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ResumoO: Seja X : R?\ D, — R? uma aplicagio diferenciavel (mas nao
necessariamente C1), onde ¢ > 0 and Dy = {z € R? : ||2|| < o}. Se existe
e > 0 tal que, para todo p € R? \ D, nenhum autovalor de DX, estd em
(—€,00), entdo hd s > o tal que a aplicagdo X|R2\ﬁ, prolonga-se até um

homeomorfismo local globalmente injetivo X : R2 — R2.  set, 2005 ICMC-USP

ABSTRACT: Let X : R? \ D, — R? be a differentiable (but not necessarily
C') map, where ¢ > 0 and D, = {2z € R? : ||2|| < o}. If there exists ¢ > 0
such that, for all p € R?\ Do, no eigenvalue of DX, belongs to (—¢, o), then
there exists s > o for which the map X|R2\5‘ can be extended to a globally

injective local homeomorphism X : R2 — R2.  Sset, 2005 ICMC-USP

1. INTRODUCTION

Given an open subset U of R? and a differentiable (not necessarily of class C') map
X: U — R2, we shall denote by Spec(X) the set of all eigenvalues of the derivative DX,
when z varies in U.

Our main result is the following

THEOREM A Let X = (f,g) : R*\D, — R? be a differentiable (but not necessarily C* ) map,
where ¢ > 0 and D, = {z € R* : ||z|| < o}. If for some € > 0, Spec(X) N (—¢,4+00) = 0,
then there exists s > o such that XI]Rz\'BJ can be extended to a globally injective local
homeomorphism X = (f,§) : R — R2.

This theorem generalizes Gutierrez and Sarmiento injectivity work [11] who proved the
corresponding C! version.
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2 C. GUTIERREZ AND R. RABANAL

Throughout this article, given a topological circle C' C R?, the compact disc (resp. open
disc) bounded by C, will be denoted by D(C) (resp. D(C)). The boundary of any set A
will be denoted by 0A.

Let us proceed to give an idea of the proof of this result. First it will be observed that
the assumptions imply that the Local Inverse Function Theorem is true. As a consequence,
the level curves {f = constant} (resp. {g = constant}) made up a C°-foliation F(f) (resp.
F(g)) on the plane, without singularities, such that every leaf L of F(f) (resp. F(g)) is a
differentiable curve and g|; (resp. f|L) is strictly monotone; in particular F(f) and F(g)
are (topologically) transversal to each other.

We will need:

THEOREM 2.2.1 Let Y: R%2 — R? be a local homeomorphism such that, for some s > 0,
Y|g2\p, is differentiable. If there exists € > 0 such that, for all p € R?*\ Dy, no eigenvalue
of DY}, belongs to (—e¢,€), then Y is injective.

To prove Theorem 2.2.1, it will be seen that the foliation F(f) (resp. F(g)) is topologi-
cally equivalent to the foliation, on the (z,y)-plane, induced by the form dz (this foliation
is made up by all the vertical straight lines). The injectivity of X will follow from the fact
that F(f) and F(g) are topologically transversal everywhere.

Sections 3 and 4 are devoted to prove

PROPOSITION 4.4.6 Let X = (f,g9): R2\ D, — R? be a differentiable map as in Theo-
rem A. There ezists a topological circle C € GP(f) such that F(f), restricted to R?\ D(C),
is topologically equivalent to the foliation, on R?\ D, induced by dx.

_Observe that the foliation, on R?\ Dy, induced by dz has exactly two tangencies with
0D (at (1,0) and (0,1)) which are “generic” and “external”’. Let us say a little more
about what is proved in Section 3 and 4:

We show, in Section 3, that given a topological cirle C; C R? \ D, surrounding the
origin, and having “generic” contact with F(f), the number of “external” tangencies of
F(f) with Cy is equal to 2 plus the number of “internal” tangencies of F(f) with C;. We
show, in Section 4, that the circle C; can be deformed to a new topological circle Cy so
that the referred “external” and “internal” tangencies cancel in pairs yielding exactly 2
tangencies which are “external”.

The proof of Theorem A is finished in Section 5. First, it will be seen that, under
conditions of Proposition 4.4.6, the circle C' can be deformed so that, for the resulting new
circle, still denoted by C:

(i) F(f)|r2\D(c), is topologically equivalent to the foliation, on R?\ D, induced by dz;
(ii) X takes C' homeomorphically to a circle; and
(ili) X|r2\p(c) can be extended to a local homeomorphism X : R? — R2.

Under these conditions, the proof of Theorem A is obtained by using Theorem 2.2.1

To our knowledge, besides the result of this work and that of [11] there are no other
works in the context of this article.
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INJECTIVITY AT INFINITY 3

Concerning injectivity of maps R™ +— R™ (globally defined) we wish to mention the
following results:

(1) Fernandes-Gutierrez-Rabanal [7] proved that if X : R? — R? is a differentiable (but
not necessarily C') map and, for some € > 0, Spec(X) N [0,¢) = @, then X is injective. See
also [6], [9], [10]. Under additional assumptions, there is an extension of this result from
maps from R™ to itself (See [8, Theorem 1]).

