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STATISTICAL

Stochastic Approach to Epidemic Spreading

Tânia Tomé1 ·Mário J. de Oliveira1

Abstract
We analyze four models of epidemic spreading using a stochastic approach in which the primary stochastic variables are the
numbers of individuals in each class. The stochastic approach is described by a master equation and the transition rates for
each process such as infection or recovery are set up by using the law of mass action. We perform numerical simulations as
well as numerical integration of the evolution equations for the average number of each class of individuals. The onset of
the epidemic spreading is obtained by a linear analysis of the disease free state, from which follows the initial exponential
increase of the infected and the frequency of new cases. The order parameter and the variance in the number of individuals
are also obtained characterizing the onset of epidemic spreading as a critical phase transition.

Keywords Stochastic epidemic models · Epidemic spreading models · SIR model · SIS model

1 Introduction

The theoretical study of the epidemic spreading [1–5]
started with the employment of ordinary differential equa-
tions of the first order in time, which became known as the
deterministic approach [1]. The individuals of a population
are classified in accordance with their condition in rela-
tion to the infectious disease and these equations give the
evolution equations on the number of individuals belong-
ing in each class. The deterministic approach, however,
does not describe, in an explicit manner, the random fluc-
tuations occurring in a real epidemic spreading. This obser-
vation may have given way to the need of a stochastic
approach to the epidemic spreading as that developed by
Bartlett [6, 7] and by Bailey [8, 9].

A stochastic version of the deterministic model pro-
posed by Kermack and McKendrick [10] was developed by
Bartlett in 1949 [7]. The model, called susceptible-infective-
removed, describes the spread of an infectious disease in
a community of individuals who acquire permanent immu-
nization. There are three classes of individuals: the suscepti-
ble, the infective, and the recovered. The approach advanced
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by Bartlett treated the numbers of individuals in each class
as stochastic variables from which he developed a time evo-
lution equation for the generating function corresponding to
the probability distribution of these variables.

The evolution equation for the probability distribution,
or master equation, of the model analyzed by Bartlett
was obtained by Bailey [9]. The stochastic approach they
employed was based on the use of a continuous timeMarkov
process in a discrete space in which the variables increase
or decrease by one unit. In 1955, Whittle [11] presented a
stochastic version of the Kermack and McKendrick theorem
[1, 10] concerning the outbreak of an epidemic. According
to this theorem, if the density of the susceptible is smaller
than a certain value, the epidemic does not outbreak.

Stochastic versions of deterministic models can be
obtained by transforming the numbers of individuals in
each class into stochastic variables, as was the case of the
deterministic susceptible-exposed-infective-removed model
proposed by Dietz [12] which was transformed into a
stochastic model allowing its Monte Carlo simulation [13].
One way of achieving the stochastic versions is to set
up a master equation in which case one is left with the
problem of finding the transition rates. Another way is to
add noise in the deterministic equations, transforming them
into Langevin equations. In this case, the problem is reduced
to finding the appropriate type of noise. The transition rates
and noises, once established, lead to the several approaches
used in the study of epidemic and population models [14–
20].
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The approach we use here to analyze four epidemic
models considers the number of individual in each class
as the primary stochastic variables. It is based on the use
of a master equation and on the law of mass action to set
up the transition rates. This is accomplished by using the
analogy of the processes in which the individuals change
classes with chemical reactions. After that, an expansion
method was used to transform the master equation into a
Fokker-Planck equation [21, 22].

More detailed stochastic approaches can be conceived if
one wishes to take into account the spatial structure where
the individuals live. In this case, we may, for instance,
associate to each individual a stochastic variable that takes
values corresponding to the condition of an individual in
relation to the disease. This will not be pursued here but
models of this type have in fact been studied by several
authors owing to their relevance to the spreading of disease
in space and because of their critical behavior [23–34].

2 Evolution Equations

2.1 Master Equation

The description of the time evolution of a system by a
stochastic approach needs first of all the specification of the
variables that will be used as primary stochastic variables. A
detailed approach such as that employed in spatial stochastic
model could be used. Here, we follow a less detailed
approach, which uses as primary stochastic variables the
numbers of individuals belonging in each class. A class of
individuals is its condition with respect to the infectious
disease that we are about to study. Examples are the classes
of susceptible, infected, removed, and exposed.

