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Abstract
The viscous drag acting on wave energy converters may have a significant effect on the dynamics during high-energetic sea 
states and large motions experienced due to resonance. The viscous drag is a nonlinear phenomenon of floating systems 
usually modelled based on the Morison’s equation using the relative velocity between the structure and the wave particle. To 
include such a nonlinearity into the system dynamics, nonlinear time domain simulations are generally employed, which are 
computationally expensive compared to frequency domain simulations. To overcome this problem, this work presents the 
derivation of the viscous drag force/torque under the statistical linearization technique using the frequency domain model. The 
technique offers a reliable tool for the estimation of the system dynamics while maintaining a low computational cost when 
compared to time domain simulations. For the proposed nonlinearity, the resulting equivalent linear term can be decomposed 
into two components: an excitation term and a damping term. To illustrate the applicability of the derivation, two conceptu-
ally different wave energy converters are investigated: a heaving point absorber, and an oscillating wave surge converter. The 
results obtained using statistical linearization are compared to their respective nonlinear time domain simulations to verify 
the reliability of the technique. Also, a comparison between the statistical linearization results using the relative motion and 
using only the structure motion is presented to illustrate the importance of including the relative velocity for wave energy 
applications. Excellent agreements have been obtained between statistical linearization model using the relative motion and 
its respective nonlinear time domain model for both devices in terms of spectral content, probability density of the velocity 
components, and energy absorbed by the device.

Keywords  Morison’s equation · Statistical linearization · Relative motion · Frequency domain

1  Introduction

Some concepts of wave energy converters (WECs) are often 
designed to operate in resonance with the incoming wave 
field to improve the energy conversion efficiency, leading to 
large displacements. As a result, some nonlinearities play a 
significant contribution to the system response and must be 

accounted for in the numerical models. The viscous drag can 
have a significant impact depending on the type of device 
(Giorgi and Ringwood 2018; Giorgi et al. 2016; Todalshaug 
et al. 2011). The representation of the viscous drag is usu-
ally formulated based on Morison’s equation (Morison et al. 
1950), which is a quadratic function of the relative velocity 
between the structure and the wave particle. The magnitude 
of the viscous drag depends on the shape and size of the 
device, operating condition, and characteristics of the inci-
dent wave (spectral formulation, significant wave height, 
wave peak period).

Generally, time domain (TD) models are built to analyze 
the dynamics of WECs subjected to nonlinear loads, such as 
the viscous drag (Babarit et al. 2012). However, these analy-
ses are computationally expensive compared to traditional 
frequency domain (FD) models, which may be unfeasible 
to analyze the dynamics across different sea states or for 

 *	 Leandro S. P. da Silva 
	 leandro.dasilva@adelaide.edu.au

1	 School of Mechanical Engineering, The University 
of Adelaide, Adelaide, SA, Australia

2	 Escola Politécnica, Department of Naval Architecture 
and Ocean Engineering, University of São Paulo, São Paulo, 
SP, Brazil

3	 Escola Politécnica, Offshore Mechanics Laboratory, 
University of São Paulo, São Paulo, SP, Brazil



158	 Journal of Ocean Engineering and Marine Energy (2020) 6:157–169

1 3

optimization routines using several variables. Especially at 
preliminary design stages, numerical models of WECs must 
be suitable for automatic optimization. Such models must 
produce reliable results, have flexible applications, and have 
a low computational cost (Davidson and Costello 2020). 
Based on those requirements, an appropriated approach to 
estimate the response of the nonlinear system is to apply 
statistical linearization (SL). The SL offers a fast and reli-
able estimation of the system stationary response under 
stochastic loads (wave, earthquake and wind forces) (Rob-
erts and Spanos 2003), and has been successfully applied 
to various WECs (Silva et al. 2020a), and for several opti-
mization routines of a multi-mode WEC under various sea 
states and parameters (Sergiienko et al. 2020). Built upon the 
FD model, the technique consists in replacing the nonlinear 
equation by its equivalent linear one, where the difference 
is usually minimized in a mean square sense.

The linearization of Morison’s equation has been applied to 
offshore structures (Naess and Pisano 1997; Wolfram 1999). 
Some of the analyses simplify the nonlinear drag based on 
the assumption of small velocity of the structure compared to 
the fluid flow, which is assumed valid for such an application. 
Regarding WECs, previous works using SL have also simpli-
fied viscous drag force, in this case, using only the velocity 
of the structure measured with respect to Earth (Silva et al. 
2020a; Silva 2019; Folley 2016; Folley and Whittaker 2010). 
However, the velocity of the structure with respect to the 
fluid flow is important in wave energy applications, because 
the wave velocity and structure velocity may have the same 

order of magnitude. As a result, the main contributions of this 
paper are as follows: (1) to demonstrate the formalization of 
the Morison’s equation using the SL technique by introducing 
the relative motion between the structure and the wave field; 
and (2) to demonstrate the importance of including the wave 
velocity into the calculation of the viscous drag force for dif-
ferent types of WECs.

