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Inaccuracy and information measures based on cumulative residual entropy are quite useful
and have attracted considerable attention in many fields including reliability theory. Using
a point process martingale approach and a compensator version of Kumar and Taneja’s
generalized inaccuracy measure of two nonnegative continuous random variables, we define
here an inaccuracy measure between two coherent systems when the lifetimes of their
common components are observed. We then extend the results to the situation when the
components in the systems are subject to failure according to a double stochastic Poisson
process.
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1. INTRODUCTION

An alternate measure of entropy, based on the distribution function instead of the density
function of a random variable, called cumulative residual entropy (CRE), was first proposed
by Rao et al. [29]. It was subsequently extended to cumulative residual inaccuracy (CRI)
measure by Kumar and Taneja [20]. When the lifetimes of common components of two
coherent systems are observed, we adopt a point process martingale approach to extend
here this notion to a symmetric inaccuracy measure. Furthermore, we define an inaccuracy
measure between two coherent systems whose components are subject to failure according
to a double stochastic Poisson process.

The main inaccuracy measure for the uncertainty of two positive and absolutely con-
tinuous random variables, S and T , defined in a complete probability space (Ω,�, P ), is
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Kerridge’s inaccuracy measure given by (see [18])

H(S, T ) = E[− log g(T )] = −
∫ ∞

0

log g(x)f(x) dx, (1)

where f and g are the probability density functions of T and S, respectively. Equation (1)
plays a significant role in reliability and survival analysis.

In the case when S and T are identically distributed, Kerridge’s inaccuracy measure
gives the well-known Shannon’s entropy defined as (see [34])

H(T ) = E[− log f(T )] = −
∫ ∞

0

log f(x)f(x) dx.

In recent years, several authors have studied various properties of this information
measure. For example, Ebrahimi [13] has proposed a measure of uncertainty about the
remaining lifetime of a system working at time t as H(Tt) where Tt = (T − t |T > t). Kayal
et al. [17] and Kayal and Sunoj [16] have proposed a generalization of (1) and developed
various theoretical properties.

One main drawback of Shannon entropy is that for some probability distributions, it
may be negative and then it is no longer an uncertainty measure. This drawback is removed
in the Varma [36] entropy that is a generalization of both Shannon entropy and Renyi [30]
entropy.

Rao et al. [29] and Rao [28] have provided an extension of the above measure, the cumu-
lative residual entropy for T , by using survival functions of T in place of their probability
density functions in Shannon’s entropy. Asadi and Zohrevand [4] have considered the cor-
responding dynamic measure using the conditional survival function P (T − t |T > t). An
analogous measure based on the distribution function has been introduced by Di Cresccenzo
and Longobardi [12], which is known as the cumulative past entropy of T .

Kerridge’s measure of inaccuracy has also been extended in a similar way by Kumar
and Taneja [20,21] and Kundu et al. [22].

Kumar and Taneja’s CRI measure between S and T is given by

ε(S, T ) = −
∫ ∞

0

F (t) logG(t) dt = E

[∫ T

0

∧
S

(s) ds

]
, (2)

where F = 1 − F and G = 1 −G are the reliability functions of T and S, respectively, with
F and G being their distribution functions, and

∧
S(t) = − logG(t) being the cumulative

hazard function of lifetime S. It is important to note that the expression in (2) makes
sense in the set {t < S ∧ T}, where t is a time constant and S ∧ T = min{S, T} and we set,
by convention, 0 log 0 = 0. When S and T are identically distributed, Eq. (2) becomes the
measure introduced by Rao et al. [29].

Indeed, ε(S, T ) represents the information content when using G(t), the survival func-
tion asserted by the experimenter, due to missing/incorrect information, instead of the true
survival function F (t). Some transformation of this measure can be seen in the work of
Psarrakos and Di Crescenzo [26].

Similarly, Kumar and Taneja [21] have introduced cumulative past inaccuracy measure
of S and T by replacing the distributions functions by survival functions in the measure
of Di Crescenzo and Longobardi [12]. Kundu et al. [22] considered the measures given by
Kumar and Taneja [20,21] and obtained several properties when random variables are left,
right, and doubly truncated. Quite recently, bivariate extensions of cumulative residual
(past) inaccuracy measures have been discussed by Goosh and Kundu [14].
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This paper consists of two parts and proceeds as follows. In Section 2, we introduce a
symmetric CRI measure between two lifetimes as a metric. Next, we use a point process
martingale approach in Section 3 to introduce a signature point process. In Section 4, we
then extend the results to coherent systems. We also define a measure to compare the
relative performance of different coherent systems. These form the first part of the paper.
In the second part of the paper, we begin by defining a joint signature point process for
two coherent systems in Section 5, which will be useful to calculate the residual cumulative
inaccuracy measure between two coherent systems. We also provide asymptotic reasoning
to extend the inaccuracy measure for a double stochastic Poisson process. In Section 6, we
define the cumulative inaccuracy measure for coherent systems under a double stochastic
Poisson process and focus especially on a nonhomogeneous Poisson process to model a
minimal repair coherent system. We present some examples to illustrate the calculation
of the inaccuracy measure between minimal repair point processes. Finally, we make some
concluding comments in Section 7.

2. CRI MEASURE BETWEEN TWO LIFETIMES

2.1. CRI Measure as a Metric

Suppose we observe twocomponent lifetimes, T and S, which are finite positive random
variables defined in a complete probability space (Ω,�, P ), with P (S �= T ) = 1, through
the family of sub σ-algebras (�t)t≥0 of �, where

�t = σ{1{S>s}, 1{T>s}, 0 ≤ s < t}

satisfies Dellacherie’s conditions of right continuity and completeness.
In our general setups, for simplifying the notation, we assume that relations such as

⊂,=, ≤, <, �= between random variables and measurable sets always hold with probability
1, which means that the term P -a.s. is suppressed.

We now assume that S and T are totally inaccessible �t-stopping times. An extended
and positive random variable τ is a �t-stopping time if, and only if, {τ ≤ t} ∈ �t, for all
t ≥ 0; a �t-stopping time τ is said to be predictable if an increasing sequence (τn)n≥0 of
�t-stopping times, τn < τ , exists such that limn→∞ τn = τ ; a �t-stopping time τ is totally
inaccessible if P (τ = σ <∞) = 0 for all predictable �t-stopping times σ. In this way, abso-
lutely continuous lifetimes are thought of as totally inaccessible �t-stopping times. For a
mathematical basis of stochastic processes applied to reliability theory, one may refer to the
books by Aven and Jensen [5] and Bremaud [8].

The cumulative hazard functions of T and S are given by
∧

T (t) = − logF (t) and∧
S(t) = − logG(t). Then, CRI of S and T is given by Eq. (2).

With respect to (�t)t≥0 and using Doob-Meyer decomposition, we consider the pre-
dictable compensator processes (At)t≥0 and (Bt)t≥0 such that 1{T≤t} −At and 1{S≤t} −Bt

are 0 means �t-martingales. From the total inaccessibility of S and T , At and Bt are
continuous; see Dellacherie [11].

The compensator process is expressed in terms of conditional probabilities, given the
available information, and it generalizes the classical notion of hazard. Intuitively, it corre-
sponds to producing whether the failure is going to occur now, on the basis of all observations
available up to, but not including the present.

It then follows, by well-known equivalence results between distribution functions and
compensator processes, that At = − logF (t

∧
T ) and Bt = − logG(t

∧
S); see Arjas and
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Yashin [1]. Identifying
∧

S(t) and Bt, in the set {S > t}, we obtain Eq. (2) as follows:

ε(S, T ) = E

[∫ T

0

Bs ds

]
= E

[∫ T

0

(∫ s

0

dBt

)
ds

]

= E

[∫ T

0

(∫ T

t

ds

)
dBt

]
= E

[∫ T

0

(T − t) dBt

]
.