To properly set up the stochastic approach, we start by
considering that the individuals of a community interact
with each other in such a way that the epidemic will spread
in the population. One individual does not interact with
every person of the community but interacts with a certain
number N of individuals, which is not small but is smaller
than the total number of individuals of the community. In
accordance with the approach we will use, it suffices to
focus on a neighborhood with N individuals. Its reciprocal
ε = 1/N is understood as a parameter of the present
stochastic approach.

We denote by ni the number of individuals of the ith
class within the neighborhood, and by n the vector whose
components are the variables ni . The vector n is identified
as a state of the system. At each time step of the dynamics,
the state n changes to a new value n′ and the stochastic
dynamics becomes defined by the transition rates Wr(n

′|n)

from state n to state n′ corresponding to each process
involving the change of an individual class. The equation

that governs the evolution of the probability distribution
P(n, t) of n at time t , the master equation, is [22, 35]

d

dt
P (n) =

∑

r

∑

n′
{Wr(n|n′)P (n′) − Wr(n

′|n)P (n)}, (1)

where the first summation is over the several processes and
the second summation is over the variables n′

i of all classes.
Next, we have to set up the transition rates. To this

end, we use the analogy of the present problem with that
of chemical kinetics. A class of individuals is analogous
to a chemical species, and a process of changing class is
analogous to a chemical reaction. As an example of the
analogy, we consider the process that is always present
in the evolution of an infectious disease. It is the process
of infection of a susceptible (S) individual, who becomes
exposed (E), by an infective (I) individual, represented by

S
I−→ E, (2)

and understood as the catalytic reaction that transforms an
S into one E by the catalyst I. In this reaction, the number
n1 of the susceptible decreases by one unit, the number of
the infective n2 remains invariant, and the number of the
exposed increases by one unit. The infection transition rate
is

Winf = bN
(n1

N

) (n2

N

)
, (3)

where b is the infection rate constant.
If the product of the reaction in (2) is the catalyst itself,

that is,

S
I−→ I, (4)

then the reaction is auto-catalytic, but the infection rate is
still given by (3).

Another example is the process in which an infective
(I) becomes recovered (R), represented by the spontaneous
reaction

I −→ R, (5)

in which the number of infected n2 decreases by one unit
and the number of recovered increases by one unit. The
recovered transition rate is

Wrec = cN
(n2

N

)
, (6)

where c is the recovery rate constant.
The rule that we use to set up a transition rate Wr , which

is the reaction rate corresponding to a certain reaction, is
understood as the application of the law of mass action [22],
and is given by Wr = Nwr where

wr = krqr , (7)

where kr is the rate constant, and qr is the product of the
fractions ni/N of each class of individual appearing as a
reactant, including the catalyst if the reaction is catalytic.
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2.2 Simulation

Let us discretize the time in intervals equal to τ . If we denote
by P(n) and P ′(n) the probability distribution at time t and
t + τ , respectively, then the master equation can be written
in the discretize form as

P ′(n) =
∑

n′
T (n′|n)P (n), (8)

where

T (n′|n) =
∑

r

prqr(n
′|n), (9)

pr = τkrN , and the sum of pr equals 1.
The numerical simulation of the master equation is

carried out as follows. At each time step, we choose
which reaction to perform. The reaction is chosen with a
probability pr which, as we have seen above, is proportional
to the corresponding reaction rate constant kr . After the
reaction has been chosen, it will be in fact executed with
a probability equal to qr . If this is the case, then the
numbers ni will change according to the chosen reaction.
This procedure is repeated a number of times and a sequence
of states is generated, starting from an initial state.

2.3 Fokker-Planck Equation

According to the law of mass action, the transition rate
Wr(n

′|n) associated with a certain reaction is always written
as Wr = Nwr where wi is a fraction or a product of
fractions xi = ni/N . In the example given by (3), winf =
bx1x2 and in the example given by (6), wrec = cx2. This
allows us to write the the master (1) in terms of x,

d

dt
ρ(x) = N

∑

r

∑

x′
{wr(x|x′)ρ(x′) − wr(x

′|x)ρ(x)}. (10)

Usually, the transition rates Wr(n
′|n) are such that the

differences n′
i − ni are small numbers, and in fact, in the

cases that we consider here the differences are ±1 or 0.
This means that the difference x′

i − xi is of the order ε =
1/N , a result that allows us to expand the quantities on the
right-hand side of (10), around the state x. Performing this
expansion up to second order in ε, the result is the following
Fokker-Planck equation