(2) Pinchuck [15] proved that there are non-injective polynomial maps X : R? — R? such
that 0 ¢ Spec(X). Also Smith and Xavier ([19], Theorem 4) proved that there exist integers
n > 2 and non-injective polynomial maps P : R* — R™ with Spec(P) N [0, +o0) = 0.

The structure of the proof of our main result is similar to that of [11]. Nevertheless,
most of the arguments had to be reconstructed. The basic difficulty was that, in our case,
the eigenvalues of DX, do not depend continuously on p.

2. GLOBAL INJECTIVITY RESULT

This section is devoted to prove the following:

THEOREM 2.2.1. Let Y = (f,g): R?> — R? be a local homeomorphism such that, for
some s > 0, Yl|g2\p, is differentiable. If there exists € > 0 such that, for allp € R%\ Dy,
no eigenvalue of DY, belongs to (—¢,€), then Y is injective.

Theorem 2.2.1 improves the main injectivity result of [6]. The proof of this tpeorem will
be completed throughout this section; to this end we shall use the following Cernavskii’s
Theorem [4], [5] (see also [20] and [17]).

THEOREM 2.2.2. Let U be an open subset of R? and X = (f,g) : U — R? be a
differentiable map such that, for all p € U, DX, is non-singular. Then, for all
p € U, there exists a neighborhood V. = V(p) and € = €(p) > 0 such that X|y : V —
(flp) —e, f(p) +¢) x (g(p) — €, 9(p) + €) is a differentiable homeomorphism whose inverse
(X|v)~! is also differentiable.

As a consequence of this Inverse Mapping Theorem we obtain:

COROLLARY 2.2.3. Let X = (f,g) : U ¢ R?® — R? be a differentiable map such
that, for all p € U, DX, is non-singular. Then the level curves {f = constant} (Tesp.
{9 = constant}) made up a C°-foliation F(f) (resp. F(g)) on U C R2, without
singularities, such that every leaf L of F(f) (resp. F(g)) is a differentiable curve and g|L,
(resp. fl|r) is strictly monotone; in particular F(f) and F(g) are (topologically) transversal
to each other.

Orient F(f) (resp. F(g)) so that if L is an oriented leaf of F(f) (resp.F(g)) then g|L,
(resp. f|r) is an increasing function in conformity with the orientation of L.
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4 C. GUTIERREZ AND R. RABANAL

=

Figure 1. A half-Reeb component.

Now, we introduce the notion of half-Reeb component for F(f). Let ho(z,y) = zy and
consider the set

B ={(z,y) €[0,2] x[0,2] : 0 <z +y < 2}.

DEFINITION 2.2.1. Let X = (f,9): U C R? — R? be a local homeomorphism. Given
h € {f,g}, we will say that A C U is a half-Reeb component for F(h) (or simply a hRc for
F(h)) if there is a homeomorphism H : B — A which is a topological equivalence between
F(h)|a and F(ho)|B such that:

(1) The segment {(z,y) € B :x+y = 2} is sent by H onto a transversal section for the
foliation F(h) in the complement of the point H(1,1); this section is called the compact
edge of A.

(2) Both segments {(z,y) € B :z =0} and {(z,y) € B : y = 0} are sent by H onto full
half-trajectories of F(h). These two semi-trajectories of F(h) are called the non-compact
edges of A.

Observe that .4 may not be a closed subset of R2.

For each 8 € R let Ry denote the linear rotation
cosf —siné
sinf  cosf )’

The following proposition will be needed. For the proof we refer the reader to [7, Propo-
sition 1.5].
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INJECTIVITY AT INFINITY 5

PROPOSITION 2.2.4. LetY = (f,g): R? — R? be a local homeomorphism such that F(f)
has a hRc A. Let (fg,90) = RgoY o R_g, 6 € R. IfII(A) is bounded, where I : R — R
is given by II(z,y) = z, then there is an € > 0 such that, for all § € (—¢,0) U (0,€), F(fp)
has a hRc Ay for which I1(Ag) is an interval of infinite length.

The proof of the following lemma can be found in [3]. The proof below, due to C. G. T.
A. Moreira, is included for completeness (see also [12] and [18]).

LEMMA 2.2.5. Let I be a bounded interval of R and H: I — R be a bounded measurable
function. If A denote the set of x € I such that
. |H(z+ h) — H(z)|

1
B0 IA]

= +o00.

Then A is a (Lebesgue) measure-zero set.

Proof: Suppose, by contradiction, that A has positive measure. Then there exist a positive
measure compact subset K C A such that H|x : K — R is continuous.

Then, for all y € H(K), (H|x) !(y) is a discrete set and so (H|x)~!(y) is a finite set.
Given positive integers n,r, let C(n,r) be the set of z € K such that for some points
Ty < Ty < -+ < Ty in K with 24, —2; > —Tl- for 1< j<nand H(zy) = H(zg) = -+ =
H(z,) = H(z). By the continuity of f and by the compactness of K, C(n,r), is closed. It
follows that the set

A(n) ={z € K : #(H|k)"'(z)) = n} = [ JC(n,T)

is borelian. Hence,
B(n)=A(n)\ A(n+1) ={z € K : #(H|x) *(z)) =n}

is also a borelian.
As K = Z B(n) has positive measure, some B(m) has positive measure. As
n>1

