies can be helpful in developing a neural network-based re

duced order model (ROM) for predicting the aerodynamic forces [17] or 
creating a nonlinear aeroelastic model based on artificial intelligence. 
Compared to traditional aeroelastic computational fluid dynamics sim

ulations, AI-based reduced order models provide a noticeable decrease 
in computation resources without sacrificing accuracy, as Torregrosa et 
al. [18] explored.

As the dynamic stall phenomenon is inherently time-dependent, var

ious research resort to conventional time-dependent neural networks. 
Zhang et al. [19] designed a recurrent neural network (RNN) to extract 
the sequential force data based on the prescribed kinematics and past 
airfoil dynamics. After training with a group of sinusoidal chirp signals 
with varying amplitude and frequency, the RNN showed its potential by 
accurately predicting the airfoil dynamics.

Model accuracy with limited data is also a desired outcome. Wang 
et al. [20] used a dynamic derivative model coupled with a fuzzy neu

ral network model, showing that even with sparse experimental data, 
the model could achieve reasonable accuracy. The authors indicate that 
such methods are beneficial when experimental data is limited, reducing 
the dependence on highfidelity data.

While a considerable amount of research applying AI methods has 
been conducted, significant challenges remain concerning applying neu

Fig. 1. FNN Architecture. 

ral networks to dynamic stall modeling. A critical aspect in this field is 
the lower use and lack of experimental data in the training process, with 
most research resorting to numerical results, which have several limita

tions [21]. The present work sheds some light on this aspect by using 
a database of experimental data containing cases affected by airfoil dy

namic stall behavior. Furthermore, the paper shows how a conventional 
feedforward neural network (FNN) can offer a simple yet compelling so

lution to estimate the unsteady aerodynamics of a pitching airfoil, even 
with all the variability that comes with experimental measurements.

2. Methodology

The methodology used in this study involves developing a neural net

work capable of estimating two-dimensional aerodynamic coefficients 
for a diverse range of oscillating conditions. These conditions are char

acterized by sinusoidal waves, representing systems that experience pe

riodic dynamic stall behavior.

2.1. Neural network architecture

A feedforward neural network (FNN) is considered to reach the main 
objective, where kinematics (𝛼 and 𝛼̇) are taken as inputs, and the three 
aerodynamic coefficients (𝐶𝑑 , 𝐶𝑙 , and 𝐶𝑚) are the outputs. The selec

tion of an FNN was motivated by its ability to model complex, nonlinear 
relationships between input features (such as angle of attack, and its 
rate of change) and aerodynamic outputs, thus being a great alterna

tive to predict dynamic stall, known for its high nonlinearity. The FNN 
architecture is well-suited for regression tasks where each prediction is 
based solely on the current input, making it effective for mapping the 
aerodynamic response of an airfoil under unsteady conditions without 
requiring internal memory of previous states, which would otherwise re

quire more intense training processes. In fact, the use of an FNN offers 
advantages in terms of computational simplicity and training efficiency, 
making it suitable for engineering applications where rapid evaluation 
and integration into larger simulation frameworks are required.

The neural network and adjacent blocks are all developed from the 
ground up in GNU Octave, allowing for greater control and upgrad

ability in the future. A generic representation of the neural network 
architecture is shown in Fig. 1. Further details on its internal architec

ture are given in the results obtained during the training phase. 
For the present work, the input layer is formally given by the input 

vector 𝐱 that contains the periodic history of the angle of attack, 𝛼, and 
the pitching velocity, 𝛼̇, as

𝐱 =
[
𝛼 𝛼̇

]T
. (1)

Then, information from the inputs enters and keeps flowing through 
the neural network until reaching the output layer, recurring to

𝑧ℎ
𝑗
=
∑
𝑖 
𝑤ℎ
𝑖𝑗
𝑎ℎ−1
𝑖

+ 𝑏ℎ
𝑗
, (2)

where 𝑧ℎ
𝑗

is the net input to neuron 𝑗 in layer ℎ, 𝑤ℎ
𝑖𝑗

is the weight 
connecting neuron 𝑖 in layer ℎ − 1 to neural 𝑗 in layer ℎ, 𝑎ℎ−1

𝑖
is the 
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activation of neuron 𝑖 in layer ℎ − 1, and 𝑏ℎ
𝑗

is the bias of neuron 𝑗 in 
layer ℎ.