∂ρ

∂t
= −

∑

i

∂fiρ

∂xi

+ ε

2

∑

ij

∂2hijρ

∂xi∂xj

, (11)

where fi and hij are functions of x determined from the
transition rates. The first is related to wr by

fi =
∑

r

νirwr, (12)

where the coefficient νir is the variation of ni in the reaction
r , and the second is related to wr by

hij =
∑

r

νirνjrwr . (13)

We point out that the Fokker-Planck (11) is equivalent to
the set of Langevin equations

dxi

dt
= fi + ξi, (14)

where ξi are stochastic variables with the following
properties: 〈ξ(t)〉 = 0 and

〈ξi(t)ξj (t
′)〉 = εhij δ(t − t ′). (15)

As hij may depend on xi , the random variables ξi represent
a multiplicative noise.

2.4 Evolution of the Averages

The time evolution of the averages of the various quantities
is obtained from the Fokker-Planck as follows. Let us
consider the average

〈xi〉 =
∫

xiρ dx. (16)

We multiply both sides of the Fokker-Planck equation by xi

and integrate in x to get

d

dt
〈xi〉 = 〈fi〉, (17)

where we have performed appropriate integration by parts
and considered that ρ vanishes quickly as the limits of the
integral is approached.

Next, we determine the time evolution of the covariances
Cij = 〈xixj 〉 − 〈xi〉〈xj 〉. To this end, we find first the time
evolution of the average 〈xixj 〉. We proceed in the same way
as above to get the result

d

dt
〈xixj 〉 = 〈xifj 〉 + 〈xjfi〉 + ε〈hij 〉, (18)

from which we find, with the help of (17)

d

dt
Cij = 〈xifj 〉−〈xi〉〈fj 〉+〈xjfi〉−〈xj 〉〈fi〉+ε〈hij 〉. (19)

(17) does not consist of a closed set of equations for the
averages 〈xi〉. However, if ε is small, we may replace the
average 〈f (x)〉 by f (〈x〉) on the right-hand side of (17) and
the set of equations become closed. The corrections will
be of the order ε and can thus be neglected. The reasoning
to reach this result is as follows. In the limit ε → 0,
the probability distribution ρ becomes sharped around xi ,
giving way to assume that it is a Gaussian distribution
with mean 〈xi〉 and covariances Cij , proportional to ε. This
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assumption allows to replace x in the average 〈fi(x)〉 by
f (〈x〉) so that (17) becomes the equation

d

dt
x̄ = fi(x̄), (20)

where we used the simplified notation x̄i = 〈xi〉. We see that
the evolution (20) is now closed equation for the averages
x̄i .

Now we use the assumption that the distribution is a
sharped Gaussian distribution to determine the first terms on
the right-hand side of (19). But before we expand

〈xifj 〉 − 〈xi〉〈fj 〉 =
∑

k

fjk(x̄)Cik, (21)

〈xjfi〉 − 〈xj 〉〈fi〉 =
∑

k

fik(x̄)Cjk, (22)

where fjk = ∂fj /∂xk . Replacing these results in (19), we
find
d

dt
Cij =

∑

k

{fjk(x̄)Cik + fik(x̄)Cjk} + εhij (x̄), (23)

which is the equation that determines Cik once we have
determined x̄i , and confirms that the variances are indeed
proportional do ε. Due to this dependence, it is convenient
to define a reduced covariance χij by Cij = εχij , which
obeys the equation

d

dt
χij =

∑

k

{fjk(x̄)χik + fik(x̄)χjk} + hij (x̄). (24)

The expansion in ε that we have carried out above
allowed us to find the Fokker-Planck (11) and its associate
Langevin (14), and to reach (20) and (24) by assuming that
the solution of the Fokker-Planck equation is a Gaussian
with variances proportional to ε. Such an expansion was
possible because the transition rates wr depend only on the
fractions ni/N , a result that follows from our use of the
law of mass action. The expansion of the master equation
in a small parameter was developed by van Kampen in
1961 by assuming that the solution of the master equation
is a Gaussian with variances proportional to the expanding
parameter [35–37]. It was applied to an epidemic model
by McNeil [38] and also considered by Nisbet and Gurney
[14] in population dynamics under the name of diffusion
approximation.

3 Critical Behavior

The outbreak of an epidemic is characterized as being a
critical event. If the density of infective individuals is small,
there is no spread. But if the density increases, it will
reach a critical density above which the epidemic spreads,
the increase of the infectious individuals being exponential
in time. This fundamental idea was used by Ross in his

studies on the transmission of malaria [39, 40] and was
introduced by Kermack and McKendrick in a clear form as
the threshold theorem [1, 10].