B(m) = | JB(m)nC(m,r)
21

there is some positive integer 7 such that B(m)NC(m,T) has positive measure. By writings
this last set as a finite union of sets having diameter less than %, we have that one of
these sets has positive measure and the restriction of H to this set is injective (by the
definitions of B(m) and C(m,7)). This set contains a positive measure compact set L
such that H|,: L — H(L) is continuous injective and so a homeomorphism. We obtain a
contradiction by applying the Sard’s Theorem [14] to (H|.)~!: f(L) — L which has zero
derivative everywhere and so L should be a measure zero set. |

We will need the following proposition.
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6 C. GUTIERREZ AND R. RABANAL

PROPOSITION 2.2.6. Let o >0 and X = (f,g): R?\ D, — R? be a differentiable map
such that for some € > 0, Spec(X) N (—¢,e) =0. Then,

a bounded subset of R?;
£,3) : R? = R?, F(f) and F(7)

(it) when X extends to a local homeomorphism X
have no hRc’s.

(1) any half-Reeb component of either F(f) or F(g) is
=1

Proof: Consider only the case (i). Suppose, by contradiction, that F(f) has an unbounded
half-Reeb component A. By composing with a linear rotation if necessary (see Proposi-
tion 2.2.4 and its notation) we may assume that IT(A) is an unbounded interval. To simplify
matters, let us suppose that [b, +00) C II(A). Then, if a > b is enough large,

(a) for any = > a, the vertical line II7!(z) intersects exactly one trajectory ay C A
of F(f)|a such that II(a;) N (z,+00) = 0. In other words, z is the maximum for the
restriction II|,, .

As o, is a continuous curve, it follows that; if z > a, ay NII7!(z) is a compact subset
of A.
Let H : (a,+00) — R be defined by

H(z) = sup{y : (z,9) € az NI (x)}.

When z > a is kept fixed, every ¢ € I} (z) N o, is a local extremal of the differentiable
function (z,y) — f(z,y). Thus

(b) if z > a, fy(z, H(z)) = 0.
As F(f) is a CO—foliation, we may obtain that the function

(c) p(z) = f(z,H(z)) is strictly monotone and continuous which, when restricted to
any interval (a, b], is bounded; in particular, ¢ is differentiable a.e.

We claim that
(d) H is upper semicontinuous; thus, H is a measurable function.

In fact, suppose by contradiction that H is not upper semicontinuous at zo > a. As H
restricted to (a,zo + 1) is bounded there exist ¢ € R and a sequence z, — z¢ such that
H(zp) < c and H(z,) — c. However, as ¢ is continuous,

f(@o,c) = lm f(zn, H(zp) = lim o(zn) = ¢(20) = f (2o, H(20))-

n—oo n—oo

This contradiction with the definition of H proves (d).
By (d) above, Lemma 2.2.5 and by the fact that ¢ is differentiable a.e., we obtain that
if a > 0 is large enough, there exists a full measure subset M of (a,+00) such that
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INJECTIVITY AT INFINITY 7

(e) if z € M, then ¢ is differentiable at z and

|H(z + h) — H(z)|

< +o00.
Al

lim inf
h—0
To proceed we shall only consider the case in which ¢ is strictly increasing. We claim
that
(f) if z € M, then ¢'(z) = fz(z, H(z)) > €.
In fact, if £ € M, there is a sequence h, — 0 such that limn_.c,c,fLL € R where k, =

H(z+hyp)— H(z). Also, by (b), fy(z, H(z)) = 0. Hence, as f is differentiable at (z, H(z)),
there are real valued functions €1, €2 defined in a neighborhood of (0, 0) such that

flx+ hn, H(z) + kn) = f(z, H(z)) + fo(z, H(z))hn + €1(hn, kn)hn + €2(hn, kn)kn
and lim, o €1 (An, kn) = lim, o0 €2(hn, kn) = 0. Therefore, when n is large enough,

@t ) = 0E) _ g (o, B (2)) + 1 () + Ea(fim, i) 22

hn hn
which implies that

¢(z) = lim f—(ii—hh’f—_ﬁﬁ = fu(z, H(z)).
Therefore,

el S ( el 1) a0(e H) )

i.e. ¢'(z) is an eigenvalue of DX (z, H(z)). By the assumption of the proposition and the
fact that ¢ is a strictly increasing function, (f) is proved.

As f|4 is bounded, ¢ is bounded too. Hence, there is a constant K > 0 such that for all
z>a,0< ¢(x)—p(a) < K. Take ¢ > a so that (¢ — a)e > K. Then we have that

K > ¢(c) — p(a) Z/C(p’(z)dmz/csdm=(c—a)€>K.

This contradiction proves the proposition. |

Let a > 0 and 0,7 : [~a,a) — R? be injective C%-curves such that ¢(0) = v(0) = 0.
We say that « is transversal (resp. tangent) to o at v(0) = o(0), if there exist € > 0,
neighborhoods V' of 4(0) and U of (0,0), in R?, and a homeomorphism H : V' — U such
that for all |t| < &, Hoo(t) = (¢t,0) and H oy(t) = (t,t) (resp. Ho(t) = (t,¢(t)), where
#(t) > 0 and ¢(0) = 0 ). If v is tangent to o at v(0) = o(0), we say that the tangency is
generic if H and ¢ (as right above) can be taken so that ¢(t) = [t|. In particular, when
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8 C. GUTIERREZ AND R. RABANAL

/ o

transversal

tangent

Figure 2.

o([—a,a)) = C is a topological circle in R? \ D,, we will say that the generic tangency in
p = o(0) = v(0) is external (resp. internal ) if in the definition of generic we have that

~(t) € R?\ D(C) (resp. v(t) € D(C)) for all 0 < |t| < €.
Now we prove the main result of this section.

