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Abstract

Denote by QS the class of all non-degenerate planar quadratic differential systems and by

QSP the subclass of QS of all systems possessing at least one invariant parabola. In this paper

we consider the subfamily of QSP defined by the condition η 6= 0, which we denote by QSP(η 6=0).

We investigate all possible configurations of invariant parabolas and invariant straight lines which

systems in QSP(η 6=0) could possess and their geometric properties encoded in such configurations.

The classification presented here is taken modulo the action of the group of real affine transforma-

tions and time rescaling and it is given in terms of affine invariant polynomials. It yields a total of

146 distinct configurations. The obtained classification is an algorithm which makes possible for

any given real quadratic differential system in QSP(η 6=0) to specify its configuration of invariant

parabolas and straight lines. This work will prove helpful in studying the integrability of the

systems in in QSP(η 6=0).

1 Introduction and statement of main results

To every planar differential systems of the form

dx

dt
= P (x, y),

dy

dt
= Q(x, y), (1)

where P, Q ∈ R[x, y], i.e. P, Q are polynomials in x, y over R, is associated the vector fields

X = P (x, y)
∂

∂x
+Q(x, y)

∂

∂y
.
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The degree of such a system is the integer m = max(deg P, deg Q). In particular we say that a

system (1) is a quadratic differential system when m = 2 and here QS denotes the whole class of real

quadratic differential systems. From now on we are assuming that P and Q are coprime polynomials.

Otherwise doing a rescaling of the time, systems (1) can be reduced to linear or constant systems.

Quadratic differential systems under such assumptions are called non–degenerate quadratic systems.

Quadratic systems emerge in various research fields including models of population dynamics [6],

fluid dynamics [9], control systems [11] and even quantum dynamics [3]. As a consequence, QS are

subject of great interest for mathematicians and researchers from other areas of science and, many

papers have been published on such systems, see for example [1] for a bibliographical survey.

Given f ∈ C[x, y], we say that the curve f(x, y) = 0 is an invariant algebraic curve of systems (1)

if there exists K ∈ C[x, y] (it is called cofator of the invariant curve f = 0) such that

P
∂f

∂x
+Q

∂f

∂y
= Kf.

Quadratic systems with an invariant algebraic curve have been studied by many authors, for

example Schlomiuk and Vulpe in [19, 21] have studied quadratic systems with invariant straight

lines; Qin Yuan-xum [14] have investigated the quadratic systems having an ellipse as limit cycle;

Druzhkova [10] presented the necessary and sufficient conditions on the coefficients of a quadratic

system and also on the coefficients of a conic so as to have the conic as an invariant curve of the

system; Christopher [7] presented a normal form for quadratic systems possessing invariant parabolas;

Cairó and Llibre in [5] studied the quadratic systems having invariant algebraic conics in order to

investigate the Darboux integrability of such systems.

The main goal of this research is to investigate non–degenerate quadratic systems having invariant

conics. The irreducible affine conics over the field R are the hyperbolas, ellipses and parabolas. One

way to distinguish them is to consider their points at infinity. The term hyperbola is used for a real

irreducible affine conic which has two real points at infinity. This distinguishes it from the other

two irreducible real conics: the parabola has just one real point at infinity at which the multiplicity

of intersection of the conic with the line at infinity is two, and the ellipse which has two complex

points at infinity.

Inside this proposal, the classification of QS with invariant hyperbolas [17, 16] and with invariant

ellipses [15, 13] are obtained in previous works. In this work we study the class QSP of non-

degenerate quadratic differential systems having an invariant parabolas. The investigation of such a

class of systems is done applying the invariant theory.

The group of real affine transformations and time rescaling acts on the class QS and due to this,

modulo this group action the quadratic systems depend on five parameters. The same group acts on

the QSP and modulo this action systems in this class depend on at most three parameters. As we

want this study to be intrinsic, independent of the normal form given to the systems, we use here

invariant polynomials and geometric invariants for the desired classification.

In the paper [23] the necessary and sufficient conditions for a non-degenerate quadratic system in

QS to have invariant parabolas are provided. Moreover in that paper the invariant criteria which

provide the number, position and multiplicity of such parabolas are determined.
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The present paper is a continuation of [23]. More precisely using the conditions from that paper

we present the classification of all configurations of invariant parabolas and invariant lines which a

system in QSP(η 6=0) could possess. The investigation of the configurations of the family of systems

in QSP(η=0) is in progress.

An important ingredient in this work is the notion of configuration of algebraic solutions of a

polynomial differential system. This notion appeared for the first time in [19].

Definition 1. Consider a planar polynomial system which has a finite number of algebraic solutions

and a finite number of singularities, finite or infinite. By configuration of algebraic solutions of this

system we mean the set of algebraic solutions over C of the system, each one of these curves endowed

with its own multiplicity and together with all the real singularities of this system located on these

curves, each one of these singularities endowed with its own multiplicity.

We point out that in [8] the notions of multiplicities (infinitesimal; integrable; algebraic; geomet-

ric; holonomic) of an algebraic invariant curve are given. Here we use the definition of geometric

multiplicity based on perturbations in the family QS.

Definition 2. We say that an invariant conic Φ(x, y) = p + qx + ry + sx2 + 2txy + uy2 = 0,

(s, t, u) 6= (0, 0, 0), (p, q, r, s, t, u) ∈ C
6 for a quadratic vector field X has multiplicity m if there exists

a sequence of real quadratic vector fields Xk converging to X, such that each Xk has m distinct

(complex) invariant conics Φ1
k = 0, . . . ,Φm

k = 0, converging to Φ = 0 as k → ∞ (with the topology of

their coefficients), and this does not occur for m+1. In the case when an invariant conic Φ(x, y) = 0

has multiplicity one we call it simple.

Our main results are stated in the following theorem.

Main Theorem. (A) The conditions η 6= 0, and χ1 = χ2 = 0 are necessary for a quadratic system

in the class QSP(η 6=0) to possess at least one invariant parabola.

(B) Assume that for a system (S) in the class QSP(η 6=0) the condition χ1 = χ2 = 0 is satisfied.

❼ (B1) If η > 0 then the system (S) could possess only one of the configurations Config.P.1–

Config.P.114 presented in Figure 1. Moreover for each one of these configurations the corre-

sponding conditions for its realization could be collected from Diagrams 1 and 2.

❼ (B2) If η < 0 then the system (S) could possess only one of the configurations Config.P.115–

Config.P.146 presented in Figure 2. Moreover for each one of these configurations the corre-

sponding conditions for its realization could be collected from Diagram 3.

(C) The Diagrams 1, 2 and 3 actually contain the global bifurcation diagram in the 12-dimensional

space of parameters of the systems belonging to family QSP(η 6=0), which possess at least one invariant

parabola. The corresponding conditions are given in terms of invariant polynomials with respect to

the group of affine transformations and time rescaling.
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Figure 1: Configurations of systems in QSP in the case η > 0
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Figure 1 (cont.): Configurations of systems in QSP in the case η > 0
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Figure 1 (cont.): Configurations of systems in QSP in the case η > 0
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Figure 1 (cont.): Configurations of systems in QSP in the case η > 0
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Figure 2: Configurations of systems in QSP in the case η < 0
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Figure 2 (cont.): Configurations of systems in QSP in the case η < 0

2 Preliminaries

Consider real quadratic systems of the form:

dx

dt
= p0 + p1(x, y) + p2(x, y) ≡ P (x, y),

dy

dt
= q0 + q1(x, y) + q2(x, y) ≡ Q(x, y)

(2)

with homogeneous polynomials pi and qi (i = 0, 1, 2) of degree i in x, y:

p0 = a00, p1(x, y) = a10x+ a01y, p2(x, y) = a20x
2 + 2a11xy + a02y

2,

q0 = b00, q1(x, y) = b10x+ b01y, q2(x, y) = b20x
2 + 2b11xy + b02y

2.

Such a system (2) can be identified with a point in R
12. Let ã = (a00, a10, a01, a20, a11, a02,

b00, b10, b01, b20, b11, b02) and consider the ring R[a00, a10, . . . , a02, b00, b10, . . . , b02, x, y] which we shall

denote R[ã, x, y].

It is known that on the set QS of all quadratic differential systems (2) acts the group Aff (2,R)

of affine transformations on the plane (cf. [20]). For every subgroup G ⊆ Aff (2,R) we have an

induced action of G on QS . We can identify the set QS of systems (2) with a subset of R12 via

the map QS −→ R
12 which associates to each system (2) the 12–tuple ã = (a00, . . . , b02) of its

coefficients. We associate to this group action polynomials in x, y and parameters which behave well

with respect to this action, the GL–comitants, the T–comitants and the CT–comitants. For their

detailed definitions as well as their constructions we refer the reader to the paper [20] (see also [1]).
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Diagram 1: Conditions for the configurations of systems in QSP in the case η > 0, ζ1 6= 0
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Diagram 1 (cont.): Conditions for the configurations of systems in QSP in the case η > 0, ζ1 6= 0

2.1 The main invariant polynomials associated to invariant parabolas

We single out the following five polynomials, basic ingredients in constructing invariant polynomials

for systems (2):

Ci(ã, x, y) = ypi(x, y)− xqi(x, y), (i = 0, 1, 2)

Di(ã, x, y) =
∂pi
∂x

+
∂qi
∂y

, (i = 1, 2).
(3)
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Diagram 1 (cont.): Conditions for the configurations of systems in QSP in the case η > 0, ζ1 6= 0
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Diagram 1 (cont.): Conditions for the configurations of systems in QSP in the case η > 0, ζ1 6= 0
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Diagram 1 (cont.): Conditions for the configurations of systems in QSP in the case η > 0, ζ1 6= 0

As it was shown in [22] these polynomials of degree one in the coefficients of systems (2) are GL–

comitants of these systems. Let f, g ∈ R[ã, x, y] and

(f, g)(k) =
k∑

h=0

(−1)h
(
k

h

)
∂kf

∂xk−h∂yh
∂kg

∂xh∂yk−h
.

