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ABSTRACT

Climate change, driven by greenhouse gas (GHG) emissions, causes extreme weather events, impacting ecosystems, biodiversity, population
health, and the economy. Predicting GHG emissions is crucial for mitigating these impacts and planning sustainable policies. This research
proposes a novel machine learning model for GHG emissions forecasting. Our model, Meta-Learning Applied to Multivariate Single-Step
Fusion Model, utilizes historical GHG emissions from Brazil over the past 60 years to predict CO, and CH, emissions. Additionally, the
model employs a unique combination of two techniques in time series forecasting: (i) in the Fusion Model, each substance is individually
extracted and trained based on a specific decision task, then integrated into the same feature space; (ii) Meta-Learning allows the model
to learn from past prediction tasks, leading to better generalization. Our model was compared with state-of-the-art time series models
using the same dataset. The results show that our approach reduces the mean absolute percentage error by 49.06% with 95% confidence
compared to the Transformer-based TST model, demonstrating its superior performance and low estimated CO, emissions of 0.01 kg CO»eq.
Furthermore, the model’s flexibility allows it to be adapted for various environmental studies and general time series forecasting.
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HIGHLIGHTS

® Multivariate fusion model and meta-learning for GHG emissions forecasting.
® BiLSTM for data extraction and Reptile for model optimization.

® Analyses Brazil's CO, and CH, emissions over the last 60 years.

® Summarizes the main Brazilian legislation for climate change.

® Simple model architecture adaptable for other substances.

This is an Open Access article distributed under the terms of the Creative Commons Attribution Licence (CC BY 4.0), which permits copying, adaptation and
redistribution, provided the original work is properly cited (http://creativecommons.org/licenses/by/4.0/).
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1. INTRODUCTION

Globalization promotes local economic growth and investment in emerging countries to reduce poverty and hunger, stimulate
education, scientific research, economy, and improve public health. Likewise, the growth of anthropogenic activities in one
country contributes to increased greenhouse gas (GHG) emissions that can affect the climate in other regions or continents.

The effects of global warming are responsible for extreme heatwaves, floods, droughts, hurricanes, and biodiversity loss in
several countries (Rolnick et al. 2022). However, the emergent countries in the southern hemisphere, including Brazil, are the
most affected by climate change (Zhang et al. 2023) due to the lack of sanitation infrastructure, urban plans, natural disaster
mitigation measures, and lack of investment in sustainable development.

A historical flash flood occurred in the southern region of Brazil in 2008 affected the most vulnerable population in the
rural area (Wink Junior et al. 2023). The extreme precipitation in the mountain region of Rio de Janeiro in 2011 caused land-
slides resulting in irreparable losses for the most vulnerable population (Lopez et al. 2023).

Despite the economic difficulties and the climate impacts suffered in the last years, Brazil is committed to contributing to
the low-carbon emission agenda with the following goals: (i) to achieve 45% of overall renewable sources in the energy mix by
2030 (Werner & Lazaro 2023) and (ii) to achieve neutral net emission by 2050 (UNFCCC 2023). According to the EDGAR -
Emissions Database for Global Atmospheric Research data provided by the European Commission, the 2022 GHG emission
in Brazil was 91.64% lower than China, 78.22% lower than the United States, and 66.77% lower than India, which are
countries that most contribute to the GHG emissions (Crippa ef al. 2021).

Moreover, the geographic, climatic and natural resource diversity allows Brazil to have the electricity energy matrix with
83% renewable in 2020, in which hydropower energy accounted for 60.7% (De Toledo et al. 2023). However, due to climate
variability such as low precipitation levels and droughts, the percentage of hydropower energy decreased to 53.4% in 2021
(Werner & Lazaro 2023).

Efforts to address climate change from a legal perspective are taking place in Brazil. Law 12187 (BRAZIL 2009b) estab-
lishes the National Policy on Climate Change (PNMC) providing guidelines to mitigate the global warming impacts,
preserve ecosystems, and promote sustainable development. The Brazilian Congress is analyzing the bill PL 412/2022
(BRAZIL 2022c), which regulates the trade of carbon credits in Brazil. The approval of this bill could create legal instruments
to encourage transactions with carbon assets, contributing to the country’s sustainable development.

In addition to creating the National Policy on Climate Change and regulating the carbon credit trade, it is essential to moni-
tor GHG emissions. Joint monitoring and regulation action can allow Brazil to achieve the target of 45% overall renewable
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energy mix by 2030 and keep contributing to the low-carbon agenda. GHG forecasting can help analyze, plan, and adopt a
sustainable agenda to promote development, encourage carbon credit policy, and mitigate the impacts of climate change.

The problem of forecasting GHG emissions can be addressed through time series modeling, which has been applied in var-
ious fields. Lv et al. (2024) proposed a multi-temporal correlation feature fusion network for machinery fault diagnosis in the
manufacturing sector. In the same year, Wang et al. (2024) presented a deep learning framework for acoustic modulation for
autonomous underwater vehicles. Turning to food science, Natsume & Okamoto (2024) used the Echo State Network (ESN)
to predict changes in food preferences. In the field of climate change, Misra et al. (2024) used a Convolutional Short-Term
Memory Network for rainfall prediction.

In this research, we devised the Meta-Learning Applied to a Multivariate Single-Step Fusion Model for GreenHouse Gas
Emission (ML4GHG) Forecasting. The model analyses Brazil’'s CO, and CH, emissions over the past 60 years. The model
uses multivariate GHG emission data from Brazil to learn the time series forecasting. In the training process, the Fusion
Model learns the multivariate series, and the Meta-Learning algorithm helps ML4GHG in the generalization process, outper-
forming the baseline models.