Proof of Theorem 2.2.1: Suppose, by contradiction, that the map Y is not injective.
Let p; # po be points in R?, such that Y (p;) = Y (p2). For i = 1,2, let o; denote the leaf
of F(f) passing through p;. As g|s, is strictly monotone and g(p1) = g(p2), we obtain
ay Nag = 0. Let Q(p1,p2) be the set of all the compact arcs I'; embedded in the plane
such that: (1) for i = 1,2, I'; meets o; transversally at p;; (2) all the tangencies of F(f)
with I'; are generic.

(a) Among all elements of Q(p1,p2) take I' € Q(p1,p2) which minimizes the number of
(generic) tangencies with F(f).

We claim that:
(b) ;NT = {pi}, for 1 =1,2.

If we assume, by contradiction, that a; NI" contains properly {p:}, we may find g € "\
{p1,p2} and a closed subinterval « of 1, with endpoints p1, g, such that NI’ = {p1,q}. Let
~ denote the connected component of I'\{¢} containing {p2}. We can see that aU~ is an arc
connecting p; and py and also that F(f) is tangent to I at some point of T'\ (yU{p1 } U{q}).
Under these conditions, we may approximate o U~ by an arc of Q(pi1,p2) which has less
number of generic tangencies with F(f) than I'. This contradiction with (a) proves (b).

As f(p1) = f(p2), F(f) is tangent to I at some point ¢ ¢ {p1,p2}. All tangencies of
F(f) with T are generic. Therefore, by looking at the trajectories of F(f) around g, we
may see that there exist closed subintervals [p,q], [g, Tp] of T with [p,q] N (g, Tp] = {q},
and a homeomorphism T : [p, q] — [g,T'p] such that,

(c.1) Tq = q and for every = € (p,q), there is an arc [z, Txz]; of F(f), starting at =,
ending at Tz and meeting " exactly and transversally at {z, Tz},
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INJECTIVITY AT INFINITY 9

(c.2) the family {[z,Tz|s : € (p,q)} depends continuously on z and tends to the one
point {¢} as z — gq.

From now on, suppose that
(d) [p,q] is maximal with respect to properties (c.1) and (c.2) above.

Then, using (b) and the fact that F(f) has no half-Reeb components (see Proposition
2.2.6), we obtain {p,Tp} N {p1,p2} = 0. We claim that

(e) there is no arc of trajectory [p, T'p] s of F(f) connecting p and T'p such that the family
{[z,T=|fs : « € (p,q]} approaches continuously to [p, T'p]s as z goes to p.

In fact, suppose that (e) is false. Then, by using (d) and the fact that F(f) has no
half-Reeb components, we conclude [p, T'p]s is tangent to I at least at one of the points
of {p,Tp}. Under these circumstances, it is not difficult to approximate the curve, which
is the union of [p,Tp]y with T'\ ((p,q] U [¢q,Tp)), by a curve I'y € Q(p1,p2) which has
less tangencies with F(f) than I'. This contradiction with (a) proves (e). Therefore, the
subinterval [p, q]U[g, T'p] is the compact edge of a half-Reeb component of F(f) made up of
two half trajectories of F(f) starting at p and T'p, respectively, together with the union of
the arcs [z, Tx]s, with = € (p, g]. Thus we have found an unbounded half-Reeb component
of F(f). This contradiction with Proposition 2.2.6 finishes the proof. |

3. A LOCAL FLOW ASSOCIATED TO F(f)

Let X : R?\ D, — R? be a differentiable map such that for all p € R?\ D,, DX, is non-
singular (Theorem 2.2.2). Let L, be the connected component of the level curve {f = f(p)}
passing through p. Since g|r, is strictly monotone, given q € L, and t = g(q) — g(p) we
define ¢(t,p) as the unique point which is the intersection of L, with the level curve {g =
g(q)}. For each p € R?, let a,,(p) = inf{g(q) : ¢ € L,} and ap(p) = sup{g(q) : ¢ € Lp}.
If p€ R? and t € (anm(p) — 9(p),an(p) — g(p)) then p(t,p) is well defined and determines
a continuous local flow around any point of R2. This map ¢ will be called the local flow
associated to F(f).

PROPOSITION 3.3.1. Let X = (f,g): R? \ D, — R? be a differentiable map with
Spec(X) N [0,+c0) = B. If C C R?\ D, is a topological circle surrounding the origin,
there exists €9 > 0 such that:

(a)the local flow ¢ associated to F(f) is defined in (—ep,€0) x C.

(b)Let S* = {(z,y) € R? : 22 +y? = 1}. Ifu € (—€0,0) U (0,&0) and Z, = (Au,By) :
C — S is defined as
__plwp)—p

Il o(u,p) —p |
Then Ay(po) = 0, for some py € C, implies that By, (po) < 0. In particular, the degree of
Z,, 1s zero.