The polynomial (f, g)(k) ∈ R[ã, x, y] is called the transvectant of index k of (f, g) (cf. [12], [18])).

Proposition 1 (see [24]). Any GL–comitant of systems (2) can be constructed from the elements

(3) by using the operations: +, −, ×, and by applying the differential operation (∗, ∗)(k).

Remark 1. We point out that the elements (3) generate the whole set of GL–comitants and hence

also the set of affine comitants as well as the set of T -comitants.

We construct the following GL–comitants of the second degree with respect to the coefficients of

the initial systems

T1 = (C0, C1)
(1) , T2 = (C0, C2)

(1) , T3 = (C0, D2)
(1) ,

T4 = (C1, C1)
(2) , T5 = (C1, C2)

(1) , T6 = (C1, C2)
(2) ,

T7 = (C1, D2)
(1) , T8 = (C2, C2)

(2) , T9 = (C2, D2)
(1) .

(4)

Using these GL–comitants as well as the polynomials (3) we construct the additional invariant

polynomials. In order to be able to calculate the values of the needed invariant polynomials directly
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Diagram 2: Conditions for the configurations of systems in QSP in the case η > 0, ζ1 = 0
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Diagram 2 (cont.): Conditions for the configurations of systems in QSP in the case η > 0, ζ1 = 0
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Diagram 3: Conditions for the configurations of systems in QSP in the case η < 0
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for every canonical system we shall define here a family of T–comitants expressed through Ci

(i = 0, 1, 2) and Dj (j = 1, 2):

Â =
(
C1, T8 − 2T9 +D2

2

)(2)
/144,

D̂ =
[
2C0(T8 − 8T9 − 2D2

2) + C1(6T7 − T6 − (C1, T5)
(1) + 6D1(C1D2 − T5)− 9D2

1C2

]
/36,

Ê =
[
D1(2T9 − T8)− 3 (C1, T9)

(1) −D2(3T7 +D1D2)
]
/72,

F̂ =
[
6D2

1(D
2
2 − 4T9) + 4D1D2(T6 + 6T7) +48C0 (D2, T9)

(1)− 9D2
2T4+288D1Ê

− 24
(
C2, D̂

)(2)
+120

(
D2, D̂

)(1)
−36C1 (D2, T7)

(1)+8D1 (D2, T5)
(1)

]
/144,

B̂ =
{
16D1 (D2, T8)

(1) (3C1D1 − 2C0D2 + 4T2) + 32C0 (D2, T9)
(1) (3D1D2 − 5T6 + 9T7)

+ 2 (D2, T9)
(1) (27C1T4 − 18C1D

2
1 −32D1T2 + 32 (C0, T5)

(1) )

+ 6 (D2, T7)
(1) [8C0(T8 − 12T9) − 12C1(D1D2 + T7) +D1(26C2D1 + 32T5) +C2(9T4 + 96T3)]

+ 6 (D2, T6)
(1) [32C0T9 − C1(12T7 + 52D1D2) −32C2D

2
1

]
+ 48D2 (D2, T1)

(1) (2D2
2 − T8

)

− 32D1T8 (D2, T2)
(1) + 9D2

2T4 (T6 − 2T7)− 16D1 (C2, T8)
(1) (D2

1 + 4T3
)

+ 12D1 (C1, T8)
(2) (C1D2 − 2C2D1) + 6D1D2T4

(
T8 − 7D2

2 − 42T9
)

+ 12D1 (C1, T8)
(1) (T7 + 2D1D2) + 96D2

2

[
D1 (C1, T6)

(1) +D2 (C0, T6)
(1)

]
−

− 16D1D2T3
(
2D2

2 + 3T8
)
− 4D3

1D2

(
D2

2 + 3T8 + 6T9
)
+ 6D2

1D
2
2 (7T6 + 2T7)

−252D1D2T4T9} /(2833),
K̂ =(T8 + 4T9 + 4D2

2)/72, Ĥ = (8T9 − T8 + 2D2
2)/72.

These polynomials in addition to (3) and (4) will serve as bricks in constructing affine invariant

polynomials for systems (2).

The following 42 affine invariants A1, . . . , A42 form the minimal polynomial basis of affine invariants

up to degree 12. This fact was proved in [4] by constructing A1, . . . , A42 using the above bricks.

A1 = Â,

A2 = (C2, D̂)(3)/12,

A3 =
[
C2, D2)

(1), D2

)(1)
, D2

)(1)
/48,

A4 = (Ĥ, Ĥ)(2),

A5 = (Ĥ, K̂)(2)/2,

A6 = (Ê, Ĥ)(2)/2,

A7 =
[
C2, Ê)(2), D2

)(1)
/8,

A8 =
[
D̂, Ĥ)(2), D2

)(1)
/8,

A9 =
[
D̂,D2)

(1), D2

)(1)
, D2

)(1)
/48,

A10 =
[
D̂, K̂)(2), D2

)(1)
/8,

A11 = (F̂ , K̂)(2)/4,

A12 = (F̂ , Ĥ)(2)/4,

A13 =
[
C2, Ĥ)(1), Ĥ

)(2)
, D2

)(1)
/24,
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A14 = (B̂, C2)
(3)/36,

A15 = (Ê, F̂ )(2)/4,

A16 =
[
Ê,D2)

(1), C2

)(1)
, K̂

)(2)
/16,

A17 =
[
D̂, D̂)(2), D2

)(1)
, D2

)(1)
/64,

A18 =
[
D̂, F̂ )(2), D2

)(1)
/16,

A19 =
[
D̂, D̂)(2), Ĥ

)(2)
/16,

A20 =
[
C2, D̂)(2), F̂

)(2)
/16,

A21 =
[
D̂, D̂)(2), K̂

)(2)
/16,

A22 = 1
1152

[
C2, D̂)(1), D2

)(1)
, D2

)(1)
, D2

)(1)
D2

)(1)
,

A23 =
[
F̂ , Ĥ)(1), K̂

)(2)
/8,

A24 =
[
C2, D̂)(2), K̂

)(1)
, Ĥ

)(2)
/32,

A25 =
[
D̂, D̂)(2), Ê

)(2)
/16,

A26 = (B̂, D̂)(3)/36,

A27 =
[
B̂,D2)

(1), Ĥ
)(2)

/24,

A28 =
[
C2, K̂)(2), D̂

)(1)
, Ê

)(2)
/16,

A29 =
[
D̂, F̂ )(1), D̂

)(3)
/96,

A30 =
[
C2, D̂)(2), D̂

)(1)
, D̂

)(3)
/288,

A31 =
[
D̂, D̂)(2), K̂

)(1)
, Ĥ

)(2)
/64,

A32 =
[
D̂, D̂)(2), D2

)(1)
, Ĥ

)(1)
, D2

)(1)
/64,

A33 =
[
D̂,D2)

(1), F̂
)(1)

, D2

)(1)
, D2

)(1)
/128,

A34 =
[
D̂, D̂)(2), D2

)(1)
, K̂

)(1)
, D2

)(1)
/64,

A35 =
[
D̂, D̂)(2), Ê

)(1)
, D2

)(1)
, D2

)(1)
/128,

A36 =
[
D̂, Ê)(2), D̂

)(1)
, Ĥ

)(2)
/16,

A37 =
[
D̂, D̂)(2), D̂

)(1)
, D̂

)(3)
/576,

A38 =
[
C2, D̂)(2), D̂

)(2)
, D̂

)(1)
, Ĥ

)(2)
/64,

A39 =
[
D̂, D̂)(2), F̂

)(1)
, Ĥ

)(2)
/64,

A40 =
[
D̂, D̂)(2), F̂

)(1)
, K̂

)(2)
/64,

A41 =
[
C2, D̂)(2), D̂

)(2)
, F̂

)(1)
, D2

)(1)
/64,

A42 =
[
D̂, F̂ )(2), F̂

)(1)
, D2

)(1)
/16.

In the above list, the bracket “[” is used in order to avoid placing the otherwise necessary up to

five parentheses “(”.

Using the elements of the minimal polynomial basis given above we construct two groups of affine

invariant polynomials. The first group contains invariant polynomials related to the existence of an

invariant parabola for a quadratic system and they are:

χ1 = 32A3 + 45A4 − 160A5;

χ2 = 32A8(14A8 − 48A9 + 37A10 + 24A11) + 16A5(76A17 + 74A18 + 313A19 − 80A20 − 167A21)

+A4(160A
2
2 + 368A18 − 3363A19 + 736A20 + 2109A21) + 32(17A2

10 + 27A10A11 + 24A2
11

− 48A9A12 + 51A10A12 + 24A11A12 + 288A6A14 − 96A7A14);
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χ3 = 6520480A20(407A18 − 2253A21) + 24A18(1057715458A19 + 5944853225A21)

+ 28800A14(1872476A25 − 122259A26) + 144A12(3620283092A29 − 1554910481A30)

+ 1440A15(107225339A25 − 19561440A26)− 72A11(8198511476A29 − 2965514443A30)

+ 652048(4544A2
18 + 125A2

20 − 8955A2A42)− 9(264364688A2
19 + 39417454842A19A21

− 54474141921A2
21) + 3448898760A19A20;

χ4 = 62713A2
10 + 45787A10A11 − 157928A2

11 + 81202A10A12 +A19353474A11A12 − 145848A2
12

+ 64320A7A15 + 28600A5A17;

ζ1 = 13A4 − 24A5;

ζ2 = −A4;

ζ3 = 16A5 − 17A4;

ζ4 = 9A1A4 − 7A1A5 − 2A16;

ζ5 = 166A8 + 384A9 − 1120A10 − 512A11 − 62A12;

ζ6 = A6;

ζ7 = 40(71436A7A20 − 640883A7A21 + 1008622A1A32) + 12A12(3585035A14 + 14919259A15)

− 5(8092193A10 + 15970731A11)A14 − (129780821A10 + 269944167A11)A15;

ζ8 = A2;

ζ9 = 1040(2256A7A15 + 143A3A21)− 264(162941A10 + 315202A11)A12

+ 3A11(25887132A10 + 24385177A11) + 20603609A2
10 + 24896016A2

12;

ζ10 = 250A2
1 + 34A11 − 41A12;

R1 = 531A2A4 − 1472A2A5 − 8352A1A6 + 320A22 − 3216A23 + 1488A24;

R2 = 15A10 − 10A8 − 6A9;

R3 = 4800(6650951968A14A15 − 2382132830A2
14 − 9860550485A2

15) + 1600(4765089473A11

− 7838161089A12)A20 + 640(15664652914A11 − 50944340271A12)A18

− 6(20392663986679A10 + 34357804389813A11 − 739275727012A12)A21

+ 3(46944212550227A10 + 83455057317969A11 − 22899810934956A12)A19;

R4 = 251A2
1 + 25A12;

R7 = 62250A2
1 + 8956A9 − 46223A10 − 50129A11 + 14766A12.

