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Abstract: This paper presents an extension of the complementary stability analysis for discrete-
time Markovian systems applied in interaction control. The control strategy considers an internal
loop force control for Series Elastic Actuators based on the Robust Regulator for Discrete-time
Markov Jump Linear systems and extern loop impedance control to regulate the interaction
between the human and robot. Two examples show the complementary stability analysis of the
human-robot interaction system, where is regarded as different values of the virtual impedances,
different levels for the robustness of the force control, uncertainties, and abrupt changes for
human parameters. Simulation results show the capacity of control strategy to deal with active
interaction models, where the Mean Square Stability guarantees safe for the user. Additionally,
from results it is understood the transmissibility of impedance achieved is a consequence of the

robust performance given by the force controller.
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1. INTRODUCTION

For the past three decades, researchers of the robotic-
rehabilitation area have developed platforms, orthosis, and
exoskeletons for ankle rehabilitation to promote the active
participation of patients in the rehabilitation process. In
this context, where machines and humans are coupled
to solve a specific work, the technology of control, ac-
tuators, and sensors for interaction robots must warrant
safe, and precision (Ajoudani et al., 2018). Series Elas-
tic Actuators (SEA’s) are an example of technology ad-
vances for Human-Robot Interaction. These mechatronic
devices allow safety in the interaction to use a spring
located between the environment and the robot (Pratt
and Williamson, 1995). Robots based on series elastic
actuators require an inner force loop control, which can
be sensitive to human variations. The change of behavior
of human impedance during the gait is related to higher
ankle stiffness for stance and low for swing phase (Lee
et al., 2016). These abrupt changes of parameters can be
treated by Markovian models with bounded uncertainties
(Jutinico et al., 2017; Escalante et al., 2021). Neverthe-
less, the complementary stability of the human and the
rehabilitation robot must be guaranteed to bring safety
for users (Buerger and Hogan, 2007). Therefore, a suit-
able strategy to give stability is the impedance control
(IC) that modifies the robot torque by virtual stiffness
and damping (Hogan, 1985). However, in SEA’s based
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devices, this stability depends on both impedance control
and force control. Since the interaction system can be
modeled by discrete-time Markov jump linear systems,
the complementary stability must be analyzed via spectral
radius (Costa et al., 2005). In this paper, we analyze the
complementary stability of Markovian systems. We pay
special attention in SEA’s based robots and make a proof
of concept using the IC with the Linear Quadratic Regula-
tor (LQR-DMJLS) and the Robust Regulator for Discrete-
time Markov Jump Linear Systems (RR-DMJLS).

The rest of this paper is organized as follows: Section 2
introduce the interaction control for DMJLS; Section 3 is
the complementary stability for DMJLS; in Section 4 we
show the stability analysis; Section 5 present the proof
of concept; in Section 6 are explained the results and in
Section 7 the conclusions.

2. INTERACTION CONTROL FOR DMJLS

The interaction systems usually are represented by port
functions to describe coupled physical joints. The above
allows illustrating systems with block diagrams by conju-
gate power variables without making assumptions about
loading (Buerger and Hogan, 2007). Fig. 1 (a) shows
a block diagram representing the interaction between a
robot and an unknown environment. The robot is denoted
by an impedance Z, and the environment by an admit-
tance Y,,. In this context, the system stability depends on
both robot and the environment since the characteristic
system equation is given by (1 + Z.Y,, ). In contrast,
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the system performance depends on the robot Z,., and a
form to quantify this performance is through impedance
transmissibility from the robot to the environment. Notice

Fig. 1. Robot interacting with an uncertain and Markovian

environment.
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that the robot Z, actually is the set of devices to make an
automatic action, including actuators, sensors, and mecha-
nisms. For instance, in HRI systems based on SEA explicit
force control is necessary. This control can be related to
the model of the system to obtain optimal performance.
Besides, both robots as the environment can be modeled as
Markov jump linear systems. When the system is subject
to abrupt changes, or there is random model variability,
the system can be modeled from multimodal linear systems
subject to jumps. In this case, Z, and Y,, depend on the
jump parameter .

