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Abstract
At each iteration of the safeguarded augmented Lagrangian algorithm Algencan,
a bound-constrained subproblem consisting of the minimization of the Powell–
Hestenes–Rockafellar augmented Lagrangian function is considered, for which an
approximate minimizer with tolerance tending to zero is sought. More precisely, a
point that satisfies a subproblem first-order necessary optimality condition with toler-
ance tending to zero is required. In this work, based on the success of scaled stopping
criteria in constrained optimization, we propose a scaled stopping criterion for the
subproblems of Algencan. The scaling is done with the maximum absolute value of
the first-order Lagrange multipliers approximation, whenever it is larger than one. The
difference between the convergence theory of the scaled and non-scaled versions of
Algencan is discussed and extensive numerical experiments are provided.
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1 Introduction

We consider constrained optimization problems defined by

Minimize
x∈Rn

f (x) subject to h(x) = 0, g(x) ≤ 0, and � ≤ x ≤ u, (1)

where f : Rn → R, h : Rn → R
m , and g : Rn → R

p are continuously differentiable
and �, u ∈ R

n .
Algorithms for solving smooth constrained optimization problems (1) are iterative.

In general, finite termination is not expected, so suitable stopping criteria are neces-
sarily employed. In practice it is not possible (affordable) to verify whether the current
iterate is a solution of the problem, so one needs to rely on necessary optimality con-
ditions. Moreover, exact necessary optimality conditions rarely hold at a particular
iterate, therefore stopping criteria are based on “approximate necessary optimality
conditions” that depend on user-given small tolerances.

Most constrained optimization solvers produce, at each iteration k, an estimation
xk ∈ R

n for the solution of (1) and estimatesλk+1 ∈ R
m andμk+1 ∈ R

p
+, the Lagrange

multipliers corresponding to equality and inequality constraints, respectively. Thus,
denoting by P[�,u](·) the projection onto the box {x ∈ R

n | � ≤ x ≤ u}, numerical
algorithms for solving (1) generally stop when � ≤ xk ≤ u, λk+1 ∈ R

m , and μk+1 ∈
R

p
+ are such that

∥
∥
∥P[�,u]

(

xk −
[

∇ f
(

xk
) + ∇h

(

xk
)

λk+1 + ∇g
(

xk
)

μk+1
])

− xk
∥
∥
∥∞ ≤ εopt (2)

for a small tolerance εopt > 0 and, additionally, feasibility and complementarity
conditions hold for a small tolerances εfeas > 0 and εcompl > 0, i.e.

max
{∥
∥h

(

xk
)∥
∥∞,

∥
∥g

(

xk
)

+
∥
∥∞

} ≤ εfeas and

min
{ − g j

(

xk
)

, μk+1
j

} ≤ εcompl for j = 1, . . . , p. (3)

Some authors (see, for example, [14, 15, 26]) consider that the approximate KKT
condition (2, 3) is too strict and that the quality of numerical results is preserved if,
instead of (2), we require the scaled approximate KKT condition

∥
∥
∥
∥
P[�,u]

(

xk − 1

max{1, ‖λk+1‖∞, ‖μk+1‖∞}
[

∇ f
(

xk
) + ∇h

(

xk
)

λk+1 + ∇g
(

xk
)

μk+1
])

−xk
∥
∥
∥∞ ≤ εopt . (4)

The effect of the replacement of (2) with (4) as stopping criterion in the case of the
safeguardedAugmented Lagrangian algorithmAlgencan [1, 12], keeping the subprob-
lem stopping criterion unchanged, has been reported in [5]. However, the architecture
of Algencan is such that, at each iteration k, the inequality

∥
∥
∥P[�,u]

(

xk −
[

∇ f
(

xk
) + ∇h

(

xk
)

λk+1 + ∇g
(

xk
)

μk+1
])

− xk
∥
∥
∥∞ ≤ εk, (5)
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with εk → 0 (εk → εopt in practice), is satisfied. Therefore, if Algencan is ultimately
asked to stopwhen (4) is satisfied, it is natural to require, at each iteration k ofAlgencan,
the scaled condition

∥
∥
∥
∥
P[�,u]

(

xk − 1

max{1, ‖λk+1‖∞, ‖μk+1‖∞}
[

∇ f
(

xk
) + ∇h

(

xk
)

λk+1

+∇g
(

xk
)

μk+1
])

− xk
∥
∥
∥∞ ≤ εk . (6)

This is the proposal of the present work. It represents a tiny modification in the orig-
inal Algencan algorithm. Nevertheless, it defines a new algorithm whose properties
need to be identified; in particular, the scaling max{1, ‖λk+1‖∞, ‖μk+1‖∞} could be
unbounded, which would be undesired.

In the present paper, we analyze the modified algorithm from the theoretical point
of view and, more importantly, from the practical point of view. In Sect. 2, we ana-
lyze theoretical implications of the modification in the subproblem stopping criterion
of Algencan. In Sect. 3, we discuss implementation details of Algencan that help
understanding the implications and possible effects of changing the subproblems’
stopping criterion. In Sect. 4, we evaluate the impact of the proposed modification on
the practical performance of Algencan. Conclusions are presented in the last section.
Notation If �, u ∈ R

n , we denote by [�, u] the box {x ∈ R
n | � ≤ x ≤ u}. Given

a, b ∈ R, we use [a, b]r to denote the box {x ∈ R
r | a ≤ xi ≤ b, i = 1, . . . , r}.

We denote by P[�,u](·) the projection operator onto [�, u] and note that this is a non-
expansive mapping, that is, ‖P[�,u](x) − P[�,u](y)‖∞ ≤ ‖x − y‖∞ for any x, y ∈ R

n ,
where we use ‖ · ‖∞ to denote the infinity norm. We use (·)+ = max{0, ·} to denote
the projection onto the non-negative reals R+ and if v ∈ R

r , v+ denotes the vector
with components (vi )+ for i = 1, . . . , r . If v,w ∈ R

r , min{v,w} denotes the vector
with components min{vi , wi } for i = 1, . . . , r .