The invariant polynomials from the second group are responsible for the classification of the

configurations of invariant parabolas and lines. They are:

ξ1 = 342A2
1A2 +A2(35A10 − 15A8 − 16A9 + 97A11 − 83A12)− 48A1(4A14 + 3A15)

+ 16(2A32 +A33 − 3A34) + 90A31;

ξ2 = −A19;
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ξ3 = 12(49836514A2
8 − 40804544A8A9 − 63384469A8A10 − 4515985A2

10 + 93824435A8A11

− 23552547A10A11 + 51595312A2
11 + 202411827A2

1A12)− 763176315A4A21

− 16(30603408A9A12 + 10917387A7A14 + 14011860A7A15 − 75865539A5A17

− 115398446A5A18 − 54568383A5A21)− 4(86656770A6A14 + 404823654A6A15

− 68396637A5A19 + 25391678A5A20)− 6A12(154041735A8 + 47473233A10

− 170661233A11 + 202411827A12);

ξ4 = 800(175A2A5A7 − 336A1A3A8 − 16500A13A14 − 9300A13A15 − 47001A6A22 + 39861A7A23

− 3150A6A24 − 10242A7A24 + 168792A5A28) + 240(173478A8A16 + 128774A10A16

+ 151602A11A16 + 134102A12A16 + 8799A4A27 − 134102A5A27)− 1879552(3A9A16 −A7A22)

+ 75(50400A6A23 − 646151A4A28);

ξ5 = 2000(802A13A14 + 315A6A23 − 210A6A24) + 320(28A1A3A11 − 13757A8A16 − 11282A12A16

+ 3336A7A24 + 11282A5A27) + 80(16038A13A15 − 30398A10A16 − 36154A11A16 + 46738A6A22

− 45142A7A23 − 162339A5A28) + 151552(3A9A16 −A7A22)− 15A4(28392A27 − 313721A28);

ξ6 = 1536(16671538A7A14 − 5655800A2
11 − 5655800A11A12 − 134975925A6A15 + 14236220A7A15)

+ 128(42330182A8A9 + 279065017A8A11 − 857954A8A12 + 138313062A9A12

− 633595086A6A14 − 35417298A5A20) + 64(171565045A2
8 + 343921603A5A17)

− 32(1111806317A8A10 + 256225409A2
10 + 874265715A10A11 + 2536914399A10A12

− 936841383A5A18)− 16A5(2168875001A19 + 1048355233A21) +A4(26458433203A19

− 4734012269A21);

ξ7 = −A4

[
3200A12(14657A8 − 1615148A10 + 318175A11)− 640(388968A2

9 − 7748782A2
10

− 592379A9A12)− 160(13079737A8A10 − 27509045A8A11 − 63353923A9A11 − 16215395A10A11

− 36662125A2
11) + 4121433952A9A10

]
;

ξ8 = −A4

[
512A9(1275434A10 + 2193137A11 − 170333A12)− 1280(30087A2

9 + 424036A2
10

+ 1052798A10A11 + 48550A2
11 + 61603A8A12)− 640(608587A8A10 + 248041A8A11

+ 430261A10A12 + 525475A11A12)
]
;

ξ9 = −A4

[
48(675908847A8A9 + 1141726617A9A12 + 7216376855A10A12 − 4015621128A6A14

+ 3915909450A7A15)− 12(16745223889A2
8 + 5997051735A8A11 − 26372062499A10A11

+ 2601951027A8A12 − 7916516650A7A14 − 30105649725A6A15 + 20512413539A5A17

− 1497206278A4A19 − 4791714129A4A21) + 2(220220676003A8A10 + 58687175103A2
10

+ 14685562719A2
11 + 9716839839A11A12 − 219193688911A5A18 − 4467110471A5A20)

+ 3A5(36033875127A19 − 37652431103A21)
]
;

ξ10 = A4

[
48(568199091031A8A9 − 248186616391A9A10 + 314207594667A9A11 + 5804879973A9A12

− 3905825755777A10A12 − 2095407390920A6A14 − 546799764750A7A15) + 12(6550908482493A2
8

− 3402501855145A8A11 − 3448022811579A10A11 + 2284925158471A8A12 + 2482932379806A7A14

− 11017448610465A6A15 + 5894909506479A5A17)− 2(131290745988327A8A10

− 17334476527245A2
10 − 11980168965A2

11 + 21428060568795A11A12 − 62352140313275A5A18

+ 3924064256285A5A20)− 3(2258722903315A5A19 + 9533558573843A4A21 − 10218122423819A5A21)
]
;
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ξ11 = ζ1ζ2ξ6;

ξ12 = 1288A2
1 + 117A10 + 351A11 − 352A12;

ξ13 = 61A2
2 − 20A17 − 8A18 + 24A19 − 28A20 + 12A21;

ξ14 = 9854A11 − 3005A8 − 3296A9 + 13578A10 − 991A12;

ξ15 = 8A5 − 9A4;

ξ16 = (525A8 − 4448A9 + 10554A10 − 1378A11 + 8087A12);

ξ17 = 10005A8 + 9856A9 − 38348A10 − 27404A11 + 8371A12;

ξ18 = 2240(15452233775A2
14 + 742923092360A14A15 − 145263086200A2

15 + 10151798384A11A18

− 68919094926A12A18 − 14663220305A11A20 + 7194838365A12A20) + 16A19(88266907919051A8

+ 12824946044853A11 + 119819326860153A12)− 7A21(138073671324637A10 + 258358507987439A11

− 32813284182036A12);

ξ19 = 429A9(629A10 + 1275A11 − 900A12) + 100(2145A8A11 − 1595A5A17 − 2970A5A18 + 2886A2A23

− 559A2A24);

ξ20 = 4A2(47A
2
2 − 468A18 + 3478A19 + 9A20)− 9189A2A21 + 12(−682A1A25 + 2592A1A26 + 395A38

+ 35A39);

ξ21 = 24(675906A40 − 672409A39 + 6578A41 + 110106A42)− 73404A2(74A18 +A20) + 4(99911A3
2

− 2048846A38)− 15133791A2A21;

ξ22 = 84A12 − 68A10 − 141A11;

ξ23 = 5A8 − 3A9;

ξ24 = 625A2(12A2A3 − 775A1A6)− 62(13500A2
1 + 275A8 − 276A9)A9 + 10A3(2561A17 + 3240A18

+ 2550A19);

ξ25 = − (46A18 + 537A19 + 134A20);

ξ26 = 41A1A2 + 16A14 − 18A15;

ξ27 = A1;

ξ28 = 64(72137434664A2
8 + 3322490880A2

9 − 58216412276A2
10 − 217656099219A10A11 − 63098236389A2

11

− 250756327503A10A12 − 71858710389A11A12 + 96A9(449920640A11 + 1009660963A12)

+ 6A8(21795888048A9 − 66020231422A10 − 21118997424A11 + 2573485725A12))

− 384(62739943233A6A14 − 27065693406A7A14 + 7592410800A6A15 − 10442342780A7A15)

+A4(2998959134256A17 + 4635359414448A18 + 1132776129074A19 − 1187818900002A20

− 5542617623395A21) + 32A3(19078937382A20 + 81853956367A21);

ξ29 = 497213324620A2
8 − 1001736600522A2

10 − 870653569536A9A11 + 337754949134A2
11

+A8(2170429037822A10 − 1858453397512A9 + 2112595332132A11 − 304022217484A12)

− 987799827976A9A12 + 949933240214A11A12 +A10(−648979472052A11 + 956487534504A12)

− 4(125652578829A6A14 + 240347919318A7A14 − 775425835368A6A15 + 405563103412A7A15)

−A4(197626785161A20 + 1540932760870A21) +A5(1910970964424A17 + 2668708281714A18

+ 182967974851A19 + 280452031438A20 + 2136843181298A21);

ξ30 = 3512A10 − 1695A8 − 544A9 + 4576A11 − 3329A12.
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2.2 Preliminary results involving the use of polynomial invariants

A few more definitions and results which play an important role in the proof of the part (B) of the

Main Theorem are needed. We do not prove these results here but we indicate where they can be

found.

Consider the differential operator L = x · L2 − y · L1 constructed in [2] and acting on R[ã, x, y],

where

L1 =2a00
∂

∂a10
+ a10

∂

∂a20
+

1

2
a01

∂

∂a11
+ 2b00

∂

∂b10
+ b10

∂

∂b20
+

1

2
b01

∂

∂b11
,

L2 =2a00
∂

∂a01
+ a01

∂

∂a02
+

1

2
a10

∂

∂a11
+ 2b00

∂

∂b01
+ b01

∂

∂b02
+

1

2
b10

∂

∂b11
.