Zu(p)
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10 C. GUTIERREZ AND R. RABANAL

To prove this proposition we shall need the following lemmas.

LEMMA 3.3.2. Let Z: R?\ D, — R? be given by

_ (—fy(p)v f:z(p))
20 = 1, o), )

(a)Ifpe C,Z,(p) — Z(p) as u — 0OF.
(b)The curve t — @(t,p) is differentiable and

Oy 1
E(Sap) = m(_fy(Q)7me),

where ¢ = @(s,p).

Proof: If W denotes the local inverse of X = (f,g) at X(p) = (c,d), by using the fact that
this inverse is differentiable, (see Theorem 2.2.2) we have

ow _ o Wled+u)=W(ed) . ou,p)—p 9y
6y (C, d) = l% i = 1]‘-% ” = %(Oap)v
and
o ed) = 0X) ™ | | = s (A0 )
oy YTV 1] T Qet(Dx,y s v =)
As Spec(X)N[0,+00) =0 we obtain that det(DXp) > 0. This finishes the proof of
(a). The proof of (b) follows from the last computations. |

LEMMA 3.3.3. Let ¢ be the local flow associated to F(f). There does not exist a compact
disc D whose boundary is made up of the union of a vertical segment A = {(a,y) : ¢ <
y < d} and an arc of trajectory B = {(¢(t,p)) : 0 < t < to} such that ¢ < d, p = (a,c),
@(to,p) = (a,d) and, for all 0 < t < to, II(p(t,p)) # a, where II : R? — R is given by
I(z,y) = =.

Proof: Suppose by contradiction that such a disc D exists. We shall only consider the
case in which, for all 0 < t < to, II(p(t,p)) > a. Let [a,ao] be the interval II(B). Let
so € [0,to] be the smallest value such that II(p(so,p)) = ap. Let (ag,co) = ¢(so,p) and
let R be the closed region bounded by the union of {(a,y) : y < ¢}, {(ao,y) : y < co} and
{o(t,p) : 0 <t < sg}. It follows from (b) of Lemma 3.3.2 that f,(ao,co) = 0. This implies
that f;(ao,co) € Spec(X). By the assumptions of Proposition 3.3.1, fz(ag,co) < 0 which
in turn implies that the arc {¢(¢t,p) : so <t < to} must enter into R and cannot cross the
boundary of R. This contradicts the fact that ¢(to,p) = (a,d) ¢ R |
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INJECTIVITY AT INFINITY 11

(a,d)

(a07 CO)

(a,¢)

Figure 3. A disc

Proof of Proposition 3.3.1: The proof of (a) is immediate. Let us proceed to prove
(b). Orient C and S! with the usual positive orientation. Suppose by contradiction that,
for some (p,u) € C x [(—¢&0,0) U (0,e0)] we have that Z,(p) = (0,1). Hence ¢(u, p) is of
the form ¢(u,p) = (a,d), with ¢ < d.

By applying Lemma 3.3.3 we conclude that the segment connecting (a, ¢) with (a, d) must
be an arc of trajectory. However, this would imply that f,(p) = 0 and f(p) > 0 which
would be a contradiction with the assumptions of this proposition because f;(p) € Spec(X).
|

4. AVOIDING INTERNAL TANGENCIES

We say that a topological circle C C R?\ D, is in general position with F(f) if there
exist a set T' C C, at most finite such that: (i) F(f) is transversal to C'\ T, (ii) F(f) has a
generic tangency with C at every point of T and, (iii) a leaf of F(f) can meet tangentially
C at most at one point.

Denote by GP(f) = GP(f,0) the set of all topological circles C ¢ R? \ D, in general
position with F(f) and surrounding the origin.

REMARK 4.4.1. Let suppose that C € GP(f). If ¢ € C is an (internal) tangency of F(f)
with C, we have that:

(i) For some closed subintervals [p,ql,[g,7] in C there exist an orientation reversing
homeomorphism ¢ : [p,q] — [g,7] such that, for all z € (p,q), f(2) = f((¢(z))) and there
is an oriented arc T of a leaf of F(f), connecting z with ¢(z) and meeting C exactly and
transversally at its endpoints.
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12 C. GUTIERREZ AND R. RABANAL

(ii) The family {T. : z € (p,q)} depends continuously on z and tends to the one point
set {q} as z — q.

The following definition was introduced in [1] (see also [16]).

DEFINITION 4.4.1. Let C € GP(f). The Index of F(f) along C is the integer number

2_ne(f’c) +ni(fac)
2

I]:(f) (C) =

where n®(f,C) (resp. n*(f,C)) is the number of generic tangencies of F(f) with C, which
are external (resp. internal).

Let C C R%\ D, be a topological circle surrounding the origin. Let Z, : C — S! be as
in Proposition 3.3.1. We say that Z, has a generic contact (resp. generic tangency with;
resp. transversal to; etc) with C' at p € C' if every small local integral curve of Z, at p has
such property.