2 Algencan with scaled stopping criterion for the subproblems

Algencan is a well-established algorithm for constrained optimization based on safe-
guarded Augmented Lagrangian principles [1, 12, 13]. The adjective “safeguarded”
for this type of methods seems to be due to [22].

The Augmented Lagrangian function [19, 24, 25] associated with problem (1) is
defined by

Lρ(x, λ, μ) = f (x) + ρ

2

[
m

∑

i=1

(

hi (x) + λi

ρ

)2

+
p

∑

i=1

(

gi (x) + μi

ρ

)2

+

]

for all x ∈ [�, u], ρ > 0, λ ∈ R
m , and μ ∈ R

p
+.

The description of Algencan’s model algorithm, taken from [13], follows below.
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Algorithm 2.1 Assume that x0 ∈ R
n , λmin < λmax, λ̄1 ∈ [λmin, λmax]m , μmax > 0,

μ̄1 ∈ [0, μmax]p, ρ1 > 0, γ > 1, 0 < τ < 1, and {εk}∞k=1 → 0+ are given. Initialize
k ← 1.

Step 1. Find xk ∈ [�, u] as an approximate solution to

Minimize
x∈Rn

Lρk

(

x, λ̄k, μ̄k) subject to � ≤ x ≤ u (7)

satisfying

∥
∥
∥P[�,u]

(

xk − ∇x Lρk

(

xk, λ̄k, μ̄k)
)

− xk
∥
∥
∥∞ ≤ εk . (8)

Step 2. Define

V k = min

{

−g
(

xk
)

,
μ̄k

ρk

}

.

If k = 1 or

max
{

‖h(

xk
)‖∞, ‖V k‖∞

}

≤ τ max
{

‖h(xk−1)‖∞, ‖V k−1‖∞
}

, (9)

define ρk+1 = ρk . Otherwise, define ρk+1 = γρk .
Step 3. Compute

λk+1 = λ̄k + ρkh
(

xk
)

and μk+1 =
(

μ̄k + ρkg
(

xk
))

+ . (10)

Compute λ̄k+1 ∈ [λmin, λmax]m and μ̄k+1 ∈ [0, μmax]p. Set k ← k + 1 and
go to Step 1.

If we adopt the scaled KKT criterion at each iteration of Algencan, the only
difference is that (8) is replaced with

∥
∥
∥
∥
P[�,u]

(

xk − 1

max{1, ck}∇x Lρk

(

xk, λ̄k, μ̄k)
)

− xk
∥
∥
∥
∥∞

≤ εk, (11)

with ck = max{‖λ̄k + ρkh
(

xk
)‖∞, ‖ (

μ̄k + ρkg
(

xk
))

+ ‖∞}. An immediate observa-

tion is that if the stopping criterion (11) is satisfied at some iterate xk in the “new
algorithm”, then the stopping criterion (8) of the traditional Algencan is satisfied
with tolerance max{1, ck}εk .1 Hence, if {ck}∞k=1 is bounded, the new algorithm is a
particular case of the traditional Algencan. Therefore the same convergence and com-
plexity results [13] are expected. So, meaningful differences could appear only when
{λk+1}∞k=1 or {μk+1}∞k=1 are not bounded. In the remainder of this session we will
discuss the main differences between the global convergence theory of Algorithm 2.1
and its scaled version with (8) replaced with (11).

1 It is easy to check that the absolute value of each component of 1
α (P[�,u](x +v)− x) is less than or equal

to the absolute value of the correspondent component of P[�,u](x + 1
α v) − x for any x, v ∈ R

n and α ≥ 1.

123



Safeguarded augmented Lagrangian algorithms with scaled…

We start by noting that the scaled KKT criterion (4) on its own, in general, is not
an adequate tool for stopping constrained optimization algorithms. To see this, let us
assume that ε > 0 and xk is an iterate of a constrained optimization solver. Suppose
that γ ∈ R

m+p is such that γ 
= 0, γm+ j ≥ 0 for j = 1, . . . , p, and

m
∑

i=1

γi∇h
(

xk
) +

p
∑

i=1

γm+i∇gi
(

xk
) = 0. (12)

Then, for all c > 0,

m
∑

i=1

cγi∇h
(

xk
) +

p
∑

i=1

cγm+i∇gi
(

xk
) = 0. (13)

Moreover, if c is large enough we have that ‖cγ ‖∞ > 1 and

‖∇ f
(

xk
)‖∞

max{1, ‖cγ ‖∞} ≤ ε. (14)

By (13) and (14), defining λk+1
i = cγi for i = 1, . . . ,m and μk+1

i = cγi for i =
1, . . . , p, we have that

1

max{1, ‖λk+1‖∞, ‖μk+1‖∞}

∥
∥
∥
∥
∥
∥

∇ f
(

xk
) +

m
∑

i=1

λk+1
i ∇hi

(

xk
) +

p
∑

i=1

μk+1
i ∇gi

(

xk
)

∥
∥
∥
∥
∥
∥∞

≤ ε.

Therefore, from the non-expansiveness of the projection and noting that xk ∈ [�, u],
condition (4) holds with εopt = ε.

This means that an algorithm could stop at xk if (12) holds and, in addition, fea-
sibility and complementarity approximate conditions (3) take place. Equation (12)
merely says that the gradients of the constraints are positively linearly dependent at
xk . So, if xk is feasible and γ satisfies complementarity, the Mangasarian-Fromovitz
Constraint Qualification (MFCQ) does not hold at xk . It may be argued that positive
linear dependence, although occurs frequently when xk is infeasible, is an unusual
anomaly for most feasible points. However this is not really true, since positive lin-
ear dependence occurs at every feasible point if, for example, one of the constraints
appears twice. Again, it could be argued that users and preprocessing devices do not
allow constraints appearing twice but, again, this is not so clear when one has an
enormous set of constraints coming, perhaps, from some deep learning environment.
Finally, situations of “almost" positive linear dependence could appear frequently and
unexpectedly in many constrained optimization problems.