To determine the onset of the spread, we perform a
stability analysis of the disease free state, which is the state
without infective individuals. This state is always present
because the infective individuals are created catalytically. If
the infective are absent, the system remains forever in the
disease free state, and for this reason, it is called absorbing
state in stochastic approaches.

In the present approach, the stability analysis can be
performed by using the evolution equations for the fractions
x̄i because these equations are closed equations for these
averages. We consider that the disease free state is a state
full of susceptible individuals so that the fraction of the
susceptible equals 1. The linearization of (20) gives

dx̄i

dt
=

∑

j

fij x̄i , (25)

where fij = ∂fi/∂xj and is calculated at the disease free
state. The equation for the susceptible is excluded from this
set because (20) is not in fact all independent as the sum of
the fractions x̄i equals 1.

From the linearized equations, it follows that the time
behavior of x̄i is

x̄i = xi0 eαt , (26)

where α is the largest eigenvalue of the matrix with elements
fij . The onset of spreading occurs when α = 0. When
α > 0, the increase in x̄i is exponential.

The largest eigenvalue α of the stability matrix has
a relationship with the reproduction number, used to
characterize the epidemic spreading. This quantity is related
to the number of individuals that can be infected by one
individual in a population of susceptible. It is defined more
precisely as follows. Let Na be the number of new cases
occurring in a time interval Δt , which is given by Na =
Nf̄ Δt , where f is the frequency of new cases, that is, f

is the fraction of individuals that are being infected per unit
time.

The frequency of new cases comes from all reactions of
the type

A
I−→ B, (27)

where A represents an individual free of disease and B
an individual that has been infected. Since this reaction is
catalytic and the infective is the catalyst, the reaction rate
is proportional to the fraction of the infective. Therefore,
f is proportional to the fraction of the infective y, that is,
f = gy, where g depends on the fractions of the other
classes but not on y.

Next, we have to determine the number Nb of infective
individuals that have infected the Na individuals in the
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Fig. 1 SIR model. a The processes composing the model. b
Fraction of infective individuals at a given time versus time t ,
obtained from numerical simulation of the master equation and

its average. c Epidemic curve from simulation and its aver-
age. All curves were obtained for b/c = 3. The simulations
were performed using ε = 0.01

interval Δt . If the number of infective remain the same in
the interval Δt , then Nb would be equal to Na. However,
the number of infective may have increased by an amount
Nc in the interval Δt , in which case Nb = Na − Nc. As
Nc = N(dȳ/dt)Δt and

Nb = Nf̄ Δt, (28)

we get

Nb = N

(
f̄ − N

dȳ

dt

)
Δt, (29)

and the reproduction number R = Na/Nb becomes

R = f̄

f̄ − dȳ/dt
. (30)

In the early stages of the epidemic, the reproduction
number is called basic reproduction number, denoted R0.
In this case, the fraction of infective behaves exponentially
with time, ȳ = y0e

αt and

R0 = f̄

f̄ − αȳ
= ḡ

ḡ − α
, (31)

where the second equality was obtained by recalling that
f̄ = ḡȳ, and ḡ is calculated using the disease free solution.
The onset of spreading occurs when α = 0, that is, when
R0 = 1. When α > 0, that is, when R0 > 1, the epidemic
spreads whereas when α < 0, that is, when R0 < 1, it
does not. The epidemic spreading occurs when the basic
reproduction number is larger than 1.

4 SIRModel

The susceptible-infective-recovered (SIR) model consists
of three classes of individuals, susceptible, infective, and
recovered. The recovered individuals acquire permanent
immunization and cannot be infected again. The model has
two processes. The first is the infection of a susceptible by

an infective, represented by the auto-catalytic reaction

S
I−→ I, (32)

occurring with an infection rate constant b, and the second
is the spontaneous recovery of an infective, represented by

I −→ R, (33)

occurring with a recovery rate constant c. In Fig. 1a, we
show a representation of the model involving these two
processes.

We denote by x, y, and z the fractions of the susceptible,
the infected, and the recovered, respectively. The rate of the
infection process is

winf = bxy, (34)

whereas the rate of the recovery process is

wrec = cy. (35)

According to the rules above, the equations that give the
time evolution of the averages x̄, ȳ, and z̄ are

dx̄

dt
= −bx̄ȳ, (36)

dȳ

dt
= bx̄ȳ − cȳ, (37)

dz̄

dt
= cȳ. (38)

We remark that these three equations are not independent
because x̄ + ȳ + z̄ = 1.