2.1 Impedance Control

The impedance control considered in this paper is defined
as follows,

Tllci = Bv(w;ik - wz,k) + Kv((b;ik - (bzk‘) + Kv5¢;ikv (1)
where 7 is the desired torque, (bldk is the desired trajectory

of the load, and wldk corresponds to the desired velocity. K,
and B, are the desired stiffness and damping respectively,
which are responsible for control interaction with the
environment, and Kv??fi);ik is a feed-forward term that
reduces the overshoot in the angle through the tuning
parameter ¢.

2.2 Linear Quadratic Regulator for DMJLS

Consider the nominal DMJLS (2), which represents a
coupled system between a human and a robot. Notice that
robot Z,(0) showed in Fig. 1 (a), it is including an IC and
a feedback force control given by the LQR-DMJLS. Where
rr € R™ is the state vector, ur € R™ the control input,
Firp € R and B, € R"™™ are parametric matrices,
and the jump parameter 6 = i.

Tpt1 = Fiykxk + Bi’kuk, k= o,--- N —1. (2)

The aim of the control is to find the control sequence
uy, that minimize the expected cost function given in (3)
subject to model (2). The transition probability matrix p; ;
and the appropriate weighting matrices P; , > 0, Q; 1 > 0,
R; 1 > 0 allow obtain a optimal control law uj, = K; pax
and the control vector K ;, by the recursive equations (4)
to (6), see Costa et al. (2005).

N-1
J =2 Vikp1esr + Y (2} Qipwr + uf Rigur), (3)
k=0
S
Vi kg1 = Z Pj k11pij, (4)
i=1

Pk = Fi (Wiks1 — Vi pp1 Bip(Ri + BZk@i7k+1Bi7k)*1
By Vikt1)Fig + Qig,
(5)

Kip=—(Rik+ ng‘I/z',kﬂBi,k)_lBZk‘I’i,kHFz‘,k. (6)
3. THE COMPLEMENTARY STABILITY FOR DMJLS

According to Buerger and Hogan (2007), the HRI prob-
lem can treat like a robust control problem considering
the complementary stability. In this context, Fig. 1 (b)
shows the robot by an impedance Z, connecting with
the environment, which in this case is the human, and
is regarded as a simplified nominal model Y;, with bound-
ary uncertainties AY. These uncertainties concerning the
human parameters always are bounded, e.g., mass and
height can vary between individuals but always into a
range. Notice that using a Markovian robust regulator in
the robot, the effect of these additive uncertainties can be
avoided. Therefore, the interaction problem is deal with
by an impedance control, and the Markovian control will
be tuning both to passive and active operation modes.

8.1 Markovian Robust Regulator

Consider the uncertain DMJLS (7), which represents a
complementary system between a human and a robot, with
Z(01), Yn(0r), and AY (6), as shown in Fig. 1 (b). The
robot includes an IC and a feedback force control given by
the RR-DMJLS.

Trt1 = (Fip + 0F; k)xk + (Bik + 0B i)k, (7)

for all K = 0,..., N — 1. The nominal matrices of the
Markovian model are Fj;; and B;j. Uncertain matrices
0F; ;, and 0B; ), are defined as follows:

[6F; ) 6Bix]) = Hi 1k Aik [Er,, EB, ] (8)

where H; € R"*?, Ep,, € R™™ and Ep,, € RX™ are
known matrices, and A;; € R9*! is a contraction such
that || Ak [|< 1.

The RR-DMJLS we consider in this paper was reported
in (Cerri and Terra, 2017). It is developed based on the
solution of the following optimization problem:

min max {J}'}, (9)

Th41,Uk 0F; 1,08
T
gh = | Tkt Uikrr O | |Trtr n
k- Uk 0 Rz’,k Uk
0 0 Tht1 —1 g Qir 0
{[I _ng] [”k CET 0" pr) 1)

The RR-DMJLS aims to minimize the state vector x4
and the control input wuj, against the maximization of

(10)
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parametric uncertainties dF; y and 0B, i. In (10), ¥ 441 =
Zj’:l Pj7k+1p¢j, and Pjyk b O, Qj,k' b 0, and Ri,k = 0
are weighting matrices. Control vector K; j, closed loop
matrix L; j, optimal states of the closed-loop system zj , |
and control action u}, are computed by the algorithm (12)
(where I is an identity matrix of appropriate dimension).
If all states of the system are available and p — +oo,
Wi — 0, the system robustness is obtained, and

{ Ly =F;r+ Bi 1 K (11)

Ep,, +Ep, Kix=0.