Many variations of the situation presented above are possible, which show that
stopping could occur at undesirable points when one uses the scaled KKT criterion.
Another reason that discourages its use is that, in some problems, computing correct
Lagrange multipliers is the main objective when solving a constrained optimization
problem. This is the case in energy dispatch problems in which Lagrange multipliers
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are prices. In these cases, relaxing the fulfillment of the true KKT conditions could
lead, perhaps, to quite erroneous decisions.

In [8, §2], it has been proved that an arbitrary sequence {xk}∞k=1 (not necessarily gen-
erated by anAugmentedLagrangianmethod) that satisfies (6) for somecomplementary
approximate Lagrangemultipliers and that converges to a feasible point is such that the
limit point fulfills the KKT conditions only under the additional assumption that the
limit point satisfies MFCQ. We will show that this result can be improved in the case
of a sequence generated by Algencan [even with (11) replacing (8)]. This is related to
the fact that the convergence theory of Algencan to a KKT point can be proved under
considerably weaker constraint qualifications than MFCQ. For instance, the Constant
Positive Linear Dependence (CPLD) condition was employed in [1], which is strictly
weaker than both MFCQ and the Constant Rank Constraint Qualification (CRCQ)
[21].

The definition of CPLD is as follows, where we use {ei }i∈{1,...,n} to denote the
canonical basis of Rn .

Definition 2.1 A feasible point x̄ of (1) satisfies CPLDwhen, for any I ⊆ {1, . . . ,m},
J ⊆ {i ∈ {1, . . . , p} | gi (x̄) = 0}, and K ⊆ {i ∈ {1, . . . , n} | x̄i = �i or x̄i = ui },
if there exists γ ∈ R

m+p+n with γm+i ≥ 0 for i = 1, . . . , p, γm+p+i ≤ 0 whenever
x̄i = �i , γm+p+i ≥ 0whenever x̄i = ui (i = 1, . . . , n), and

∑

i∈I |γi |+∑

i∈J γm+i+∑

i∈K |γm+p+i | > 0 such that

∑

i∈I
γi∇h(x̄) +

∑

i∈J
γm+i∇gi (x̄) +

∑

i∈K
γm+p+i ei = 0,

then there exists a neighborhood B(x̄) of x̄ such that {∇hi (x)}i∈I ∪ {∇gi (x)}i∈J ∪
{ei }i∈K is linearly dependent for all x ∈ B(x̄).

Let us now show that, similarly to Algencan, the global convergence of Algorithm
2.1 with (8) replaced with (11) can also be proved under CPLD. In order to do this, it
is enough to show that the approximate Lagrange multipliers sequences are bounded.
The proof follows the lines of [9].

Theorem 2.1 Let {xk}∞k=1 be a sequence generated by Algorithm 2.1 where (8) is
replaced with (11) and assume that x̄ is a feasible limit point. That is, there exists an

infinite set of indices K such that xk
k∈K→ x̄ . If x̄ satisfies CPLD, then the sequences

{λk+1}k∈K and {μk+1}k∈K are bounded. In particular, x̄ satisfies the KKT conditions.

Proof We may write from (11), using suitable Lagrange multipliers νk ∈ R
n , that

1

max{1, ck}∇x Lρk

(

xk, λ̄k, μ̄k) +
n

∑

i=1

νki ei → 0, (15)

where ck = max{‖λk+1‖∞, ‖μk+1‖∞}, νki ≤ 0 if xki = �i , νki ≥ 0 if xki = ui , and
νki = 0 if �i < xki < ui , i = 1, . . . , n. Let us assume that {ck}k∈K is unbounded. This
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implies by (10) that ρk → +∞. Using (10), we may rewrite (15) as

1

max{1, ck}

(

∇ f
(

xk
) +

m
∑

i=1

λk+1
i ∇hi

(

xk
) +

p
∑

i=1

μk+1
i ∇gi

(

xk
)

)

+
n

∑

i=1

νki ei → 0.

Take an infinite subset K2 ⊆ K such that ck → +∞ and (λk+1,μk+1)
max{1,ck }

k∈K2→ (λ, μ) 
= 0

with μ ≥ 0. We may also assume that νk
k∈K2→ ν with νi ≤ 0 if x̄i = �i , νi ≥ 0

if x̄i = ui , and νi = 0 if �i < x̄i < ui , since unboundedness of {νk}k∈K would
contradict the linear independence of {ei }ni=1. Take I = {i ∈ {1, . . . ,m} | λi 
= 0},
J = {i ∈ {1, . . . , p} | μi > 0}, and K = {i ∈ {1, . . . , n} | νi 
= 0} and notice that

|λk+1
i | k∈K2→ +∞, i ∈ I and μk+1

i
k∈K2→ +∞, i ∈ J follows from the definition of

(λ, μ) and the index sets I and J . Notice also that gi (x̄) = 0 for all i ∈ J since
otherwise μk+1

i → 0 from (10). We conclude that

∑

i∈I
λi∇hi (x̄) +

∑

i∈J
μi∇gi (x̄) +

∑

i∈K
νi ei = 0

with I ∪ J 
= ∅. Let us assume without loss of generality that j0 ∈ J 
= ∅. We have

∇g j0(x̄) = −
∑

i∈I

λi

μ j0
∇hi (x̄) −

∑

i∈J \{ j0}

μi

μ j0
∇gi (x̄) −

∑

i∈K

νi

μ j0
ei .