We have solved numerically this set of equation and
obtained x̄, ȳ, and z̄ as functions of t . In Fig. 1b, we
show ȳ as a function of t together with y obtained from a
simulation of the master equation obtained with ε = 0.01.
The infective increases exponentially, reaches a maximum,
and then decreases towards 0.

The fraction of individuals that are being infected per
unit time f , or frequency of new cases, is obtained from the
infection process (32) and is given by f = bxy. From the

836 Braz J Phys (2020) 50:832–843



Fig. 2 SIR model. a Order
parameter s, which is the area
under the epidemic curve, as a
function of b/c. b Variance χ

related to the susceptible as a
function of b/c
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simulation, we have obtained f which is shown in Fig. 1c
together with its average f̄ = bx̄ȳ as a function of time,
the epidemic curve. The frequency of new cases increases
exponentially, reaches a maximum, and then decreases
towards 0, indicating that the disease became extinct.

The initial exponential increase in the fraction of
infected, and thus in the frequency of new cases, is shown
by a stability analysis of the disease free state. This state
corresponds to the absence of disease, and all individuals
are susceptible. That is, x̄ = 1, ȳ = 0, and z̄ = 0, which is
a stationary solution of the set of equations above. As only
two equations are independent, we will use only the last two,
which after linearization gives

dȳ

dt
= αȳ, (39)

dz̄

dt
= cȳ, (40)

where α = b − c. The solution of the first equation gives

ȳ = y0e
αt , (41)

and we see that if α > 0, then ȳ increases exponentially.
The value α = 0, that is, b = c, gives the onset of the spread
because if α < 0, then ȳ dies out.

As one increases the infection rate constant b, from a
small value, it will reach a critical value bc = c at which
the spread occurs. The order parameter s of the epidemic
spreading phase is the area under the epidemic curve, that is,

s =
∫ ∞

0
f̄ dt . (42)

In the present case, f̄ = bx̄ȳ and from (36) we see that
f̄ = −dx̄/dt and we may conclude that

s = 1 − x∗, (43)

where x∗ denotes the value of x̄ for long times and we have
taken into account that at initial times x̄ equals 1.

The basic reproduction number is obtained from (31) and
considering that f̄ = bx̄ȳ, we find

R0 = b

b − α
= b

c
, (44)

where we have taken into account that for the disease free
state x̄ = 1 and in the second equality we have used the
result α = b − c.

If we divide (38) and (36), we find

dz̄

dx̄
= − c

bx̄
, (45)

which after integrating gives

z̄ = − c

b
ln x̄, (46)

where the integration constant was found by using the
disease free state x̄ = 1 and z̄ = 0. If we denote by x∗, y∗,
and z∗ the values of the fractions for large times, we see that
x∗ + z∗ = 1 because y∗ = 0. Therefore, an equation for z∗
is obtained by replacing z by z∗ and x by 1− z∗ in (46). But
s equals 1 − x∗ = z∗ as we have seen above, so that

s = − c

b
ln(1 − s). (47)

This equation gives the order parameter as a function of b

and is shown in Fig. 2a. If b ≤ c, s vanishes. For b > c, s is
nonzero and for b near its critical value bc = c, it is given by

s = 2

c
(b − c). (48)

The order parameter s increases monotonically with
infection rate b from its zero value at the critical point
bc = c, approaching the asymptotic value z = 1.

The use of a stochastic approach allows us to determine
the fluctuations in the variables x, y, and z. A measure of the
fluctuations are given by the covariances. Using the formula
(24) for the reduced covariances, we find the following
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Fig. 3 SEIR model. a The processes composing the model. b Frac-
tion of infective individuals at a given time versus time t , obtained
from numerical simulation of the master equation and its average. The
fraction of the infective vanishes for long times. c Epidemic curve, or
frequency of new cases as a function of time, from simulation, and

its average. All curves were obtained for b/c = 3 and latent period
� = c/k = 1. The value of b/c is the same as that used in Fig. 1 but due
to a nonzero value of the latent period the curves present a flattening
when compared with those of Fig. 1. The simulations were performed
using ε = 0.01

expression for the reduced variance χ of the fraction of the
susceptible at the stationary state

