Área: MED Nº de Inscrição: 00468

New pyrazolopyrimidine and triazolopyrimidine derivatives with potential activity anti-*P. falciparum*

Lívia M. Feitosa (PG)¹, <u>Gustavo P. Machado</u> (IC)¹, Gabriel M. S. Araujo (IC)¹, Maria de Lourdes G. Ferreira (PQ)¹, Larissa G. Oliveira (IC)¹, Luiz C. S. Pinheiro (PQ)¹, Juliana O. de Souza,² Anna Carolina C. Aguiar², Rafael V. C. Guido², Núbia Boechat (PQ)^{1*}

gustavo.machado@far.fiocruz.br; nubia.boechat@far.fiocruz.br

- ¹Departamento de Síntese de Fármacos, Farmanguinhos FIOCRUZ, Fundação Oswaldo Cruz. RJ, Brazil.
- ² Instituto de Física de São Carlos, Universidade de São Paulo.

Keywords: Malaria, Pyrazolopyrimidine, Triazolopyrimidine, Quinoline

Highlights

Eight pyrazolopyrimidine and triazolopyrimidine derivatives were synthesized in 12-30% overall yield and in vitro evaluated against P. falciparum. Compound **13** was the most potent pyrazolopyrimidine derivative of the series with an IC₅₀ value of 0.063 μ M.

Resumo/Abstract

During our search for new compounds against malaria, we have demonstrated the importance of triazolopyrimidine prototype I with an IC₅₀ value of 0.023 μ M against *P. falciparum*.¹ In another series, we have showed the importance of quinolinic derivatives linked to benzenesulfonamide moiety by 3 or 4 methylene carbons as the most promising derivative (IC₅₀ = 0.09 μ M), which is lower than that of chloroquine (CQ) (IC₅₀ = 0.46 μ M) and, when *in vivo* evaluated against *P. berghei*, compound II inhibited parasitemia by 49% (10 mg/kg).² Based on that, a new series of triazolopyrimidine and pyrazolopyrimidine derivatives (6-13) was designed (Figure 1).

$$\begin{array}{c} \text{II} \\ \text{Prototype II} \\ \text{II} \\ \text{C}_{50} = 0.09 \ \mu\text{M} \end{array} \qquad \begin{array}{c} \text{II} \\ \text{Ge-13} \\ \text{II} \\ \text{C}_{50} = 0.023 \ \mu\text{M} \end{array}$$

Figure 1. Design of compounds 6-13.

Reaction of **1a-c** and **1d** with ethyl acetoacetate produced the derivatives **2a-c** and **2d**, respectively, in 71-95% yield. After, **2a-d** were treated with POCl₃ under reflux to obtain **3a-d** in 51-70% yield. The synthesis of **5a,b** was achieved by the reaction of **4** with appropriate diamines, under reflux for 4h, with 86-90% yield. Finally, the reaction of **3a-d** and **5a,b** in ethanol produced the compounds of interest **6-13** in 40-50% yield.

Reagents and conditions: (i) ethyl acetoacetate, AcOH, toluene, reflux, 24h; (ii) POCl₃, reflux, 3h; (iii) diamine, reflux, 4h; (iv) ethanol, reflux, 6h. Figure 2: Synthesis of compounds 6-13.

Compounds **6-13** were tested against *P. falciparum* (3d7 strain - chloroquine-sensitive) and had their cytotoxicity profile determined against human hepatocarcinoma cells (HepG2) (Table 1). Derivative **13** was the most potent compound in the series with an IC50 value 0.063 μ M and an excellent selectivity index (SI >1570).

Table 1. Biological evaluation results against P. falciparum 3d7-chloroquine-sensitive strain

	IC ₅₀ (μM)	MCL ₅₀ (µM)	SI		IC ₅₀ (μM)	MCL ₅₀ (µM)	SI
6	$3,19 \pm 0,06$	>100	>31	11	0,31 ± 0,04	>25	>81
7	0.84 ± 0.02	110 ± 10	131	12	$0,145 \pm 0,003$	>50	>345
8	$0,6725 \pm 0,0005$	113 ± 2	168	13	$0,0635 \pm 0,0005$	>100	>1570
9	$0,62 \pm 0,08$	99 ± 6	160	CQ	0,03		
10	0.25 ± 0.03	>25	>100				

- (1) Boechat, N. et al. *Molecules*, **2012**, 17, 8285-8302.
- (2) Pinheiro, L. C. S. et al. Bioorg. Med. Chem., 2015, 23, 5979-5984.

Agradecimentos/Acknowledgments