The contributions of this work are:

* Develop and evaluate a novel model based on a multivariate single-step approach leveraging the combination of the Fusion
Model for data alignment and optimization-based Meta-Learning tailored for time series;

* Adapt the Reptile Meta-Learning algorithm to improve the model generalization;

* Develop a model that can be easily adapted to other substances;

* Evaluate the proposed models with other models from the literature.

The remainder of this work is organized as follows. Section 2 describes the main Brazilian legislation related to GHG emis-
sions; Section 3 describes recent machine learning models applied to climate change. Section 4 presents the methodology
used in ML4GHG Forecasting. Section 5 details the experiment results, and Section 6 details the evaluation analysis. Finally,
Section 7 presents the conclusion and indicates future works.

2. BRAZILIAN LEGISLATION

This section summarizes the main Brazilian legislation related to climate change to create incentives for renewable energy,
preserve ecosystems, and guide Brazil toward zero emissions by 2050. The main federal and state laws enacted in the recent
years are:

* Law 12114 of December 9, 2009 (BRAZIL 2009a) establishes the National Fund on Climate Change (FNMC) to finance
studies and measures to reduce and repair the effects of climate change;

* Law 12187 of December 29, 2009 (BRAZIL 2009b) establishes the National Policy on Climate Change (PNMC), providing
the institutional framework and outlines to mitigate the global warming impacts, preserve and restore ecosystems, and pro-
mote sustainable development;

* Law 12305 of August 2, 2010 (BRAZIL 2010) establishes the National Policy on Disposal of Solid Waste, which is essential

for the reduction of CH, emitted in the final disposal of organic waste;

Law 14300 of January 6, 2022 (BRASIL 2022a) establishes tariff benefits for distributed small-scale renewable electricity

production;

* Brazil’s Constitution was amended to mandate that bio-fuels (BRAZIL 2022b) and low-carbon hydrogen (BRAZIL 2023) be

taxed less than fossil fuels;

Several state laws including (RJ 2015), provide tax reductions or exemptions for electric, hybrid or natural gas-powered

vehicles; and

The legislation regarding the limit of pollutant emissions by motor vehicles is increasingly strict (CNMA 2018).

The Brazilian Congress is analyzing the bill PL 412/2022 (BRAZIL 2022c), which regulates the trade of carbon credits in
Brazil. The approval of this bill could create legal instruments to encourage transactions with carbon assets, contributing to
the country’s sustainable development. Other bills that provide relevant changes are PL 639/2015 (BRAZIL 2015) and PLS
302/18 (BRAZIL 2018), which create incentives for the generation of energy in landfills resulting in large capture and util-
ization of CH, for electricity generation.
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3. RELATED WORKS

This section describes traditional methodologies and state-of-the-art recent machine learning models for time series forecast-
ing applied to climate change and GHG emissions.

We can find several approaches in the literature for time series forecasting using statistical methods. In the last decade,
deep learning models have gained attention in Natural Language Processing, computer vision, and sequential signal proces-
sing and have successfully been applied to time series forecasting. More recently, transformer-based methods have presented
as a promising option when the computational resource and financial cost are flexible. Alternatively, a meta-learning-based
model has been used to help time series model generalization with simple architecture and low computational resource
consumption.

Statistical methods designed for time series, such as Auto-Regressive models (AR) and their extensions Auto-Regressive
Moving Average (ARMA) and Auto-Regressive Integrated Moving Average (ARIMA) (Hillmer & Tiao 1982) have been suc-
cessfully used. Time series forecasting relies on stationary data to efficiently predict the future behavior of a certain feature.
However, real-world data may have trends or seasonality, which needs to be prepossessed and transformed into stationary
data. The prepossessing becomes very challenging in case of disruption of a trend or seasonality in the data, such as an unpre-
cedented global threat: COVID-19. The CO, emissions in 2020 were at their lowest level (Meng & Noman 2022) compared to
prior decades, causing a never seen disruption in the data trend. Meng & Noman (2022) used a statistical approach with Sea-
sonal Auto-regressive Integrated Moving Average (SARIMA) to forecast the global CO, emission in China for the post-
COVID-19 period. COVID-19 had a strong impact on the air quality around the world. Gupta et al. (2023) used SARIMAX
(SARIMA modeling with exogenous factor) to predict air quality improvement in India during the nationwide lockdown
imposed by the COVID-19 pandemic. Teggi et al. (2020) proposed InNFORM to forecast the daily weather (temperature,
humidity, and visibility) in Bangalore (India) using the ARIMA statistical method.

In recent years, deep learning models, such as Long Short-Term Memory (LSTM) (Hochreiter & Schmidhuber 1997),
Recurrent Neural Networks (RNN), and Convolutional Neural Networks (CNN) have been used for time series forecasting
in the climate change domain. Kumari & Singh (2023) compared LSTM with statistical models (ARIMA and SARIMAX),
classical machine learning models (Linear Regression and Random Forest) for CO, forecasting in India. LSTM model out-
performed statistical models in CO, forecasting (Kumari & Singh 2023) and outperformed Prophet - an additive
regression model - in air temperature forecasting in Indonesia (Haris ef al. 2022).

Climate change has caused an impact on the agricultural sector, which is very sensitive to the weather and temperature
oscillation. Alex & Sobin (2021) applied LSTM and ARIMA for temperature forecasts to help harvest planning and
reduce losses in the agricultural sector. In response to global warming, efforts to convert the energy matrix to renewable
energy, including wind and solar are growing. Almalaq et al. (2021) used RNN, LSTM, and GRU (Cho et al. 2014) for
solar and wind energy forecasts, helping supply-demand energy planning in Saudi Arabia.