By Carathéodory’s Lemma [10, Exercise B.1.7], there exist I ′ ⊆ I, J ′ ⊆ J \{ j0},
and K′ ⊆ K, and new scalars λ′

i , i ∈ I ′ such that λ′
iλi > 0 for all i ∈ I ′, μ′

i , i ∈ J ′
such that μ′

iμi > 0 for all i ∈ J ′, and ν′
i , i ∈ K′ such that ν′

iνi > 0 for all i ∈ K′
with the property that

∇g j0(x̄) = −
∑

i∈I ′

λ′
i

μ j0
∇hi (x̄) −

∑

i∈J ′

μ′
i

μ j0
∇gi (x̄) −

∑

i∈K′

ν′
i

μ j0
ei

and {∇hi (x̄)}i∈I ′ ∪ {∇gi (x̄)}i∈J ′ ∪ {ei }i∈K′ is linearly independent. Considering the
index sets I ′ ⊆ {1, . . . ,m}, J ′ ∪ { j0} ⊆ {i ∈ {1, . . . , p} | gi (x̄) = 0}, and K′ ⊆ {i ∈
{1, . . . , n} | x̄i = �i or x̄i = ui } in the definition ofCPLDweconclude that there exists
a neighborhood B(x̄) such that the vectors {∇hi (x)}i∈I ′ ∪{∇gi (x)}i∈J ′∪{ j0}∪{ei }i∈K′
are linearly dependent for all x ∈ B(x̄). This implies that ∇g j0(x) belongs to the
subspace generated by {∇hi (x)}i∈I ′ ∪ {∇gi (x)}i∈J ′ ∪ {ei }i∈K′ for all x ∈ B(x̄). Now,
by [9, Lem. 3.2], there exists a C1 function ϕ : N → R, where N is a neighborhood
of 0 ∈ R

|I ′|+|J ′|+|K′|, such that g j0(x) = ϕ({hi (x)}i∈I ′ , {gi (x)}i∈J ′ , {ri (x)}i∈K′) for
all x sufficiently close to x̄ , where ri (x) = �i − xi if x̄i = �i , and ri (x) = xi − ui
if x̄i = ui , for all i ∈ K′, and ∇ϕ(0) = ({ λ′

i
μ j0

}i∈I ′ , { μ′
i

μ j0
}i∈J ′ , { ν′

i
μ j0

}i∈K′). By noting

that ri (xk) = 0 for all i ∈ K′ and sufficiently large k ∈ K2, we conclude by Taylor’s
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expansion that

g j0

(

xk
) = −

∑

i∈I ′

λ′
i

μ j0
hi

(

xk
) −

∑

i∈J ′

μ′
i

μ j0
gi

(

xk
)

+o
(∥
∥
({hi

(

xk
)}

i∈I ′ ,
{

gi
(

xk
)}

i∈J ′
)∥
∥∞

)

, (16)

for sufficiently large k ∈ K2.
Notice that for all i ∈ I ′, λ′

i 
= 0 has the same sign of λi 
= 0, which has the same

sign of λk+1
i for sufficiently large k ∈ K2, where |λk+1

i | k∈K2→ +∞. From (10), we
have that hi (xk) 
= 0 also has the same sign of λ′

i . Similarly, μ′
i > 0 and gi (xk) > 0

for all i ∈ J ′ ∪ { j0} and all sufficiently large k ∈ K2. This contradicts (16). Thus,
from (11) and (10) it is easy to see that (6) follows. We may now take a subsequence
such that λk → λ and μk → μ in (6) to conclude that x̄ satisfies the KKT conditions.

��
Remark The assumption that x̄ is feasible may be replaced by a generalization of the
CPLD condition to infeasible points where the set of indexes J considers all subsets
of active or violated constraints. See [4] for details.

Theorem 2.1 implies that, under CPLD, iterations of the scaled version of Algencan
can be recast as iterations of the traditional Algencan. In particular, this implies that,
whenever the scaled version of Algencan reaches a feasible point, this must be a
KKT point. As mentioned above, this does not contradict our previous statement
about the necessity of relying onMFCQ. The reason is that the approximate Lagrange
multipliers generated by the Augmented Lagrangian algorithm have some structure
which prevents them from getting too large, even when the set of Lagrange multipliers
is unbounded (that is, MFCQ fails). A similar study has been conducted for several
interior point methods, see [18].

The boundedness of the approximate Lagrange multipliers generated by Algen-
can is known to hold under a constraint qualification weaker than CPLD known as
quasinormality [2]. More recently, boundedness of this sequence has also been shown
to hold under the so-called relaxed-quasinormality [4], which implies that most con-
straint qualifications used in the global convergence analysis of Algencan imply that
the approximate Lagrange multipliers sequences are bounded. This is the case of the
relaxed variants of CRCQ and CPLD [6, 23] and the Constant Rank of the Subspace
Component (CRSC) [7]. These results do not immediatelly apply to the scaled variant
of Algencan, however, it is simple to check that a small adaptation of the proofs of
[2] and [4] actually gives the desired result; that is, Theorem 2.1 actually holds with
CPLD replaced by any of the constraint qualifications previously mentioned.

The following example shows that the approximate Lagrange multipliers sequence
can in fact be unbounded, and in this case, the scaled algorithm may converge to a
non-solution, while the traditional algorithm finds a solution.

Consider the simple one-dimensional problem

Minimize x subject to x3 ≤ 0 and − M ≤ x ≤ M, (17)
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where M is a big number that will not enter in our calculations. The solution of this
problem is x = −M and the interesting point is x = 0, where the CPLD constraint
qualification does not hold. For any sequence {xk} that tends to zero the gradient of
the objective function is 1 and the gradient of the constraint is 3(xk)2, which tends to
0. Clearly, the KKT condition 1 + μ3x2 = 0 can not be satisfied at x = 0 for any
μ ≥ 0, but in addition, this condition does not hold even approximately near x = 0
since it is not possible to find suitable approximate Lagrange multipliers μk ≥ 0 such
that 1 + μk(3xk)2 → 0. Therefore, (8) can not be satisfied at xk when εk < 1. This
means that a sequence {xk} that tends to zero can not be generated by the traditional
version of Algencan that uses (8).