Using this operator and the affine invariant µ0 = Resx
(
p2(ã, x, y), q2(ã, x, y)

)
/y4 we construct the

following polynomials

µi(ã, x, y) =
1

i!
L(i)(µ0), i = 1, . . . , 4,

where L(i)(µ0) = L(L(i−1)(µ0)) and L(0)(µ0) = µ0.

These polynomials are in fact comitants of systems (2) with respect to the group GL(2,R) (see

[2]). Their geometrical meaning is revealed in Lemma 5.2 of [1]. Using these invariant polynomials

we construct the invariant polynomials D and R which are responsible for the existence of multiple

finite singularity of a quadratic system:

D =
[
3
(
(µ3, µ3)

(2), µ2
)(2) −

(
6µ0µ4 − 3µ1µ3 + µ22, µ4)

(4)
]
/48, R = 3µ21 − 8µ0µ2,

Next we construct the following T -comitants (for the definition of T -comitants see [20]) which are

responsible for the existence of invariant straight lines of systems (2):

B3(ã, x, y) = (C2, D̂)(1) = Jacob(C2, D̂),

B2(ã, x, y) = (B3, B3)
(2) − 6B3(C2, D̂)(3),

B1(ã) = Resx

(
C2, D̂

)
/y9 = −2−93−8 (B2, B3)

(4) .

Lemma 1 (see [19]). For the existence of invariant straight lines in one (respectively 2; 3 distinct)

directions in the affine plane it is necessary that B1 = 0 (respectively B2 = 0; B3 = 0).

To detect the parallel invariant lines we need the following invariant polynomials:

N(ã, x, y) = D2
2 + T8 − 2T9 = 9N̂ ,

θ(ã) = 2A5 −A4 (≡ Discriminant
(
N(a, x, y)

)
/1296).

Lemma 2 (see [19]). A necessary condition for the existence of one couple (respectively two couples)

of parallel invariant straight lines of a system (2) corresponding to ã ∈ R
12 is the condition θ(ã) = 0

(respectively N(ã, x, y) = 0).

Now we introduce some important GL-comitant in the study of the invariant conics. Considering

C2(ã, x, y) = yp2(ã, x, y)− xq2(ã, x, y) as a cubic binary form of x and y we calculate

η(ã) = Discrim[C2/x
3, ξ], M(ã, x, y) = Hessian[C2],
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where ξ = y/x or ξ = x/y. We point out (see [22]) that the invariant polynomials C2, η and M are

responsible for the number of infinite singularities and their kind (real or complex).

In this paper we consider only the case η 6= 0, i.e. η > 0 and η < 0. In the first case by [22] a

quadratic system possesses at infinity three real distinct singularities whereas in the second case it

possesses one real and two complex singularities.

In [23] the classification of the class QSP of quadratic systems possessing at least one invariant

parabola is performed. More exactly in this paper necessary and sufficient conditions are determined

for a quadratic system to belong to QSP.

We extract from [23] only the information related to the case η 6= 0 and for this we need some

notations.

Definition 3. By the direction of an invariant parabola of a quadratic system (S) we mean the

direction of its axis of symmetry which intersects the invariant line Z = 0 at an infinite singular

point of (S).

In order to distinguish the invariant parabolas that a quadratic system could have we use the

following notations:

❼ ∪ for a simple invariant parabola;

❼ ⋒ for two simple invariant parabolas in the same direction (they could intersect);

❼ ∪⊂ for two simple invariant parabolas in different directions;

❼ ∪∪∪2 for one double invariant parabola;

❼ ⋒⊂ for three simple invariant parabolas: two in one direction and one in another direction.

The proof of the next three propositions could be found in [23].

Proposition 2. Assume that for a non-degenerate arbitrary quadratic system the conditions η > 0,

χ1 = 0 and ζ1 6= 0 are satisfied. Then this system could possess invariant parabolas only in one

direction. More exactly it could only possess one of the following sets of invariant parabolas: ∪, ⋒

and ∪∪∪2. Moreover this system has one of the above sets of parabolas if and only if χ2 = 0 and one

of the following sets of conditions are satisfied, correspondingly:

(A1) ζ2 6= 0, ζ3 6= 0, ζ4 6= 0, R1 6= 0 ⇒ ∪;

(A2) ζ2 6= 0, ζ3 6= 0, ζ4 = 0, R2 6= 0, ζ5 6= 0 ⇒ ⋒;

(A3) ζ2 6= 0, ζ3 6= 0, ζ4 = 0, R2 6= 0, ζ5 = 0 ⇒ ∪∪∪2;

(A4) ζ2 6= 0, ζ3 6= 0, ζ4 = 0, R2 = 0, ζ5 6= 0 ⇒ ∪;

(A5) ζ2 6= 0, ζ3 = 0, ζ4 6= 0, R1 6= 0 ⇒ ∪;

(A6) ζ2 6= 0, ζ3 = 0, ζ4 = 0, R2 6= 0 ζ5 6= 0 ⇒ ⋒;

(A7) ζ2 6= 0, ζ3 = 0, ζ4 = 0, R2 6= 0, ζ5 = 0 ⇒ ∪∪∪2;

(A8) ζ2 6= 0, ζ3 = 0, ζ4 = 0, R2 = 0, ζ5 6= 0 ⇒ ∪;

(A9) ζ2 = 0, ζ6 6= 0, R1 = 0, R2 6= 0 ⇒ ∪.
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Moreover in the case of the existence of an invariant parabola a system with η > 0 and ζ1 6= 0

could be brought via an affine transformation and time rescaling to the following canonical form:

ẋ = m+ nx− 1

2
(1 + g)y + gx2 + xy, ẏ = 2mx+ 2ny + (g − 1)xy + 2y2 (5)

possessing the invariant parabola Φ(x, y) = x2 − y = 0.

Proposition 3. Assume that for a non-degenerate arbitrary quadratic system the conditions η > 0

and χ1 = ζ1 = 0 are satisfied. Then this system could possess invariant parabolas in one or two

directions. More exactly it could only possess one of the following sets of invariant parabolas: ∪, ⋒,

∪∪∪2, ∪⊂ and ⋒⊂. Moreover this system has one of the above sets of invariant parabolas if and only

if χ3 = 0 and one of the following sets of conditions are satisfied, correspondingly:

(B1) χ4 6= 0, ζ7 6= 0, R3 6= 0 ⇒ ∪;

(B2) χ4 6= 0, ζ7 = 0, R4 6= 0, ζ8 6= 0 ⇒ ⋒;

(B3) χ4 6= 0, ζ7 = 0, R4 6= 0, ζ8 = 0 ⇒ ∪∪∪2;

(B4) χ4 6= 0, ζ7 = 0, R4 = 0 ⇒ ∪;

(B5) χ4 = 0, ζ5 6= 0, ζ9 6= 0 ⇒ ∪⊂;

(B6) χ4 = 0, ζ5 6= 0, ζ9 = 0, ζ10 6= 0 ⇒ ∪;

(B7) χ4 = 0, ζ5 = 0, ζ6 6= 0 ⇒ ⋒⊂.

Moreover in the case of the existence of an invariant parabola a system with η > 0 and ζ1 = 0

could be brought via an affine transformation and time rescaling to the systems (5) with g = 2.

Proposition 4. Assume that for a non-degenerate arbitrary quadratic system the conditions η < 0,

χ1 = 0 and ζ1 6= 0 are satisfied. Then this system could possess invariant parabolas only in one

(real) direction. More exactly it could only possess one of the following sets of invariant parabolas:

∪, ⋒ and ∪∪∪2. Moreover this system has one of the above sets of invariant parabolas if and only if

χ2 = 0 and one of the following sets of conditions are satisfied, correspondingly:

(E1) ζ4 6= 0, R1 6= 0 ⇒ ∪;

(E2) ζ4 = 0, R7 6= 0, ζ5 6= 0 ⇒ ⋒;

(E3) ζ4 = 0, R7 6= 0, ζ5 = 0 ⇒ ∪∪∪2;

(E4) ζ4 = 0, R7 = 0, ζ5 6= 0 ⇒ ∪.

Moreover in the case of the existence of an invariant parabola a system with η < 0 could be brought

via an affine transformation and time rescaling to the following canonical form:

ẋ = m+ (2n− 1)x/2 + gx2 − gy/2− xy, ẏ = 2mx− x2 + 2ny + gxy − 2y2, (6)

with C2 = x(x2 + y2), possessing the invariant parabola Φ(x, y) = x2 − y = 0.

3 The proof of the Main Theorem

The statement (A) of Main Theorem follows from Lemma 2.4 of [23]. The statement (C) follows

directly from the form of the conditions given in Diagrams 1, 2 and 3. These conditions could be

evaluated for any point a ∈ R
12 corresponding to a quadratic system with the condition η 6= 0.

In order to prove the statement (B) of Main Theorem we have to examine the sets of conditions

provided by each one of Propositions 2, 3 and 4.
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3.1 Systems in QSP(η>0) with the condition ζ1 6= 0

In what follows we examine the configurations of the systems in QSP(η>0) in each one of the cases

provided by Proposition 2. According to this proposition we consider the canonical form (5), i.e.

the systems

ẋ = m+ nx− 1

2
(1 + g)y + gx2 + xy, ẏ = 2mx+ 2ny + (g − 1)xy + 2y2 (7)

possessing the invariant parabola Φ(x, y) = x2 − y = 0.