Deep learning-based models often need a large amount of training data to learn the complex relationship between past and
future time series data. To address this problem, we can apply meta-learning. Mo et al. (2023) used Model-Agnostic Meta-
Learning (MAML) (Finn et al. 2017) with parameter initialization and Euclidean distance for similarity matching to forecast
the remaining useful life of mechanical equipment. Thi Kieu Tran et al. (2020) used a meta-learning-based genetic algorithm
for hyperparameter optimization of deep learning models to perform temperature forecasting. Reptile (Nichol et al. 2018), the
first-order meta-learning algorithm, can be used to improve time series forecasting. Tian ef al. (2021) leverage Reptile with
transfer learning, Leelakittisin & Sun (2021) and Gupta & Raghav (2020) applied Reptile to a CNN-based model.

Driven by the country’s low-carbon agenda, we also found several works using machine learning models in the context of
climate change in Brazil. Hydroelectricity represents around 60% of the electricity generated in Brazil, and extreme weather
events impact the country’s main source of electrical energy. De Toledo et al. (2023) applied a classical machine learning
model (Random Forest, Support Vector Regression, Kernel Ridge Regression) and statistical model (SARIMAX) for
stream-flow prediction based on climate indices. Galvdo Filho et al. (2020) proposed an LSTM-based model for water
flow forecasting used in a hydroelectric power plant in Rondonia state of Brazil.

The difference between our model and the aforementioned works are: (i) Meng & Noman (2022), Gupta ef al. (2023), Teggi
et al. (2020), and De Toledo et al. (2023) used statistical methods while our model uses meta-learning approach; (ii) Kumari &
Singh (2023), Alex & Sobin (2021), Haris ef al. (2022), Galvao Filho et al. (2020), Almalaq et al. (2021) proposed deep learn-
ing-based models while we used deep learning model combined with meta-learning; (iii) Mo et al. (2023) used MAML, Thi
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Kieu Tran et al. (2020) used genetic algorithm while we used Reptile for meta-learning-based model optimization; Tian et al.
(2021) leverage Reptile with transfer learning whereas we trained the model from scratch; Leelakittisin & Sun (2021) and
Gupta & Raghav (2020) applied Reptile to a CNN-based model while we used a Bidirectional Long Short-Term Memory
(BiLSTM)-based model and Fusion Model for multivariate data processing.

4. METHODOLOGY

This section presents the methodology used for GHG emission forecasting in Brazil, called ML4AGHG - Meta-Learning
Applied to a Multivariate Single-Step Fusion Model for Greenhouse Gas Emission Forecasting. ML4GHG aims to analyze
Brazil’s CO, and CH, emissions over the past 60 years. Therefore, ML4GHG is based on a multivariate single-step approach
leveraging the combination of the Fusion Model for data alignment and optimization-based Meta-Learning tailored for time
series. Moreover, ML4GHG adapted the Reptile Meta-Learning algorithm to improve the model. In the next sections, we will
describe ML4GHG in more depth.

4.1. MLAGHG overview

The overview of ML4AGHG architecture is illustrated in Figure 1. ML4GHG is a multivariate single-step parallel time series
forecasting model in which two variables are observed at each time step. Concretely, the model takes two features (CO, and
CH,) as input data and predicts two features (CO, and CHy) in parallel as output data. As a single-step model, it forecasts the
next time step based on previous values.

First, we used EDGARv8.0 as a multivariate time series input data for GHG emission prediction. Next, we performed three
tasks in the data pre-processing: (i) data analysis to understand the trend and seasonality; (ii) future scaling for data normal-
ization; and (iii) time frame splitting.

Multivariate
time series
input data

| Data analysis |
- Data pre-
I Feature scaling | proce:sing

| Time frame splitting |

Feature extraction

Meta-Learning Algorithm

[Tescra i Multivariate Fusion
¢ p] i Model and
| TeskT2 .
= & Meta-Learning
b p—
s [ TaskTs

i Multivariate parallel
time series

PP —— forecasting

Figure 1 | Meta-learning applied to multivariate single-step fusion model for greenhouse gas emission forecasting.
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After the data preprocessing, the BiILSTM1 model performs the univariate feature extraction for CO, and BiLSTM2 for
CHy,4. Once the input features are extracted separately, the multivariate Fusion Model performs the CO, and CH, data align-
ment, and the meta-learning algorithm helps in the model generalization. Finally, the multivariate parallel time series
forecasting is performed by the Fusion Model’s classifier, which predicts the next time step values for CO, and CH,.

To facilitate the understanding, Table 1 summarizes the notations used in MLAGHG.

4.2. Multivariate dataset

The multivariate time series data can be represented as T = {t1,...,t;}, in which # is the number of elements in the time series
and ¢; are the values measured at time step i. Each #; contains the tuple {(x1;, x2;, .., x ii)};'n:1 where x1; represents the value of
the first feature at time step i, and m is the number of features.

The dataset used in our work is EDGARv8.0. It is a publicly available GHG (CO,, CHy4, N0, and F-gases) emissions data-
base for global atmospheric research reported by the European Member States and by Parties under the United Nations
Framework Convention on Climate Change (UNFCCC). The dataset provides annual and monthly GHG emissions data
for the time span of 1970-2022 by country (Crippa ef al. 2021). We used the monthly data from Brazil, which contains
CO, and CH,4 emissions for 636 consecutive months from 1970 to 2022.