Robust Regulator for DMJLS

Initial Conditions:

Set xg, Og, P, Pl(N) >0, Vi € {1, ,S}

Step 1: (Backward). Calculate, for all k = N —1,...,0,

Lix 000 0 I0
Kip|l=[000 0 01|x
P 00—1F,00
— -1 —1
U, 0 0 0 I 0 0
0 R, 0 0 0 I 0
0 0 Q, 0 0 0 ~I
0 0 0 Wy I By Fi g
I o0 o iT o o 8
L o I 0 -Bf,0 o0

S
Ui k1 = Z Pjks1pijs Nig > ||nHEHi g

Jj=1

A | Fik 5 | Bik S
Fz’,k = |:EFi,k,:| 5 Bi,k - |:EB“C:| ’ I= |:0:| )

_ -1
P = A Hi g HE, 0 }
9

f—1

Wi =
bk 0 Sl

Step 2: (Forward). Obtain, for each k = 0,... N — 1,

:EZ+1 _ I:Li,k:| *
= Xy
{ uj } K] 7k

(12)
4. STABILITY ANALYSIS

This section is the stability analysis of the HRI case with
uncertainties and an actuator to guarantee the robot’s
desired torque, for instance, with SEAs. In (13) and (14),
the human and robot are considered in a complementary
model, where matrices F; ; and B; include nominal pa-
rameters both human and robot. The bounded uncertain
parameters are defined by 0F;; and 6B; ;. Besides, the
model assumes an integral action to correct the torque
error, and that one of the system states is the actuator
torque, as follow:

Tpr1 = (Fy g+ 0F; 1)k + (Big + 0By g )ug + By 7, (13)

zr = Coxy, + Douy, (14)

where, velocity and trajectory of system are defined by
a linear array of equations with zp = [wx ¢,x]7 , and
up = K; pxg. According to the equations (1), (11) and
(13) then,

Tpt1 = [Fi g + Bi oK 1] zp+

BTk [Bv(wzdk - wzk) + Kv(¢1dk: - ¢Lk§) + Kvg(bldk] ) (15)

notice that, z;, = [C2+ D2K;i]xy, thus, after some
algebraic manipulations the following closed-loop equation
for impedance control is obtained :

d
Tr+1 = [Aliyk + Aziyk] Tk + BT‘k [BU (1 + E)KU] |:wfik:| )

ok
(16)
with its auxiliary matrices defined by,
Ak =[Fir + BirKi i, (17)
Azi,k =B, [—BU — Kv] [CQ + DQKfL"k] . (18)
Thus, the Mean Square Stability (MSS) is given by,
To(Ayin +A) <1, (19)

where, r5(A,;r + A,; ) is the spectral radius (for more
details see Costa et al. (2005)).

5. PROOF OF CONCEPT

This section is elaborate a proof of concept to shows the
uncertainties effect over markovian interaction system. It
is considered the System Robotic Platform for Ankle Re-
habilitation (SRPAR) in interaction with a user (Jutinico
et al., 2017). This robot count with a SEA. Therefore
an explicit force control is necessary. The force/torque
control considered is Markovian since this platform deals
with varying and uncertain human nature. The proof of
concept consists of validating the Mean Square Stability
with the impedance control and an LQR-DMJLS or an
RR-DMJLS force controller. Following is introduced the
robot, the force control topology, and design parameters
for the Markovian controls.

5.1 The robot

The SRPAR aims to perform controlled movements of
the ankle for therapeutic purposes. Fig. 2 shows the
overall configuration of the interaction control. The plant
is the complementary system of human parameters and
the SRPAR. Notice that the robot use inners loops of
current and velocity. This picture also is shown the force
and impedance control when the robot is coupled with the
human.

The dynamical model of the SRPAR has been studied in
(Jutinico et al., 2017, 2018; Escalante et al., 2021) and is
shows in (20) and (21). The state vector z, includes the
angular position of the load ¢;, the spring force Fs, and
its first derivate respect to time F. The angular velocity
of the motor w,, is the control input of the system. The
human torque 7, and the angular position of the motor
¢ are input disturbances.