3.1.1 The statement (A1)

For systems (7) we calculate

ζ1 =2(g − 2)(3 + g), ζ2 = 4g(1 + g), ζ3 = 8(1 + 2g)2,

ζ4 =(g − 2)(3 + g)(1 + 7g + 15g2 + 9g3 − 4m+ 2n+ 6gn)/16,

R1 =− 15g(1 + g)(g − 2)(3 + g)(1 + 7g + 15g2 + 9g3 − 4m+ 2n+ 6gn)/2,

B1 =m(g + 8m+ 4n)(gn− 2m− n)(1 + 2g + g2 − 4m+ 2n+ 2gn)

× (g + 2g2 + g3 + 4m+ 2n+ 2gn)/4.

(8)

3.1.1.1 The case B1 6= 0. The according to Lemma 1 systems (7) could not possess any invariant

line.

Let us examine the finite singularities of these systems. Following [1, Proposition 5.1] we calculate

the invariant polynomial D = 48F2
1F2, where

F1 =− 4m2 + 2(g + 1)m(g2 − 2n)− (g + 1)2n2;

F2 =108m2 + 2(g − 1)m(1− 2g + g2 − 18n) + n2(16n− 1 + 2g − g2).
(9)

So we discuss these two subcases: D 6= 0 and D = 0.

3.1.1.1.1 The subcase D 6= 0. We determine that systems (7) possess four finite singularities

Mi(xi, yi) (i = 1, 2, 3, 4) with the coordinates

x1 =− 2m+ n+ gn

g(1 + g)
, y1 =

2m

1 + g
; x2 =

1

6Z1/3

[
Y + (1− g)Z1/3 + Z2/3

]
,

y2 =
1

36Z
[
3(Y + 4n)Z + Y2Z1/3 − 2(g − 1)YZ2/3 − 2(g − 1)Z4/3 + Z5/3;

x3 =
1

12Z1/3

[
− (1 + i

√
3)Y + 2(1− g)Z1/3 − (1− i

√
3)Z2/3

]
,

y3 =− 1

72Z
[
− 6(Y + 4n)Z + (1− i

√
3)Y2Z1/3 − 2(1 + i

√
3)(g − 1)YZ2/3

− 2(1− i
√
3)(g − 1)Z4/3 + (1 + i

√
3)Z5/3

]
;

x4 =
1

12Z1/3

[
(−1 + i

√
3)Y + 2(1− g)Z1/3 − (1 + i

√
3)Z2/3

]
,

y4 =− 1

72Z
[
− 6(Y + 4n)Z + (1 + i

√
3)Y2Z1/3 − 2(1− i

√
3)(g − 1)YZ2/3

− 2(1 + i
√
3)(g − 1)Z4/3 + (1− i

√
3)Z5/3

]
,

(10)
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where

Z = 1− 3g + 3g2 − g3 − 108m− 18n+ 18gn+ 6
√
3
√

F2, Y = (1− g)2 − 12n.

Calculations yield:

Φ(x2, y2) = Φ(x3, y3) = Φ(x4, y4) = 0, Φ(x1, y1) =
F1

g2(1 + g)2

and therefore we deduce that three singularities M2, M3 and M4 of systems (7) are located on the

invariant parabola. Moreover M1 is located outside the parabola and could belong to it if and only

if the condition F1 = 0 holds, where F1 is given in (9). However we have D = 48F2
1F2 6= 0 and

hence on the parabola we always have three distinct singularities.

On the other hand according to [1, Proposition 5.1] if D > 0 systems (7) possess two real and

two complex finite singularities. For D < 0 we could have either four real or four complex finite

singularities. However since M1 is a real singular point for these systems we conclude that in the

case D < 0 we have four real finite distinct singularities.

Thus since the real singularityM1 is outside the invariant parabola and all three finite singularities

on the parabola (real or complex) are distinct and furthermore we could not have any invariant line

we arrive at the configuration Config.P.1 if D < 0 and Config.P.2 if D > 0.

3.1.1.1.2 The subcase D = 0. This implies F1F2 = 0 and for systems (7) we calculate:

ξ1 = −6ζ4F1 ⇒ F1 = 0 ⇔ ξ1 = 0.

So we examine two possibilities: ξ1 6= 0 and ξ1 = 0.

1: The possibility ξ1 6= 0. Then F1 6= 0 and therefore the condition D = 0 implies F2 = 0.

We observe that the polynomial F2 is quadratic with respect to the parameter m and we calculate

Discrim [F2,m] = 4(1− 2g + g2 − 12n)3.

Therefore since the parametersm, n and g of systems (7) must be real we conclude that the condition

1− 2g + g2 − 12n ≥ 0 has to be fulfilled. So setting a new parameter v: 1− 2g + g2 − 12n = v2 ≥ 0

we get n =
[
(g − 1)2 − v2

]
/12 and then we calculate

F2 =
1

432

[
216m− (1− g + v)2(g − 1 + 2v)

][
216m− (1− g − v)2(g − 1− 2v)

]
= 0

and due to the change v → −v we could force the first factor to vanish. Then we obtain

m = (1− g + v)2(g − 1 + 2v)/216

and considering the expression for the parameters m and n we arrive at the 2-parameter family of

systems

ẋ =
(1− g + v)2(g − 1 + 2v)

216
+

(g − 1)2 − v2

12
x− 1

2
(1 + g)y + gx2 + xy,

ẏ =
(1− g + v)2(g − 1 + 2v)

108
x+

(g − 1)2 − v2

6
, y + (g − 1)xy + 2y2,

(11)
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possessing the invariant parabola Φ(x, y) = x2 − y = 0. We observe that for the above systems we

have the following conditions on the parameters g and v:

ζ1ζ2ζ3ζ4R1 6= 0 ⇔ g(g − 2)(1 + g)(3 + g)(1 + 2g)(2 + 4g − v)(4 + 8g + v) 6= 0;

ξ1 6= 0 ⇔ (g − 2)(3 + g)(g − 1− v)(2 + g − v)(2 + 4g − v)(4 + 8g + v)2

× (4− 2g − 2g2 − 4v − 8gv + v2) 6= 0;

B1 6= 0 ⇔ (g − 1− v)(2 + g − v)(2 + 4g − v)(2g − 2 + v)(1 + 2g + v)(4 + 2g + v)

× (g − 1 + 2v)(2 + g + 2v) 6= 0.

(12)

We determine that systems (14) possess three finite singularities Mi(xi, yi) (i = 1, 2, 3) with the

coordinates

x1 =
1− g + v

6
, y1 =

(1− g + v)2

36
; x2 =

1− g − 2v

6
, y2 =

(1− g − 2v)2

36
;

x3 =
(1− g + v)(5g2 − 4− g + 4v + 5gv − v2)

54g(1 + g)
, y3 =

(1− g + v)2(g − 1 + 2v)

108(1 + g)
.

(13)

We calculate

Φ(x1, y1) = Φ(x2, y2) = 0, Φ(x3, y3) =
(g − 1− v)2(2 + g − v)2(4− 2g − 2g2 − 4v − 8gv + v2)

2916g2(1 + g)2

and we conclude that the singular points M1 and M2 are located on the invariant parabola.

On the other hand considering the conditions (12) we obtain thatM3 will be located on Φ(x, y) = 0

if and only if

α = 4− 2g(1 + g)− 4v − 8gv + v2 = 0.

However considering (12) we conclude that α 6= 0 (due to ξ1 6= 0) and hence the singularity M3 is

not located on the invariant parabola in the considered case.

We claim that M2 is a multiple singularity of systems (11). Indeed, applying the corresponding

translation, we could place M2 at the origin of coordinates and we arrive at the systems

ẋ =− (g − v − 1)
(
5g2 + 5gv − g − v2 + 4v − 4

)

54(g + 1)
x− (2g + v + 1)(4g − v + 2)2

54g(g + 1)
y + gx2 + xy,

ẏ =
g(g + 2v − 1)(g − v − 1)2

54(g + 1)
x+ (g − 1)xy + 2y2 +

g − v − 1

54g(g + 1)

[
6g3 − (v − 2)2

− g(v − 2)(3v − 2) + 2g2(1 + 3v)
]
y,

where M0(0, 0) is a singularity of the above systems corresponding to the singularity M1.

Considering [1], we calculate the following invariant polynomials: µ4 = µ3 = 0 and

µ2 = − 1

324
v(g − v − 1)(g − v + 2)

[
(2g + v − 2)x+ 6y

][
g(g − v − 1)x+ (2 + 4g − v)y

]
,

and by [1, Lemma 5.2, statement (ii)] the point M0 is of multiplicity at least 2. We observe that due

to the condition ξ1 6= 0 we have µ2 = 0 if and only if v = 0. In this case we calculate

µ2 = 0, µ1 = − 1

27
(g − 1)

[
g(g − 1)(4 + 5g)x+ 2(13g + 16g2 − 2)y

]
6= 0,
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due to ξ1 6= 0. According to [1, Lemma 5.2, statement (ii)] we have a double point if v 6= 0 and a

triple one if v = 0.

On the other hand for systems (11) we have

ξ2 =
1

209952
(g − 1− v)2(2 + g − v)2v2α2

and due to the conditions (12) we conclude that the condition v = 0 is equivalent to ξ2 = 0.

Thus for systems (11) we have the configuration Config.P.3 if ξ2 6= 0 and Config.P.4 if ξ2 = 0.

2: The possibility ξ1 = 0. This implies F1 = 0 and we observe that the polynomial F1 is quadratic

with respect to the parameter m and we calculate

Discrim [F1,m] = 4g2(1 + g)2(g2 − 4n).