As ψ(t) = T − t is a left continuous function, it is an �t-predictable process (see
Bremaud [8]), and we can conclude that

Mt =
∫ T

0

(T − t) d(1{S≤t} −Bt)

is a mean 0 �t-martingale. We then have

ε(S, T ) = E

[∫ T

0

(T − t) dBt

]
= E

[∫ T

0

(T − t) d1{S≤t}

]

= E
[
1{S≤T}(T − S)

]
= E

[
1{S≤T}|T − S|] . (3)

Example 2.1: An engineering system is a coherent system if its components are relevant
and its structure function is monotone increasing; see Barlow and Proschan [7]. A spe-
cial case of a coherent system is the k-out-of-n system which works when at least k of
its components work. In particular, when k = n the system is series, and when k = 1 the
system is parallel. A mixed system is a stochastic mixture of coherent systems. Let T and
S = min{T1, . . . , Tn} be lifetimes of coherent (mixed) and series systems, where T1, . . . , Tn

are the common component lifetimes. Clearly, S is less than T , that is, S ≤ T , and so Eq.
(3) becomes

ε(S, T ) = E[|T − S|]
as a distance between T and the series system S.

Also, using the same arguments as above, we have

ε(T, S) = E

[∫ S

0

As ds

]
= E

[
1{T≤S}(S − T )

]
= E[1{T≤S}|S − T |]. (4)

Example 2.2: Now, let T and S = max{T1, . . . , Tn} be lifetimes of coherent (mixed) and
parallel systems, where T1, . . . , Tn are the common component lifetimes. Evidently, S is
greater than T , that is, S ≥ T , and so Eq. (4) becomes

ε(S, T ) = E[|T − S|]

as a distance between T and the parallel system S.

Eqs. (3) and (4) enable us to define a symmetric generalization of Kumar and Taneja’s
inaccuracy measure.
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Definition 2.3: If S and T are continuous positive random variables defined in a complete
probability space (Ω,�, P ), the CRI measure is

CRIS,T = CRIT,S = ε(S, T ) + ε(T, S)

= E

[∫ T

0

Bs ds

]
+ E

[∫ S

0

As ds

]

= E[|T − S|]. (5)

The definition CRIS,T = ε(S, T ) + ε(T, S) in terms of compensator processes is suit-
able to work for stochastic dependence; for example, suppose we observe a coherent system
lifetime in a complete information level, that is, only through their dependent component
lifetimes.

CRIS,T can then be seen as a dispersion measure when using a lifetime S asserted by the
experimenter information of the true lifetime T . Provided that we identify random variables
that are equal almost everywhere, CRIS,T is a metric in the L1 space of random variables,
and as a metric, it possesses several useful properties.

Example 2.4 (Using empirical distribution to approximate CRIS,T ): When the experi-
menter’s information, S, of the true lifetime T , is one selected from a set of possible system
lifetimes, S1, S2, . . . , Sn, . . ., which are independent and identically distributed as S, with
lifetime G, we can then use the random lifetime defined by

Yn(t) =
1
n

n∑
i=1

1{Si≤t},

which is an unbiased and consistent nonparametric estimator of the distribution function
G(t), that is,

E[Yn(t)] =
1
n

n∑
i=1

E[1{Si≤t}] = G(t)

and

Var(Yn(t)) = E[(Yn(t) −G(t)))2] =
1
n2

Var

(
n∑

i=1

1{Si≤t}

)
=
G(t)(1 −G(t))

n
,

which goes to 0 as n goes to infinity. Hence, Yn(t) converges in quadratic mean to S and,
consequently, converges in probability to S which does imply convergence in distribution to
S, as n→ ∞.

As f(Yn) = |Yn| ≤ 1 is a bounded and continuous function and Yn(t) converges in
distribution to S, we have

E[|T − Yn|] → E[|T − S|].

As in Kumar and Taneja [21], we can extend CRIS,T to time varying forms cor-
responding to residual lifetimes in the set {t < S ∧ T}. In this regard, we observe
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that

E

[∫ T

t

Bx dx

]
= E

[∫ T

t

(∫ x

0

dBy

)
dx

]

= E

[∫ t

0

(∫ T

t

dx

)
dBy

]
+ E

[∫ T

t

(∫ T

y

dx

)
dBy

]

= E

[
(T − t)

∫ t

0

d1{S≤y}

]
+ E

[∫ T

t

(T − y) d1{S≤y}

]

= E[(T − t)1{S≤t}] +E[(T − S)1{t<S≤T}] = E[|T − S|1{t<S≤T}]. (6)

We also have

E

[∫ S

t

Ax dx

]
= E[|S − T |1{t<T≤S}]. (7)

These yield the following definition.

Definition 2.5: If S and T are continuous positive random variables in a complete
probability space (Ω,�, P ), the dynamic CRI measure at time t, in the set {t < S ∧ T},
is

DCRIt
S,T = DCRIt

T,S = E[1{t<S∧T}|T − S|]. (8)

2.2. Characterization Problem

If T and S are two absolutely continuous lifetimes such that At is the �t-compensator of
1{T≤t} and Bt = αAt, 0 < α ≤ 1, is the �t- compensator of 1{S≤t}, we then say that T and
S satisfy the proportional risk hazard process.

Theorem 2.6: If T and S satisfy the proportional risk hazard process, then the dynamic
cumulative residual inaccuracy measure DCRIt

S,T <∞ uniquely determines the distribution
function of T .

Proof: Let T1 and S1 be two absolutely continuous lifetimes such that A1
t is the �t-

compensator of 1{T1≤t} and B1
t = α1A1

t , 0 < α1 ≤ 1, is the �t- compensator of 1{S1≤t}.
Further, let T2 and S2 be two absolutely continuous lifetimes such that A2

t is the �t-
compensator of 1{T2≤t} andB2

t = α2A2
t , 0 < α2 ≤ 1, is the �t-compensator of 1{S2≤t}. Then,

using Eq. (8) in the set {t < S1 ∧ T1} ∩ {t < S2 ∧ T2}, we have

DCRItS1,T1
= DCRItS2,T2

↔ E

[∫ S1

t

A1
t dt+

∫ T1

t

α1A1
t dt

]

= E

[∫ S2

t

A2
t dt+

∫ T2

t

α2A2
t dt

]
.

However, for i = 1, 2, we have

E

[
αi

∫ Ti

t

Ai
s ds

]
= αiE

[∫ t

0

(Ti − t) dAi
s

]
+ αiE

[∫ Ti

t

(Ti − s) dAi
s

]
= 0.



A CUMULATIVE RESIDUAL INACCURACY MEASURE 7

Without loss of generality, using the Optimal Sampling Theorem, in the set {t < S =
S1

∧
S2}, we have

DCRISS1,T1
= DCRISS2,T2

↔ E

[∫ S

0

A1
t dt

]
= E

[∫ S

0

A2
t dt

]

↔ E

[∫ ∞

0

1{t<S}A1
t 1{A1

t >A2
t} dt

]
+ E

[∫ ∞

0

1{t<S}A1
t 1{A1

t≤A2
t} dt

]

= E

[∫ ∞

0

1{t<S}A2
t 1{A1

t >A2
t} dt

]
+ E

[∫ ∞

0

1{t<S}A2
t 1{A1

t≤A2
t} dt

]

↔ E

[∫ ∞

0

1{t<S}(A1
t −A2

t )1{A1
t >A2

t} dt
]

= E

[∫ ∞

0

1{t<S}(A2
t −A1

t )1{A1
t≤A2

t} dt
]

↔
∫ ∞

0

E[1{t<S}|A1
t −A2

t |1{A1
t >A2

t}] dt =
∫ ∞

0

E[1{t<S}|A1
t −A2

t |1{A1
t≤A2

t}] dt

↔
∫ ∞

0

E[1{t<S}|A1
t −A2

t |(1{A1
t >A2

t} − 1{A1
t≤A2

t})] dt = 0. (9)

In Eq. (9), {A1
t > A2

t} ∩ {A1
t ≤ A2

t} = ∅, the integrand is positive, and we have A1
t = A2

t .
Then, P (T1 ≤ t) = E[A1

t ] = E[A2
t ] = P (T2 ≤ t), and thus DCRIS,T uniquely determines the

distribution function of T . �

2.3. Calculating CRI Measure

To calculate the CRI measure, we can write

CRIS,T = E[|T − S|] = E[S ∨ T ] − E[S ∧ T ],

where S ∨ T = max{S, T} and S ∧ T = min{S, T}.
The lifetime distribution of the series system S ∧ T is completely characterized by the

�t-compensator Ct = At +Bt, and so

E[S ∧ T ] =
∫ ∞

0

P (S ∧ T > t) dt =
∫ ∞

0

E[P (S ∧ T > t|�t)] dt

= E

[∫ ∞

0

exp{−(At +Bt)} dt
]
.

