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1. Introdução

Em [1] e [2] estudamos, dado r > 0 e X espaço de Banacli, a equação 
diferencial funcional neutra (EDFN):

ftE{x{t), x(t - r)) = f(x(t), x(t - r)) + / a(6)g{x{t + 6))d6(1)
— r

onde assuminos:
(Hl) E, f : X x X —> X, g : X —* X funções de classe C1 no sentido 

de Fréchét, com derivadas limitadas.
(H2) Existem operadores lineares continuos injetivos L0 e Lr, de X em 

X, e uma constante real c, 0 < c < 1 tal que
\\I - Lo^-(Po,Pr)\\<C e II I- Lr^-{Po,Pr) ||< C 

dpo (Ipr
para todo (pG,pr) € X x X, onde I é a identidade.

(H3) a G L2([—r,0], £(Àr)).

Dizemos que x € Looc(i?, X) é solução de (1) se existe f E X tal que 
a relação

E{x(t),x(t - r)) = Ç+ í
J O

+ /o f-r a(e)9{x{s + 8))d6ds

(2) /(x(s).x(.s - r))ds +

vale quase sempre (q.s.) para -00 < t < 00.

Seja L2 = I2([—r,0],A'). Vimos que êsse problema é bem-pôsto 
no contexto X x conforme teorema 2.1 de [l], ou seja, para cada 
(Ç> V>) € -Y x L-2, existe uma única solução x E L2C(RS X) da equação 
(2) tal que x0 = 9 e ainda a aplicação (t 9) 6 Í? x X x L2 —► xt 6 L> 
é contínua.
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Isso define o C°-grupo {S(t.)}ien, S{t) : -Y x Li —♦ À' x £->1 fluxo da 
equação (1), dado por
S(<)(CvO = {(, + /„‘[/(*(«), *(s - r) + J°ra(d)g(x(s + 9))d6}ds , xt).
Tomando ,Y = JRn ou <Z7n, vamos aqui ver condições suficientes para 
que (1) admita atrator global em X x Lo (teorema 3). Em seguida ve­
remos um exemplo numérico (-Y = R) de equação (1) nessas condições.

2. Preliminares e resultado principal
Para a equação linear a diferenças 

Acy(t) + Ary(t - r) = 0
com -40, AnA~x, A~l £ £(X), temos bem definido o fluxo de (3), o 
C°-grupo {T0(t)}teR, Ta(t) : Lo Lo linear contínua, T0(t)<p = yt 
(ver [1] ou [2]). Para X = Rn ou <Tn, a equação característica de (3)

(3)

é
detH(X) = 0 onde H(X) = A0 + .4re~Ar

Proposição 1. Definindo u£ = sup{ReX : detH(X) = 0} temos, se 
w > a£, então 3A' > 0 | || T0(í) ||< Kewi.Vt > 0.

Prova: segue imediatamente do teorema 3.1 (iii) de [1].

Corolário 1: Se a£ < 0 então ip = 0 é assintóticamente estável para a 
equação (3). Dizemos neste caso (ci£ < 0) que o operador E é estável, 
(aqui E(p0,pr) = A0p0 + Arpr)-

Teorema 1. Considerando a equação (2) com fluxo {S(í )}*£/<, onde 
E : X x X —♦ X é linear (E(p0,pr) = A0p0 + -4rpr) e tal que 

(J S(s)B é limitado quando B C X x L-i é limitado, Ví > ü
0<5<í
temos:

S(t) = T0(t) O 7T-2 + U(í),
onde 7T2 é a projeção conônica Àr x L ? —<► £•_> e U(í) é completamente 
contínuo, Ví > 0.

Prova: segue os passos da demonstração do lema 3.2 de [l], apesar de 
S(í) não ser linear. Temos S(t) - Ta(t).~-> = (Q(t). K(t.O)Q) com

í > 0
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Q € C([0,t],X) C L2([0,í],-Y), Q(t) = Vi5(i)((,9) (tt, é a projeção 
canônica X x L2 —► À'') e A'(í,0) 6 £(£2([0,íj,.Y), £2)* operador 
definido em [1] § 3 para equações lineares não homogêneas. Usamos o 
Teorema de Arzelá-Ascoli para mostrar que a aplicação

€ X x £2 -♦ Q € C([0,í],A') é completamente contínua. A 
Observações: 1) É fundamental aqui que dimX < oo(JY = JT* ou €n)

2) Quando S(t) é linear (como no lema 3.2 de [1]), a hipótese 
U S(s)B limitado para B limitado é consequência do Princípio da

0<s<t
Limitação Uniforme.

Para um semi-grupo de classe Cm, {S(í)}*>o> m > 0, num espaço de 
Banach Y, temos as seguintes definições:

Definição 1: Dados A, B em Y dizemos que A atrai B se S(í)£ —»► A 
quando t 00, ou seja, lim dist (S(t)B,A)=0 onde dist (C,A)=

= s«p{ín/{|| c - a ||,a € 4},c € C}.