Concerning the activation phase, as one wants to create the ability 
to predict complex and nonlinear problems, nonlinearity is introduced 
into the neural network through a nonlinear function, where neurons 
are activated as

𝑎𝑗 = 𝜎(𝑧𝑗 ) , (3)

with 𝜎(⋅) being the activation function, assumed in the present work as 
the Parametric Rectified Linear Unit (PReLU) given by

𝜎(𝑧) =

{
𝑧 if 𝑧 ≥ 0
𝑐𝑧 if 𝑧 < 0

, (4)

with 𝑐 = 0.1.

At the first hidden layer, 𝑎ℎ−1
𝑖

is simply considered the input vector, 
𝐱. Concerning the output layer, it follows the same recurrence pre

sented in Equation (2). However, no activation is performed, meaning 
that it uses a linear activation function, where the output is simply the 
weighted sum of the previous layer plus biases, without any modifica

tion. In the present work, the output layer should provide the drag, lift, 
and moment coefficients, expressed in vectorial form as

𝐲 =
[
𝐶𝑑 𝐶𝑙 𝐶𝑚

]T
, (5)

with 𝐶𝑑 = 2𝐷∕𝜌𝑈2𝑆 , 𝐶𝑙 = 2𝐿∕𝜌𝑈2𝑆 , 𝐶𝑚 = 2𝑀∕𝜌𝑈2𝑆𝑐, where 𝐷,𝐿, 
𝑀 are the lift, drag and pitching moment, 𝜌 is the fluid viscosity, 𝑈 is 
the wind speed, 𝑆 is the wing area and 𝑐 is the chord length.

In its final architecture, the neural network has 200 inputs, a first hid

den layer with 200, a second with 300, and at the output, 300 elements. 
Regarding the input layer, there are 100 points with the periodic oscil

lation of the angle of attack, followed by 100 elements corresponding 
to pitching velocity. On the other hand, the output layer has a sequence 
of elements representing the drag, lift, and moment coefficients, each 
with 100 elements, resulting in 300 outputs. With this architecture, one 
can simply input the whole cycle kinematics information and get the 
expected aerodynamic behavior.

2.2. Data preparation and training phase

The neural network is trained following a supervised learning strat

egy, assuming a known dataset. For the present work, the dynamic stall 
database reported by Green and Giuni [22] is used, obtained during 
experimental tests at the James Watt School of Engineering of the Uni

versity of Glasgow. From the vast database, only the available data from 
the NACA0012 airfoil subjected to sinusoidal pitching motion while 
under bidimensional conditions was selected. The total number of cor

responding cases is 223, all with a Reynolds number close to 1.4 × 106. 
For more details, refer to Ref. [22].

Before the training phase, the database is preprocessed to standard

ize the inputs, as the FNN is not inputflexible. Consequently, as the 
neural network requires, every condition goes through an interpolation 
subroutine before entering the neural network, creating an array with 
100 elements. Additionally, to improve the convergence and learning 
performance, all variables, from inputs to outputs, are normalized by 
their respective maximum values. Furthermore, the standardization pro

cess also required phase-correcting the kinematics, which is a hard re

quirement during the data preparation. This procedure guarantees that 
each input neuron corresponds to a specific time frame in the period. 
Otherwise, estimates would be intrinsically dependent on the kinemat

ics phase. As the FNN does not operate in time, this means that to get an 
accurate estimate of a specific condition, one needs to know the kine

matics and the phase that would maximize accuracy, which is not known 
a priori. Accordingly, all conditions are time-shifted to the waveform,

𝛼 = 𝛼 +𝐴𝛼 cos(2𝜋𝑓𝑡), (6)

Fig. 2. Training and test datasets in the max𝛼 and 𝑓 domain. (For interpretation 
of the colors in the figure(s), the reader is referred to the web version of this 
article.)

where 𝛼 is the mean angle of attack, 𝐴𝛼 is the pitching angle amplitude 
(degrees) and 𝑓 is the pitching frequency (Hz).

For the specific training of the current neural network, one strives 
to minimize the FNN’s outputs and the dataset targets, making this a 
typical regression problem. The mean squared error (MSE) is used as 
the loss function, , given by

 = 1 
𝑁

𝑁∑
𝑖=1 

(𝑦𝑖 − 𝑦̂𝑖)2, (7)

which should be minimized through optimization, where 𝑦𝑖 is the true 
value, 𝑦̂𝑖 is the FNN estimate and 𝑁 is the sample size.