However, the convergence of the scaled versionofAlgencan, inwhich (8) is replaced
with (11), to the spurious point x = 0 is not excluded by the theoretical results
presented in this section. In fact, we are going to see that the scaled version ofAlgencan
can produce a sequence that tends to zero.

At iteration k of the scaled Algencan, given the penalty parameter ρk , we will show
that, with the approximate solution of the subproblem defined by xk = (ρk)

−1/4, the
scaled criterion at the k-th subproblem is satisfied for a sequence εk that tends to zero.
For simplicity, let us consider the safeguarded multiplier μ̄k = 0 at (10), which gives
the estimated Lagrange multiplier μk+1 = [ρk(xk)3]+ = ρ

1/4
k . The gradient of the

Augmented Lagrangian at iteration k is then given by 1+ μk+13(xk)2 = 1+ 3ρ−1/4
k .

Therefore, dividing by max{1, μk+1} as in (11), we obtain that the scaled stopping
criterion below holds when ρk ≥ 1:

1 + 3ρ−1/4
k

ρ
1/4
k

= ρ
−1/4
k + 3ρ−1/2

k ≤ εk,

which is satisfied by εk = ρ
−1/4
k + 3ρ−1/2

k , which tends to zero provided that ρk
tends to infinity. In order to guarantee that ρk tends to infinity it is enough to choose
a sufficiently small parameter τ , which is used in (9). More precisely, let us define
τ < min{10−3/4, γ −3/4} and assume x0 = 1 and ρ1 = 10. Then we will have
that x1 = 10−1/4. The quotient between the constraint at x1 and the constraint
at x0 is 10−3/4. Then, if τ < 10−3/4 we will have that ρ2 = 10γ . Proceeding
in an inductive way, suppose that ρk = 10γ k−1, then xk = 10−1/4γ −(k−1)/4 and
(xk)3 = 10−3/4γ −3(k−1)/4. Analogously, (xk−1)3 = 10−3/4γ −3(k−2)/4. Therefore
(xk)3/(xk−1)3 = γ −3/4. So, since τ < γ −3/4, we will have by (9) that ρk+1 = γρk
and the result follows. In particular ρk tends to infinity.

We end this session by summing up the main theoretical difference between the
traditional algorithm and the scaled one. The traditional algorithm always finds an
Approximate-KKT point in the sense defined in [3], whenever it finds a feasible point,
independently of the fulfillment of constraint qualifications; that is, (5) holds for suit-
able complementary approximate Lagrange multipliers, even when these multipliers
are unbounded. On the other hand, the scaled algorithm must rely on a constraint
qualification at the limit point (say, CPLD or the relaxed-quasinormality) to ensure
boundedness of the sequence of approximate Lagrange multipliers in order for a
meaningful necessary optimality condition to be present (in this case, a KKT point is
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found), possibly failing to satisfy theApproximate-KKT conditionwhen the constraint
qualification does not hold.

3 Discussion

In the next section, we will examine numerical experiments done for the purpose
of analyzing the practical impact of using the scaled stopping criterion on both the
Algencan subproblems and the main problem. It is likely that the modification will
cause Algencan to stop sooner and, therefore, it can be said that, by definition, the
modified version of Algencan should be more efficient. Therefore, the experiments
aim to measure how much more efficient the modified version is and to verify to what
extent this increased efficiency is accompanied by a loss of effectiveness.

As stated in [12, Ch.14], we consider that a solution xA obtained by an AlgorithmA
is better than a solution xB found by another Algorithm B in two situations:

• xA is feasible and xB is not;
• both xA and xB are feasible and f (xA) < f (xB).

If xA and xB are feasible and f (xA) = f (xB), we say that the solutions are equiva-
lent. If both are infeasible, we say that they are not comparable. However, as reaching
exact feasibility is almost always impossible, an admissible level of infeasibility must
be established in order to compare xA and xB . In the same way, a small tolerance
could be admitted to consider that two different values of the objective function can be
considered equivalent. In the present comparison, we adopted this criterion based on
feasibility and functional value to compare solutions obtained by algorithms.However,
we must warn that in some situations the accuracy of Lagrange multipliers approx-
imations is also relevant. In these situations stopping criteria based on traditional
approximate KKT conditions will generally produce better solutions than scaled ones,
for obvious reasons.

Before going into the comparison, some details of Algencan should be discussed so
that the results can be better understood. Algorithm 2.1 corresponds to the augmented
Lagrangian strategy that constitutes the main Algencan algorithm, but Algencan also
implements three supplemental strategies that deserve to be mentioned.

3.1 Desperate attempt for feasibility

In addition to the stopping criterion related to satisfying a KKT condition approxi-
mately, the augmented Lagrangian method has additional criteria related to maximum
iterations, too large penalty parameter, or consecutive failures when trying to solve
subproblems. If, when the augmented Lagrangian iterations stop, a feasible point was
not found, then Algencan neglects the objective function and, by minimizing the sum
of squared infeasibilities subject to the bound constraints, tries to at least find a feasible
point. This does not occur if the augmented Lagrangian iterations are interrupted by
hitting an imposed CPU time limit. So, an earlier stop of Algencan, due to the use of
the scaled stopping criterion, can help this last desperate alternative to be executed in
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cases where the version of Algencan that does not use the scaled stopping criterion is
interrupted by reaching the CPU time limit.

3.2 Accelerating by solving a KKT system

The acceleration strategywas introduced in [11] and itsmost recent version is described
in [13, §5.1]. The strategy basically consists of trying to solve, by Newton’s method,
a KKT system of dimension 3n +m + p that has as unknowns the primal variables x ,
the multipliers λ and μ of the equality and inequality constraints, respectively, and
multipliers ν� and νu associated with the bound constraints. (When doing that, bound
constraints are subject to be satisfied with precision εfeas, while the iterates of the
augmented Lagrangian method satisfy the bound constraints exactly.) If the acceler-
ation is well succeeded in its purpose, it will find an approximate KKT point, not a
scaled one. This means that, when the solution returned by the modified version of
Algencan is the product of an acceleration, an eventual deterioration in the value of
the objective function that could have been caused by a premature stop with the scaled
KKT criterion is not expected.