χ = c(1 − s)

2(bs − b + c)
. (49)

A plot of χ versus b is shown in Fig. 2b. Near the critical
point, it diverges as

χ = c

2|b − c| . (50)

5 SEIRModel

There are some diseases such that the susceptible individu-
als that have been infected take a certain time to be infective.
These individuals, who have got the disease but are not
capable of infect others, are called exposed. The model
susceptible-exposed-infective-recovered (SEIR) is similar
to the SIR model but there is an intermediate step before
a susceptible becomes infective as shown in Fig. 3a. The
process of infection is represented by

S
I−→ E, (51)

occurring with an infection rate constant b, the process of
becoming infective is represented by

E −→ I, (52)

occurring with a rate constant k, and the process of
recovering is represented by

I −→ R, (53)

occurring with a recovering rate constant c. The inverse of
the rate constant k is a measure of the latent period � of
the exposed individual. When the latent period vanishes,
� = 0, the present model reduces to the SIR model, in
which a susceptible that has been infected becomes infective
immediately.

We use the same notation as that of the SIR model,
namely, x, y, and z for the fraction of susceptible, infective,
and recovered, and u for the fraction of the exposed. The
rate of the infection process is

winf = bxy, (54)

the rate of the process becoming infective is

wive = ku, (55)

and the rate of the recovery process is

wrec = cy. (56)

According to the rules, the evolution equation for the
averages of these quantities are

dx̄

dt
= −bx̄ȳ, (57)

dū

dt
= bx̄ȳ − kū, (58)

dȳ

dt
= kū − cȳ, (59)

dz̄

dt
= cȳ. (60)

These equations are not all independent because x̄+ ū+ ȳ+
z̄ = 1.

We have solved numerically this set of equation and
obtained x̄, ȳ, z̄, and ū. In Fig. 3b, we show ȳ as a function
of time together with y obtained from the simulation
of the master equation with ε = 0.01. The infective
growth exponentially attains a maximum and then decreases
towards the zero value. In Fig. 3c, we show the frequency
of new cases f which comes from the infective process (51)
and is given f = bxy. Its average is f̄ = bx̄ȳ and is also
shown in the same figure.

We determine now the conditions for the outbreak of the
epidemic. To this end, we employ a stability analysis of the
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disease free state, which is x̄ = 1, ȳ = 0, z̄ = 0, and ū = 0.
After linearizing (58) and (59) become

dū

dt
= bȳ − kū, (61)

dȳ

dt
= kū − cȳ. (62)

Assuming solutions of the type ȳ = y0e
αt and ū = u0e

αt ,
we find

−ku0 + by0 = αu0, (63)

ku0 − cy0 = αy0, (64)

which is a set of eigenvalues equations. The largest
eigenvalue is

α = 1

2
{−(k + c) +

√
(k − c)2+4bk}. (65)

The epidemic spreads when α > 0 which occurs when
b > c, and the threshold of spread occurs when α = 0, that
is, when b = c, results that are independent of k. We see
that the process S→E, which occurs with a rate constant k,
does not change the outbreak of the epidemic but yields a
flattening of the epidemic curve as seen in Fig. 3.

Although the presence of a latent period induces a
flattening of the epidemic curve, its area does not change
and is the same as that of the SIR model. To show this result,
we recall that the frequency of new cases is f̄ = bx̄ȳ and
from (57) we see that f̄ = −dx̄/dt . Therefore,

s =
∫ ∞

0
f̄ dt = 1 − x∗. (66)

Now we have to show that x∗ does not depend on k.
Dividing (60) and (57),

dz̄

dx̄
= − c

bx̄
, (67)

which after integration gives

z̄ = − c

b
ln x̄, (68)

and we recall that x̄ + ȳ + z̄ + ū = 1. For large times,
the infective as well as the exposed disappears, y∗ = 0 and
u∗ = 0 and x∗ = 1 − z∗. Replacing this last result in (68)
we get an equation for x∗ that does not depend on k. The
equation for s = 1 − x∗ follows immediately and is

s = − c

b
ln(1 − s), (69)

and does not depend on k and is the same as that of the SIR
model.