In the present work, training is performed with the gradient descent 
coupled with the Adaptive Moment Estimation (Adam) extension which 
incorporates adaptive momentum to improve the convergence speed 
and accuracy of training [23]. The complete FNN implementation is 
available at the repository neuroStall [24] under the MIT license.

3. Results and discussion

This section shows the training and testing phase results, focusing 
on the architecture selection, training quality, and overall performance 
of the proposed FNN regarding its potential to predict the temporal evo

lution of aerodynamic coefficients when the airfoil operates in dynamic 
stall regimes. The dynamic stall database reported by Green and Giuni 
[22] from the University of Glasgow was selected to proceed with the 
training and testing phases.

3.1. Training process

The training phase starts by randomly creating two subsets of data 
from the 223 cases in the database from the University of Glasgow. The 
first group, the training group, contains 80% of the database and is used 
to properly train the neural network by minimizing equation (7). The 
second group, with 20% of the database, is used to evaluate the gen

eralization capabilities of the FNN and monitor the occurrence of an 
overfitting regime. These two data subsets are shown in Fig. 2, where the 
combination of motion frequency and maximum angle of attack reached 
during the oscillation can be seen.

Regarding the convergence and training completion, it was consid

ered that the neural network should be trained under one thousand 
epochs with the 𝑅2 of all test cases reaching at least 0.99. This procedure 
required a brief iterative study to identify a neural network architecture 
that could achieve such requirements. One aspect that should be men

tioned is that the training vector is shuffled before each training epoch 
to remove any case sequence biases. Due to the random selection of con

ditions, such a condition can generate different convergence rates and 
curves from those presented in this Section if one wants to rerun the 
training phase.
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Fig. 3. MSE and 𝑅2 during training considering one hidden layer with 200 neu

rons.

Fig. 4. MSE and 𝑅2 during training considering one hidden layer with 300 neu

rons.

A sensitivity test regarding the number of internal neurons was car

ried out. An FNN possessing only one internal layer with 200 elements 
was considered first. Afterward, the number of neurons was increased 
to 300, showing the results in Figs. 3 and 4, respectively. As one can see, 
the FNN with one hidden layer, regardless of the number of elements, 
could not achieve the trained status, as it did not meet the established 
criteria under 1000 epochs.

An FNN with just one hidden layer did not favor the training process 
and must be upgraded to include an additional hidden layer. Now, with 
two hidden layers, the neural network is trained with a first layer con

taining 200 neurons and a second layer with 300 neurons that connect 
to the 300 outputs. The MSE and 𝑅2 evolution over time are shown in 
Fig. 5. With the additional hidden layer, the FNN training convergence 
was achieved by verifying the established threshold, which was short 

Fig. 5. MSE and 𝑅2 during training considering two hidden layers with 200 and 
300 neurons.

of 900 epochs, without reaching an overfitted state. While the 𝑅2 is at 
least 0.99 for all cases put together, we should also note that some indi

vidual cases do not meet the threshold. These will be quantified further, 
viewing a broader analysis of the FNN performance.

Following the sensitivity analysis, the FNN training moves to the 
phase where we evaluate its capability to predict the aerodynamic be

havior of oscillating cases. One quick and visual way to verify the pre

dictive capabilities of the neural network is to plot the estimated and 
desired values (ground truth) for the two subsets of data (cf. Fig. 6), 
where the three aerodynamic coefficients are plotted separately.

Fig. 6 reveals that the training group exhibits a point cloud around 
the 𝑦 = 𝑥 function, indicating that the neural network’s output is near 
the actual values, regardless of the aerodynamic coefficient. The same 
can be seen in the test group, which indicates that the neural network 
is effectively generalizing from the training data. Nevertheless, one can 
still notice cloud dispersion, which is likely a consequence of the nature 
of experimental data, such as measurement noise, artifacts, or experi

mental inconsistencies.

For a more precise quantitative analysis, Fig. 7 shows the 𝑅2 fre

quency distribution for each individual case in the training and test 
groups. As observed, both sets have a similar distribution, reinforcing 
that the neural network is generalizing well in the test group. Indeed, 
one can notice that some cases occurring in both groups did not reach 
the 𝑅2 = 0.99 threshold, which might indicate that some of these exam

ples belong to underrepresented regions or that some specific dynamics 
are not being learned well. Nevertheless, all cases have at least a 𝑅2 of 
at least 0.90, indicating that the estimates given by the neural network 
are a good fit compared to measured data.