The paper is structured as follows. First, a brief descrip-
tion of ocean waves based on the linear wave theory is given 
in Sect. 2. Subsequently, Sect. 3 presents the FD modelling, 
the nonlinear viscous drag force/torque, and its linearization. 
Then the technique is applied to two conceptually different 
wave energy devices, (a) a heaving point absorber (PA) (in 
Sect. 4), and (b) an oscillating wave surge converter (OWSC) 
(in Sect. 5), both illustrated in Fig. 1. The SL technique is 
compared with its respective nonlinear TD simulation to verify 
the reliability of the technique for these applications. Also, a 
comparison with the SL results using only the body motion 
for the viscous drag is investigated to demonstrate the impor-
tance of including the relative motion. Finally, a discussion 
about the applicability of the technique and main results are 
summarized.

2 � Ocean waves

This section describes relevant wave properties to calculate the 
viscous drag component. The ocean waves are here described 
based on the well-known linear wave theory. This allows the 
superposition of elementary results, such as wave elevations 

Fig. 1   Trajectory of wave particles at different water depths and two conceptually different WECs (point absorber and oscillating wave surge 
converter) under viscous drag loads

(a) PA

 (b) OSWC
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and velocities, which is essential for the characterization of 
real sea states. The wave velocity is presented using a single 
frequency component. However, further analysis is based on 
the spectral representation of the sea state. For a fixed position 
of the horizontal sea plane, the wave surface elevation can be 
described as:

where �a denotes the magnitude of the wave complex ampli-
tude, and � is the wave frequency. The wave-particle veloci-
ties ( ̇q𝜁 ) located at the submerged depth zsub in the horizontal 
(u) and vertical (w) directions are given, respectively, by 
Journée and Massie (2000):

where h is the water depth, Ĉ𝜁 is a transfer function that 
relates the wave velocity at a specified location and the wave 
surface elevation, and k is the wavenumber. The wavenum-
ber is obtained based on the linear dispersion relation as 
Newman (2018):

3 � Frequency domain analysis

In the conventional hydrodynamic approach, the frequency 
domain analysis is carried out in terms of response ampli-
tude operators (RAO). In such models, the dynamics are 
given by a set of linearized equations, in which the RAO 
is a transfer function that relates the body response and the 
wave surface elevation. For simplicity, the following analy-
sis is applied to a single DOF system; however, it can be 
extended to systems with multiple DOFs. Assuming a har-
monic response of the system due to the characteristics of 
the excitation, the response can be described by:

where q̂a is the complex amplitude of the generalized coor-
dinate q. Based on the generalized coordinate and its time 
derivatives, the RAO may be written in FD as:

(1)�(t) = ℜ𝔢
{
�a e

i�t
}
,

(2)
q̇𝜁 ,u(zsub, t) = ℜ𝔢

{
𝜔𝜁a

cosh(k(h+zsub))

sinh(kh)
ei𝜔t

}

= ℜ𝔢
{
Ĉ𝜁 ,u(𝜔)𝜁ae

i𝜔t
}
,

(3)
q̇𝜁 ,w(zsub, t) = ℜ𝔢

{
i𝜔𝜁a

sinh(k(h+zsub))

sinh(kh)
ei𝜔t

}

= ℜ𝔢
{
Ĉ𝜁 ,w(𝜔)𝜁ae

i𝜔t
}
,

(4)�2 = gk tanh(kh).

(5)q(t) = ℜ𝔢
{
q̂a e

i𝜔t
}
,

where M is the mass (or moment of inertia), Bpto is the 
power-take-off (PTO) damping, and K denotes all stiffness 
components (mechanical and hydrostatic); F̂w(𝜔) represents 
the complex wave excitation force per unit of wave ampli-
tude; A(�) and B(�) are the well-known quantities of hydro-
dynamic added mass (or moment of inertia) and radiation 
damping, respectively. For a single DOF system, the spectral 
response of the body displacement as a function of the RAO 
and spectrum of wave elevation, S�a(�) , can be calculated as:

and the average power absorbed by the linear PTO system 
as Silva et al. (2020a):

where 𝜎q̇ denotes the standard deviation of the WEC veloc-
ity q̇.

3.1 � Drag force‑Morison’s equation

Linear potential wave theory assumes inviscid fluid and thus 
neglects the effects of viscous forces/torque acting on the 
WEC. Therefore, the inclusion of a drag force is required to 
improve the estimation of the body response. In this regard, 
this work represents the viscous drag component in the TD 
based on the Morison’s equation (Morison et al. 1950), 
in which the force is proportional to the relative velocity 
squared, and the absolute sign preserves the force direction:

with:

where CD and SA denote the drag coefficient and the cross-
sectional area of the structure perpendicular to the relative 
motion respectively; ̇̂qrel is the relative velocity between the 
structure and the undisturbed wave-particle velocity, where 
Eq. (2) describes the wave velocity for the vertical direction 
(u) and Eq. (3) for the horizontal direction (w). Based on the 
nonlinear viscous drag force, an equivalent linear force can 
be represented using SL as:

where Dm is the linearized drag coefficient.