Since g(g + 1) 6= 0 (due to ζ2 6= 0) we must have g2 − 4n ≥ 0. So we set a new parameter u as

follows: g2 − 4n = u2 ≥ 0 and we get n = (g2 − u2)/4. Then calculation yields

F1 = − 1

16

[
8m− (1 + g)(g + u)2

][
8m− (1 + g)(g − u)2

]
= 0

and due to the change u→ −u we could force the second factor to vanish. In this case we obtain

m = (1 + g)(g − u)2/8

and considering the expression for the parameters m and n we arrive at the 2-parameter family of

systems

ẋ =
(1 + g)(g − u)2

8
+
g2 − u2

4
x− 1

2
(1 + g)y + gx2 + xy,

ẏ =
(1 + g)(g − u)2

4
x+

g2 − u2

2
y + (g − 1)xy + 2y2

(14)

possessing the invariant parabola Φ(x, y) = x2 − y = 0. We observe that for the above systems we

have the following condition on the parameters g and u:

ζ1ζ2ζ3ζ4R1 6= 0 ⇔ (g − 2)g(1 + g)(3 + g)(1 + 2g)(1 + 2g + u)(1 + 5g + 5g2 − u− 2gu) 6= 0;

B1 6= 0 ⇔ g(1 + g)(g − u)(1 + g − u)(1 + 2g − u)(−1 + u)(1 + u) 6= 0.
(15)

We determine that systems (14) possess three finite singularities Mi(xi, yi) (i = 1, 2, 3) with the

coordinates

x1 =
u− g

2
, y1 =

(u− g)2

4
; x2,3 =

1

4

(
1− u±

√
Z1

)
,

y2,3 =
1

8

[
1− 2g − 2g2 + 2gu+ u2 ∓ (u− 1)

√
Z1

]
, Z1 = −4g2 + 4g(−1 + u) + (1 + u)2.

(16)

We calculate

Φ(x1, y1) = Φ(x2, y2) = Φ(x3, y3) = 0

and therefore all three singularities are located on the invariant parabola.
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We point out thatM1 is a multiple singularity of systems (14). Indeed, applying the corresponding

translation, we could place M1 at the origin of coordinates and we arrive at the systems

ẋ =− 1

2
g(g − u)x+

1

2
(u− 2g − 1)y + gx2 + xy,

ẏ =
1

2
g(g − u)2x+

1

2
(2g − u+ 1)(g − u)y + (g − 1)xy + 2y2,

where M0(0, 0) is a singularity of the above systems corresponding to the singularity M1.

Considering [1], we calculate the following invariant polynomials: µ4 = µ3 = 0 and

µ2 =
1

2
g(g + 1)(g − u)(g − u+ 1)

[
g(g − u)x2 + (2g − 1 +−u)xy + 2y2

]
6= 0,

due to the conditions (15). By [1, Lemma 5.2, statement (ii)] the pointM0 is of multiplicity exactly 2.

On the other hand it is clear that the singularities M2 and M3 could be complex (respectively

real; coinciding) if Z1 < 0 (respectively Z1 > 0; Z1 = 0). We observe that for systems (14) we have:

ξ2 = g2(1 + g)2(g − u)2(1 + g − u)2Z1

and due to the conditions (15) we conclude that the sign of Z1 is governed by the invariant polynomial

ξ2. So we discuss three cases: ξ2 < 0, ξ2 > 0 and ξ2 = 0.

1.1: The case ξ2 < 0. This implies Z1 < 0 and then systems (14) possess only one real singular

point M1 (which is double) and evidently we get the configuration Config.P.5.

1.2: The case ξ2 > 0. Then Z1 > 0 and this implies the existence of three real singularities and we

have to determine the position of the double point with respect to the simple ones. So we calculate

(x3 − x1)(x2 − x1) = (g − u)(1 + g − u)/2 ≡ α1/2, sign
(
(x3 − x1)(x2 − x1)

)
= sign (α1), (17)

where α1 6= 0 due to B1 6= 0. This means that the singularity M1 could not coalesce with one of the

singularities M2 or M3.

On the other hand for systems (14) calculations yield:

ξ3 =
27249129

2
g2(1 + g)2α3

1Z1.

So due to the conditions (15) we deduce that sign (ξ3) = sign (α1Z1).

Therefore in the case ξ3 < 0 the double singular point M1 is located on the parabola between M2

and M3 and we arrive at the configuration Config.P.6.

If ξ3 > 0 we evidently get the configuration Config.P.7.

1.3: The case ξ2 = 0. Then Z1 = 0 which implies the coalescence of the singularities M2 and

M3. Therefore systems (14) possess two double singularities located on the invariant parabola. So

we obtain the configuration Config.P.8.

It remains to mention that the case u = 0 (i.e. when the discriminant of F1 vanishes) is included

in the previous examination because the condition u 6= 0 was not necessary. So in this case we obtain

the same configurations for the provided conditions, respectively.
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3.1.1.2 The case B1 = 0. Considering (8) we observe that the condition B1 = 0 splits into five

conditions at the coefficient level. However due to an affine transformation we could decrease this

number. More exactly we have the following lemma.

Lemma 3. The condition (g + 8m + 4n)(1 + 2g + g2 − 4m + 2n + 2gn) = 0 for systems (7) could

be transferred to the condition m(gn− 2m− n) = 0 via an affine transformation.

Proof: Applying to systems (7) the transformation

x1 = −x+ 1/2, y1 = −x+ y + 1/4,

we obtain the systems

ẋ1 =− 1

8
(g + 8m+ 4n) +

1

4
(1 + 2g + 4n)x1 +

g

2
y1 − (1 + g)x21 + x1y1,

ẏ1 =− 1

4
(g + 8m+ 4n)x1 +

1

2
(1 + 2g + 4n)y1 − (g + 2)x1y1 + 2y21.

So setting the new parameters

m1 = −1

8
(g + 8m+ 4n), n1 =

1

4
(1 + 2g + 4n), g1 = −(1 + g) ⇒

m = −1

8
(g1 + 8m1 + 4n1), n =

1

4
(1 + 2g1 + 4n1) g = −(1 + g1),

(18)

we obtain the family of systems

ẋ1 =m1 + nx1 −
1 + g1

2
y1 + g1x

2
1 + x1y1, ẏ = 2m1x1 + 2n1y1 + (g1 − 1)x1y1 + 2y21

which coincide with family (7) (up to notations). Then considering (18) calculations yield:

g + 8m+ 4n = −8m1, 1 + 2g + g2 − 4m+ 2n+ 2gn = 2(2m1 + n1 − g1n1)

and this completes the proof of the lemma.

Thus by Lemma 3 in order to examine the condition B1 = 0 it is sufficient to consider the condition

m(gn− 2m− n)(g + 2g2 + g3 + 4m+ 2n+ 2gn) = 0.

In order to determine the invariant conditions which distinguish the three possibilities provided

by the above equality, for systems (7) we calculate:

ξ4 =21 · 2654m(g + 8m+ 4n)ζ4,

ξ5 =− 14 · 55(gn− 2m− n)(1 + 2g + g2 − 4m+ 2n+ 2gn)ζ4.
(19)

Hence due to ζ4 6= 0 the condition ξ4 = 0 is equivalent to m(g+8m+4n) = 0 (this implies B1 = 0),

whereas the condition ξ5 = 0 is equivalent to (gn− 2m− n)(1 + 2g + g2 − 4m+ 2n+ 2gn = 0) (this

also implies B1 = 0).
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3.1.1.2.1 The subcase ξ4 6= 0. Then m(g + 8m+ 4n) 6= 0 and we consider two possibilities:

ξ5 6= 0 and ξ5 = 0.

1: The possibility ξ5 6= 0. In this case we have (gn − 2m − n)(1 + 2g + g2 − 4m + 2n + 2gn) 6= 0

and therefore the condition B1 = 0 implies g + 2g2 + g3 + 4m + 2n + 2gn = 0. This yields m =

−(1 + g)(g + g2 + 2n)/4 and we get the family of systems

ẋ =− 1

4
(1 + g − 2x)(g + g2 + 2n+ 2gx+ 2y),

ẏ =− (1 + g)(g + g2 + 2n)

2
x+ 2ny + (g − 1)xy + 2y2

(20)

possessing the invariant line x = (g + 1)/2. For these systems we calculate

B2 =− 81g2(1 + g)2(g + g2 + 2n)(1 + 4g + 2g2 + 4n)(1 + 2g + g2 + 4n)2x4,

ξ4 =13125g(1+ g)(g − 2)(3 + g)(1+ 2g)(g + g2 + 2n)(1+ 4g + 2g2 + 4n)(1+ 6g + 5g2 + 4n),

ξ5 =− (21875/16)(g − 2)g(1 + g)(3 + g)(1 + 2g)(1 + 2g + g2 + 4n)2(1 + 6g + 5g2 + 4n),

and we observe that the condition ξ4ξ5 6= 0 implies B2 6= 0. Then by Lemma 1 besides the invariant

line x = (g + 1)/2 systems (20) could not possess invariant lines in other directions. However they

could have a parallel invariant line and by Lemma 2 for this it is necessary θ = 0 and this condition

implies (g− 1)(g+2) = 0. A straightforward calculation shows us that none of the conditions g = 1

or g = −2 could imply the appearance of an additional parallel invariant line.

Next we determine that systems (20) possess four finite singularities Mi(xi, yi) (i = 1, 2, 3, 4) with

the coordinates

x1 =
1 + g

2
, y1 =

(1 + g)2

4
; x2 =

1 + g

2
, y2 = −g + g2 + 2n

2
; x3,4 =

1

2

(
− g ±

√
Z2

)
,

y3,4 =
1

2

(
− g − 2n∓ g

√
Z2

)
, Z2 = −(2g + g2 + 4n).

(21)

We determine that the singularities M1, M3 and M4 are located on the invariant parabola. At

the same time M1 and M2 are located on the invariant line x = (g + 1)/2 and M1 is the point of

intersection of this invariant line with the parabola.