However, when the 𝑅2 is used in this manner, where all cases and 
aerodynamic coefficients are aggregated, each with the same impor

tance, an important reminder must be made. Could this consideration 
add a substantial bias during training, as 𝐶𝑚 values are typically much 
smaller than those of 𝐶𝑑 and 𝐶𝑙 , consequently reducing the 𝐶𝑚 impor

tance in the 𝑅2 value? While this was not a significant limitation in 
the present work, judging by the training group in Fig. 6, it could be 
considered for future research either segregating each coefficient with a 
smaller neural network or preparing a training that considers weighted 
error metrics to provide the same level of impact to the 𝑅2 calcula

tion.
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Fig. 6. FNN estimates vs targets of both training and test groups. 

Fig. 7. FNN estimates vs targets of both training and test groups. 

Fig. 8. Case 221 from the test pool with 𝑅2 = 0.9373. 

3.1.1. Least-performing examples

To properly assess the FNN’s predictive performance, a group of 
graphs was selected to observe the aerodynamic coefficients as a func

tion of the angle of attack. This section presents the top five least

performing cases (with the lowest 𝑅2) to identify the FNN’s most signif

icant shortcomings.

Fig. 8 illustrates case 221, which has the lowest 𝑅2 (= 0.9373) from 
the test group. Regarding drag, the FNN does provide a good approx

imation, but there is a visible overestimation of the maximum drag 
experienced at higher angles of attack. A similar effect is seen on the lift 
coefficient during the descending phase of the airfoil, which smooths 
out the oscillation seen between 20◦ and 25◦ and overestimates the lift 
generation during the whole descent. Nevertheless, the ascending phase 
is accurately represented with a great prediction of the peak lift. The 
pitching moment suffers from an identical problem, where it overesti

mates its magnitude for a vast portion of the period while interestingly 
capturing the intense nose-down peak moment. Nevertheless, while spe

cific effects need to be addressed, the neural network provides an overall 
good approximation compared to the experimental measurements.

The second lowest 𝑅2 (= 0.9392) is presented in Fig. 9 for case 196, 
exhibiting similar challenges as the case before. Drag is slightly over

estimated, accompanied by a higher lift, mainly during the descending 
phase. While the moment coefficient indicated by the FNN resembles 

the infinity pattern, it fails to accurately predict the pitching moment 
magnitude.

In the following cases, 202 and 206, respectively, shown in Figs. 10

(𝑅2 = 0.9463) and 11 (𝑅2 = 0.9668), additional challenges in the aero

dynamic prediction are seen. In contrast to the previous conditions, 
where, for instance, the lift peak was somewhat well predicted, here, 
some of the phases where abrupt changes occur are smoothed out, which 
indicates that, in some conditions, the FNN will be somewhat limited 
when predicting local or fast-occurring phenomena such as vortex shed

ding.

Fig. 12 (𝑅2 = 0.9795) depicts case 193, where the airfoil is at a pre

stall region. It is observed that the neural network performs quite well 
when compared to when it is subjected to higher angles of attack. It 
is essential to discuss these discrepancies from different regions of the 
angle of attack, which are likely to be influenced by the inherent vari

ability and measurement noise that is typically present in experimental 
data. Indeed, and revisiting the previous cases, at lower angles of at

tack, the neural network performs very well, indicating that the FNN, 
as it is, is capable of predicting regions with smooth aerodynamic behav

ior, which suggests minimal data variability. However, when revisiting 
the post-stall regions, discrepancies quickly grow, implying that the net

work struggles in these areas either due to data sparsity, the complexity 
of the underlying physics, or, most likely, data variability due to the ran
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Fig. 9. Case 196 from the test pool with 𝑅2 = 0.9392. 

Fig. 10. Case 202 from the test pool with 𝑅2 = 0.9463. 

Fig. 11. Case 206 from the test pool with 𝑅2 = 0.9668. 

Fig. 12. Case 193 from the test pool with 𝑅2 = 0.9795. 

dom nature of dynamic stall coupled with turbulent flow. This condition 
comes as a consequence of employing a deterministic neural network, 
which struggles to truly capture variability in experimental data, as it 
will always tend to generalize by learning the mean trend rather than 
capturing measurement fluctuations.

While this subsection focused on the lowest-performance cases, one 
should not ignore the FNN’s already good performance. The test group 
had all cases with an 𝑅2 of at least 0.90.