(6)

RAOq =
q̂a

𝜁a

=
F̂w(𝜔)

−𝜔2[M + A(𝜔)] + i𝜔
[
B(𝜔) + Bpto

]
+ K

,

(7)Sq(�) = |RAOq|2S�a(�),

(8)Ppto = Bpto𝜎
2
q̇
,

(9)Fd = −
1

2
CD𝜌SA|q̇rel|q̇rel,

(10)q̇rel = q̇ − q̇𝜁 ,

(11)Fd = −Dm
̇̂qrel,
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The difference between the nonlinear drag term and its 
equivalent linear one is minimized based on the SL procedure 
Berge and Penzien (1974):

where ⟨ ⟩ denotes the mathematical expectation.
Assuming a random process described by a Gaussian distri-

bution, the probability density function (PDF) for the relative 
velocity can be written as:

where 𝜎q̇rel denotes the standard deviation of the relative 
velocity q̇rel . Based on the Gaussian distribution, the solu-
tion of Eq. (12) is given by Berge and Penzien (1974):

Thus, the equivalent linear term requires only the standard 
deviation of the relative velocity. Substituting Eqs. (10) into 
(11), the linearized form of Eq. (9) can be rewritten into 
two terms, one corresponding to the body drag force that 
depends on the body velocity (damping) and the second cor-
responding to the wave drag force that depends on the wave 
field velocity (excitation):

Equation (15) can be modified and included into the equiva-
lent RAO as:

where Ĉ𝜁 ,q̇ relates the wave surface elevation and wave-par-
ticle velocity, as shown in Equations (2) and (3), which is 
multiplied by the linear drag coefficient Dm to represent the 
wave drag contribution. The equivalent spectral response of 
the body displacement is obtained from Eq. (7).

In the equivalent RAO, the spectrum of relative velocity 
is required to calculate the standard deviation, as shown in 
Eq. (14), which is used in the equivalent drag damping and 
drag excitation force. In this regard, the complex amplitude 
of the equivalent relative velocity between the body velocity 
and wave particle, in Eq. (10), can be formulated as:

(12)Dm =

⟨
1

2
CD𝜌SA|q̇rel|q̇2rel

⟩

⟨
q̇2
rel

⟩ ,

(13)f (q̇rel) =
1

𝜎q̇rel

√
2𝜋

exp

�
−

q̇2
rel

2𝜎2
q̇rel

�
,

(14)Dm =
1

2
CD𝜌SA

√
8

𝜋
𝜎q̇rel .

(15)Fd,b + Fd,w = −Dm
̇̂qa + Dm

̇̂q𝜁 .

(16)

RAOq,eq =
q̂a

𝜁a

=
F̂w(𝜔) + DmĈ𝜁 ,q̇

−𝜔2[M + A(𝜔)] + i𝜔
[
B(𝜔) + Bpto + Dm

]
+ K

,

Therefore, a transfer function can be established to relate the 
equivalent relative velocity to the wave amplitude:

where the spectral response of the relative velocity is 
obtained as:

and the standard deviation of the relative velocity is obtained 
as:

The equivalent linear terms require the knowledge of the 
body response, as shown in Eq. (12). However, the response 
distribution is not initially known. Based on that, an itera-
tive procedure is generally applied, in which the linear sys-
tem is used as an initial guess. This iterative procedure runs 
using the response of the previous iteration until the solu-
tion achieves a predetermined convergence criterion. For 
some examples of iterative procedure applied for WECs, 
see Silva et al. (2020a) and Silva (2019). To demonstrate 
the technique, the linearization of the Morison’s equation 
is applied to two conceptually different WECs: a floating 
PA constrained to move in heave only, and an OWSC that 
pitches around a hinged connection, as shown Fig. 1.

4 � Point absorber

The first device investigated is a floating spherical PA with a 
radius, R, which is assumed to move only in the heave direc-
tion, q(t) = z(t) . The structure is connected to a linear PTO, 
and the only source of nonlinearity considered comes from 
the drag force, where the vertical wave velocity is calcu-
lated using Eq. (3). However, other nonlinear effects can be 
included into the system dynamics using the SL technique, 
as shown in Silva et al. (2019, 2020a), Spanos et al. (2016). 
For the system described, the equivalent transfer function 
between the body displacement and wave elevation, RAOz,eq , 
can be calculated based on Eq. (16) as:

(17)̇̂qrel = i𝜔RAOq,eq𝜁a − Ĉ𝜁 ,q̇𝜁a.

(18)RAOq̇rel,eq
=

̇̂qrel

𝜁a
= i𝜔RAOq,eq − Ĉ𝜁 ,q̇,

(19)Sq̇rel(𝜔) = |RAOq̇rel,eq
|2S𝜁a (𝜔),

(20)𝜎2
q̇rel

= ∫
∞

0

Sq̇rel(𝜔)d𝜔.