4.3. Data preprocessing

Data preprocessing plays an important role in time series forecasting to help the model capture the trend and seasonality of
data, avoid gradient spikes, and handle missing data. The data preprocessing comprises the following steps: data analysis,
feature scaling, and time frame splitting.

We used three graphs for data analysis: auto-correlation, seasonal decomposition, and residual graphs (Kumari & Singh
2023). Figure 2 illustrates the auto-correlation graph for CO, and CH,4 considering the past 50 steps or months, i.e., lag=
50. In the CO, graph, the blue region represents values that have no significant correlation with the most recent value of
CO.. The vertical lines in the y-axis represent the correlation of CO, with the previous values, in which values near 1

Table 1 | Summary of notations

Notations Description

T Multivariate time series data

n Number of elements in T

t; Values measured at time step i

Xji Value of the jth feature at time step i
m Number of features

Fusion model

Z Concatenation operation

x1i Represents CO,

x2i Represents CH,4

fo Function that returns CO, embedding vector
fo Function that returns CH4 embedding vector

Meta-learning

1) Fusion model weights

£ Step-size of meta-learning

Si Multivariate fusion training set
Sis Multivariate fusion test set

& Fusion model new weights

l Fusion model loss

t Loss threshold
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Figure 2 | Auto-correlation of CO, and CH,.

represent a high correlation. The x-axis represents the time step in months. The graph shows that previous values of CO, have
a high influence on the current value, but the significance of that influence decreases steadily with time.

The auto-correlation graph of CH,4 can be visualized in the second graph of Figure 2. Similarly, to the CO,, the graph shows
that only the previous few time steps values of CH,4 have a high influence on the current value.

Figure 3 illustrates the seasonal decomposition and the residual for CO, and CH, considering the entire series, i.e., 636
months. Seasonal decomposition captures the repetitive patterns and cycles within the time series. The y-axis represents
the normalized CO, and CH,4 values, and the x-axis represents the 636 consecutive months. We can observe that both
CO, and CH,4 have irregular cycles in the seasonal decomposition. The residual graph represents unexpected variation
that does not follow a trend or seasonality. The y-axis represents the residual error, which ideally should be around zero.
The residual graph of CO, and CH,4 shows periods of unexpected variation represented by the points in the y-axis different
from zero. CO, and CHy, are expressed in Kton substance/month unit with a high range of variation. We used standard nor-
malization to minimize the effects of this variation in the neural network’s gradient. In order to avoid data leaks, first the
dataset was divided into training and test sets. Then we applied standard normalization to the training set, and was scaled
on the test set. The EDGARVS8.0 dataset does not have missing values, and no data interpolation was needed.

The last step in our multivariate single-step parallel time series forecasting data pre-processing is the time frame splitting.
We used the sliding window considering the prior three time steps (lag = 3) to predict the next time step (single-step). We
considered lag = 3 because the auto-correlation graph of both substances demonstrated that the current value is highly cor-
related only with the previous few time steps.

4.4. Feature extraction

After the data pre-processing, the CO, and CH4 normalized data are extracted to produce the corresponding embedding
vector. Each extractor model is an independent BiLSTM network with its own classifiers and trained as univariate time
series data, as illustrated in Figure 1. BILSTM is effective in many application areas, such as Natural Language Processing
(Enamoto et al. 2022; Costa et al. 2023; Gou & Li 2023) and time series forecasting. BILSTM comprises forward and back-
ward LSTM (Hochreiter & Schmidhuber 1997). LSTM in turn detects an important feature from the input sequence in the
early stage and transmits the information over a long distance, thus capturing potential long-term dependencies (Zrira et al.
2024). In time series forecasting, BILSTM helps to capture the context of past and future time steps (Schuster & Paliwal
1997). In our model, the BiLSTM layer is followed by a Time-Distributed Layer and three Dense layers, which one is a cus-
tomized Dense layer that produces the embedding of the univariate time series to be used in the Fusion Model.

coz CH4
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Figure 3 | Seasonal decomposition and residual plot of CO, and CH,.
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Both BiLSTM extractors have the same architecture composed of the following layers, as illustrated in Figure 4: (i) BILSTM
layer activated by RELU function; (ii) Time-Distributed layer that applies the same weights to the output of the previous layer
for one time step at a time; (iii) Flatten layer; (iii) Dense layer activated by Relu function; (iv) Customized Dense layer that
extracts the univariate embedding; (v) Dropout layer to avoid overfitting; and (vi) the last Dense layer that learns the
regression classifier. The Adam optimizer was responsible for minimizing the mean squared error (MSE) loss between the
true value and the predicted value.

4.5. Fusion Model

The Fusion Model performs the alignment or fusion of the heterogeneous CO, and CH, data. The goal of the Fusion Model is
to create an abstraction of the unified representation of different features for each tuple ¢; in T = {t1,...t,;} and perform one or
more tasks efficiently. In this process, the heterogeneous data need to be integrated to find the relationship between them,
known as data fusion (Baltru$aitis ef al. 2018).

In the literature (Baltrusaitis ef al. 2018), we can find three types of data fusion methods: (i) late fusion or decision-level
fusion in which each feature is individually extracted and trained based on a specific decision task and then integrated
into the same feature space; (ii) early fusion or feature-level fusion which exploits the low-level features just after the extrac-
tion, creating a strong interaction between modalities (Wang et al. 2024); and (iii) hybrid fusion or intermediate-level fusion
which learns a joint representation of different features by combining the decision-level and feature-level fusion.

We applied the decision-level fusion in our model. As illustrated in Figure 1, each BiLSTM extractor and the Fusion Model
have its own classifier (Baltrusaitis ef al. 2018). The advantage of this fusion type is that it enables separate calibration accord-
ing to the data quality.