Also, the reliability function of a parallel system S ∨ T is given by

P (S ∨ T > t|�t) = e−At + e−Bt − e−(At+Bt).

To deal with stochastic dependence, the martingale approach is quite convenient.
Given a simple �t-submartingale point process, there exists an unique �t-compensator pro-
cess, expressed in terms of conditional probabilities given the available information, that
facilitates the analytical work under stochastic dependence.

Theorem 2.7: Let S and T be totally inaccessible �t-stopping times representing two life-
times, with compensator processes (Bt)t≥0 and (At)t≥0, respectively. Then, the CRI measure
is

CRIS,T = E

[∫ ∞

0

(e−At + e−Bt − 2e−(At+Bt)) dt
]
. (10)
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Proof: We have

CRIS,T = E[S ∨ T ] − E[S ∧ T ]

=
∫ ∞

0

[P (S ∨ T > t) − P (S ∧ T > t)] dt

= E

[∫ ∞

0

{(eAt + eBt − 1)e−(At+Bt) − e−(At+Bt)} dt
]

= E

[∫ ∞

0

{e−At + e−Bt − 2e−(At+Bt)} dt
]
.

�

Example 2.8: Let the lifetime T of a coherent system have Weibull distributions with shape
parameter β = 2 and scale parameter θ1. Further, let the lifetime S of a coherent system,
independently of T , be asserted by the experimenter to follow a Weibull distribution with
β = 2 and θ2. Then, T and S have deterministic compensators At = (t ∧ T/θ1)2 and Bt =
(t ∧ S/θ2)2. In the set {t < S ∧ T}, we then find

E

[∫ ∞

0

{e−At + e−Bt − 2e−(At+Bt)} dt
]

=
∫ ∞

0

e−(t/θ1)
2
dt+

∫ ∞

0

e−(t/θ2)
2
dt− 2

∫ ∞

0

e−(t/θ1)
2
e−(t/θ2)

2
dt

=
√
πθ1
2

+
√
πθ2
2

− 2
√
π

2

√
θ21θ

2
2

θ21 + θ2
2

.

In particular, for θ1 = 1 and θ2 = 0.5, we thus have E[|T − S|] = 0.53.

3. SIGNATURE POINT PROCESS

Let T be the lifetime of a mixed system consisting of n independent and identically dis-
tributed components with lifetimes, T1, . . . , Tn, having a continuous distribution F . Then,
a well-known mixture representation of the system reliability at time t is [31,32]

P (T > t) =
n∑

k=1

P (T = T(k))P (T(k) > t), (11)

where T(1), . . . , T(n) are the order statistics of the component lifetimes. System signatures
have many extensions and applications in engineering reliability; see Samaniego [31].

For coherent systems with i.i.d. components, preservation results in their signatures
in three different senses stochastic ordering, hazard rating ordering and likelihood ratio
ordering have been established by Kochar et al. [19] and Navarro et al. [23].

In our context, for dealing with lifetimes of two coherent systems, S and T , with n
stochastically dependent common components, the martingale approach will be convenient
and then the results in Section 2 can be extended in the complete information level. For
this purpose, we consider the signature point process introduced by Bueno [10].

In the general setup, at the complete information level, we assume to observe the vector
(T1, . . . , Tn) of n component lifetimes which are finite and positive random variables defined
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in a complete probability space (Ω,�, P ), with P (Ti �= Tj) = 1, for all i �= j, with i, j being
in C = {1, . . . , n}, the index set of components. Note that the lifetimes can be dependent,
but simultaneous failures are assumed to be not possible.

The evolution of components over time defines a point process given through the fail-
ure times. We denote by T(1) < T(2) < · · · < T(n) the ordered lifetimes of T1, T2, . . . , Tn, as
they appear over time and, as a convention, we set T(n+1) = T(n+2) = · · · = ∞. Then, the
sequence (Tn)n≥1 defines a point process; see Bremaud [8].

The mathematical description of the observations, namely the complete information
level, is given by a family of sub σ-algebras of �, denoted by (�t)t≥0, where

�t = σ{1{T(i)>s}, 1 ≤ i ≤ n, 0 < s < t}

satisfies the Dellacherie conditions of right continuity and completeness.
Intuitively, at each time t, the observer knows if the event {T(i) ≤ t} has either occurred

or not, and if it had occurred, then the observer knows exactly the T(i) value. We assume
that T1, . . . , Tn are totally inaccessible �t-stopping times.

Under the complete information level, the representation of the point process P (T ≤
t | �t), as information flows continuously over time, is as given in the following result.

Theorem 3.1: Let T1, . . . , Tn be totally inaccessible �t-stopping times representing the
lifetimes of components of a coherent system with lifetime T . Then,

P (T ≤ t | �t) =
n∑

k=1

1{T=T(k)}1{T(k)≤t}. (12)

Proof: From the total probability law, we have

P (T ≤ t|�t) =
n∑

k=1

P ({T ≤ t} ∩ {T = T(k)|�t)

=
n∑

k=1

E[1{T=T(k)}1{T(k)≤t}|�t].

As T and T(k) are �t-stopping times and due to the fact that the event {T = T(k)} ∈
�T(k) (see Dellacherie [11]), where

�T(k) = {A ∈ �∞ : A ∩ {T(k) ≤ t} ∈ �t,∀t ≥ 0},

{T = T(k)} ∩ {T(k) ≤ t} is �t-measurable. Hence,

P (T ≤ t|�t) =
n∑

k=1

E[1{T=T(k)}1{T(k)≤t}|�t] =
n∑

k=1

1{T=T(k)}1{T(k)≤t}.

The above decomposition allows us to define the point signature process upon observing
the lifetimes of components. �

Definition 3.2: The vector

(1{T=T(k)}, 1 ≤ k ≤ n)

is defined as the point signature process of the system lifetime T , at the component level.
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Remark 3.3: As P (Ti = Tj) = 0, the collection {{T = T(i)}, 1 ≤ i ≤ n} defines a partition
of Ω and

∑n
k=1 1{T=T(k)} = 1. We, therefore, have

P (T > t | �t) =
n∑

k=1

1{T=T(k)}1{T(k)>t}. (13)

Remark 3.4: Using Eq. (13), we can calculate the system reliability as

E[P (T > t|�t)] = E

[
n∑

k=1

1{T=T(k)}1{T(k)>t}

]
=

n∑
k=1

P ({T = T(k)} ∩ {T(k) > t}).

If the component lifetimes are totally inaccessible, independent and identically dis-
tributed, we will then have

P (T > t) =
n∑

k=1

P (T = T(k))P (T(k) > t),

recovering the classical result of Samaniego [30].