It is well known that if Z, is in general position with C,

2 —-n¢(Z,,C)+n*Z,,C
deg(Z,) = ( 2) ( )

where n'(Z,,C) (resp. n°(Z,,C)) is the number of internal tangency (resp. external
tangency) of Z, with C (see [13, Theorems 9.1 and 9.2, p. 166-174]).
By using a standard homotopy argument we may conclude that

LEMMA 4.4.2. If Z, : C — S! is as in Proposition 3.3.1,

deg(Zu) = Ir(5)(C).

As a consequence

LEMMA 4.4.3. Let C € GP(f) be such that n'(f,C) = 0. If n*(f,C) is greater than two,
the degree of Z,, is different from zero.

Next proposition will shows us that we can always select C € GP(f) such that, F(f) has
no internal tangencies with C' and exactly two external ones. We shall need the following
two lemmas, the first of which is proved in [11, Lemma 2].

LEMMA 4.4.4. Let C € GP(f). Suppose that a leaf v of F(f) meets C transversally
somewhere and with an external tangency at a point p € C. Then, v contains a closed
subinterval [p,r); which meets C ezactly at {p,7} (doing it transversally at r) and the
following is satisfied:

Publicado pelo ICMC-USP
Sob a supervisao da CPq/ICMC



INJECTIVITY AT INFINITY 13

())If [p,r] denotes the closed subinterval of C such that T = [p,r] U [p,r]; bounds a
compact disc D(T') contained in R?\ D(C), then points of v\ [p, ] nearby p do not belong
to D(T).

(ii)Let (p,7) and [p,7] be subintervals of C satisfying [p,r] C (p,7) C [, 7). If p and
T are close enough to p and r, respectively, then we may deform C into C; € GP(f) in
such a way that the deformation fizes C \ (p,7) and takes [,7] C C to a closed subinterval
[B,7]1 € Cy which is close to [p,r)s. Furthermore, the number of generic tangencies of
F(f) with Cy is smaller than that of F(f) with C.

LEMMA 4.4.5. Let X = (f,g): R?\ D, — R? be a differentiable map as in Theorem A.
If C € GP(f) minimizes the number of tangencies with F(f), then every tangency is
ezternal.

Proof: Suppose, by contradiction, that ¢ € C' is an internal tangency of F(f) with C, we
shall proceed using Remark 4.4.1 and its notation, so we may select the maximal interval
[p, q] with properties (i) and (ii) of this remark. Assume that

(a) the family {7}, with z € (p, ¢), can be extend continuously to z = p in such a way
that T}, is a compact arc.

In this case, by our selection of [p, g], the arc T}, has to meet C at a generic tangency. By
Lemma 4.4.4 we may select C; € GP(f) having smaller number of tangencies with F(f)
than that of C. This contradiction proves that (a) is not possible. Therefore, the level curve
{f = f(p)} has two connected components: p € C belongs to one connected component
and 7 € C belongs to the other. By Remark 4.4.1, [p,r]c C C is the compact edge of an
unbounded hRc. This contradiction with Proposition 2.2.6 finishes the proof of the lemma.
|

PROPOSITION 4.4.6. Let X = (f,g): R?\ D, — R? be a differentiable map as in Theo-
rem A. There ezists a topological circle C € GP(f) and there are two points a,b € C, with
f(a) < f(b), such that F(f) is tangent to C ezactly at a and b; moreover, these tangencies
are generic and external.

Proof: Take C € GP(f) as Lemma 4.4.5, so n'(f,C) = 0. If a,b € C are such that
F(C) =[f(a), f(b)], the circle C has two external tangencies: one at a and the other at b.

Suppose by contradiction that a and b are not the only tangencies; so n¢(f, C) is greater
than two. This implies, by Lemma 4.4.3, that the degree of Z, is different from zero,
contradicting Proposition 3.3.1. [ |

5. PROOF OF THEOREM A
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14 C. GUTIERREZ AND R. RABANAL

We shall say that a collar neighborhood U of a topological circle C C R? \ D, is interior
(resp. exterior), if U is contained in D(C) (resp. R?\ D(C)).

ProposiTiON 5.5.1. Let X = (f,g): R*\ D, — R? be a differentiable map as in
Theorem A. There exists a topological circle C C R%\ D, surrounding the origin such
that: (i) X(C) is a topological circle; (i) for some exterior collar neighborhood U of C,
its image X (U) is an exterior collar neighborhood of X(C) and (iii) X|y : U — X (U) is
a homeomorphism.

The proof of this proposition needs some preparatory lemmas.

We say that a topological circle C C R? \ D, is of ETT (i.e ezternal tangency type) for
F(f), if the following is satisfied: C surrounds the origin, there are two points a,b € C,
with f(a) < f(b), f(C) = [f(a), f(b)], and there are points ai,as,...,a, € C~ and
bi,ba,...,b, € C*, where C~ and C* are the connected components of C \ {a, b}, such
that:

(a.1) F(f) is tangent to C exactly at a and b; also, these tangencies are generic and
external;

(a.2) f(a) = inf{f(2) : z € C} <sup{f(z) : z € C} = f(b);

(a.3) f takes homeomorphically each C?, with i € {—,+}, onto the open interval
(f(a), £(b)) (ie, X(C") is the graph of a map (f(a), f(b)) = R);

(ad) X restrlcted to C'\ {a1,...,an,b1,...,b,} is a topological embedding and also,
X(C7) and X(C™*) meet transversally to each other,

(a.5) (X(a1), X (a2),. .., X(an)) = (X (b1), X (b2),..., X (bn)) and
fa) < far) = f(b1) <+ < flan) = f(bn) < F(b);

(a.6) there are sequences z, — a and y, — b of points z, and y, in R? \ D(C) such
that, for all n, f(z,) < f(a) < f(b) < f(yn). This means that the local exterior of C
around a (resp. around b) is taken to the unbounded connected component of R? \ X (C).
In particular, n > 0 is an even number;

(a.7) if z € R2\ D(C) is close enough to y € C* (resp. y € C~) and f(z) = f(y), then
9(y) < g(z) (resp. g(y) > g()).