In order to determine the reciprocal position of the singularitiesM1 andM2 on the vertical invariant

line we calculate

y2 − y1 = −1 + 4g + 3g2 + 4n

4
≡ −α2

4
⇒ sign (y2 − y1) = −sign (α2). (22)

Since the singularities M2 and M3 are either complex or real or coinciding depending on the value

of Z2 we need to distinguish these conditions using affine invariant polynomials. For systems (20)

we calculate:

ζ4 =
1

16
(g − 2)(3 + g)(1 + 2g)(1 + 6g + 5g2 + 4n) ≡ 1

16
(g − 2)(3 + g)(1 + 2g)β2,

D =− 3

4
g4(1 + g)4β22α

2
2Z2, ζ2 = 4g(1 + g),

(23)

and due to ζ2ζ4 6= 0 we conclude that D = 0 is equivalent to α2Z2 = 0. Moreover if D 6= 0 then

sign (D) = −sign (Z2). So we discuss three cases: D < 0, D > 0 and D = 0.
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1.1: The case D < 0. This implies Z2 > 0 and systems (20) possess four real singularities. Clearly

it is necessary to know the position of the real singularities M3,4 with respect to M1 all located on

the invariant parabola. We calculate

(x3 − x1)(x4 − x1) =
β2
4
, (x3 − x1) + (x4 − x1) = −(1 + 2g),

sign
(
(x3 − x1)(x4 − x1)

)
= sign (β2), sign

(
(x1 − x3) + (x1 − x4)

)
= −sign (1 + 2g).

We observe that β2 6= 0 due to the condition ζ4 6= 0 and moreover α2 6= 0 due to D 6= 0.

On the other hand we need the invariant polynomials which govern the signs of β2 and α2. So for

systems (20) we calculate:

ξ7 = 1174627500 g2(1 + g)2(1 + 2g)2α2
2β2Z2, ξ8 = 61822500g2(1 + g)2(1 + 2g)2α2β

2
2Z2

and due to the condition D < 0 which implies g(1+g)(1+2g)α2β2 6= 0 and Z2 > 0 (this also implies

ξ7ξ8 6= 0) we have the next relations:

sign (β2) = sign (ξ7), sign (α2) = sign (ξ8).

Thus considering the above relations in the case D < 0 we detect the following configurations:

ξ7 < 0, ξ8 < 0 ⇒ (x3 − x1)(x4 − x1) < 0, y2 > y1 ⇒ Config.P.9;

ξ7 < 0, ξ8 > 0 ⇒ (x3 − x1)(x4 − x1) < 0, y2 < y1 ⇒ Config.P.10;

ξ7 > 0, ξ8 < 0 ⇒ (x3 − x1)(x4 − x1) > 0, y2 > y1 ⇒ Config.P.11;

ξ7 > 0, ξ8 > 0 ⇒ (x3 − x1)(x4 − x1) > 0, y2 < y1 ⇒ Config.P.12.

1.2: The case D > 0. Then Z2 < 0 and we claim that this condition implies α2 > 0. Indeed

supposing the contrary (i.e. α2 < 0) we must have Z2 + α2 < 0. However calculations yield:

Z2 + α2 = −(2g + g2 + 4n) + (1 + 4g + 3g2 + 4n) = (1 + g)2 + g2 > 0. (24)

The contradiction we obtained proves our claim.

Therefore since M2 and M3 are complex we arrive at the configuration Config.P.13.

1.3: The case D = 0. Considering (23) we deduce that due to ζ2ζ4 6= 0 the condition D = 0

implies α2Z2 = 0.

On the other hand for systems (20) we calculate:

ξ1 = g2(1 + g)2(g − 2)(3 + g)(1 + 2g)α2β2, ζ3 = 8(1 + 2g)2.

So due to ζ2ζ3ζ4 6= 0 (i.e. g(1 + g)(g − 2)(3 + g)(1 + 2g)β2 6= 0) we obtain that the condition α2 = 0

is equivalent to ξ1 = 0. So we discuss two subcases: ξ1 6= 0 and ξ1 = 0.

1.3.1: The subcase ξ1 6= 0. In this case the condition D = 0 implies Z2 = 0. Then M3 and M4

coalesce producing a double point located on the invariant parabola. Considering (24) we deduce

that the condition Z2 = 0 implies α2 > 0.

Thus it is not too difficult to determine that in this case we arrive at the configuration Config.P.14.
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1.3.2: The subcase ξ1 = 0. This implies α2 = 0 and as we have mentioned earlier (see formulas

(22)) in this case we get y2 = y1 and hence the intersection pointM1 of the invariant line x = (g+1)/2

with the parabola becomes a double singularity of systems (20). Moreover the position of the real

singularities M3 and M4 with respect to M1 depends on the sign of β2.

So the condition α2 = 0 implies n = −(1 + g)(1 + 3g)/4 and then we obtain

β2 = 2g(1 + g), ζ2 = 4g(1 + g) ⇒ sign (β2) = sign (ζ2).

Thus in the case α2 = 0 (i.e. ξ1 = 0) we obtain the following two configurations:

ζ2 < 0 ⇒ (x3 − x1)(x4 − x1) < 0, y2 = y1 ⇒ Config.P.15;

ζ2 > 0 ⇒ (x3 − x1)(x4 − x1) > 0, y2 = y1 ⇒ Config.P.16.

2: The possibility ξ5 = 0. Considering (19) and the condition ζ4 6= 0 we obtain that the condition

ξ5 = 0 implies

(gn− 2m− n)(1 + 2g + g2 − 4m+ 2n+ 2gn) = 0.

On the other hand according to Lemma 3 it is sufficient to examine the condition given by the

first factor because the condition defined by the second factor could be brought to the first one via

an affine transformation.

So in what follows we assume that for systems (7) the condition gn − 2m − n = 0 holds. Then

m = n(g − 1)/2 and we arrive at the family of systems

ẋ =
n(g − 1)

2
+ nx− 1

2
(1 + g)y + gx2 + xy, ẏ = (n+ y)(gx− x+ 2y) (25)

which possess the invariant line y = −n and the invariant parabola Φ(x, y) = x2 − y = 0. For these

systems we calculate

B2 =− 81g2(1 + 4n)
[
(1 + g)2 + 4n

]2
y4/2,

ξ4 =26250(g − 1)g(1 + g)(g − 2)(3 + g)n(1 + 4n)(1 + 6g + 9g2 + 4n)
(26)

and we consider two cases: B2 6= 0 and B2 = 0.

2.1: The case B2 6= 0. In this case by Lemma 1 systems (25) could not possess invariant lines in

other directions than the invariant line y = −n. But by Lemma 2 these systems could possess an

invariant line parallel to the existent one if θ = −8(g− 1)(2+ g) = 0. So due to ξ4 6= 0 the condition

implies g = −2. However in this case systems (25) do not have any invariant line parallel to y = −n.
Next we determine that systems (25) possess the finite singularities Mi(xi, yi) (i = 1, 2, 3, 4) with

the coordinates

x1 =
√
−n, y1 = −n; x2 = −

√
−n, y2 = −n; x3 =

1− g

2
, y3 =

(1− g)2

4
;

x4 = − 2n

1 + g
, y4 =

n(g − 1)

1 + g
.

(27)

We observe that singular points M1, M2 and M3 are located on the invariant parabola Φ(x, y) =

x2 − y = 0. Moreover M1 and M2 are the points of intersection of the invariant line y = −n and

they are either complex for n > 0 or real for n < 0 or they coincide if n = 0.
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On the other hand for systems (25) calculations yield:

D = 48g4n3(1− g2 + 4n)2(1− 2g + g2 + 4n)2 ≡ 48g4n3 α2
3 β

2
3

and it is clear that in the case D 6= 0 we have sign (D) = sign (n).

To determine the position of the singular point M4 we calculate

Φ(x4, y4) =
nα3

(1 + g)2

and since n 6= 0 (due to ξ4 6= 0) we deduce that the singular point M4 lies on the invariant parabola

if and only if α3 = 0.

To examine the configurations of systems we consider three subcases: D < 0, D > 0 and D = 0.

2.1.1: The subcase D < 0. Then n < 0 and the singular point M1 and M2 are real and in order

to determine the position of the singularity M3 with respect to the real singularities M1 and M2 we

calculate

(x3 − x1)(x3 − x2) = (1− g)2 + 4n ≡ β3, (x3 − x1) + (x3 − x2) = 1− g;

sign
(
(x3 − x1)(x3 − x2)

)
= sign (β3), sign

(
(x3 − x1) + (x3 − x2)

)
= sign (1− g).

We observe that α3β3 6= 0 due to D 6= 0 and we have to determine invariant polynomials which

are responsible for the signs of β3 and g − 1. Calculations yield:

ξ9 =5589813240 g6(1 + g)2(1 + 2g + g2 + 4n)2β3,

ξ10 =24814861965 (g − 1)g2(1 + g)2(1 + 2g + g2 + 4n)2(1 + 6g + 9g2 + 4n)2/2,
(28)

and taking into account the condition ξ4B2 6= 0 and (26) we deduce that sign (β3) = sign (ξ9) and

sign (g − 1) = sign (ξ10).

Thus considering the above relations in the case D < 0 we arrive at the following configurations:

ξ9 < 0 ⇒ (x3 − x1)(x3 − x2) < 0 ⇒ Config.P.17;

ξ9 > 0, ξ10 < 0 ⇒ (x3 − x1) > 0, (x3 − x2) > 0 ⇒ Config.P.18;

ξ9 > 0, ξ10 > 0 ⇒ (x3 − x1) < 0, (x3 − x2) < 0 ⇒ Config.P.19.

2.1.2: The subcase D > 0. Then n > 0 and the singular points M1 and M2 are complex. So

due to the condition α3 6= 0 we arrive at the configuration Config.P.20.

2.1.3: The subcase D = 0. This implies nα3 β3 = 0 and we have to distinguish these three

cases. From (28) we observe that due to ξ4B2 6= 0 the condition ξ9 = 0 is equivalent to β3 = 0.