4. CRI MEASURE FOR COHERENT SYSTEMS

4.1. Definition of Measure

The signature concept is an important tool for studying coherent systems with independent
and identically distributed continuous lifetimes. The extended concept of point process
signature allows us to incorporate component’s stochastic dependence. Furthermore, as
P (T(k) > t|�T(k)) = e−At((k)), it allows us to work with compensator processes. In this
regards, we have the following Theorem:

Theorem 4.1: Let T1, . . . , Tn be totally inaccessible �t-stopping times representing the life-
times of common components of two coherent systems with lifetimes T and S. Then, the
cumulative residual accuracy measure of S and T , at the component level, that is, observing
all Ti, 1 ≤ i ≤ n, is

CRIS,T =
∫ ∞

0

{
n∑

k=1

P (T(k) > t|T = T(k))P (T = T(k))

+
n∑

j=1

P (T(j) > t|S = T(j))P (S = T(j))

− 2
n∑

i=1

P (T(i) > t|S ∧ T = T(i))P (S ∧ T = T(i))

}
. (14)
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Proof: As in Section 2.2, we can write

CRIT,S =
∫ ∞

0

E[P (S ∨ T > t|�t) − P (S ∧ T > t|�t)] dt

=
∫ ∞

0

E[P (T > t|�t) + P (T > t|�t) − 2P (S ∧ T > t|�t)] dt.

Using the point process signature representation in Eq. (13), we then have

CRIT,S =
∫ ∞

0

E

⎡
⎣ n∑

k=1

1{T=T(k)}1{T(k)>t} +
n∑

j=1

1{S=T(j)}1{T(j)>t}

− 2
n∑

i=1

1{S∧T=T(k)}1{T(k)>t}

]
dt,

proving Eq. (14). �

Remark 4.2: A nonhomogeneous Poisson process (NHPP) is generated by record values of
random variables independent and identically distributed. Let T1, . . . , Tn be the lifetimes of
components of a coherent system, which are subject to failures according to a well-known
counting process (Nt)t≥0 with deterministic compensator Λ(t), called NHPP. The lifetime
of the k-th occurrence of the NHPP, Sk, has its survival function as

Gk(t) = P (Sk > t) = P (N(t) < k) =
k−1∑
j=0

(Λ(t))j

j!
e−Λ(t), k = 0, 1, . . . ,

where Λ(t) = E[Nt] = − lnG(t) and G(t) is the reliability function of the first occurrence
time.

The reliability function Gk(t) is also the reliability function of upper record values in a
sequence of independent nonnegative random variables T1, T2, . . . , generated from G(t), the
distribution function of the time to first failure; see Arnold et al. [2,3]. In other words, a
NHPP is essentially a record-counting process subject to its mean value function Λ(t) being
continuous and tending to ∞ as t→ ∞. Therefore, the sequence of occurrence times can be
considered as record values of a sequence of independent and identically distributed random
variables each having distribution function G, in which case the events {T = T(k)}, 1 ≤ k ≤
n, and the inter-arrival times are independent; see Randles and Wolfe [27].

Example 4.3: As in Example 2.8, let T1, . . . , Tn be the lifetimes of components of a coherent
system, with system lifetime T , being subject to failures according to a Weibull process with
parameters β and θ1. Let the lifetime S asserted by the experimenter follow a Weibull
process with parameters β and θ2. Then, S ∧ T follows a Weibull process with parameters
β and θβ

1 θ
β
2 /(θ

β
1 + θβ

2 ). In practice, we consider the ordered lifetimes T(1), . . . , T(n) with a
conditional reliability function given by

Fi(ti|t1, . . . , ti−1) = exp

[
−

(
ti
θ

)β

+
(
ti−1

θ

)β
]

for 0 ≤ ti−1 < ti, where  ti are the ordered observations. Upon considering T1, . . . , Tn
as record values of independent and identically distributed random variables, the events
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{T = T(i)} and {T(i) > t} are independent, and so P (T(i) > t|T = T(i)) = P (T(i) > t). Then,
by using Theorem 4.1, we have

CRIS,T =
∫ ∞

0

[
n∑

k=1

sT
k exp

{
−

(
tk
θ1

)β

+
(
tk−1

θ1

)β
}

+
n∑

j=1

sS
j exp

{
−

(
tj
θ2

)β

+
(
tj−1

θ2

)β
}

− 2
n∑

i=1

sS∧T
i exp

⎧⎨
⎩−

(
ti

θβ
1 θ

β
2 /(θ

β
1 + θβ

2 )

)β

+

(
ti−1

θβ
1 θ

β
2 /(θ

β
1 + θβ

2 )

)β
⎫⎬
⎭
⎤
⎦ dt,

where sT
k , sS

j , and sS∧T
i , 1 ≤ i, j, k ≤ n, are the components of the systems signature vectors

sT , sS, and sS∧T of the lifetimes T , S, and S ∧ T , respectively.

4.2. Comparisons of Systems

Toomaj et al. [35] mention that physical system’s structures can restrict the use of stochastic
ordering for pairwise comparisons. It is well-known that the reliability function of any
arbitrary coherent system is in between that of a series system and of a parallel system
almost everywhere, that is, T(1) ≤st T ≤st T(n), for any system lifetime T . Hence, instead of
just pairwise comparisons of systems, Toomaj et al. [35] suggested to look for a system with
distribution closer to the distribution of a parallel system and far from the distribution of
a series system.

Considering the CRI measure as a metric, we have the following:

CRIT(n),T(1) ≥ CRIT,T(1) ;

CRIT(n),T(1) ≥ CRIT(n),T ;

|CRIT,T(1) − CRIT,T(n) | ≤ CRIT,T(1) + CRIT,T(n) = E[T − T(1)] +E[T(n) − T ]

= E[|T(n) − T(1)| = CRIT(n),T(1) .

So, following up on the idea of Toomaj et al. [35], to verify if the system distribution
is closer to a parallel system distribution and produce great reliability, we propose the
following symmetric distance measure for a coherent system lifetime T and the lifetime of
a parallel (series) system:

DS(T ) =
CRIT,T(1) − CRIT(n),T

CRIT(n),T(1)

. (15)

The idea is to verify if the system distribution is closer to a parallel system distribution
to produce great reliability. We readily have

|DS(T )| ≤ 1.

We can note that the system is parallel if, and only if, DS(T ) = 1, while the system
is series if, and only if, DS(T ) = −1. Thus, we can say that if DS(T ) is close to 1, the
distribution of T is closer to the distribution of a parallel system, but if DS(T ) is close to
−1, the distribution of T is closer instead to the distribution of a series system.



A CUMULATIVE RESIDUAL INACCURACY MEASURE 13

Furthermore, we can define an ordering between lifetimes, T1 and T2, of two coherent
systems. We say T2 is more preferable than T1 in DS, denoted by T1 ≤DS T2, if DS(T1) ≤
DS(T2).

If T1 ≤DS T2, we can say that the distribution of T2 is closer to a parallel system
distribution than the distribution of T1, and therefore, T2 is more reliable than T1.

As an application, we consider the notions of stochastic (st), hazard rate (hr), and
likelihood ratio (lr) orderings; see Shaked and Shanthikumar [33] for details.

Theorem 4.4: Let T1 and T2 be the lifetimes of two coherent systems with n indepen-
dent and identically distributed (or exchangeable) common components, and with signatures
s1 and s2, respectively. If any one of s1 ≤st s2, s1 ≤hr s2, and s1 ≤lr s2 holds, then
T1 ≤DS T2.

Proof: It is clear that Eq. (15) can be written as

DS(T ) =
2E[T ] − E[T(n)] − E[T(1)]

E[T(n)] − E[T(1)]
.