3.3 Robustness and“the best iterate may not be the last one”

Themain Algencan stopping criterion is satisfied if, for some k ≥ 0, (xk, λk+1, μk+1),
with xk ∈ [�, u], satisfies (2, 3), while in the modified version of Algencan (4, 3) is
required. As mentioned above, before the execution of iteration k, for any k ≥ 1,
(xk−1, λk, μk), accompanied by suitable values for ν� and νu , is used as the starting
point for an acceleration attempt. The acceleration will be considered successful if it
finds a point (xkaccel, λ

k+1
accel, μ

k+1
accel, ν

�
accel, ν

u
accel) such that

max {‖h(x)|‖∞, ‖g(x)+‖∞, ‖(� − x)+‖∞, ‖(x − u)+‖∞} ≤ εfeas (18)
∥
∥
∥
∥
∥
∥

∇ f (x) +
m

∑

j=1

λ j∇h j (x) +
p

∑

j=1

μ j∇g j (x) − ν� + νu

∥
∥
∥
∥
∥
∥∞

≤ εopt (19)

max

{

max
j=1,...,p

{[min{−g(x), μ}] j
}

, max
i=1,...,n

{

[min{x − �, ν�}]i
}

,

max
i=1,...,n

{[min{u − x, νu}]i
}
}

≤ εcompl (20)

holdswith (x, λ, μ, ν�, νu) = (xkaccel, λ
k+1
accel, μ

k+1
accel, ν

�
accel, ν

u
accel). Themain point here

is that Algencan does not necessarily stop if the acceleration strategy is successful.
Algencan only stops if the starting point of the acceleration process, i.e. (xk−1, λk, μk),
satisfies (2, 3) with ε

1/2
opt , ε

1/2
feas, and ε

1/2
compl rather than εopt, εfeas, and εcompl, respectively.

The reason for this is that, as the acceleration ignores the objective function and some
variables are arbitrarily fixed in their bounds during the acceleration process, points
that are found by the acceleration process and satisfy the KKT conditions may not
be “good minimizers” if the initial point of the acceleration process was far from
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being a point to which the iterates of the augmented Lagrangian algorithm would
converge. But does that mean that a KKT point could be discarded by Algencan?
Well, in fact Algencan uses KKT as a strategy, but, in line with what we said at the
beginning of the section, what Algencan aims at is to find a feasible point with the
best possible objective function value. So, whenever a new triple (xk, λk+1, μk+1) or
(xkaccel, λ

k+1
accel, μ

k+1
accel) is calculated, its feasibility and its objective function value are

inspected and Algencan updates a triple (xbest, λbest, μbest) that it considers to be the
best and that will be returned at the end, regardless of whether it was the one that made
Algencan stop or not.

The strategy described above is clearly a conservative option, favoring robustness
at the expense of efficiency. It would be trivial to modify it to favor efficiency. Since
the proposed modification at Algencan favors efficiency over robustness, it will be
critical to verify whether it in any way affects its robustness.

4 Numerical evaluation

In this section we aim to analyze the practical impact of using the scaled criterion to
stop solving the subproblems, and the original problem, in Algencan. In the numerical
experiments, we considered Algencan 4.0.0 [13], which we call Algencan hereafter,
and its modified version that replaces (8) with (11) to stop subproblems and (2, 3)
with (4,3) in the main stopping criterion. The modified version of Algencan will
be called scaled Algencan from now on. Algencan and scaled Algencan were run
with all their default parameters values, that include εopt = εfeas = εcompl = 10−8

and εk = max{εopt,
√

εopt

10k−1 }, k ≥ 1. Algencan and scaled Algencan are implemented
in Fortran 90. All tests reported below were conducted on a computer with a 5.1
GHz Intel Core i9-12900K processor and 128GB 32000MHz DDR4 RAM memory,
running Ubuntu 22.04.3 LTS. Codes were compiled by the GNU Fortran compiler of
GCC (version 11.4.0) with the -O3 optimization directive enabled.

The two versions of Algencan were compared using all problems from the CUTEst
collection [17], with their default dimensions. More specifically, the exact set of prob-
lems that was considered in [13], corresponding to the most updated version of the
CUTEst collection at the time [13] was written, was considered. In this version, there
are 217 unconstrained problems, 144 bound-constrained problems, 157 feasibility
problems, and 740 nonlinear programming problems. Feasibility problems are solved
by Algencan by minimizing the sum of the squared infeasibilities restricted to the
bound constraints. As the two methods we intended to compare are identical when
applied to unconstrained and bound-constrained problems, it only makes sense that
we compare them on the 740 nonlinear programming problems.

A CPU time limit of 10min was imposed for each pair method/problem.2 Large
tables with a detailed description of the output of each method in the 740 problems
can be found at http://www.ime.usp.br/~egbirgin/. For the reasons outlined in the
discussion section, which were in fact corroborated by the numerical experiments, it is

2 Preliminary experiments showed that the conclusions of the comparison do not change if a 1-h CPU time
limit is considered.
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interesting to compare the performance of Algencan and scaled Algencan considering
(default option in Algencan) and without considering the acceleration strategy. We
show below those two comparisons in separate sections.