As we have seen above, the frequency of new cases
comes from the infection reaction (51) as is given by f =

bxy. The basic reproduction number is obtained from (31)
and given by

R0 = b

b − α
. (70)

Replacing α given by (65), we obtain R0 in terms of the rate
constant b, c, and k. The onset of the epidemic spreading
occurs when α = 0, that is, when R0 = 1. When α > 0,
the value of R0 is greater than 1. It should be remarked
that R0 is smaller that the basic reproduction number for
the SIR model. To reach this result, it suffices to recall that
αsir = b − c and that we can show from the expression
(65) that α ≤ b − c if b ≥ c. The depression on the basic
reproduction number is a consequence of the time it takes
for the exposed to become infective.

6 SIS Model

In the two models that we have analyzed above, the infective
as well as the frequency of new cases vanishes in the long
term. The disease becomes extinct within the population.
In the susceptible-infective-susceptible (SIS) model, the
disease does not disappear, becoming endemic. For long
times, the infective does not disappear and the frequency
of new cases is nonzero. The SIS model has only two
classes, the susceptible and the infective, and two processes,
as shown in Fig. 4a. The first is the infection process
represented by

S
I−→ I, (71)

occurring with an infection rate constant b, and the
recovering process

I −→ S, (72)

occurring with a recovery rate constant c.
We denote by x and y the fraction of susceptible and

infective, respectively. The rate of the infection process is

winf = bxy, (73)

and the rate of the recovery process is

wrec = cy. (74)

According to the rules, the evolution equations for the
averages of these quantities are

dx̄

dt
= −bx̄ȳ + cȳ, (75)

dȳ

dt
= bx̄ȳ − cȳ. (76)

These equations are not all independent because x̄ + ȳ =
1. It is convenient to replace x̄ in the second equation to
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Fig. 4 SIS model. a The processes composing the model. b Frac-
tion of infective individuals at a given time versus time t , obtained
from numerical simulation of the master equation and its average.
The fraction of the infective approaches a nonzero asymptotic value.

c Epidemic curve, or frequency of new cases as a function of time,
from simulation, and its average. For long times it approaches a
nonzero value. All curves were obtained for b/c = 2. The simulations
were performed using ε = 0.01

obtain just one equation in ȳ,

dȳ

dt
= αȳ − bȳ2, (77)

where α = b − c.
The solution for ȳ can be given in closed form,

ȳ = αy0

by0 + (α − by0)e−αt
. (78)

In Fig. 4b, we show ȳ as a function of t together with y

obtained from simulations of the master equation using ε =
0.01. We see that the fraction of infective does not decrease,
remaining finite at large times. We also show in Fig. 4c the
frequency of new cases f = bxy = b(1 − y)y obtained
from simulations as well as its average f̄ = b(1−ȳ)ȳ where
ȳ is given by the solution (78). The frequency of new cases
does not decrease for long times and remains finite.

The linear exponential increase of ȳ can be perceived
from the closed solution. Alternatively, we may obtain this
behavior by the linearization of (77) around the disease free
solution ȳ = 0,

dȳ

dt
= αȳ, (79)

from which follows the solution

ȳ = y0e
αt . (80)

Thus, if α > 0, that is, if b > c, the epidemic spreads;
otherwise, it does not. If one increases b from small values,
it will reach a critical value bc = c which determined the
onset of spread. The basic reproduction number is obtained
from (31) and considering that f̄ = bx̄ȳ, and that α = b−c,
we find

R0 = b

c
. (81)

In the limit t → ∞, ȳ does not vanish but reaches the value

y∗ = b − c

b
. (82)

This value is obtained either by taking the limit t → ∞
in (78) or by setting to zero the right-hand side of (77), and
is identified as the order parameter s. Therefore, s is given
by

s = b − c

b
, (83)

and is shown in Fig. 5a as a function of the infection rate b.
Applying the formula (24) for the present case, we find

the following expression for the reduced variance χ of the
fraction of the infective at the stationary state

χ = c

b
, b > c, (84)

χ = 0 for b < c, and χ = 1/2 when b = c. A plot of χ

versus b is shown in Fig. 5b.