The Fusion Model is illustrated in Figure 5 comprising the following layers: (i) input layer that concatenates the embedding
features extracted by BiLSTM1 and BiLSTM2 models; (ii) batch normalization layer responsible for normalizing the input of
each layer for every mini-batch; (iii) followed by two Dense layers activated by Relu function; (iv) Customized Dense layer
that extracts the multivariate embedding; (v) and the last Dense layer activated by Swish function to learn a third regression
classifier.

Equation (1) details the concatenation operation, in which i is the iy, element of the dataset, x;; represents the CO, and x,;
is the CH,4. The function f, returns the features learned by the BILSTM1 model representing the CO, embedding, and the

BiLSTM Model
BiLSTM

v

Time Distributed

v

Flatten Layer

v

Dense Layer

v

Customized Dense Layer

v

Dropout Layer

v

Dense Layer

Figure 4 | BiLSTM model for time series data extraction.
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Figure 5 | Fusion Model.

function fy returns the features learned by BiLSTM2 representing the CH4 embedding.

Z = concat(f,(x1:), fo(x2i)) (1)

4.6. Multivariate Meta-Learning

Time series forecasting can be challenging in case of disruption of a trend or seasonality in the data. One possible option to
address this issue is to use Meta-Learning to optimize the model’s learning capabilities (Enamoto ef al. 2023).

In our work, we adopted the flexibility of Reptile (Nichol ef al. 2018): a gradient-based Meta-Learning approach. Meta-
Learning helps the underlying model learn from past experience, adapt, and generalize according to the new task (Enamoto
et al. 2023). The details of the Reptile are described in Algorithm 1.

Algorithm 1 Reptile-based multivariate time series Meta-Learning

Initialize Fusion Model’s weights ¢
Initialize meta step-size ¢
Construct multivariate fusion training set Sy,
Construct multivariate fusion test set Sy
for each meta-iteration do

Calculate ¢ by SGD to ¢ on S,

Predict the next time step with S

if loss [ < threshold ¢ then

exit for

© ® 3Nk ad

—_
(=)

else
Update ¢ < ¢+ £(¢ — 9)
Adjust £

end if

end for

e e
A QX N =

First, the weights ¢ of the Fusion Model are randomly initialized, and the meta step-size ¢ is initialized with a fixed value
(lines 1 and 2). The multivariate fusion training set S; and the test set S;; are generated (lines 3 and 4). In the meta-iteration
loop, the new weights ¢ are computed by Stochastic Gradient Descent (SGD) using the training set Sy, (line 6). The test set Sy
is used for prediction (line 7) and if the loss 1 is greater than the threshold t, the weights ¢ are updated moving ¢ closer to the

Downloaded from http://iwaponline.com/jwcc/article-pdf/15/8/4016/1473700/jwc2024252.pdf
bv LINIVERSIDADE DE SAO PALI O user



Journal of Water and Climate Change Vol 15 No 8, 4025

optimal value (lines 11 and 12). In practice, we add a little perturbation in the weights ¢, and after a few meta-iterations, the
weight update helps in the model generalization.

4.7. Model training

Applying the Reptile algorithm, the Fusion Model keeps its knowledge by updating the weight ¢ under the guidance of ¢ and
acquires new knowledge in turn. This mechanism helps the Fusion Model adapt for a time series forecasting where an unex-
pected disruption in the data trend or seasonality may lead to an undesired outcome.

Before training the model, we used grid search to obtain the best hyperparameter combination, as detailed in Table 2. The
first column represents the hyperparameters and the second column the corresponding values used in the grid search. In the
pre-processing phase, the best results were obtained with standard scaling, which was done separately, first on the training set
and then scaled on the test set to avoid data leakage. We compared LSTM and BiLSTM for univariate data extractor and
BiLSTM resulted in the best performance. After the univariate feature extraction, two data alignments were tested and con-
catenation was the method that best preserved the univariate sequence values.

After obtaining the best values for the hyperparameter, we trained the model using the configuration detailed in Table 3.
The first column represents the model, ‘Loss’ represents the objective function and ‘Learn. Rate’ represents the learning rate of
each model. ‘Parameters’ is the number of trainable parameters, ‘Batch Size’ is the number of batches used for training, and
‘Meta-Iteration’ is the number of meta-learning repetitions using the same training/test data split. ‘Loss Thres.’ is the loss value
used as the threshold before stopping the iteration, and ‘Meta Step-size’ is the initial value of epsilon used to update the Fusion
Model’s weights for better convergence.

5. MODEL EVALUATION
This section describes the evaluation results of ML4AGHG using the EDGARv8.0 dataset. The cross- validation strategy is

described in Subsection 5.1, and the results of Meta-Learning Applied to Multivariate Single-Step Fusion Model for GHG
emissions forecasting are described in Subsection 5.2.