Definirão 2: {5(í)}*>0 é ponto-dissipativo <=> 3 BcY limitado | B 
atrai {y}, Vy £ Y (ou seja. existe um conjunto limitado que atrai 
pontos).

Definição 3: {S(í)}<>o é assintòticamente-liso 
B/ <t>, fechado, limitado e positivamente invariante (S(í)B C B,
Ví > 0), temos que existe JcB. compacto, que atrai B.

Definição 4: A é atrator global de {£(*)}<>0
(i) A é invariante, ou seja, S(t)A = A, Ví > 0.
(ii) A é compacto não vazio.
(iii) A é maximal com relação a (i) e (ii).
(iv) A atrai todos os conjuntos limitados de Y.

Temorema 2. (Teorema 3.4.6 de [3]). Se {S(í)}*>o é assintòticamente- 
liso, ponto-dissipativo e tal que U S(t)B é limitado quando BcY é

í>°
limitado, então {S(í)}i>o tein um atrator global A que é conexo. Mais 
ainda, se 5(í) é injetor em A. Ví > 0. então {S(í)|,*} é um C”1 - grupo 
(ou seja, podemos definir S(í) ein A para í < 0).

Para todo BcY,
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Para y £ Y, chamemos 7+(y) = |J S(í)f/ a órbita positiva de t/.
í>0

Do mesmo modo definimos a órbita positiva de um conjunto BC Y:
7 + (B) = U S(t)B.

t> o

Seja í = {y £ Y | 7+(y) = Í2/}}- f é o conjunto dos pontos de 
equilíbrio de {S(í)}.

Definição 5. {S(í)}*>0 é um sistema gradiente 4=>
(i) Se 7+(y) é limitada então 7 +(t/) é pré-compacta.
(ii) Existe uma função de Liaminoff para {S(t)}. isto é. uma função 

contínua V : Y -> JR tal que:
(üi) Y(y) é limitada inferiormente.
(112) BC Y limitado
(113) 7 +(y) não limitada. =>• V’(7+(í/)) llao limitado.
(114) Y(S(í)y) é decrescente em t para cada y £ Y.
(115) Se y é tal que S(t)y está definido para t £ R e 

V(S(t)y) = V(y), Ví £ R, então y £ E.
A seguinte proposição é um corolário imediato do lema 3.8.2 de [3]:

Proposição 2. Para um sistema gradiente {S(í)}*>0 são equivalentes:
(i) S(t) é ponto-dissipativo.
(ii) E é limitado.

Com a proposição 2 e o teorema 2, demonstra-se a

Proposição 3. (Teorema 3.8.5 de [3]). Se {S(í)}í>o é sistema gradiente, 
assintòticamente-liso, com E limitado, então {S(í)}t>o tem um atrator 
global A = WU(E), onde Wu(£) = {y £ Y [ S(t)y é definido para 
í < 0 e S(t)y —► E quando í —+ —00}.

Proposição 4. Se S(t) = T(í) + U(t) : Y —* Y. í > 0. com U(t) 
completamente contínuo e || T(t)y ||< k(tj) para || y ||< L Ví > ü. 
com k : R+ x R+ —♦ i?+ contínua e fim k(tj) =
1£) {5(í)}<>0 é assintòticamente-liso.
2£) 7+(y) limitada

Prova: o 1£) é o lema 3.2.3 de [3]

V(B) limitado.

0 V/ > 0: então:

7+(y) pré-coinpacta.

2—) é a pro])osição 3.1 de [5].e o
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Do corolário 1. teorema 1 e proposição 4, concluimos o

Corolário 2. Para a equação (2) com fluxo {5(£)}ie/?, como no teorema 
1, se E é estável então:
1£) {S(tf)}*>o é assintòticamente-liso e 
2-) 7+(Ç,<p) limitada 7+(f,<p) pré-compacta. V(Ç,<p) € X xl2-

Nessas condições, se tivermos uma função de LiapunofF para o fluxo da 
equação (2), teremos que ele será um sistema-gradiente.

Do corolário 2 e da proposição 3, segue imediatamente o

Teorema 3. Para a equação (2) com fluxo {S(f)}í€ü, se E é linear 
estável, se í é limitado e se temos uma função de LiapunofF para {S(/)}, 
então {S(f)} tem atrator global A que é conexo e ainda A = WU(S).

Observação: Convém lembrar que para a equação (2) temos:

í = {(£(c,c),9c) e A' xL-2 I c € A,/(c,c) + (J°ra(0)d9)g{c) =
= 0,9c - c}.