7 SIRSModel

In the model we consider now, the infective and the
frequency of new cases do not vanish in the long term and
in this sense it is similar to the SIS model. The susceptible-
infective-recovered-susceptible (SIRS) model has three
classes of individuals like the SIR mode, susceptible,
infective, and recovered, and one more process than the SIR
model. The processes are are shown in Fig. 6a and are as
follows. The infection of a susceptible individual,

S
I−→ I, (85)

occurring with a rate constant b, the spontaneous recovery,

I −→ R, (86)

occurring with a rate constant c, and the spontaneous loss of
immunity,

R −→ S, (87)
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Fig. 5 SIS model. a Order
parameter s, which is the final
value of the fraction of the
infective, as a function of b/c. b
Variance χ related to the
infective a a function of b/c
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Fig. 6 SIRS model. a The processes composing the model. b Frac-
tion of infective individuals at a given time versus time t , obtained
from numerical simulation of the master equation and its average.
The fraction of the infective approaches a nonzero asymptotic value.

c Epidemic curve, or frequency of new cases as a function of time,
from simulation, and its average. For long times, it approaches a
nonzero value. All curves were obtained for b/c = 2 and a/c = 1/3.
The simulations were performed using ε = 0.001

occurring with a rate constant a. The recovered individual
has only partial immunity in contrast to the SIR model
where the recovered individual has permanent immunity.

The fractions of susceptible, infective, and recovered are
denoted by x, y, and z, respectively. The rate of the infection
process is

winf = bxy, (88)

and the rate of the recovery process is

wrec = cy, (89)

and the rate of the loss of immunity is

wlos = az. (90)

According to the rules, the evolution equations for the
averages of these quantities are

dx̄

dt
= −bx̄ȳ + az̄, (91)

dȳ

dt
= bx̄ȳ − cȳ, (92)

dz̄

dt
= cȳ − az̄, (93)

and they are not all independent because x̄ + ȳ + z̄ = 1.

We have solved numerically this set of equations and
obtained x̄, ȳ, and z̄. In Fig. 6b, we show ȳ as a function
of time together with y obtained from the simulation with
ε = 0.001. The infective increases exponentially, and then
after reaching a maximum, it shows a damping oscillation
towards a nonzero value. On Fig. 6c, we show the epidemic
curve, which follows the same behavior with time as y.
The frequency of new cases is f = bxy and was obtained
from numerical simulation. Its average f̄ = bx̄ȳ was also
obtained from the numerical solutions of x̄ and ȳ.

The linearization of (92) and (93) around the disease free
solution, ȳ = 0, x̄ = 1, and z̄ = 0, gives

dȳ

dt
= αȳ, (94)

dz̄

dt
= cȳ − az̄. (95)

The solution for ȳ is

ȳ = y0e
αt , (96)

where α = b − c. The spread occurs when α > 0, that is,
when b > c. Increasing the infection rate constant b from
small values, the threshold of the spread happens when b

reaches bc = c, independent of a. The basic reproduction
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number is obtained from (31) and considering that f̄ =
bx̄ȳ, and that α = b − c, we find

R0 = b

c
. (97)

The asymptotic values x∗ and y∗ of x̄ and ȳ are obtained
by setting to zero the right-hand side of (91) and (92), and
recalling that the z̄ = 1 − x̄ − ȳ. The result is

x∗ = a

b
, y∗ = a(b − a)

b(a + c)
. (98)

A stability analysis of this solution can also be performed. It
is possible to show that the eigenvalue related to the stability
matrix has, for some values of the parameter, an imaginary
part, which together with a negative real part indicates a
damped oscillations. This is the behavior shown in Fig. 6
not only for the fraction of the infective but also for the
epidemic curve.

The order parameter s for the present model is identified
as the fraction y∗, as in the case of the SIS model, and is
given by

s = a(b − c)

c(a + c)
. (99)

8 Conclusion

We have analyzed four models of epidemic spreading
using a stochastic approach in which the primary stochastic
variables are the numbers of individuals in each class. The
individuals are classified in accordance with its condition
with respect to the infectious disease. The process of
changing from one class to the other is understood as being
analogous to a chemical reaction. This analogy allowed to
use the laws of mass action to set up the rate of several
processes taking place in an epidemic spreading.

We have determined the onset of the epidemic spreading
by a linear analysis of the disease free state. From this
analysis, we have determined the critical infectious rate,
above which the diseases spread. By solving the evolution
equations, we determined the time behavior of the fraction
of the infected and the frequency of new cases. These two
quantities were also determined by numerical simulations of
the master equation.

A relevant feature of the present approach is that
the evolution equation for the average in the number of
individuals is similar to the evolution equation employed in
certain deterministic approaches. For instance, (36), (37),
and (38) for the averages of the fractions of individuals are
identical to those introduced by Kermack and McKendrick.
The similarity or in some cases the equality of the equations

allows to take the point of view according to which
the stochastic approach and the deterministic are not in
opposition. Quite the contrary, they can be understood as
being consistent views of the same problem.
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