Because the systems have common components, it is sufficient to prove that E[T1] ≤
E[T2]. As s1 ≤st s2, T1 ≤st T2 by Theorem 2.1 in Navarro et al. [23], implying the result
partially. It is well-known that s1 ≤lr s2 implies s1 ≤hr s2, which in turn implies s1 ≤st s2.
Hence, the theorem proved. �

Example 4.5: Let T1 and T2 be the lifetimes of two coherent systems with three inde-
pendent and identically distributed (or exchangeable) common components, with signatures
s1 = (0.5, 0.2, 0, 3) and s2 = (0.4, 0.2, 0.4), respectively. In this case, it can be shown
that s1 ≤st s2, s1 ≤hr s2, and s1 ≤lr s2, and so by Theorem 4.4, we can conclude that
T1 ≤DS T2.

5. JOINT SIGNATURE POINT PROCESS AND ASYMPTOTIC RELIABILITY

5.1. Joint Signature Point Process

For two coherent systems with shared components, Navarro et al. [24] defined and studied a
new measure, called the joint signature, under the i.i.d. assumption on component lifetimes,
and they also investigated some ordering properties. Zarezadeh et al. [37] provided further
discussions on joint signatures of several coherent systems with some shared components.
Here, we extend the signature point process in Section 3 to the joint signature point process
to consider stochastic dependence and analyze cumulative residual stochastic measure for
coherent systems under the double stochastic Poisson process.

In a general setup, we consider lifetimes of coherent systems, T and S, with corre-
sponding component lifetimes T1, . . . , Tn and S1, . . . , Sm, which are finite positive random
variables defined in a complete probability space (Ω,�, P ). We again assume that P (Ti =
Tj) = 0, P (Sk = Sl) = 0, for all i �= j, k �= l, and also that relations between random vari-
ables and measurable sets, respectively, always hold with probability 1, meaning that
the term P -a.s. is suppressed. Thus, the lifetimes of components can be dependent, but
simultaneous failure is assumed to be not possible.
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The mathematical description of our observations, that is, the complete information
level, is given by a family of sub σ-algebras of �, denoted by (�t)t≥0, where

�t = σ{1{T(i)>s}, 1{S(j)>s}, 1 ≤ i, j ≤ n, 0 < s < t}
satisfies the Dellacherie conditions of right continuity and completeness. Intuitively, this
means at each time t, the observer knows if the events {T(i) ≤ t}({S(j) ≤ t}) have occurred
or not and if they had occurred, then the values of T(i)(S(j)) will be known exactly.

We now assume that T1, . . . , Tn, S1, . . . , Sm are totally inaccessible �t-stopping times.
The evolution of components over time define a point process given through the failure
times: we denote by T(1) < · · · < T(n) (S(1) < · · · < S(m)) the ordered lifetimes T1, . . . , Tn

(S1, . . . , Sm) as they appear over time. Also, as a convention, we define T(n+1) = T(n+2) =
· · · = S(m+1) = S(m+2) = · · · = ∞, indicating that the sequences (T(n))n≥1 and (S(m))m≥1

define non-explosive point processes; see Bremaud [8].
Under the above conditions, it is well-known that a coherent system fails exactly at the

failure of one of its components. This results in the following theorem.

Theorem 5.1: Let T1, . . . , Tn, S1, . . . , Sm be totally inaccessible �t-stopping times repre-
senting the components lifetimes of two coherent systems with lifetimes T and S, respectively.
Then,

P (T ≤ t, S ≤ s|�t∨s) =
n∑

i=1

m∑
j=1

1{T=T(i),S=S(j)}1{T(i)≤t,S(j)≤s}. (16)

Proof: Because {T = T(i), S = S(j)} defines a partition of Ω, it follows from the total
probability law that

P (T ≤ t, S ≤ s|�t∨s) =
n∑

i=1

m∑
j=1

P (T ≤ t, S ≤ s, T = T(i), S = S(j)|�t∨s)

=
n∑

i=1

m∑
j=1

E[1{T(i)≤t,S(j)≤s}1{T=T(i),S=S(j)}|�t∨s].

However, we have (see Dellacherie [11])

{T = T(i)} ∈ �T(i) = {A ∈ �∞ : {A ∩ {T(i) ≤ t}} ∈ �t,∀t > 0},
{S = S(j)} ∈ �S(j) = {A ∈ �∞ : {A ∩ {S(j) ≤ s}} ∈ �s,∀s > 0},

and so
{T = T(i)} ∩ {T(i) ≤ t} ∈ �t ⊆ �t∨s

and
{S = S(j)} ∩ {S(j) ≤ s} ∈ �s ⊆ �t∨s.

Hence,
{T = T(i)} ∩ {T(i) ≤ t} ∩ {S = S(j)} ∩ {S(j) ≤ s}

is an �t∨s-measurable set implying Eq. (16):

P (T ≤ t, S ≤ s|�t∨s) =
n∑

i=1

m∑
j=1

1{T(i)≤t,S(j)≤s}1{T=T(i),S(j)=S}.

The above decomposition allows us to define the joint signature point process as
follows. �
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Definition 5.2: The vector (1{T=T(i),S=S(j)}, 1 ≤ i ≤ n, 1 ≤ j ≤ m) is defined as the joint
signature point process of the bivariate lifetime (T, S).

Remark 5.3: Because P (Ti = Tj) = 0, P (Sk = Sl) = 0 for all i �= j, the collection {{T =
T(i)}, 1 ≤ i ≤ n} is a partition of Ω and

∑n
i=1 1{T=T(i)} = 1. Also, the collection {{S =

S(j)}, 1 ≤ j ≤ m} is a partition of Ω with
∑m

j=1 1{S=S(j)} = 1. Therefore,

m∑
j=1

1{T=T(i),S=S(j)} =
m∑

j=1

1{T=T(i)}1{S=S(j)} = 1{T=T(i)}.

Then, the vector (1{T=T(i)}, 1 ≤ i ≤ n) is defined as the marginal signature point process
of the coherent system with lifetime T . We also have Eq. (12):

P (T ≤ t|�t) =
n∑

i=1

1{T=T(i)}1{T(i)≤t}.

The joint conditional reliability function of (S, T ), defined as P (T > t, S > s|�t∨s), can
be given as follows.

Corollary 5.4: Let T1, . . . , Tn, S1, . . . , Sm be totally inaccessible �t-stopping times rep-
resenting the lifetimes of components of two coherent systems with lifetimes T and S,
respectively. Then,

P (T > t, S > s|�t∨s) =
m∑

i=1

n∑
j=1

1{T=T(i),S=S(j)}1{T(i)>t,S(j)>s}. (17)

Proof: One can easily obtain this result using Theorem 5.1 and Remark 5.3, observing the
equality

1{T > t, S > s} = 1 − 1{T ≤ t} − 1{S ≤ s} + 1{T ≤ t, S ≤ s}.
�

Remark 5.5: Using Eq. (17), we can calculate the “joint reliability of systems” as

P (T > t, S > s) = E[P (T > t, S > s|�t∨s)]

= E

⎡
⎣ n∑

i=1

m∑
j=1

1{T=T(i),S=S(j)}1{T(i)>t,S(j)>s}

⎤
⎦

=
n∑

i=1

m∑
j=1

P ({T = T(i), S = S(j)} ∩ {T(i) > t, S(j) > s}).

As in Randles and Wolfe [27], if the components T1, . . . , Tn, S1, . . . , Sm are all indepen-
dent and identically distributed with a continuous distribution F , the events {T = T(i), S =
S(j)} and {T(i) ≤ t, S(j) ≤ s} are independent, and we then have in this case

P (T > t, S > s) =
n∑

k=1

m∑
i=1

P (T = T(i), S = S(j))P (T(i) > t, S(j) > s).
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Remark 5.6: Navarro et al. [25] considered coherent systems with common shared inde-
pendent and identically distributed component lifetimes T1, . . . , Tn with a continuous distri-
bution function F , and introduced a “bivariate signature matrix.” For the sake of clarity,
we can think of two systems with n1 and n2 components and having n1,2 components in
common, so that there are n = n1 + n2 − n1,2 components in total. If n1,2 = 0, the lifetimes
of the two systems become independent and the joint distribution of their lifetimes is then
simply the product of their marginal distributions. Navarro et al. [25] also considered the
case in which these systems are based just on some of these component lifetimes and not on
all of them; so, these systems may share all, some, or none of these components. They then
considered the random vector I = (I1, I2) with

I = (i, j) whenever T = T(i) and S = T(j)

with joint probability mass function of I, denoted by pi,j = P (I = (i, j)), with

pi,j =
|Ai,j |
n!