3. Exemplo Numérico

Para -Y = considere a equação
j-,{x(t) - qx(t -r)) = —ax(t) - aqx(t- r) - h(x(t) - qx(t -/ ))

com q € R', \ q |< 1, a > 0 e h : R -* R contínua com

/i(0) = 0 e > -«jfjj}.
Admitindo aqui que o problema é bem posto no contexto L2 =
= L2([-r,0]), (por exemplo, se h é de classe C1 com derivada limitada 
teremos satisfeitas (Hl), (H2) e (H3), com E(p0,pr) = Po — <lPr,
f(Po>Pr) = -OiPo - aqpr - h(po - (/Pr), 9 = 0 e « = 0y Po, Pr e JR)\ 
vamos mostrar que as hipóteses do teorema 3 estão satisfeitas:

1. E é estável pois clet[ 1 — qe~Xr] = 1 — qe~Xr = 0

(4)

ReX < 0.

2. í = {(0.0)} C B * L2, P°is se x = c é solução constante
se c ^ 0 temos

-Q i±aa-í—Q'

de (4) então 0 = "ac — ocqc — h(c — qc);
h(c(l-<?)) _ \JrSL 

c( \-q) ~ a*l-‘7
absurdo! Logo c = 0.

< '»/*{* *e assim
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3. Vamos mostrar que V : JR x L > —> JR dado por
V(Ç,9) = oí2 + a | q | . || ip ||*2 é função de Liapunoff para

3.1. V é limitada inferiormente pois > 0 V(£,^) G JR x L■).

Ç |< M
e || ^ 11•>< M e então 0 < tp) < + cv | q \)M2 para
(Ç, v?) G B. ou seja, V(B) é limitado.

3.2. Se B C JR x Li é limitado, 3M > 0 | (Ç,ç>) G B

3.3. Se 7+(Ç,9) não é limitada, temos VM > 0, 3(Ç,0) G 7+(Ç,V?) | 
| ( |> M ou || 0 112> M então V((,0) > ?nax{^,a | ry |}.M, ou 
seja, Vr(7+(Ç,^)) não é limitado.

3.4. Seja S(t)(Ç, ip) = (£ + /j /(x(s),x(s - r))d.s, x*). Temos:

F(S(i)(£,^)) = ^[í + /o'/(a;(s),i-(.s-r))f/s]-> + ü | ry | x2(t)(It.

V(S(m^)) é absolutamente contínua em t e 

■jnv(S{t)(Ç,<p)) =1* (í + fg f(x(s), z(s - r))ds).f(x(t), x(t - r))+ 

+a | 9 | (z2(/) - x2(í - /■)) =
=<?S (x(J) - íyx(f — r)).(—ttx(<) — aqx(t — 7') - h(x(t) — qx(t — r))+
+» I 9 I (x2(<) - jt(í -r)).
Chamando tü(J) = x(J) — qx(t — r)« somando e subtraindo 7«r(f)

e 7 < 0, temos:com

itV(Sm,ç>)) -7W2(í) - «r(/)[^ - 7] +
+U7(í)[—ax(/) — aryx(f — /•)] + a | q | (x2(/) — x2(t — r)) <
< —7iv2(t) + w(t)[—ax(t) - c\qx(t — r)] + a | q \ (x2(t) — x2(t — /*)) = 

= — (7+ar—a | q \)x2(t)+2yqx(t)x(t-r)-('yq'2—aq2+(jí | q |.)x2(/-r) <
< 7 I <7 I x2(<)+27<yz(<);r(í-/')+7 | q \ x2(t-r) = 7 | q \ (x(t)±x(t-r))- 

se x(t) ^ 0 ou x(t - r) ± 0 pois 7 -f 7 I <1 I +c* - a | <7 |> 0.
Assim ^r(S(*)(£,^) < 0 q.s. e 

^F(S(()(^)) = 0«i(()=0 e x(t — /•) = 0.
Logo V*(S(0(Ç, r3)) é decrescente em /.
3.5. Se (£,v?) é tal que V(S(f)(£, p)) = 1 (í-r)-V/ G R. então
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^ V(S(t)(Ç, 9)) = 0 e cio que vimos acima temos x(t) =qs 0, logo <p = 0 
e entáo (£,v) = (0,0) € í.

Proposição 5. A equação (4) tem como atrator global A = {(0,0)}.

Prova: concluímos cio teorema 3, que A = IVu(0,0). Resta mostrar que 
Wu(0,0) = {(0,0)}. Se (£,p) € Wu(0,0) temos S(t)(Ç,<p) - (0,0) 
quanclo t —> — 00, assim Ve > 0, 3t( \ t < tt 
pois V(S(m,<p)) - 7(0,0) = 0. Logo 7(S(t)(é,?)) < e, Vt e fi, 
pois para r > temos que 7(5(r)(Ç,^)) = V(S(r-t€).S(í€)(Ç,^)) < 
7(5(í€)(Ç,9)) < e. Como e é arbitrário temos que V(S(t)(Ç,ip)) = 0 
mas isso implica que (Ç,<p) 6 í — {(0,0)}.

V(S(t)(Ç,v>)) <
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