3.1.2. Best-performing and intermediate examples

When looking at the five cases with the highest coefficient of deter

mination, 𝑅2, it is no surprise that, based on the observations made in 
the previous section, some of the best conditions are in the lower angle 
of attack region, where the attached flow is present.

In Figs. 13 through 15, one can observe that the predictions made by 
the neural network are very close to the measurements, indicating once 
again that this region is adequately modeled by the feedforward neural 
network, where data variability that may arise from highly nonlinear 
dynamics stall phenomena is not present.

Interestingly, the other two best-performing cases (namely, 16 and 
145) touch high angles of attack regions with highly nonlinear effects 
(cf. Figs. 16 and 17). As observed, in such conditions, the neural net

work can anticipate all aerodynamic coefficients, capturing the drag’s 
intricacies, the rapid increase in lift after 20◦ followed by the sharp de

cline typically associated with the vortex shedding process. One can also 
see the outstanding FNN capability in the moment coefficient of these 
particular cases, comprehending the complex aerodynamic pattern and 
accurately predicting the nose-down peak value.
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Fig. 13. Case 44 from the test pool with 𝑅2 = 0.9996. 

Fig. 14. Case 49 from the test pool with 𝑅2 = 0.9996. 

Fig. 15. Case 75 from the test pool with 𝑅2 = 0.9996. 

Fig. 16. Case 16 from the test pool with 𝑅2 = 0.9996. 

Fig. 17. Case 145 from the test pool with 𝑅2 = 0.9997. 
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Fig. 18. Case 68 from the test pool with 𝑅2 = 0.9956. 

Fig. 19. Case 30 from the test pool with 𝑅2 = 0.9984. 

Fig. 20. Case 130 from the test pool with 𝑅2 = 0.9990. 

Fig. 21. Case 118 from the test pool with 𝑅2 = 0.9992. 

Fig. 22. Case 106 from the test pool with 𝑅2 = 0.9995. 

In addition to the best-performing prediction cases, five intermediate 
cases were evenly selected from the test group for a broader observation 
of the predictive capabilities of the FNN, shown in Figs. 18 to 22.

Results indicate that the FNN provides a straightforward way to 
quickly predict the aerodynamics of airfoils subjected to periodic wave

forms. The neural network model captures the overall tendency of the 
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Fig. 23. FNN weights and biases. 

aerodynamic coefficients during the oscillation cycle. Nonetheless, as 
seen before, in some instances, the aerodynamic coefficients can be 
slightly over- or under-estimated, significantly farther from the linear 
lift region.

3.2. The FNN model features

For the final phase of the analysis, an internal view of the neural 
network is provided to discuss its architecture. Fig. 23 shows the in

sides of the neural network, where the weights and biases arrays are 
normalized by their respective maximum absolute value. Blacker ele

ments correspond to higher weight and bias values.

Looking at the first layer (𝑊1 and 𝑏1), which is directly connected 
to the inputs, one can see that the weights are divided into two major 
vertical regions that correspond to the elements multiplied by the 𝛼 and 
𝛼̇ vectors. When comparing these two regions, the 𝛼̇ band is much more 
activated, with higher values located at the columns that correspond to 
the 𝑡∕𝑇 = 0.0, 0.5, and 1.0, corresponding to when the airfoil changes 
the pitching direction and has maximum acceleration.

The slight over-dependence on the pitching velocity is no surprise 
since 𝛼̇ significantly influences unsteady aerodynamic effects such as 
vortex formation and shedding. These flow effects that introduce hys

teresis in the aerodynamic coefficient are known to depend not just on 
the instantaneous angle of attack, 𝛼, but on how quickly it changes.

The second (hidden) layer, which acts as an intermediate feature 
extractor that combines the relationships between the inputs and the 
aerodynamic coefficients, appears to be highly entropic without clear 
patterns. This could be due to the complexity of the dynamic stall phe

nomenon, where many nonlinear effects and interactions exist, or the 
FNN’s adaptation to capture subtle details in the data.

Identical to the first layer, the third layer is divided into regions, 
specifically three distinct horizontal bands, which correspond to the 
drag, lift, and pitching moment coefficients. This output segmentation 
indicates that the FNN is learning specialized features for each aerody

namic coefficient. Nevertheless, the distinct areas are not synonyms of 
complete independence, as the second layer can act as a mixer, mainly 
because the three aerodynamic coefficients are aerodynamically con

nected.