4.1 Algencan versus Algencan scaled with the use of the acceleration strategy

There are 43 problems in which Algencan’s augmented Lagrangian iterations stopped,
by a criterion different from reaching the CPU time limit, without finding a feasible
point. In those 43, the sum of squared infeasibilities subject to the bound constraints
was minimized and in 14 problems a feasible point, with εfeas tolerance, was found.
(Success rate slightly greater than 32%.) On the other hand, there are 21 problems
in which the Algencan augmented Lagrangian iterations were interrupted by hitting
the CPU time limit. Of those 21 problems, there are 16 in which a feasible point
was not found. But as time ran out, the strategy to try to find a feasible point could
not be applied. Considering the strategy success rate of 32%, there is potential here
for scaled Algencan to find feasible points in 5 problems in which Algencan did
not. Unfortunately, that projection did not materialize. The problems in which scaled
Algencan stopped by reaching the time limit correspond to 20 out of the 21 problems
in which Algencan stopped for the same reason and, like Algencan, scaled Algencan
did not find feasible points in 16 out of the 20 problems. There was only one problem in
whichAlgencan stopped by reaching the time limit andAlgencan scaled did not. In that
problem, Algencan found a feasible point, result of an acceleration. Scaled Algencan
stopped its iterations of the augmented Lagrangian without finding a feasible point,
which was later found with the desperate strategy for feasible points. As expected, the
feasible point found by Algencan has a lower objective function value.

The two methods behaved as if they were the same method in 503 out of the 740
problems considered. Therefore, we restrict the comparison hereafter to the remaining
237 problems. Of those 237 problems, Algencan returned as the best point a point that
is a result of the acceleration process in 171 problems, while scaled Algencan did the
same in 165 problems. Since in both cases this represents something around 70% of
the problems, significant differences in the objective function values found by the two
methods are not expected. This difference in the final value of the objective function
would be expected if the best point found by Algencan and scaled Algencan corre-
sponded to an augmented Lagrangian iterate. The number of problems in which that
occurred is small. Algencan returned as best point an iterate of augmented Lagrangians
in 26 problems, while scaled Algencan did the same in 30 problems.

Summarizing what we have seen so far, it is not expected that there is a significant
difference in robustness between the two methods, mainly because the two methods
behave identically in 503 problems and, in those in which they do not behave iden-
tically, they mostly returned points found by the acceleration process, which satisfy
KKT (non-scaled) conditions. We will now compare the efficiency of the twomethods
in those problems in which both converged to equivalent solutions.

Both Algencan and scaled Algencan found feasible points with tolerance εfeas in
204 problems, of the total of 237 in which they did not behave identically. In these
problems we need to compare the objective function values. For a given problem,
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Table 1 Number of best solutions each method found with tolerance ftol ∈ {0.1, 10−2, . . . , 10−8, 0},
considering the set of 204 problems in which the two methods did not behave identically and found feasible
points with tolerance εfeas

ftol 0.1 10−2 10−3 10−4 10−5 10−6 10−7 10−8 0

Algencan 203 203 203 202 201 199 194 190 133

Scaled Algencan 202 202 201 201 200 200 197 197 134

0

0.2

0.4

0.6

0.8

1

1 10

Γ
(κ

)

κ (log scale)

Algencan (Γ(1) = 0.30)
scaled Algencan (Γ(1) = 0.70)

CPU time

Fig. 1 Performance profiles comparing the CPU time spent by Algencan and scaled Algencan in the 183
problems in which the two methods did not behave identically and found feasible points with tolerance
εfeas = 10−8 and equivalent objective function values with tolerance ftol = 10−8

let f1 be the value of the objective function at the point found by Algencan, let f2
be the value of the objective function at the point found by scaled Algencan, and let
f min = min{ f1, f2}. Table 1 shows in how many problems, out of the 204 problems,
it holds

fi ≤ f min + ftol max{1, | f min|} for i = 1, 2

with ftol ∈ {0.1, 10−2, . . . , 10−8, 0}. The analysis of the table confirms that, regardless
of the tolerance that is used to consider that one function value is better than the other,
the two methods practically always find the same number of best solutions.

If we (arbitrarily) consider ftol = 10−8, there are 183 problems in which the
two methods did not behave identically and found feasible points with tolerance εfeas
and equivalent objective function values with tolerance ftol. In these problems, we can
compare the efficiency of the twomethods. Figure1 shows the performance profile [16]
that considers, as performance measure, the CPU time spent by each method. In the
figure, for i ∈ M ≡ {Algencan, scaled Algencan},

�i (κ) = | { j ∈ {1, . . . , q} | ti j ≤ κ mins∈M {ts j }
} |

q
,
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where |S| denotes the cardinality of the set S, q = 183 is the number of considered
problems, and ti j is the performance measure (CPU time) of method i applied to
problem j . The left side of the figure shows that Algencan is faster in 30% of the
problems while scaled Algencan is faster in 70% of the problems. If we consider the
value of the curves at κ = 2,we have that�Algencan(2) ≈ 0.97 and�scaled Algencan(2) =
1. This shows that in 97% of the 183 problems, Algencan never takes more than twice
the time scaled Algencan takes. It is important to stress that this figures refer to 183
problems, that correspond to approximately 15% of whole set of 1257 problems in
the CUTEst collection. In the remaining 85% of the problems, both methods behave
identically. In any case, the conclusion is that, when the acceleration strategy is being
used, the scaled KKT criterion used to stop both the subproblems and the original
problem does not result in a loss of robustness and brings an increase in efficiency in
a relatively small proportion of problems.

4.2 Algencan versus Algencan scaled without the use of the acceleration strategy

The acceleration strategy used by Algencan requires that second derivatives of f ,
g and h are available, as well as a linear algebra routine for solving linear systems
(Algencan uses the MA57 routine from HSL [20]). When any of these things are
not available, the acceleration strategy cannot be used. Therefore, it makes sense to
compare Algencan and scaled Algencan without the use of the acceleration strategy.
Because in this case the returned points are almost always iterates of the augmented
Lagrangianmethod, some difference in the values of the objective function is expected.
(Without acceleration, the returned point is not an iterate of augmented Lagrangians
only in the case in which the augmented Lagrangian method is interrupted by some
stopping criterion other than hitting theCPU time limit,without having found a feasible
point. In this case, the desperate strategy for feasibility is used).