Table 2 | Hyperparameters values used in the grid search

Parameter Values

Data normalization {Standard, MinMax}

Feature extraction

Model {BiLSTM, LSTM}

Batch size {32, 64, 128}

Epoch {100, 200, 300, 400, 500}
Learning rate {0.0001, 0.0005, 0.001, 0.003}
Dropout {0.3, 0.5, 0.7}

Optimizer {Adam, RMSprop}

Fusion Model
Data alignment
Batch size
Epoch
Learning rate
Dropout
Optimizer
Meta-Learning
Meta step-size
Meta-iteration
Loss threshold

{concatenation, average}

{32, 64, 128}

{100, 200, 300}

{0.0001, 0.0005, 0.001, 0.003}
{none, 0.3, 0.5, 0.7

{adam, rmsprop, swish}

{0.15, 0.25, 0.35, 0.45}
{5, 10}
{0.02, 0.03, 0.03, 0.04}
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Table 3 | Main hyperparameters settings of MLAGHG. MSE (Mean Square Error), K (thousand)

Model Loss optimizer Learn. rate Drop out Parameters Batch size Meta-iteration Loss thres. Meta step-size
BiLSTM1 MSE Adam 0.0001 0.3 138 K 32 - - -

BiLSTM2 MSE Adam 0.0001 138K 32 - - -

Fusion model MSE Swish 0.0005 37K 32 - - -
Meta-Learning - - - 10 0.36 0.45

5.1. Cross-validation strategy

In time series forecasting, the temporal sequence of data needs to be preserved so the model learns the relationship between
data from the current and previous time steps. We use the time series splitting method for the cross-validation strategy, in
which we use continuous time blocks of different durations for training. We divided the EDGARv8.0 dataset into ten
blocks of different time steps to make up the training set and a fixed length of 24 time steps (months) for the test set.

The data split of CH,4 can be visualized in Figure 6, which shows the entire monthly data of CH, emissions in Brazil. The
y-axis represents CH,4 emissions expressed in Kton substance and the x-axis represents the monthly time span from January
1970 to December 2022. In this first split for model evaluation, training data goes from January 1970 to December 2002, and
values from January 2003 to December 2004 are used for test data. Figure 7 illustrates the data division for CO, following the
same time-division for CHy. In the second data split, the training set window moves forward 24 months, from January 1970 to
December 2004, and values from January 2005 to December 2006 are used for testing.

The details of the data split are described in Table 4. For example, in the split 1, 396 continuous time steps or months are
used to train the model and the following 24 time steps for testing. In split 2, 420 continuous time steps are used to train and
the following 24-time steps for testing. This way, after executing the ten splits, the model is evaluated using different continu-
ous non-overlapping blocks of months. In the split 10, 612 continuous months were used for training and the last 24 months
for testing, totaling all the 636 months that compose the EDGARv8.0 dataset.

5.2. Results

In this Subsection, the cross-validation results of MLAGHG with the EDGARVS8.0 dataset are reported. Next, we compare the
results of ML4GHG with two deep learning-based models and five recent time series forecasting models.

The details of the cross-validation results are described in Table 5. The second column ‘Evaluation Period’ represents the
period of test data, and the following columns are the regression error metrics: MSE (Mean Square Error), MAE (Mean
Absolute Error), MAPE (Mean Absolute Percentage Error), and RMSE (Root Mean Squared Error). All metrics represent
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Figure 6 | CH, monthly emission of Brazil from 1970 to 2022 (EDGARDv.8.0 dataset).
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Figure 7 | CO, monthly emission of Brazil from 1970 to 2022 (EDGARDv.8.0 dataset).
Table 4 | EDGARV8.0 dataset cross-validation data split
Data split Training timestep Test timestep
1 396 24
2 420 24
3 444 24
4 468 24
5 492 24
6 516 24
7 540 24
8 564 24
9 588 24
10 612 24
Table 5 | Results of cross-validation for each data split
Data Split Evaluation period MSE MAE MAPE (%) RMSE
1 2003-Jan — 2004-Dec 0.022 0.115 5.691 0.141
2 2005-Jan — 2006-Dec 0.016 0.104 5.179 0.126
3 2007-Jan — 2008-Dec 0.022 0.113 5.507 0.139
4 2009-Jan — 2010-Dec 0.021 0.107 5.598 0.132
5 2011-Jan — 2012-Dec 0.022 0.112 4.928 0.134
6 2013-Jan — 2014-Dec 0.030 0.111 4.578 0.151
7 2015Jan — 2016-Dec 0.022 0.098 5.265 0.132
8 2017-Jan — 2018-Dec 0.017 0.104 6.300 0.126
9 2019Jan — 2020-Dec 0.020 0.121 8.578 0.143
10 2021-Jan — 2022-Dec 0.013 0.093 6.364 0.10

Note: MSE, mean square error; MAE, mean absolute error; MAPE, mean absolute percentage error; RMSE, root mean squared error.
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the comparison error between the actual and the estimated values of CO, and CH,, which means that the smaller the error,
the better the model.

We can observe in Table 5 that MAPE achieved the highest value (8.578%) during the COVID-19 pandemic represented by
data split 9. This outcome suggests that the model struggled to estimate CO, and CH, emissions due to the COVID-19 pan-
demic’s impact on the global economy.

Table 6 details the comparison of our model with two baseline models and five recent time series forecasting models. Our
model achieved the lowest MAPE of 5.799% with 1.06% of standard deviation. This result is significant in the interval of
(5.030, 6.555), at 95% confidence. All models were trained as a multivariate parallel single-step using the previous three
time steps (lag = 3) to predict the next time step. In addition, for a fair comparison, we used the same data split of the EDI-
GARv8.0 dataset described in Table 4 to assess the seven models.

We compared the MLAGHG results with two baseline models: 2 layers of LSTM and 1 layer of BILSTM. ML4GHG out-
performed both deep learning models on all error metrics, where MAPE was 89.70% lower than LSTM and 116.84% lower
than BiLSTM. Next, we compared our model with five recent time series forecasting models: (i) Neural Basis Expansion
Analysis — N-Beats (Oreshkin ef al. 2020); (ii) Temporal Fusion Transformer - TFT (Lim ef al. 2021); (iii) Neural Hierarchical
Interpolation for Time Series - NHiTS (Challu et al. 2023); (iv) Linear model - N-Linear (Zeng et al. 2023); and (v) Time
series Dense Encoder — TiDE (Das ef al. 2023). MLAGHG outperformed all recent models considering MSE, MAE, and
MAPE errors, except for RMSE, which was 3.87% higher than TFT. It is worth noting that our model presented the
lowest standard deviation of all error metrics, suggesting stability in the result. The comparison of MSE, RMSE, and MAE
can be visualized in Figure 8, and MAPE can be visualized in Figure 9.