(a.8) if @1,a@, € C~ and by,b, € CT close enough to a1, a, and by, b, respectively, and
[a1,an) C (@1,@n), [b1,bn] C (b1, bn) then, X ([@1,a1)U(an,@n)) is below X ([b1,b1)U(bn, by))
(i.e. if @’ € [@1,a1) U (an, @] and b’ € [by,b1) U (bp, by] are such that f(a’) = f(V') then

g(a’) < g(b')).
LEMMA 5.5.2. There ezists a topological circle C C R\ D, of ETT for F(f).

Proof: By Proposition 4.4.6 we may take a topological circle C C R? \ D,, surrounding
the origin, such that there are two points a,b € C with f(a) < f(b), f(C) = [f(a), f(b)],
and so that (a.1) above is satisfied. This implies that (a.2) and (a.3) of the definition above
are also satisfied.

By deforming C around a small open neighborhood V, C C of a (resp. V, C C of b) we
may also assume that g|y, (resp. g|v,) is a topological embedding. In this way, if V, and
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INJECTIVITY AT INFINITY 15

Vp are small enough X|y,uy, is a topological embedding. This implies that
X(CHnX((C)= X(CH\ (VuauWp)NnX(C™\ (VaU Vb))

is a compact set. As C*\ (V,UV,) and C~ \ (Vo U V) are disjoints sets we may deform
C so that

(i) X(C*) and X (C~) meet transversally doing this along a set which is at most finite.

Thus, (i) implies that (a.4) and (a.5) of the definition above are satisfied too. Item (a.6)
follows directly from the proceeding properties. As X (C) is tangent to the vertical foliation
at the points X (a) and X (b) and by using (a.6), the connected components C~ and C*
can be named to satisfy (a.7). Item (a.7) implies (a.8). |

In the following of this section, C' will be a topological circle of ETT for F(f) and we
shall use all corresponding introduced notation.

Given o,8 € C~ (resp. o, € CT), [o, B],(e, B),[er, 8) will denote subintervals of C~
(resp. C*) with endpoints @, 3. Let L denote the straight line which passes through the
points X (a;) and X(a,). Let £ be the foliation of R? made up by all the straight lines
parallel the line L. By a small deformation of C' with support in [a1,a,] U [b1, by], we may
assume that

(b) every point of tangency of X ([a1,an] U [b1,bn]) with £ is generic, X ([a1,an]) and
X([b1,bn]) are transversal to L.

From (a.8), by taking @i,a, € C~ and 51,1_7_71 € C* close to a1,a, and by, b, respectively,
such that [a1,an] C (@1,a@n) and [b1,bs] C (b1, b,), we may suppose as well that

(c) X([@1,a1) VU (an,an]) and X ([b1,b1) U (bn,bn]) are disjoint to L.
Let 6 € (=%, 5] be such that Ry(L) is made up of vertical lines, where Ry is the linear
rotation of angle 6. Recall that Xy = (fg,99) = Rg o X o R_y. By means of a small
deformation of C, we may also assume that

(d) Rp(C) is in general position with F(fp), i.e. Ro(C) € G(fo).

REMARK 5.5.3. X, takes any leaf of F(fg) into a leaf of Ry(L), where the foliation
Ry(L) is made up by vertical lines.

LEMMA 5.5.4. Let denote a; = Ro(aj), a; = Rg(aj), b_j = Rg(bj) llT_Ld Bj = Rg(bjl. If
Xp([81,21) U (an,an]) is on the left to the vertical line Rg(L) and Xg([by,b1) U (by,by])
is on the right to Re(L), then there is a circle C1 C R\ D(Ry(C)), surrounding the
origin, obtained from Ry(C) by a deformation which fizes Rg(C)\ ((21,8n)U (b1, bn)) and
takes [a1,8,] C Rg(C) and [by,bn] C Re(C) to the closed subintervals [ay,8,]c, C C1
and [b1,bn)c, C Ci respectively, which satisfy Xo([81,8n]c,) is on the left to Rg(L) and
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16 C. GUTIERREZ AND R. RABANAL

Xo([b1,bn]c,) is on the right to Re(L). In particular, R_y(C1) is as requested to prove
Proposition 5.5.1.

Proof: Suppose that F(fp) has an internal tangency with Re(C) at ¢ € (a1,an). By
Item (d), we may proceed as in Remark 4.4.1 (applied to F(fs) and considering the notation
introduced there) to obtain subintervals [p, g], [g,7] of Re(C), (generated by q € Ry(C)),
determined by the condition that

(e.1) (p,q] is the maximal interval satisfying properties (i) and (ii) of Remark 4.4.1, and
also (p,q] contained in [a;, ay).