,

where |Ai,j | is the size of the set

Ai,j = {σ ∈ ℘n : T = T(i) and S = T(j) whenever Tσ(1) < · · · < Tσ(n)}
and ℘n is the set of permutations of the set {1, . . . , n}. The matrix P = (pi,j) has been
termed the bivariate signature matrix (BSM) associated with (S, T ) by Navarro et al. [25].
Also, sS

j =
∑n

i=1 pi,j defines the univariate signature (marginal) of the coherent system
corresponding to lifetime S and sT

i =
∑n

j=1 pi,j similarly defines the univariate signature
(marginal) of the coherent system signature corresponding to lifetime T .

If we consider the component lifetimes in {T1, . . . , Tn}, we can write

G(t, s) = P (T ≤ t, S ≤ s) =
n∑

i=1

n∑
j=1

pi,jFi,j(t, s),

where pi,j = P (T = T(i)S = T(j)), Fi,j(t, s) = P (T(i) ≤ t, T(j) ≤ s), and G(t, s) is the joint
distribution function of the system lifetimes. It should be noted that G can have a singular
part in the set {T = S}, in which case we have

Fi,i = P (T(i) ≤ t, T(i) ≤ s) = F(i)(t ∧ s),
and we can then continue to use the above decomposition.

5.2. Compensator Process and Asymptotic Reliability

The point process Nt((i)) = 1{T(i)≤t} is an �t-submartingale, that is, T(i) is �t-measurable
and E[Nt((i))|�s] ≥ Ns((i)) for all 0 ≤ s ≤ t. Then, from Doob–Meyer decomposition, there
exists an unique �t-predictable process, denoted by (At((i)))t≥0, called the �t-compensator
of Nt((i)), with A0((i)) = 0 and such that Mt((i)) = Nt((i)) −At((i)) is a zero mean uni-
formly integrable �t-martingale. We assume that Ti, 1 ≤ i ≤ n are totally inaccessible
�t-stopping times and, under this assumption, At((i)) is continuous. As Nt((i)) can only
count in the time interval (T(i−1), T(i)], the corresponding compensator differential dAt((i))
must vanish outside this interval.

The �t-compensator of P (T ≤ t|�t), where T is the system lifetime, is as given in the
following theorem.
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Theorem 5.7: Let T1, . . . , Tn be totally inaccessible �t-stopping times representing the life-
times of components of a coherent system with lifetime T . Then, the �t-submartingale
P (T ≤ t|�s), 0 ≤ s ≤ t, has �t-compensator

n∑
i=1

∫ t

0

1{T=T(i)} dAs((i)). (18)

Proof: Let us consider the deterministic process

1{T=T(i)}(w, s) = 1{T=T(i)}(w).

It is left continuous and, therefore, �t-predictable, implying that (see [8])∫ t

0

1{T=T(i)}(w) dMs((i))

is an �t-martingale.
Because a finite sum of �t-martingales is an �t-martingale, we have

n∑
i=1

∫ t

0

1{T=T(i)} dMs((i)) =
n∑

i=1

∫ t

0

1{T=T(i)} d1{T(i)≤s} −
n∑

i=1

∫ t

0

1{T=T(i)} dAs((i))

is an �t-martingale. As the compensator is unique, the proof gets completed. �

We consider the definition of a �t-double stochastic Poisson process.

Definition 5.8: A point process Nt, adapted to a history (�t)t≥0, is said to be a �t-double
stochastic Poisson process, directed by At if, for all t ≥ s ≥ 0 and all u ∈ �,

E{exp[iu(Nt −Ns)|�s} = exp[(eiu − 1)(At −As)],

where (At)t≥0 is a finite, nonnegative �0-measurable process. Also, the above expression
yields, for all t ≥ s ≥ 0 and all k ≥ 0,

P (Nt −Ns = k|�s) = exp[−(At −As)]
[At −As]k

k!
,

and Nt is said to be a �t-double stochastic Poisson process or a �t-conditional Poisson
process.

If we have At =
∫ t

0
λs ds, where λt is a nonnegative �0-measurable process with∫ t

0
λs ds <∞, then λt is called the intensity process.
If At = A, where A is some nonnegative �0-measurable random variable, then Nt is

called a homogeneous double stochastic Poisson process.
If At = A(t), where A(t) is a deterministic function of time, then Nt = N(t) is called a

nonhomogeneous Poisson process.
We now apply Brown’s Theorem (see Ref. [9]) in the signature point process

representation of a coherent system.

Theorem 5.9 (Brown [9: )] Let (�n
t )n≥1 be a sequence of history defined on a common

probability space (Ω,�, P ), (Nn
t )n≥1 be a sequence of a simple point processes �n

t -adapted,
for each n, and (An

t )n≥1 be the sequence of �n
t -compensators of (Nn

t )n≥1. Let (At)t≥0 be a
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cumulative process defined on (Ω,�, P ), with continuous trajectories and such that for each
t > 0,

(i) At is �n
0 -measurable, for every n = 1, 2, . . .;

(ii) An
t → At, in probability, when n→ ∞.

Then, Nn
t converges weakly to a double stochastic Poisson process directed by At.

Now, we apply Theorem 5.9 to calculate the asymptotic reliability of a coherent system.

Corollary 5.10: Let T1, . . . , Tn be totally inaccessible �t-stopping times representing life-
times of components of a coherent system with lifetime T . Consider a component level
filtration given by

�n
t = σ{1{T(i)>s}, 1 ≤ i ≤ n, 0 < s < t},

and the point process

Nn
t = P (T ≤ t|�n

t ) =
n∑

i=1

1{T=T(i)}1{T(i)≤t}

with �n
t -compensator

An
t =

n∑
i=1

1{T=T(i)}At((i)).

If, for all t ≥ 0, An
t → At, in probability when n→ ∞, where At has a continuous sample

path and is �n
0 -measurable, then Nn

t converges weakly to a double stochastic Poisson process
directed by At.

Proof: As we have, for k ≤ n, {T(i) = T} ∈ �n
T(i)

, {T(i) = T} ∩ {T(i) ≤ t} ∈ �n
t ,∀t ≥ 0, Nn

t

is �n
t -adapted and the proof follows readily from Brown’s Theorem. We denote this limit

by

AT
t =

∞∑
i=1

1{T=T(i)}At((i)).

(AT
t )t≥0 is the �t-compensator of (NT

t )t≥0, where

NT
t = lim

n→∞Nn
t =

∞∑
i=1

1{T=T(i)}1{T(i)≤t},

also denoted by (Tn)n≥1. �

Remark 5.11: To give a meaning and interpretation for system signature of “infinite
order,” we mention the following result of Navarro et al. [23]: Given an arbitrary coherent
system with lifetime T and distribution function FT (t), with n i.i.d. components, there exists,
for any integer m > n, an equivalent (equal in law) coherent system with m i.i.d. compo-
nents with the same distribution function FT (t). Formally, Navarro et al. [23] established
the following result.
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Theorem 5.12 (Navarro et al. [23]): Let s = (s1, . . . , sk) be the signature of an arbitrary
coherent system of order k. Then, for any integer n > k, the system with signature s is
equivalent to the n-component system with signature s∗ = (s∗1, . . . , s

∗
n) given by

s∗ =
k∑

i=1

si

n+i−k∑
j=i

(
j−1
i−1

)(
n−j
k−i

)
(
n
k

) sj:n,

where sj:n = (0, . . . , 0, 1, 0, . . . , 0) is the signature vector of a j-out-of-n:F system.
It is important to note that

n+i−k∑
j=i

(
j−1
i−1

)(
n−j
k−i

)
(
n
k

) = 1

and

lim
n→∞

(
j−1
i−1

)(
n−j
k−i

)
(
n
k

) = 0.