Without the acceleration, the twomethods behaved as if they were the samemethod
in 480 out of the 740 problems considered. Therefore, we restrict the comparison here-
after to the remaining 260 problems. It is interesting to note that Algencan stopped
by finding an approximate KKT point in 113 problems and stopped by successive
failures in solving the subproblems in 107 problems. On the other hand, scaled Algen-
can stopped by finding an approximate scaled KKT point in 174 problems and by
successive failures in solving the subproblems in 47 problems. That means that there
was a transfer of almost 60 problems from the criterion “successive failures in solving
subproblems” to “finding an approximate scaled KKT point”. There were also 9 prob-
lems in which Algencan stopped by reaching the CPU time limit without having found
a feasible point. Scaled Algencan did not stop for the same reason in any problem.
That means that, in those 9, scaled Algencan had the chance to execute the desperate
attempt for finding a feasible point. It was successful in 7 out of the 9 problems. That
is, this time, without the acceleration, the efficiency of scaled Algencan resulted in an
improvement of its robustness. This is the reason why, out of the 260 problems we are
considering (which are those in which the two methods did not behave identically),
Algencan found feasible points with tolerance εfeas in 226 and scaled Algencan found
feasible points in 7 more problems, i.e. 233 problems.
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Table 2 Number of best solutions each method (Algencan and scaled Algencan without the acceleration
process) found with tolerance ftol ∈ {0.1, 10−2, . . . , 10−8, 0}, considering the set of 226 problems in
which the two methods did not behave identically and found feasible points with tolerance εfeas

ftol 0.1 10−2 10−3 10−4 10−5 10−6 10−7 10−8 0

Algencan 225 225 225 224 223 219 216 211 147

Scaled Algencan 225 225 223 223 221 217 213 213 101
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scaled Algencan (Γ(1) = 0.96)

CPU time

Fig. 2 Performance profiles comparing the CPU time spent by Algencan and scaled Algencan without
acceleration in the 198 problems in which the two methods did not behave identically and found feasible
points with tolerance εfeas = 10−8 and equivalent objective function values with tolerance ftol = 10−8

Let us now consider the 226 problems in which the two methods found feasible
points with tolerance εfeas. In these problems, we compare the values of the objective
function. Table 2 shows the comparison. The analysis of the table shows that the two
methods found nearly the same number of best solutions, with the exception of the
case where we consider zero tolerance, i.e. ftol = 0. This clearly shows that the chosen
way of scaling the KKT conditions does not produce a significant deterioration in the
value of the objective function of the solution found.

If we (arbitrarily) consider ftol = 10−8, there are 198 problems in which the
two methods did not behave identically and found feasible points with tolerance εfeas
and equivalent objective function values with tolerance ftol. In these problems, we can
compare the efficiency of the twomethods. Figure2 shows the performance profile that
considers, as performance measure, the CPU time spent by each method. The analysis
of the figure shows without a doubt that scaled Algencan is much more efficient
than Algencan on the set of problems in which the methods are being compared. We
can conclude that, if acceleration is not used, Algencan and scaled Algencan behave
identically in two thirds of the problems. In the third of the problems where they
behave differently, scaled Algencan is much more efficient, to the point that the higher
efficiency results in higher robustness. And all this without any relevant loss in the
quality of the solutions found.
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5 Conclusions

This paper dealt with the application of scaled KKT conditions for redefining and
stopping the Safeguarded Augmented Lagrangian method implemented in Algencan.
We discussed pros and cons of the resulting modifications.

On the one hand, we showed that the scaled approximate KKT stopping criterion
could be satisfied at any feasible point at which the gradients of active constraints
are positively linearly dependent, which is an undesirable feature for any constrained
optimization algorithm. Thus, we do not advocate the use of the scaledKKTconditions
for stopping other constrained optimization algorithms when the problem does not
satisfyMFCQ, unless the algorithm is built in such a way that additional properties are
satisfied at the Lagrange multipliers approximations that guarantee their boundedness.
This is the case of Algencan and some interior point methods, but not all of them [18].

On the other hand, we showed that the undesirable premature stopping is unlikely
to occur when the scaled Algencan algorithm defined in the present paper is used. The
reason is the following: If a subsequence generated by this algorithm converges to a
feasible limit point that satisfies a weak constraint qualification (as CPLD, and others),
then the corresponding sequence of multipliers generated by the method is bounded.
Consequently, the scaled Algencan can be analyzed as an instance of the traditional
Algencan and the limit point satisfies the KKT conditions. It is interesting to observe
that this property holds even if the gradients of active constraints at the limit point are
positively linearly dependent (i.e.MFCQdoes not need to be satisfied). This theoretical
result concerns the infinite sequence generated by the method saying, essentially, that
in most cases the limit point is good. However, it remains to be possible that, for
a particular (bad) iterate xk generated by the same sequence, the scaled criterion is
met with a very small tolerance. In order to verify whether such premature stopping
occurs in practice, we performed a careful numerical experimentation. The numerical
experiments showed that, in the considered set of problems, there is a gain in efficiency
without losing robustnesswith the employment of scaledKKTconditions inAlgencan.

Last but not least, there are applications in which an accurate Lagrange multiplier
is sought. In this cases, scaling is not recommended. It is also the case that without
scaling, Algencan possesses the property of always generating a sequence which sat-
isfies a very natural approximation of the KKT conditions [3] (whenever a feasible
point is reached), without assuming any constraint qualification, which is very appeal-
ing. Summing up, although numerical results suggest that the employment of the
scaled stopping criterion associated with the scaled Augmented Lagrangian method is
generally effective, and the algorithm finds a KKT point under weak constraint qual-
ifications, the existence of families of problems in which premature stopping occurs
cannot be discarded. Therefore, when solving a specific problem, scaling should be
used with caution. The validity of the positive results presented in this study concern-
ing using scaled KKT conditions in Algencan will be the subject of future research
with respect to other constrained optimization algorithms.
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