(21)

RAOz,eq =
ẑ

𝜁a

=
F̂w(𝜔) + DmĈ𝜁 ,w

−𝜔2[M + A(𝜔)] + i𝜔[B(𝜔) + Bpto + Dm] + K
.
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Similarly, the equivalent transfer function between the rela-
tive velocity and the wave elevation can be estimated using 
Eq. (21) as:

and the power absorbed calculated as:

The drag coefficient of the floating PA can be estimated 
based on the Keulegan–Carpenter number KC, which is a 
dimensionless quantity for oscillatory flow that describes the 
importance of the ratio between the drag and inertia loads 
(Keulegan and Carpenter 1956). For a single frequency 
motion, the KC number is defined as:

where qa denotes the amplitude of the body motion, and 
Lc is the characteristic length of the object, which for the 
sphere is equal to the diameter. For the floating PA, the KC is 
expected to be within the range of 0–6. According to Molin 
(2002), the drag coefficient is around 0.5 to 1 for this range. 
For the following analysis, the CD is assumed to be equal to 
1. However, this estimation of drag coefficient is subjected 
to uncertainties, in which the effects on the system dynamics 
can be estimated using sensitive analysis as in Todalshaug 
et al. (2011). Note that the mentioned source of uncertainty 
is associated with the value of the drag coefficient used in 
the analysis, and not with the SL method itself.

The main parameters used during the simulations are 
described in Table 1. The natural period, Tn , of the PA is set 
to 7.5 s by tuning the total stiffness of the system. The hydro-
dynamic coefficients of added mass and radiation damping 
are obtained using the open-source code NEMOH (Babarit 
and Delhommeau 2015). Nonlinear TD simulations were 
performed to verify the reliability of the technique. For TD 
simulations, the radiation force is replaced by an equivalent 
transfer function, as described in Perez and Fossen (2009). 
The PTO damping is set to operate in an optimal condition 

(22)RAOq̇rel,eq
=

̇̂qrel

𝜁a
= i𝜔RAOz,eq − Ĉ𝜁 ,w,

(23)Ppto = Bpto𝜎
2
ż
.

(24)KC = 2�
qa

Lc
,

for the specified stiffness and device specifications, as shown 
in Fig. 11 in Appendix.

The incident wave field is assumed to be described by a 
JONSWAP spectrum with peak enhancement factor, � , equal 
to 3.3; and the peak period, Tp , varies from 5 to 15 s to be 
within the range of the natural period of the PA, while the 
significant wave height, Hs , is 3 m. The wave spectrum is 
constructed from 300 frequency components from 0.25 to 
2.5 rad/s. For each sea state, 10 sets of phase angles are used 
to generate the wave components in TD simulations; each 
of them contained approximately 300 cycles. Note that the 
results of the following analysis are sensitive to the operating 
condition (PTO coefficients) and sea state, such as spectral 
formulation, significant wave height and peak wave period.

Figure 2 shows the time series of the wave velocity ( ̇q𝜁 ,w ), 
body velocity ( ̇z ), and their relative velocity ( ̇z − q̇𝜁 ,w ) for the 
first 200 s ( Tp = 7.5 s and Hs = 3 m), where the undisturbed 
wave velocity is calculated at the center of the sphere. At this 
condition, the body is resonating with the incoming wave 
field, and the magnitude of the body and wave velocities are 
comparable, which makes the relative velocity important. 
Figure 3 shows the probability distribution of the velocities 
obtained from the TD data, such as in Fig. 2, considering the 
entire time series and different sets of phase angles of each 
sea state. The TD results (asterisk) are compared with the 
PDF estimations using SL (solid line) based on a Gaussian 
distribution.

As it can be observed in Fig. 3, the Gaussian assumption 
can be used to describe the probability of velocity distribu-
tion, given in Eq. (13). The estimations using SL are compa-
rable to the nonlinear TD simulations. Note that an accurate 
representation of the probability distribution of the relative 
velocity is required for a reliable estimation of the response 
and drag contribution coefficient, Dm , which assumes a 
Gaussian distribution, see Eq. (14).

Table 1   Simulation parameters (PA)

Property Value Units

K 1000
[
kN∕m

]

Bpto 250
[
kN s∕m

]

M 1828
[
kg
]

h 50 [m]

R 5 [m]

CD 1 [−]
Fig. 2   Time series of the velocities at resonance ( Tp = 7.5 s and Hs = 
3 m)
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To demonstrate the relevance of each velocity component, 
namely the wave velocity ( q̇𝜁 ,w ), body velocity ( ̇z ), and rela-
tive velocity ( ̇z − q̇𝜁 ,w ), Fig. 4 illustrates the power spectral 
density (PSD) of the velocities across three sea states close 
to resonance, Tp = 6, 7.5, 9 s and Hs = 3 m. The solid line 
refers to SL results, while the shaded area contains the mean 
and standard deviations from TD simulations. For the three 
sea states simulated, the velocities using SL and TD follow 
a good agreement and the relative wave velocity shows to be 
important for the conditions simulated, Fig. 4a–c. The phase 
between the body and wave velocities affects the magnitude 
of the complex relative velocity, this effect can be noticed 
by observing the spectral magnitude over the frequency 
components. For the sea state with period lower than the 
resonance, Fig. 4a, the body and wave velocities are almost 
out-of-phase and the magnitude of the relative velocity 
increases; while for the sea state, with period higher than 
the resonance, Fig. 4c, the components are in-phase and the 
magnitude is reduced at some frequencies.