A closer look at the individual bands also indicates that the third 
layer is more activated closer to the middle of these regions, correspond

ing to the time frame around 𝑡∕𝑇 = 0.50. Based on the training data and 
its structure, this is when the airfoil experiences high angles of attack, 
leading to the occurrence of the dynamic stall, which affects all coeffi

cients. Accordingly, this last layer ends up highlighting highly unsteady 
separation effects which drastically increase drag, intensely affect 𝐶𝑙
due to vortex-induced lift peaks and hysteresis, and cause considerable 
𝐶𝑚 shifts due to irregular and time-varying pressure distribution around 
the airfoil.

With this final analysis, one can get a simplistic yet powerful view 
of the FNN’s insides, verify the relative importance between the inputs, 

and understand, from a superficial perspective, how the flow of infor

mation travels through the FNN. While the use of a feedforward neural 
network that predicts the whole aerodynamic cycle instantly offers a 
great way for preliminary design, especially when analyzing periodic 
regimes, for instance rotor aerodynamics, one should not neglect the 
limitations of such an approach. The current architecture has as its in

puts 𝛼 and 𝛼̇, meaning that no information regarding flow conditions 
is given. However, as is commonly known, the Reynolds number influ

ences the evolution of dynamic stall phenomena. Hence, as a recommen

dation for a future update, one could incorporate a new input vector, for 
instance 𝛼̇𝑐∕𝑈 , that, through the flow speed, introduces the effect of the 
Reynolds number. An additional limitation is that the aerodynamic pre

dictions are based solely on kinematics, which can be restrictive under 
certain conditions. Prediction accuracy could be enhanced by incorpo

rating kinematic data and the historical aerodynamic behavior, which 
is a priority for future research. Moreover, the present architecture will 
provide phase-locked results without the possibility of real-time updates 
of aerodynamic coefficients, as explained in subsection 2.2. Neverthe

less, as observed in the results, the FNN does capture temporal effects 
with its large network of connections from each time frame.

4. Conclusions

Studying dynamic stall phenomena is crucial to expediting airfoil 
design, identifying unwanted aerodynamic regimes, and, at a practical 
level, improving operational safety. While the root causes of the dy

namic stall are well understood, there is still no reliable and inexpensive 
method to predict the aerodynamic loads. This implies that, for instance, 
the hidden patterns in experimental data are not being uncovered and 
that known limitations in numerical methodology are still being perpet

uated.

Artificial intelligence techniques can help unlock the uncovered con

nections, offering a straightforward way to quickly understand the par

ticular problem of oscillating airfoils without extensive and complex 
modeling. The present work has this objective: to show that the dynamic 
stall can be estimated even with a straightforward neural network archi

tecture. A feed-forward network is selected to achieve such an objective, 
using the kinematics, including the angle of attack and pitch rate, as 
inputs. Since this is not a neural network acting in time, all cycle infor

mation is given at once, meaning that the complete cycle aerodynamics 
that includes drag, lift, and pitching moment are obtained simultane

ously. The training phase was performed using experimental dynamic 
stall data from a known database from the University of Glasgow, con

taining many cases ranging from light to deep stalls with various pitch

ing amplitudes and frequencies. With a supervised learning approach, 
using the gradient descent coupled with the Adam algorithm, the neural 
network achieved a 𝑅2 = 0.99 for both testing and test datasets. Re

sults are clear, showing that the neural network is a reliable tool to 
estimate the aerodynamic cycle even in the least-performing cases. The 
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good performance metrics indicate that the FNN understands the under

lying dynamics of time-dependent stalls even with diverse conditions. 
Indeed, no case from either dataset experienced a 𝑅2 less than 0.90. The 
final phase of the results shows a brief analysis of the weights where one 
can look at the insides of the neural network, which revealed a more 
considerable activation in the pitch rate compared to the angle of at

tack and a strong segmentation in the last hidden layer, indicating that 
specialized features for each aerodynamic coefficient are being learned.

Taking advantage of artificial intelligence to study unsteady aerody

namics should be fomented, where a simple neural network can capture 
the fundamentals of the dynamic stall with the ability to be trained with 
new data as obtained. Future research should be focused on the tran

sient essence of the problem by exploring neural networks that act in 
time, such as recurrent or physics-informed neural networks, as well as 
exploring different kinematics for a more versatile use.
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