Example 5.13: Let T1, T2, T3, and T4 be independent and identically distributed component
lifetimes with distribution function F . Let S and T be the lifetimes of the following coherent
systems with a single-shared component: S = ∧{T1 ∨ T2, T1 ∨ T2, T2 ∨ T3} and T = T3 ∧ T4,
where we use the following notation Ti ∧ Tj = min{Ti, Tj} and Ti ∨ Tj = max{Ti, Tj}.
Navarro et al. [25] have then calculated the probability distribution of the random pair (I1, I2)
by using the definition in Remark 5.6, as the matrix P given by

⎡
⎢⎢⎢⎢⎣

0 0 0 0
1
6

1
6

1
6

0
1
3

1
6

0 0

0 0 0 0

⎤
⎥⎥⎥⎥⎦ .

As a two-component system, the system signature corresponding to lifetime T is (1, 0).
As a three-component system, its signature is (2

3 ,
1
3 , 0), and as a four-component system its

signature, determined from P, is (1
2 ,

1
3 ,

1
6 , 0).

Similarly, as a three-component system, the system signature corresponding to lifetime
S is (0, 1, 0). As a four-component system, its signature, determined from P, is (0, 1

2 ,
1
2 , 0).

Example 5.14: To illustrate the asymptotic procedure, we consider the well-known Cesaro
Summability Condition:

(I) If 0 < p(n, k) < 1, for all n and 1 ≤ k ≤ n, then the sum
∑n

k=1 p(n, k) and the
product Πn

k=1(1 − p(n, k), either converges or diverges;
(II) If 0 < p(n, k) < 1, for all n, 1 ≤ k ≤ n and

∞∑
j=1

1
j

n∑
k=1

p(n, k) = λt,

for fixed t and some λ > 0, as n→ ∞.
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Then,
∞∏

k=1

(1 − p(n, k)) = exp(−λt),

for fixed t and some λ > 0.

We now assume that the components of coherent systems are subject to failure according
to an NHPP. This property characterizes a minimal repair process which means that, at
each failure in the set {T = T(i)} the system is repaired and it continues to work with the
same failure rate as it had immediately before failure. In this cases, we characterize the
coherent system through its compensator process

An
t =

n∑
i=1

1{T=T(i)}At((i)).

It is well-known that (see Ref. [1]), in the absolutely continuous case in {t < T(i)},
At((i)) = − ln(1 − F(i)(t|�t−)). So, At((i)) =

∑∞
j=1(1/j)P (T(i) ≤ t|�t−)j and

An
t =

n∑
i=1

1{T=T(i)}
∞∑

j=1

1
j
P (T(i) ≤ t|�t−)j .

We can thus state conditions under which we apply the Cesaro Summability Condition
to coherent system, for example:

If F(k)(t|�t−) are absolutely continuous and

An
t =

n∑
i=1

1{T=T(i)}
∞∑

j=1

1
j
P (T(i) ≤ t|�t−)j → λt,

for fixed t and some λ > 0, as n→ ∞, then the coherent system converges to a Poisson
process.

Under the above conditions and the second part of Cesaro Summability Condition, we
can conclude that the asymptotic reliability is equal to

∞∏
i=1

P (T(i) > t|�t−) = exp(−λt).

We consider a coherent system of identically distributed components where, for fixed t
and some λ, the failure probability of an ordered component depends on the size n of the
system and its position, i, and tends to zero at the rate λt/n1/i. It then follows that

P (T(i) ≤ t|�t−) =
[
λt

n1/i
+ o

(
1
n1/i

)]i

.

Therefore,

−
n∑

i=1

1{T=T(i)}
∞∑

j=1

1
j

{[
λt

n1/i
+ o

(
1
n1/i

)]i
}n

→ (λt)k,

as n→ ∞. Then, the coherent system converges to a Weibull process. This, in fact, pro-
vides a motivation to asymptotically extend the inaccuracy measure for a double stochastic
Poisson process.
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6. CRI MEASURE

6.1. CRI Measure for Coherent Systems under the Double Stochastic Poisson Process

We now define CRI measure between the coherent system modeled by double stochastic
Poisson processes as follows.

Definition 6.1: Let (NT
t )t≥0, defined by the sequence (Tn)n≥1, be a double stochastic

Poisson process modeling a coherent system with lifetime T and �t-compensator processes
(AT

t )t≥0, and similarly (NS
t )t≥0, defined by the sequence (Sn)n≥1, be a double stochastic

Poisson process modeling a coherent system with lifetime S and �t-compensator processes
(BS

t )t≥0. Then, the CRI measure between NT
t and NS

t , as in (6), is

CRIS,T = E

[∫ T

0

BS
s ds

]
+ E

[∫ S

0

AT
s ds

]
.

Theorem 6.2: Let T1, . . . , Tn, . . ., S1, . . . , Sm, . . . be totally inaccessible �t-stopping times
representing the lifetimes of components of two coherent systems with lifetimes T and S,
respectively. Then, the CRI measure of NT

t and NS
t at the component level, that is, observing

T(i)(i ≥ 1) and S(i)(i ≥ 1), is

CRIS,T = E

⎡
⎣ ∞∑

i=1

∞∑
j=1

1{S=S(i),T=T(j)}|S(k) − T(j)|
⎤
⎦ . (19)

Proof: We have

CRIS,T = E

[∫ T

0

BS
s ds

]
+ E

[∫ S

0

AT
s ds

]
.

Now, using the results of Section 5, we have

E

[∫ T

0

BS
s ds

]
= E

[∫ T

0

(∫ s

0

dBS
t

)
ds

]
= E

[∫ T

0

(∫ T

t

ds

)
dBS

t

]
= E

[∫ T

0

(T − t) dBS
t

]
.

As dBS
t =

∑∞
i=1 1{S=S(i)} dBt((i)), we have

E

[∫ T

0

BS
s ds

]
= E

[∫ T

0

(T − t)
∞∑

i=1

1{S=S(i)} dBt((i))

]

= E

[ ∞∑
i=1

∫ T

0

(T − t)1{S=S(i)}d1{S(i)≤t}

]

= E

[ ∞∑
i=1

1{S=S(i)}(T − S(i))1{S(i)≤T}

]
. (20)

Using the same argument, we also obtain

E

[∫ S

0

AT
s ds

]
= E

⎡
⎣ ∞∑

j=1

1{T=T(j)}(S − T(j))1{T(j)≤S}

⎤
⎦ . (21)
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Hence, by adding Eqs. (20) and (21), we obtain

CRIS,T = E

[ ∞∑
i=1

1{S=S(i)}(T − S(i))1{S(i)≤T} +
∞∑

i=1

1{T=T(i)}(S − T(i))1{T(i)≤S}

]

+
∞∑

i=1

1{T=T(i)}

⎛
⎝ ∞∑

j=1

1{S=S(j)}

⎞
⎠ (S − T(i))1{T(i)≤S}

⎤
⎦

= E

⎡
⎣ ∞∑

k=1

∞∑
j=1

1{S=S(i),T=T(j)}|(T(j) − S(i)|1{S(i)≤T(j)}

+
∞∑

i=1

∞∑
j=1

1{T=T(i),S=S(j)}|S(j) − T(i)|1{T(i)≤S(j)}

⎤
⎦

= E

⎡
⎣ ∞∑

i=1

∞∑
j=1

1{S=S(i),T=T(j)}|S(i) − T(j)|
⎤
⎦ .