To investigate the importance of the vertical wave veloc-
ity in the formulation, four different approaches are consid-
ered: nonlinear TD with relative velocity, SL with relative 
velocity ( ̇z − q̇𝜁 ,w ), SL where the wave velocity is neglected 
( ̇z ), and the linear FD model (no viscous drag included), 
which is illustrated in Fig. 5. This comparison is impor-
tant in order to validate the results obtained using SL, while 
investigates the contribution of the relative velocity against 
its simplified SL model using only the body motion. Note 
that for the SL results using only the body motion, no exci-
tation drag term exists, and a different converged solution 
is achieved.

In general, the SL with relative velocity and TD results 
revealed good agreement for all sea states investigated, 
having the same spectral response over all frequency 

Fig. 3   Time series data and PDF of the velocities at resonance ( Tp = 
7.5 s and Hs = 3 m). The asterisk denotes the probability density 
obtained from TD data, while the solid line denotes the SL results

(a) PSD of the vertical velocities (Tp = 6 s).

(b) PSD of the vertical velocities (Tp = 7.5 s).

(c) PSD of the vertical velocities (Tp = 9 s).

Fig. 4   PSD of the velocities for three Tp (6, 7.5, 9 s) and a Hs = 3 m. 
The solid line refers to the SL results, and the shaded area contains 
the mean and standard deviation of the TD simulations
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components. As expected, discrepancies with the FD 
model are higher at the resonance, where the body has 
higher motions and the drag contribution increases, see 
Fig. 5b. The differences between the SL ( ż − q̇𝜁 ,w ) model 
and SL ( ̇z ) occurred mostly for lower periods, Fig. 5a, b, 
because of the higher wave velocity at higher frequen-
cies. At this velocity, the relative error between the SL 
( ż − q̇𝜁 ,w ) model and TD model for the standard devia-
tion of the displacement ( �z ) was less than 1%, while for 
the SL ( ż ) model was around 10%, as shown in Fig. 6. 
At Tp = 9 s, the differences between the SL models are 
less significant because the device is not resonating, and 
the wave-particle velocity is smaller, see Fig. 4c. At this 
velocity, the relative error of �z was around 0.1% for the 
SL ( ż − q̇𝜁 ,w ) model, and 1% for the SL ( ż ) model, as 
shown in Fig. 6.

Figure 7 shows the power absorbed by the linear PTO 
system obtained between the four distinct approaches as 
a function of the wave period. In general, the SL results 

(a) PSD of vertical displacement (Tp = 6 s).

(b) PSD of the vertical displacement (Tp = 7.5 s).

(c) PSD of the vertical displacement (Tp = 9 s).

Fig. 5   PSD of the displacement for three Tp (6, 7.5, 9 s) and a Hs = 3 
m. The shaded area denotes the standard deviation of the TD simula-
tions

Fig. 6   Relative error between frequency domain-based approaches 
and the TD simulations for the standard deviation as a function of Tp 
for a Hs = 3 m

Fig. 7   Power absorbed by the PA as a function of Tp for a Hs = 3 m
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with relative velocity showed good agreement with the 
nonlinear TD simulations. The differences between the 
SL ( ż − q̇𝜁 ,w ) and SL ( ż ) model occurred mostly for Tp 
lower than 10 s. The power predicted by the SL model 
using only the body velocity in the drag force formula-
tion is 12.1% ± 6.4% higher than the power calculated 
using the relative velocity for the range close to resonance 
( 6 s < Tp < 9 s ), showing that the damping component of 
the linear equivalent drag force has more impact on the 
PA than its excitation component.

A similar trend also occurs over different significant 
wave heights. Figure 8 shows the power absorbed by 
the linear PTO system obtained using the four distinct 
approaches as a function of the wave height and Tp = 7.5 
s. The viscous drag is a quadratic function of the relative 
velocity. Hence, its contribution is expected to be relevant 
at more energetic sea states. However, the importance 
of including the relative velocity occurred across most 
of the significant wave heights simulated. For the con-
ditions simulated, the SL ( ż ) model overestimated the 
power absorbed by 10.6% ± 4.7% compared to the SL 
( ż − q̇𝜁 ,w ) model, as shown in Fig. 8. This reinforces the 
importance of including the relative velocity in the SL 
model. The results using SL and FD are calculated using 
the standard deviation, which is obtained by integrating 
the PSD density of the velocity. Hence, as the spectral 
distribution of the velocities is small between the two SL 
models for periods longer than the resonance, the differ-
ence in power absorbed is smaller for this range, which 
occurred at Tp ≥ 9 s.