By Remark 4.4.1, every element of the family {T} : z € (p,q)} is an arc of a leaf of F(fy).
As R*\ D(Ry(C)) is not bounded, [p, q]U[g, 7] is properly contained in Ry(C). Therefore,

(e.2) the family {T}}, with z € (p, q), extends continuously to z = p, in such a way that
T, is a compact arc connecting p and 7.

In fact, if (e.2) is false the positive (resp. negative) half-leaf L} (resp. L;) of the foliation
F(fo) starting at p (resp. at r) does not meet Rp(C) and so accumulate at the point co
of the Riemann sphere R? U co. Under these circumstances, Remark 4.4.1 implies that
the subinterval [p,q] U [g,7] is the compact edge of a unbounded hRc for F(fy). This
contradiction with Proposition 2.2.6 shows (e.2).

It follows from (e.1), (e.2) and (d) that

(e.3) If {p,7} N {a1,an} = 0, then, between p and r, exactly one of them is an external
tangency point of F(f) with Ry(C).

Let us to perform a sequence of adequate deformations of Rg(C), in order to obtain the
circle C; as requested. We meet two possible cases:

The first one is that {p,r} N {a1,a,} # 0. Consider only the case in which p = a; and
r # an. From (ii) of Remark 4.4.1 and (e.2), we may deform Rg(C) into a new circle C;
in such a way that: the deformation fixes Rg(C) \ (a1,8n) and takes [a;,3,] to a closed
subinterval [&1,8nh]c, C C such that

(f) the cardinality of Rg(L) N Xg([a1,8n]c,) is less than that of (the finite set) Ro(L) N
Xo([@1,3n]); and, concerning the number of tangencies with the vertical foliation, that are
on the right to Rg(L), the curve Xg([a1,8n]c,) has less number than that of X4([a1,a,))-

In this deformation the arc [p,r] C Rg(C) has been taken to an interval whose image
under Xy is on the left of the vertical line Rg(L). This deformation takes place inside a
small neighborhood of | J{T: : z € [p, ¢]} and so C} is surrounding the origin and satisfies
(f). Also as [a1,a,] C C is transversal to F(f), [81,8n]c, C Ci can be obtained to be
transversal to the foliation Rg(F(f)). We do not care if Xy(C;) has more self-intersections
than X4 0 Rg(C)

The second case happens when {p,7} N{a1,a,} = 0. We shall only consider the case in
which p is the external tangency (see e.3). This and Remark 4.4.1 imply that
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INJECTIVITY AT INFINITY 17

(g.1) if T = [p,r] U Ty, then, D(T) is contained in R? \ D(Ry(C)) and the points of
Ly \ T, (here Ly, is the leaf of F(fp) passing through p) near p do not belong to D(I").

The arguments of Lemma 4.4.4 imply that we may deform of Ry(C) into a new circle C;
according to the following conditions. The deformation fixes Ry(C) \ ((a1,dn) and takes
[81,3n] to a closed subinterval [ay,8,]c, C C; such that

(8:2) Ro(L)NXpg([a1,8n]c,) has the same number of elements than Rg(L)NX4([a1,an]);
and, concerning the number of tangencies with the vertical foliation, that are on the right
to Re(L), X¢([a1,8n]c,) has one less than that of X4([a1, an]).

As above, this deformation takes place inside a small neighborhood of T, and so C; sur-
rounds the origin. Also [a;,8n]c, C C can be constructed to be transversal to the foliation
Ry(F(f)). Again, as in the case above, we do not care if X4(C;) has more self-intersections
than Xp o Ry(C).

As these cases are the only possible ones, and thanks to (f) and (g.2), we only need to
perform finitely many times the process (just described above) of obtaining new circles
such that their image under R_g is of ETT for F(f), in order to finally obtain a circle, say
Cs, such that X4([a;1,8n]c,) is on the left to Rg(L). Similarly, by a deformation that fixes
C> \ [by, bn] we will finally obtain one circle as requested in this lemma. |

Proof of Proposition 5.5.1: By Lemma 5.5.2, there exists a topological circle C' C
R2\ D, of ETT for F(f). The property (a.8) of the definition of ETT tell us that X ([a1,a1)U
(an,@n)) is below X ([b1,b1) U (bn,bs]). It is easy to see that we can select an adequate
6 so that we may deform Rg(C), locally around {Rg(a1), Re(b1), Re(an), Re(bs)} in such
a way that its image under R_p is of ETT for F(f), and Ry(C) satisfies the conditions
of Lemma 5.5.4. Therefore, Rg(C) can be deformed into one as requested to prove this

proposition. [ |

Proof of Theorem A: Let C and U be as in Proposition 5.5.1.

By Schoenflies Theorem [2, Theorem III.6.B], the map X|¢ : C — X (C), can be extended
to a homeomorphism Y; : D(C) — D(X(C)). In this way, we extend X : R? \ D(C) — R?
to X : R — R? by defining /\7'5(0) =Y. As /\7]U : U — X(U) is a homeomorphism
and U and X (U) are exterior collar neighborhoods of C and X (C), respectively, X is local
homeomorphism everywhere. By Theorem 2.2.1 X is globally injective. |
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