The output load consists of a 4-link mechanism coupled to
the foot. The angular movement is mapped to linear dis-
placement by the Jacobian constant J. We used a second-
order model (stiffness, damping, and inertia) to represent
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Fig. 2. Overall configuration of the interaction control.
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ankle dynamics. The output mechanical impedance de-
scribing the interaction between the ankle and platform
is characterized by the equivalent inertia J; = Jpiar + Jh,

damping C; = Cpiqt+Ch, and stiffness K}, with subscripts
plat for platform and 5, for human.
. K.J K;(t)K,
=0l A
E(1) 1 m) + | PRI 6,0+
ou(t) 0 0
dq(t) v N
“ G (6r) G (0k)
Ci(t -K, K@)+ K,J? .
G0 (K BOLKTY o] 1
Jl (t) Mmeq Jl (t) F (t)
1 0 0 (;(t)
—(K.J)7! 0 o L1
$a(t)
F2(0k)
K, <Cl(t) B Bmeq> n pNpKC,
+ pPNp Ji(t) Mnowq Mieq Wi (),
(PNPJ)
B3 (6x)

(20)

——
=(t) . Co (21)
N T
{(P p67) ]wm(t),
—_——
D»
The mechanical impedance of the motor-transmission sys-
tem has a cartesian inertia M, = pQ(Jp + Nng),

and damping Bpe, = p*(Cp + N3Cp); J and C are
the torsional inertia and damping with subscripts m for
motor and p for the pulley. N, is the pulley ratio and
p is a rotational-to-linear factor of ball screw lead. The
parameters of the SRPAR are presented in (Jutinico et al.,
2017, Table I).

The model consider two operation modes: the active mode,
0, = 1, when the platform torque is opposite to foot torque
and the passive mode, 8, = 2, when the platform carries
the user’s foot. The parameters used for each Markovian

. ; _SEA_
— o] Wi T, o
[- g e I 2
: )_F; . Wd . Human
43— orce o) |- + i sprlng
Control [ SRPAR *I
1 Wm i
Plant I

- |‘) Th
S
SRPAR

operation mode ( See Table 1) are based on Lee et al.
(2016).

Table 1. Nominal human Parameters

Parameter

|| 0x=1 1 6, =2
Jn (kg -m?)

0. 08 O 02
200

Cp (N -m-s/rad)
Kp (N -m/rad)

5.2 Control topology for robust tracking

Control strategy uses an augmented model with integral
action and is discretized with a sample time of T's = 2 ms,
as follows,

LTagyq Fal 0 Tay, Ba,i 0
)= ] [ ] e (2]
—_——  ~—\— ——
Thit Fik Ty Bk Bri K
(22)
where ry, = F} is a force reference signal and C, = [0—1 0].

5.8 Force control design parameters

Table 2 shows the design parameters of LQR-DMJLS force
control, and Table 3 shows the control gains for the two
Markovian modes.

Table 2. Design Parameters of LQR-DMJLS

1 0 O 0
02500 O 0.6 0.4
Q=19 0 1 o [|B=kisl= [0_4 0.6]’
0 0 010-10°
R;p =05, Py(N)=14-10',

Table 3. Control gains for LQR-DMJLS

Control  Ki Ko K3 Kint
0=1 -0.07 -5.60 -0.33 239.8
6=2 -0.04 -2.78 0.18 147.0

The RR-DMJLS uses the same weighting matrices and
probability matrix for state transitions that the nominal
case. Additionally, the uncertain parameters are shown
in Table 4. Table 5 shows the control gains for the two
Markovian modes.
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Table 4. Design Parameters of RR-DMJLS

Ep, , =[-0.6 —496 129 4804], Ep, , = —59.3,
Ep,, =[-4 —477 1824 6673], Ep,, = —142,
H; . =[-0.0594 —0.0005 5 0.0005]7,

Afp =110, pe =3.99-10'.