5 � Oscillating wave surge converter

Consider an OWSC subjected to the nonlinear viscous drag 
torque, as illustrated in Fig. 9. The generalized coordinate 
q for this case is equal to the flap angle � . Besides the vis-
cous drag term, all other torques acting on the OWSC are 
assumed to be linear. However, additional nonlinearities can 
be included into the governing equation using SL as shown 
in Silva et al. (2020a, b). The pitch amplitude (flap angle) is 
supposed to be sufficiently small, rendering the contribution 
of vertical drag force components as negligible when com-
pared to that coming from horizontal ones. Therefore, only 
the horizontal components of the wave-particle velocities are 
considered. The drag contribution is discretized into N sec-
tions along the vertical submerged length of the structure as:

in which each section, j, has an equivalent coefficient and 
relative velocity given by:

where lj is the distance between the hinged connection and 
the center of the section, � is the flap angle defined in Fig. 9, 
�SA is the cross-sectional area of the discretized structure, 
and j = {1, 2,… ,N} denotes the section index. Based on 
that, the equivalent RAO can be written as:

(25)Mm = −

N∑

j=1

Dm,j
̇̂qrel,j lj,

(26)Dm,j =
1

2
CD𝜌𝛥SA,j

√
8

𝜋
𝜎q̇rel,j ,

(27)̇̂qrel,j =
̇̂
𝜃lj −

̇̂q𝜁 ,uj,

(28)RAO𝜃,eq =
M̂w(𝜔)+

∑N

j=1
Dm,jĈ𝜁 ,ujlj

−𝜔2[J+A(𝜔)]+i𝜔[B(𝜔)+Bpto+
∑N

j=1
Dm,j l

2
j
]+K

,

Fig. 8   Power absorbed by the PA as a function of Hs for a Tp = 7.5 s

θ

θl 
.
j≈

jl

Fig. 9   OWSC, with rotation � and mean position lj of the jth section



165Journal of Ocean Engineering and Marine Energy (2020) 6:157–169	

1 3

where M̂w(𝜔) is the wave excitation torque, J denotes the 
moment of inertia around the hinged connection, and K 
accounts for all sources of stiffness components (hydro-
static and PTO). The transfer function that relates the rela-
tive velocity between the body and wave velocity for the j 
section is given by:

and the power absorbed calculated as:

Like the PA case, the reliability of the proposed formula-
tion is verified using nonlinear TD domain simulations. The 
selected range of peak wave periods, Tp , varies from 5 to 15 
s, and the significant wave height, Hs , is 1.5 m. The main 
flap width is 26 m, and the main parameters of the OWSC 
are given in Table 2. The frequency-dependent hydrody-
namic coefficients were obtained using the open-source 
code NEMOH (Babarit and Delhommeau 2015). The natural 
period of the OWSC is set to 12 s by tuning the total stiff-
ness, and the value of the PTO damping is optimized for 
the given sea states and device specifications, as shown in 
Fig. 15 in Appendix. In this paper, the height of the OWSC 
is discretized using six components ( N = 6 ) to illustrate 
the approach. However, a better discretization must be per-
formed to analyze the effect of the relative wave velocity, 
which can be compared with the analytical solution using the 
body velocity as described in Silva et al. (2020a) and Bacelli 
and Ringwood (2014).

The viscous drag coefficient of the OWSC is estimated 
using the KC number. For the OWSC, the velocity of the top 
of the flap is consider to in be the same order of magnitude 
of the wave, which can be verified in Fig. 10c. For such a 
condition, the KC number is generally smaller than unity 
(Todalshaug et al. 2011). According to the results in Bear-
man et al. (1985), the viscous drag coefficient for a plate in 
oscillatory flow in this range is 8. Same value of drag coef-
ficient was used in Giorgi and Ringwood (2018), Todalshaug 
et al. (2011). However, like the PA case, the drag coefficient 

(29)RAOq̇rel,j,eq
=

q̇rel,j

𝜁a
= i𝜔RAO𝜃,eq lj − Ĉ𝜁 ,uj,

(30)Ppto = Bpto𝜎
2

𝜃̇
.

is a source of uncertainty. Other sections of the discretized 
flap operates in a similar KC number. Therefore, a single 
value of drag coefficient is used for all sections.

Table 2   Simulation parameters (OWSC)

Property Value Units

K 33.3 × 103 [kN.m/rad]

Bpto 50 × 103 [kN.m.s/rad]

I 5.3 × 106 [kg.m2]
h 13 [m]

�SA 1.5 × 26
[
m2

]

CD 8 [−]

(a) PSD of the horizontal velocities (section j = 1).

(b) PSD of the horizontal velocities (section j = 3).

(c) PSD of the horizontal velocities (section j = 5).