Table 6 | Comparison of MLAGHG with different models at 95% of confidence interval

Model Method MSE MAE MAPE (%) RMSE
BiLSTM 1L BiLSTM 0.097 + 0.05 0.250 + 0.06 12.575 + 2.25 0.278 + 0.06
LSTM 2L LSTM 0.073 + 0.04 0.213 + 0.06 11.001 + 2.46 0.247 + 0.07
N-Beats (2020) Residual links 0.034 + 0.04 0.129 + 0.08 13.659 + 8.55 0.146 + 0.09
TFT (2021) Transformer 0.021 + 0.01 0.110 + 0.04 11.384 + 4.56 0.129 + 0.05
NHITS (2023) Hierarchical interpolation 0.075 + 0.03 0.187 + 0.07 23.898 + 7.77 0.211 + 0.08
N-Linear (2023) Linear model 0.074 + 0.16 0.147 + 0.16 15.864 + 19.15 0.172 + 0.20
TiDE (2023) Encoder decoder 0.038 + 0.06 0.114 + 0.08 12.252 + 9.62 0.141 + 0.12
ML4GHG Meta-learning 0.021 + 0.01 0.108 + 0.01 5.799 + 1.06 0.134 + 0.01
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Figure 8 | MSE, RMSE, and MAE comparison between MLAGHG and other models.
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The prediction of CH4 and CO,, can be visualized in Figure 10, which represents the evaluation of the ML4AGHG model for
the first data split. The y-axis represents the normalized substance value, and the x-axis represents the test set period. The full
line is the actual value, and the dotted line is the forecast value. We can observe that from January 2003 to December 2004,
the predicted value of both substances follows the growth trend of actual value. However, as illustrated in Figure 11 and
Figure 12, the distance between the actual and predicted values increases, reflecting the interruption and oscillations in
the GHG emissions trend due to COVID-19 effects.

6. EVALUATION ANALYSIS

This section describes the analysis of our model results to verify the contribution of individual components. We performed
ML4GHG ablation analyses in Subsection 6.1, check the effects of Meta-Learning in Subsection 6.2, and detailed the con-
sumption of computational resources by estimating the CO2 emission related to the experiments in Subsection 6.3.
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Figure 10 | CH, and CO, prediction of 2003-January to 2004-December.
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Figure 11 | CH, and CO, forecasting during COVID-19.
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Figure 12 | CH, and CO, forecasting during and post-COVID-19 period.

6.1. Ablation analysis

In this Subsection, we performed three ablation analyses to evaluate the impact of individual components in the model: (i) the
impact of the Fusion Model and Meta-Learning (Ab1); (ii) the impact of Meta-Learning (Ab2); and (iii) the impact of feature
extractor (Ab3). The models used in the ablation were evaluated using the same cross-validation strategy of the EDGARv8.0
dataset described in Subsection 5.1.

The first ablation analysis (Ab1) was conducted by eliminating the Fusion Model and the Meta-learning. Then, replacing the
univariate embedding extractor (BiLSTM) with multivariate BISLTM. In this ablation, the model forecasts CO, and CH, at
once using the multivariate BILSTM. In the second ablation (Ab2), we eliminated the Meta-Learning algorithm and kept the
Fusion Model. In the third ablation (Ab3), we replaced the BiLSTM feature extractor with LSTM.

The results of the ablation analysis using the EDGARVS.0 dataset are detailed in Table 7. The results are at a 95% confi-
dence interval. The ablation type that most influenced the results was eliminating the Fusion Model and Meta-Learning
(Abl) with 12.57% MAPE, with 116.8% higher error than our model. We observed a severe degradation in the model,
suggesting that the Fusion Model helps the model learn a better multivariate embedding for time series forecasting, and
the Meta-Learner algorithm helps the model generalization.

The second ablation with high impact was the Fusion Model without Meta-Learning (Ab2) with 8.74% MAPE, a 50.75%
higher error than our model. This result suggests that the Meta-Learner helps to avoid a lack of generalization in case of dis-
ruption of a trend in the time series data.

The impact of replacing BiLSTM with the LSTM feature extractor (Ab3) was 8.28% MAPE, representing an error 42.81%
higher than our model. This result suggests that for multivariate data, BILSTM can better capture the relationship between
future and past time series data than LSTM.

The results of the ablation analysis can be visualized in Figure 13. The y-axis represents the MSE, and the x-axis represents
the four models: MLAGHG is the model with all components followed by the models used in the ablation analysis ‘Ab1’,
‘Ab2’, and ‘Ab3’. The points on the left-hand side of each box-plot represent the MSE for each run in the cross-validation.
The ML4GHG presents the lowest median (0.021), while ‘Ab1’ has the highest median (0.071) with outliers, suggesting
the model instability when the Fusion Model and Meta-Learning are eliminated. We can observe that ML4AGHG presents
fewer outliers and a less distributed box-plot compared to the other ablation versions, confirming the stability of the results
when the model uses all the components.