Table 5. Control gains for RR-DMJLS

Control K1 Ko K3 Kint
0=1 -0.01 -8.36 2.18 80.98
0=2 -0.03 -3.35 12.81 46.86

6. RESULTS

We generated a set of perturbed markovian plants with
one thousand random parameters for each operation mode
and calculated the closed-loop system’s spectral radius
by (19). This random parameters are given by random
normally distributed functions, 6.J, ~ N(js, 0,07, 4);

0Cy, ~ N(,uch,g,a%h’e) and 0Kj ~ N(F‘KhﬂvU%{h,e)v with
the following means and variances,

w0 = Jno, U?]h,e = (0.08 x p,.0)%

HCr.,6 = Ch,ea J%h,e = (02 X Mch79)27 (23)

ti,.0 = Knpo, U?(h,e = (0.2 X pr,.0)%
where the nominal parameters Jj g, Ch 9, and Kj ¢ were
defined in Table 1.

Figure 3 shows the spectral radius calculate when the force
control uses the LQR-DMJLS. Notice that spectral radius
is less than one for the whole set of plants in the minimal
impedance case (K, =0, B, = 0), it is to say, the system
is mean square stable, as shown in Fig. 3 (a) allowing
the system transparency. However, when the impedance is
variable the stability is achieved for just 49.16% of tests as
shown in Fig. 3 (b). In this case proof rank is K,, = [0, 100],
B, = [0,20] and £=0.03. We highlight that instability
occurs for big values of virtual damping B,. Figure 4 shows
the spectral radius calculate when the force control uses
the RR-DMJLS. For this control strategy, mean square
stability (MSS) is achieved for the 100% of the tests, both
minimal impedance and variable impedance cases. Since
the spectral radius is less than one for the whole uncertain
set, we affirm that it accomplished robust stability.

6.1 Active and Passive system interaction

To complement the analysis made in this paper, we per-
form a simulation to show the robot’s performance when
interacting with the user in both active and passive mode.
The test considers the RR-DMJLS and the impedance
control with K, = 50 and B, = 1. Fig. 5 shows in the top
the platform torque, in the middle top the load angular
position, in the middle bottom the load angular velocity,
and the bottom the Markov chain. References signals are
depicted in red color and control variables in blue color.
Notice that in active mode, the user governs the behavior
of the system. Therefore, there are some deviations in ¢;
and wy; in contrast, the platform carries the user’s foot in
passive mode.

The performance of this system is calculating from the
impedance transmissibility from the platform to the user.
In this sense, the torque control goal is to track the

Fig. 3. Spectral Radius for IC with LQR-DMJILS. (a)
Minimal impedance case. (b) Variable impedance

case; K, units are (2-7), and B, units are (22%)
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Spectral Radius
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w
i

Spectral Radius
il

14

torque reference signal despite human uncertain param-
eters. From Fig. 5 see that this goal is accomplished with
precision. We calculate the root mean square (RMS) value
of the actual stiffness K. and damping B,., using angular
velocity and position errors, according to:

N
1
RMS{-} = | = > {12 (24)
Nk:l
RMS RMS
_RMS[n) o RMS() o
RMS{es} RMS{e,}
where 7,, = Tpt — Bye,, is the torque generated by
the desired stiffness, Ty, = Tplat — Kyey is the torque

generated by the desired damping, and e4 = (bfl — P+ ed;
and e, = wf — w; are the angular position and velocity
errors, respectively. Obtained results are K, = 49.47 and
Br = 2.97, which shows the high performance given by
the impedance control with RR-DMJLS both for active
and passive interaction.

7. CONCLUSIONS

In this paper, we show the stability analysis for Markovian
interaction systems that use SEA. For this purpose, we
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Fig. 4. Spectral Radius IC with RR-DMJLS. (a) Minimal
impedance case. (b) Variable impedance case; K,

units are (222) and B, units are (£27%2)

1

" g

=l .,

2

©

m . .

T 0.99995 1

2 X

(0]

joR

®

0.9999 -

0 200 400 600 800 1000

Experiment Number

- \\\\

o
[<e]
<

o
©
o2}

Spectral Radius

<
©
a

0.94

0.93

50 10
100 0

(b)

Kv Bv

made a proof of concept which compares the stability of
the SRPAR using an impedance control operating with
LQR-DMJLS or RR-DMJLS torque controllers. The for-
mer has coupled stability for the nominal case and achieves
stability for 49.16% of the tests. The robust approach
has complementary stability since it is stable for 100%
of the tests. This approach allows designing robots based
on SEA considering human parameters, boundary uncer-
tainties, and active and passive user behaviors. Finally,
a performance simulation test shows the high impedance
transmissibility from the platform to the user, given by
the robust control.
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