Fig. 10   PSD of the velocities for sections j = {1, 3, 5} , Tp = 12 s and 
Hs = 1.5 m. The solid line refers to the SL results, and the shaded 
area contains the mean and standard deviation of the TD simulations
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To demonstrate the contribution of each section in the 
OWSC, Fig. 10 shows the PSD of the wave velocity ( q̇𝜁 ,uj ), 
body velocity ( 𝜃̇lj ), and relative velocity ( 𝜃̇lj − q̇𝜁 ,uj ) for three 
sections ( j = {1, 3, 5} ) and assuming the same sea state 
( Hs = 1.5 m and Tp = 12 s). The solid line represents the SL 
results, and the shaded area is the results of TD simulations 
with standard deviation obtained from 10 runs with differ-
ent sets of phase angles of the incoming wave. The results 
obtained using SL and TD are in good agreement for all 
sections simulated. The wave velocity is calculated around 
the equilibrium position of each section, whereas the body 
velocity in the horizontal direction is calculated around the 
mean position. Therefore, the body velocity in the horizontal 
direction increases linearly with the position of the section 
due to the 𝜃̇lj relationship, while the magnitude of the wave 
velocity in the horizontal direction remains almost constant 
with the depth for the conditions simulated. In general, the 
wave velocity is more relevant around the hinged connec-
tion and exerts an excitation drag term, while at the top, the 
viscous drag effect is driven by the relative velocity and both 
damping and excitation terms are of comparable importance.

To investigate the effect of horizontal wave velocity in 
the formulation, four different approaches are considered: 
nonlinear TD with relative velocity, SL with relative velocity 
( 𝜃̇lj − q̇𝜁 ,uj ), SL with body velocity only ( 𝜃̇lj ), and the linear 
FD model (no viscous drag included). Figure 11 shows the 
PSD of the angular displacement, � , using the four different 
approaches considering the three sea states for Tps close to 
resonance. For the nonlinear cases, each section contributes 
to the total torque. However, the main contribution comes 
from the viscous drag from the distal end due to its higher 
magnitude of the force and larger distance from the hinged 
position. At the distal end, the horizontal velocity of the 
flap and that of the wave particle are of the same order, see 
Fig. 10. Therefore, both velocity components must be con-
sidered to estimate the drag contribution.

Figure 12 shows the mean power absorbed using the four 
approaches as a function of the wave period. In general, the 
results of power absorbed using TD and the SL model with 
relative velocity are in good agreement, while the SL ( 𝜃̇lj ) 
leads to an underestimate over the entire range of sea states 
considered. The differences between the SL ( 𝜃̇lj − q̇𝜁 ,uj ) and 
SL ( 𝜃̇lj ) model occurred during the entire range simulated, 
where the power absorbed predicted by the SL ( 𝜃̇lj ) model 
was 10.3% ± 2.0% lower, showing the importance of includ-
ing the relative velocity over the entire range simulated. 
As opposed to the PA case, the excitation drag component 
had a higher impact than the damping drag for the OWSC. 
This effect of the excitation drag can be associated with the 
phase between the excitation term, M̂w(𝜔) , and the drag term 
related to the wave action. Also, the wave excitation drag 
term contribution occurs over the flap height, while the drag 
contribution occurs mainly at the distal end.

A similar trend between the influence of the excitation 
drag and damping drag components occurred over different 
significant wave heights. Figure 13 shows the mean power 

(a) PSD of angular displacement (Tp = 10 s).

(b) PSD of the angular displacement (Tp = 12 s).

(c) PSD of the angular displacement (Tp = 14 s).

Fig. 11   PSD of the angular displacement for three Tp (10, 12, 14 s) 
and a Hs = 1.5 m. The shaded area denotes the standard deviation of 
the TD simulations
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absorbed by the linear PTO using the four approaches as a 
function of the wave height and Tp = 12 s. For the conditions 
simulated, the SL ( 𝜃̇lj ) underestimated the power absorbed by 
15.6% ± 8.3% compared to the SL ( 𝜃̇lj − q̇𝜁 ,uj ) model. Like the 
PA case, the estimations using the relative velocity were found 
to be important across most of the significant wave heights 
simulated.

6 � Discussion

The main advantage of the SL is the low computational 
cost, while producing reliable estimations of the response 
compared to its respective nonlinear TD simulations. For 
the range of conditions simulated for both devices, the SL 
required approximately 5–7 iterations to achieve a rela-
tive error of 0.1% between the equivalent linear coeffi-
cients. The TD simulations require long periods to meet 
the requirement of ergodicity, and different incoming wave 
profiles were performed for more smooth results. Table 3 
shows the mean simulation clock time for both devices 
using the four different models, in which the calculations 
were performed using a standard desktop PC with Intel 
Core i7 processor (2.4 GHz) and 16 GB RAM. In gen-
eral, the average simulation clock time of the SL models 
for both WECs was 3 orders of magnitude faster than the 
nonlinear TD simulations, which was also observed in pre-
vious works (Silva et al. 2020a, b). The differences in the 
mean simulation clock time between the SL models, with 
and without the wave velocity, were negligible.