Table 7 | Ablation analysis results at 95% confidence interval

Ablation type Predicted features MSE MAE MAPE (%) RMSE

Ab1 - without fusion model and meta-learning CO,, CH4 0.097 + 0.05 0.250 + 0.06 12.575 + 2.25 0.278 + 0.06
Ab2 - without meta-learning CO,, CH4 0.048 + 0.04 0.168 + 0.07 8.742 + 3.17 0.193 + 0.07
Ab3 - LSTM feature extractor CO,, CH4 0.044 + 0.03  0.156 + 0.06 8282 + 2.90 0.182 + 0.06
ML4GHG CO,, CH4 0.021 + 0.01 0.108 + 0.01 5.799 + 1.06 0.134 + 0.01
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Figure 13 | Box-plot of ablation analysis.

6.2. Effects of Meta-Learning

Meta-Learning helps the underlying model learn from previous experience, resulting in task and model generalization. We
used Reptile (Nichol et al. 2018): a gradient-based Meta-Learning approach to optimize the model learning capabilities.

Figure 14 illustrates the CH,4 and CO, forecast result of the first meta-iteration for January 2011 to December 2013 using all
the components. The blue shadowed region in the chart represents the MSE error in the first meta-iteration. Considering the
same period (January 2011-December 2013), we can visualize in Figure 15 the results of the meta-learning after performing a
few meta-iterations. The shadowed region representing the forecasting error decreased notably for CH,, confirming our find-
ing in the ablation analysis without meta-learning (Ab2), described in Subsection 6.1.

6.3. CO, emissions related to the experiments

The number of machine learning models trained on the cloud providers has increased, which may collectively contribute to
CO, emissions from data centers (Wu ef al. 2022). Devising small machine learning models using few computational
resources may contribute, even on a small scale, to reducing GHG emissions.

The estimations of carbon emissions were conducted using the Machine Learning Impact calculator (Lacoste ef al. 2019).
The CO,-equivalents (kgCOyeq) are used as a standardized measure to express how much warming a given amount of gas will
have.

The ML4GHG has only 323 K parameters and was trained and evaluated in 30 minutes, considering all the cross-validation
runs. The experiments were conducted using the Google Cloud Platform in the South America-east1 region, Intel(R) Xeon(R)
CPU @ 2.20 GHz. The total emission is estimated to be 0.01 kgCO,eq for 0.5 hours of computation.
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Figure 14 | CH, and CO, forecast — first meta-iteration.

Downloaded from http://iwaponline.com/jwcc/article-pdf/15/8/4016/1473700/jwc2024252.pdf
bv LINIVERSIDADE DE SAO PALI O user



Journal of Water and Climate Change Vol 15 No 8, 4032

304
1.925
=== Forecast A = ——- Forecast ——
, =l i
4 ,
1.900 - \\\ i S < /
,
1875 S A 7% /!
’ \ 7 254 ’ e ]
1.850 7 v k ==2p = I
<Ir ! \t’ s pl 3 /A J’ \ I‘
O 1825 o ! o Ny I %4 LY.
PG —= "-—\‘ " 244 Pz % ’: \\ .r’ \\,’
1.800 - 7 %y 7 Y/ e i 5
, il \ T !
1775 4 ’f g \‘ 'l 2.2 4 \\ ,1
/' v N/
1.750
T T T T T T T T T T 20 T T T T T T T
M ¥ o * 3 o Q M 3 W R N & 3 3 o Q 4
_‘53‘4 &.\0 P a; A AN A 23 <@ a0 Fre A & a0 T\'A Ao A ) <2 e
1“9, T 10\\, 10\\, Y _IQ{L 10\,1. 0¥ 10\1 10{1. 10\,\. 20> 10\_\, 109 & ‘L“‘l 1,0‘1 0% 10\1 10{1.

Figure 15 | CH, and CO, forecast — last meta-iteration.

7. CONCLUSIONS AND FUTURE WORKS

Despite the economic difficulties and climate impacts suffered in recent years, Brazil is committed to the low-carbon emission
agenda. The geographic diversity and natural resources allow Brazil to have an electricity energy mix with 83% renewable in
2020.

From the Brazilian legislation perspective, Law 12,187 establishes the National Policy on Climate Change, and bill PL 412/
2022 promotes debate to create a legal instrument for carbon credit trade regulation. In addition to legal measures, it is essen-
tial to monitor GHG emissions to keep contributing to the global low-carbon agenda. GHG forecasting can help to improve
the sustainable agenda and mitigate the climate change impacts in the country.

This work proposes ML4GHG: a Meta-Learning Applied to a Multivariate Single-Step Fusion Model for GHG emission
forecasting where two variables were observed: CO, and CH,. These substances were extracted from the EDGARv8.0 dataset
leveraging two BiLSTM models, one for each substance. Next, the multivariate Fusion Model performed the CO, and CH,
data alignment, and then the Reptile algorithm provided the model generalization to the GHG forecasting.

The model was evaluated with two baseline models and five recent time series forecasting models. ML4GHG reduces
MAPE by 49.06% with 95% confidence compared to the transformer-based TST model, demonstrating its superior perform-
ance and low estimated CO, emissions of 0.01 kg CO,eq. After conducting an ablation analysis, it was found that removing
the Fusion Model and Meta-Learning had a high impact on the model with a 116.8% increase in MAPE. Eliminating only the
Fusion Model resulted in a 50.75% increase in MAPE while replacing the BILSTM with LSTM resulted in a 42.81% increase
in MAPE.

These results suggest that for multivariate data, the BILSTM can better capture the relation between substances over time,
the Fusion Model helps in the substances data alignment, and the Meta-Learner helps to avoid the lack of generalization in

case of disruption in the time series data.
As a future work, we are investigating the use of the Large Language Model (LLM) and multimodal data in time series

forecasting.
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