�

Remark 6.3: The interpretation of the CRI measure between the double stochastic Poisson
process is retained. We note that (19) can be written as

CRIS,T = E

⎡
⎣ ∞∑

i=1

∞∑
j=1

1{S=S(i),T=T(j)}|S(i) − T(j)|
⎤
⎦

= E

⎡
⎣|S − T |

∞∑
i=1

∞∑
j=1

1{S=S(i),T=T(j)}

⎤
⎦

= E|S − T |.

Thus, CRIT,S can be seen as a dispersion measure when using a coherent system lifetime
S asserted by the experimenter’s information of the true coherent system lifetime T .

Corollary 6.4: Let (NT
t )t≥0, defined by the sequence (Tn)n≥1, be a deterministic NHPP

modeling a coherent system with lifetime T subject to minimal repairs, and similarly let
(NS

t )t≥0, defined by the sequence (Sn)n≥1, be a deterministic NHPP modeling a coher-
ent system with lifetime S subject to minimal repairs, independently of T . Then, the CRI
measure of NT

t and NS
t at the component level is given by

CRIS,T =
∞∑

i=1

∫ ∞

0

sS
i P (S(i) > t) dt+

∞∑
j=1

∫ ∞

0

sT
j P (T(j) > t) dt

− 2
∞∑

i=1

∞∑
j=1

∫ ∞

0

pi,jP (S(i) > t, T(j) > t) dt. (22)
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Proof: As in Eq. (19), we have

CRIS,T = E

⎡
⎣ ∞∑

i=1

∞∑
j=1

1{S=S(i),T=T(j)}|S(i) − T(j)|
⎤
⎦

=
∞∑

i=1

∞∑
j=1

E{E[1{S=S(i),T=T(j)}|S(i) − T(j)||S = S(i), T = T(j)]}

=
∞∑

i=1

∞∑
j=1

E{1{S=S(i),T=T(j)}E[|S(i) − T(j)||S = S(i), T = T(j)]}

=
∞∑

i=1

∞∑
j=1

P (S = S(i), T = T(j))E[|S(i) − T(j)|]

=
∞∑

i=1

∞∑
j=1

pi,jE[(S(i) ∨ T(j)) − (S(i) ∧ T(j))]

=
∞∑

i=1

∞∑
j=1

pi,j

∫ ∞

0

[P ((S(i) ∨ T(j)) > t) − P ((S(i) ∧ T(j)) > t)] dt

=
∞∑

i=1

∫ ∞

0

sS
i P (S(i) > t) dt+

∞∑
j=1

∫ ∞

0

sT
j P (T(j) > t) dt

− 2
∞∑

i=1

∞∑
j=1

∫ ∞

0

pi,jP (S(i) > t, T(j) > t) dt.

�

Example 6.5: As in Example 4.3, let T1, . . . , Tn, . . . be the lifetimes of components of a
coherent system with lifetime T that are subject to failure according to a Weibull process
with parameters β and θ1. Similarly, let S1, . . . , Sm, . . . be the lifetimes of components of
a coherent system with lifetime S, asserted by the experimenter, that are subject to failure
according to a Weibull process with parameters β and θ2. Then, S ∧ T follows a Weibull
process with parameters β and θβ

1 θ
β
2 /(θ

β
1 + θβ

2 ). In practice, we consider the ordered lifetimes
T1, . . . , Tn, . . . with a conditional reliability function

Fi(ti|t1, . . . , ti−1) = exp

[
−

(
ti
θ

)β

+
(
ti−1

θ

)β
]

for 0 ≤ ti−1 < ti, where ti are the ordered observations. Now, considering T1, . . . , Tn, . . .,
S1, . . . , Sm, . . . as record values of independent and identically distributed random variables,
we can apply Corollary 6.4 to obtain

CRIS,T =
∫ ∞

0

{ ∞∑
i=1

sT
i exp

[
−

(
t

θ1

)β

+
(
ti−1

θ1

)β
]
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+
∞∑

j=1

sS
j exp

[
−

(
t

θ2

)β

+
(
sj−1

θ2

)β
]

−2
∞∑

i=1

sS∧T
i exp

⎡
⎣−

(
t

θβ
1 θ

β
2 /(θ

β
1 + θβ

2 )

)β

+

(
ti−1

θβ
1 θ

β
2 /(θ

β
1 + θβ

2 )

)β
⎤
⎦
⎫⎬
⎭ dt,

where sT
k ,sS

j , and sS∧T
i are the components of vectors sT , sS, and sS∧T of the (“infinite

order”) coherent system signatures with lifetimes T , S, and S ∧ T , respectively.

6.2. Dynamic CRI Measure for Coherent Systems under the Double Stochastic
Poisson Process

It is of interest to extend the concept to a time varying form corresponding to a residual
process after a fixed time t. In this regard, based on Definition 2.5, we can provide the
following definition.

Definition 6.6: Let (NT
t )t≥0, defined by the sequence (Tn)n≥1, be a double stochastic Pois-

son process with �t-compensator processes (AT
t )t≥0, and similarly let (NS

t )t≥0, defined by
the sequence (Sn)n≥1, be a double stochastic Poisson process with �t-compensator processes
(BS

t )t≥0. Then, the dynamic CRI measure between NT
t and NS

t is given by

DCRIt
S,T = E

[∫ T

t

BS
s ds

]
+ E

[∫ S

t

AT
s ds

]

= E

[ ∞∑
i=1

∞∑
n=1

1{S=Si,T=Tn}|Tn − Si|1{t<Tn∧Si}

]
. (23)

The above definition is consistent in the way that it can be proved using the same
arguments as in the proof of Theorem 6.2 upon replacing the integral domain from (0,∞)
to (t,∞).

Remark 6.7: Let (NT
t )t≥0 and (NS

t )t≥0 be double stochastic Poisson processes with �t-
compensator processes (AT

t )t≥0 and (BS
t )t≥0, respectively. We say that NT

t and NS
t satisfy

the proportional risk hazard process if BS
t = αAT

t , ∀t ≥ 0 for some α, 0 < α < 1.

Theorem 6.8 (Characterization Problem): If NT
t and NS

t satisfy the proportional risk haz-
ard process, then the dynamic CRI measure DCRIt

S,T <∞ uniquely determines the double
stochastic Poisson process.

Proof: The proof follows along the lines similar to those of Theorem 2.6 and is therefore
not presented here for the sake of brevity. �

7. CONCLUDING REMARKS

In this work, we have introduced a symmetric CRI measure between two lifetimes as a
metric. Next, we have used a point process martingale approach to introduce the signa-
ture point process. We have then extended these results to coherent systems and have also
defined a measure to compare the relative performance of different coherent systems. In the
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second part of the paper, we have defined a joint signature point process for two coher-
ent systems which will be useful in calculating the residual cumulative inaccuracy measure
between two coherent systems. We have also provided an asymptotic reasoning for extend-
ing the introduced inaccuracy measure to a double stochastic Poisson process. We have then
defined the cumulative inaccuracy measure for coherent systems under a double stochastic
Poisson process and paid special attention to a nonhomogeneous Poisson process for mod-
eling a minimal repair coherent system. We have presented some examples to illustrate the
calculation of the inaccuracy measure between minimal repair point processes.

It will be of great interest to generalize this work in two directions: first, to deal with
the case of several coherent systems simultaneously sharing some components as discussed
in the work of Zarezadeh et al. [37], and secondly, to handle the notion of ordered system
signatures as discussed in the works of Balakrishnan and Volterman [6] (for binary state
systems) and He et al. [15] (for multi-state systems). Work is currently under progress on
these problems and we hope to report the findings in a future paper.
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