For both WECs, different parameters of the device and 
sea state can impact the influence of the viscous drag term 
using the relative velocity, as demonstrated for different 
wave periods, wave heights and PTO damping coefficient 
(in Appendix A). In addition, the spectral representation of 
the irregular waves, such as Pierson Moskowitz, Bretsch-
neider, and JONSWAP, also affect the influence of the vis-
cous drag term and the response of the WEC.

The wave description used in this work follows the lin-
ear theory, and is characterized by a Gaussian distribution. 
However, it should be noted that severe sea states traveling 
to shallow waters tend to be non-Gaussian (Ochi 2005). 
Therefore, the validity of the approximation of the wave 
velocity with a Gaussian distribution must be analyzed 
further, and modifications to the described SL procedure 
must be applied. Note that the approach derived in this 
work can be extended for other offshore systems and DOFs 
in system motion by making the appropriate modifications 
(Berge and Penzien 1974; Housseine et al. 2015).

7 � Conclusion

This work formalized the application of the SL technique 
to the viscous drag effect based on Morison’s equation 
using the relative velocity between the structure and the 
wave. Two WECs were investigated: a heaving PA and an 
OWSC. For the PA case, the wave velocity was calculated 
at the center of the buoy, while for the OWSC, the wave 
velocity was calculated at a finite number of sections of 

Fig. 12   Power absorbed by the OWSC as a function of Tp for a Hs = 
1.5 m

Fig. 13   Power absorbed by the OWSC as a function of Hs for a Tp = 
12 s

Table 3   Comparison of mean simulation clock time

WEC FD SL(q̇ − q̇𝜁) SL(q̇) TD (3000 cycles)

PA 0.002 [s] 0.084 [s] 0.075 [s] 223.1 [s]
OWSC 0.006 [s] 0.049 [s] 0.023 [s] 294.2 [s]
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the discretized structure. Based on the derivations, there is 
an equivalent linear system, where the nonlinearity from 
the viscous drag term is approximated to an equivalent 
damping and equivalent excitation term.

In general, the effect of the nonlinear drag force and 
torque into the system dynamics were well captured across 
all sea states and for the two WEC systems. The SL results 
using the relative velocity obtained good agreements with 
the nonlinear TD simulations in terms of PDF and PSD of 
the velocities (structure, wave, and relative), PSD of the 
displacement (vertical and angular) and power absorbed by 
the PTO system. For the PA simulated, the viscous drag 
force showed to be more important for lower periods and for 
regions close to resonance, where the wave velocity is higher 
and the device power absorption is more efficient. For such 
conditions, the velocity of the structure and wave velocity 
are comparable, and the SL using only the body velocity to 
describe the drag force/torque does not offer an appropri-
ated approximation. Similar results were obtained for the 
simulated OWSC, where the viscous drag torque is more 
important at the distal end of the flap due to the distance 
from the hinged connection. At the distal end, the magnitude 
of the wave and flap motion are comparable and the SL using 
only the flap velocity losses representativeness.

The importance of the viscous drag using the relative 
velocity depends on the parameters of the simulation for 
the device and sea states, which can increase or decrease the 
difference between both SL models. Also, the relevance of 
the excitation term depends on the magnitude of the wave 
and the phase with the excitation force/torque. For example, 
the viscous drag excitation was more relevant to the OWSC 
because the excitation term is nearly in-phase with the wave 
component of the viscous drag term and the wave excitation 
drag term occurs over the flap height. As a result, the SL 
model using only the structure velocity underestimated the 
power produced for the OWSC.

Like other numerical codes, the verification and valida-
tion must be conducted to verify the real contribution of the 
viscous drag effects using the relative motion of the structure 
with respect to the fluid flow field. This work performed a 
verification of the proposed formulation using nonlinear TD 
simulation. However, validation against experimental tests 
or high-fidelity CFD is necessary for a better selection of 
the drag coefficient ( CD ), which is a source of uncertainty. 
Regarding the technique, the proposed formulation offers a 
reliable estimate of the system dynamics compared to TD, 
while maintaining a computational cost compared to tra-
ditional FD models. Hence, the SL can be a valuable tool 
for optimization procedures, as shown in Sergiienko et al. 
(2020).
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Appendix A: PTO damping selection

For both devices, the PTO damping is selected to optimize 
the power absorption for the condition specified based on 
the characteristics of the device. It is important to notice 
that the differences between both SL models (using the rela-
tive velocity and only the body velocity) may be observed 
over the entire range of conditions simulated (see Figs. 14 
and 15).

Fig. 14   Power absorbed by the PA for a range of Bpto ( Tp = 7.5 s and 
Hs = 3 m)

Fig. 15   Power absorbed by the OWSC for a range of Bpto ( Tp = 12 s 
and Hs = 1.5 m)
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