On the other hand for systems (25) we have

ζ8 = gn(1 + 2g + g2 + 4n)

and due to B2 6= 0 the condition ζ8 = 0 is equivalent to n = 0. So we discuss the above mentioned

possibilities.

2.1.3.1: The possibility ξ9 6= 0. Then β3 6= 0 and the condition D = 0 implies nα3 = 0. So

we examine two cases: ζ8 6= 0 and ζ8 = 0.
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2.1.3.1.1: The case ζ8 6= 0. Then n 6= 0 and this implies α3 = 0 and we obtain n =

(g2 − 1)/4. Considering (27) we observe that in this case the singular point M4 coalesces with M3

producing a double singular point on the invariant parabola. So we obtain that the finite singularities

of systems (25) have the following coordinates:

x1 =

√
1− g2

2
, y1 =

1− g2

4
; x2 = −

√
1− g2

2
, y2 =

1− g2

4
;

x3 = x4 =
1− g

2
, y3 = y4 =

(1− g)2

4
.

We note that in this case β3 = 2g(g − 1) and it is clear that we need to determine in invariant way

the signs of the expressions 1−g2 and g(g−1). So for systems (25) with n = (g2−1)/4 we calculate:

ξ2 = (1− g2)3g4, ξ9 = 44718505920(g − 1)g9(1 + g)4

and we observe that sign (ξ2) = sign (1− g2) and sign (ξ9) = sign (g(g − 1)).

Thus in the case α3 = 0 which implies to D = 0 (then we have a double real singularity on the

invariant parabola) we obtain the following configurations:

ξ2 < 0 ⇒ M1 and M2 are complex ⇒ Config.P.21;

ξ2 > 0, ξ9 < 0 ⇒ (x3 − x1)(x3 − x2) < 0 ⇒ Config.P.22;

ξ2 > 0, ξ9 > 0 ⇒ (x3 − x1) > 0, (x3 − x2) > 0 ⇒ Config.P.23.

2.1.3.1.2: The case ζ8 = 0. This implies n = 0 and the three finite singular points M1,

M2 and M4 coalesce and we get the triple singular point (0, 0) located on the invariant parabola

which is also the point of tangency of the line y = 0 with the parabola. We observe that the singular

point M3

(
(1− g)/2, (1− g)2/4

)
coalesces with the triple point if and only if g = 1. However we have

g − 1 6= 0 due to ξ4 6= 0.

Thus considering the relation sign (g − 1) = sign (ξ10) we obtain the configuration Config.P.24 if

ξ10 < 0 and Config.P.25 if ξ10 > 0.

2.1.3.2: The possibility ξ9 = 0. This implies β3 = 0 and hence we get n = −(g − 1)2/4. We

observe that in this case considering (27) we obtain

x1 =
1

2

√
(g − 1)2, y1 =

(g − 1)2

4
; x2 = −1

2

√
(g − 1)2, y2 =

(g − 1)2

4
;

x3 =
1− g

2
, y3 =

(g − 1)2

4
; x4 =

(g − 1)2

2(1 + g)
, y4 =

(g − 1)3

4(1 + g)
.

We observe that the singular point M3 coincides either with M1 or M2. And since x1 is positive and

x2 is negative we conclude that M3 coalesces with M1 if 1− g > 0 and with M2 if 1− g < 0.On the

other hand for systems (25) with n = −(g − 1)2/4 we have

ξ10 = 12705209326080(g − 1)g6(1 + g)4

and hence we have sign (ξ10) = sign (g− 1). Therefore it is not difficult to determine that we obtain

the configuration Config.P.26 if ξ10 < 0 and Config.P.27 if ξ10 > 0.

2.2: The case B2 = 0. Since ξ4 6= 0 (i.e. g(1 + 4n) 6= 0) considering (26) this condition implies

(1 + g)2 + 4n = 0.
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Then we get n = −(1 + g)2/4 and this leads to the family of systems

ẋ = −1

8
(1 + g − 2x)(−1 + g2 + 4gx+ 4y), ẏ = −1

4
(1 + 2g + g2 − 4y)(−x+ gx+ 2y) (29)

which possess the following three invariant affine lines:

1 + g − 2x = 0, 1 + 2g + g2 − 4y = 0, 1− g2 − 4x+ 4y = 0.

For these systems we have B2 = B3 = 0 and we see that the above systems possess invariant line

in three directions. However we could have parallel invariant lines and by Lemma 2 for this it is

necessary θ = 0. So we discuss two subcases: θ 6= 0 and θ = 0.

2.2.1: The subcase θ 6= 0. We determine that the above systems possess the finite singularities

Mi(xi, yi) (i = 1, 2, 3, 4) with the coordinates:

x1 =
1 + g

2
, y1 =

(1 + g)2

4
; x2 = −1 + g

2
, y2 =

(1 + g)2

4
;

x3 =
1− g

2
, y3 =

(1− g)2

4
; x4 =

1 + g

2
, y4 =

1− g2

4
.

We detect that the singular point M1 is the point of intersection of all three invariant lines together

with the invariant parabola. Since this point as well as the singular point M4 are located on the

vertical invariant line 1 + g − 2x = 0 the position of these two points are important for determining

the configurations of systems (29). So we obtain

y4 − y1 = −g(g + 1)

2
⇒ sign (y4 − y1) = −sign

(
g(g + 1)

)
.

We point out that the position of the vertical invariant line x = (g + 1)/2 is also important and we

have to consider sign (g + 1).

On the other hand for systems (29) we calculate:

ζ2 = 4g(1 + g),

and then we determine the following configurations:

ζ2 < 0 (i.e. −1 < g < 0) ⇒ x1 > 0, y4 > y1 ⇒ Config.P.28;

ζ2 > 0 and g < −1 ⇒ x1 < 0, y4 < y1 ⇒ Config.P.29;

ζ2 > 0 and g > 0 ⇒ x1 > 0, y4 < y1 ⇒ ≃Config.P.29.

2.2.2: The subcase θ = 0. This condition implies (g − 1)(g + 2) = 0. If g = 1 we arrive at the

system

ẋ = (x− 1)(x+ y), ẏ = 2(y − 1)y (30)

possessing four invariant affine lines: x = 1, y = 0, y = 1 and y = x. Therefore it is easy to determine

that this system possesses the configuration Config.P.30.

Assuming g = −2 we arrive at system

ẋ = (1 + 2x)(3− 8x+ 4y)/8, ẏ = −(4y − 1)(3x− 2y)/4

which via the transformation x1 = −x + 1/2, y1 = −x + y + 1/4 could be brought to the system

(30) having the configuration Config.P.30.
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3.1.1.2.2 The subcase ξ4 = 0. Considering (19) and the condition ζ4 6= 0 we obtain that the

condition ξ4 = 0 implies

m(g + 8m+ 4n) = 0.

On the other hand according to Lemma 3 it is sufficient to examine the condition m = 0 because

the condition g + 8m+ 4n = 0 could be brought to m = 0 via an affine transformation.

So m = 0 and we arrive at the family of systems

ẋ = nx− 1

2
(1 + g)y + gx2 + xy, ẏ = y(2n− x+ gx+ 2y) (31)

which possess the invariant line y = 0 and the invariant parabola Φ(x, y) = x2 − y = 0. It is clear

that the invariant line y = 0 is tangent to the invariant parabola at the origin of coordinates.

We determine that for the above systems the following condition holds:

ζ1ζ2ζ3ζ4R1 6= 0 ⇒ g(1 + g)(g − 2)(3 + g)(1 + 2g)(1 + 3g)(1 + 4g + 3g2 + 2n) 6= 0. (32)

For the above systems we calculate

B2 = −81(1 + g)2(1 + g + 2n)(g + g2 + 2n)(g + 4n)y4/2, θ = −8(g − 1)(2 + g) (33)

and we consider two possibilities: B2 6= 0 and B2 = 0.

1: The possibility B2 6= 0. Then besides the invariant line y = 0 systems (31) could not possess

invariant lines in other directions. However we could have a parallel invariant line to the line y = 0

and by Lemma 2 for this it is necessary θ = 0. So we discuss two cases: θ 6= 0 and θ = 0.

1.1: The case θ 6= 0. We determine that systems (31) possess four finite singularities Mi(xi, yi)

(i = 1, 2, 3, 4) with the coordinates

x1 = 0, y1 = 0; x2 = −n
g
, y2 = 0; x3,4 =

1

4

(
1− g ±

√
Z3

)
,

y3,4 =
1

8

[
(1− g)2 − 8n± (1− g)

√
Z3

]
, Z3 = (1− g)2 − 16n.

(34)

We observe that Φ(x3, y3) = Φ(x4, y4) = 0 and this means that the singular points M3 and M4 are

located on the invariant parabola. Moreover the singularity M2 lies on the invariant line y = 0 and

coalesces with M1 if and only if n = 0. The singularities M3 and M4 are complex (respectively, real)

if Z3 < 0 (respectively, Z3 > 0) and they coincide (producing a multiple singular point) if Z3 = 0.

On the other hand for systems (31) we have

D = 48(1 + g)4n6(−1 + 2g − g2 + 16n) = −48(1 + g)4n6Z3

and we discuss three subcases: D < 0, D > 0 and D = 0.

1.1.1: The subcase D < 0. Then Z3 > 0 and therefore the finite singularities M3 and M4

are real and they are distinct because n 6= 0 (due to D 6= 0). Clearly we need to determine their

positions on the parabola with respect to the singularity M1 and we calculate:

(x3 − x1)(x4 − x1) = n, (x3 − x1) + (x4 − x1) = (1− g)/2;

sign
(
(x3 − x1)(x4 − x1)

)
= sign (n), sign

(
(x3 − x1) + (x4 − x1)

)
= sign (1− g).

(35)
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We point out that g− 1 6= 0 (due to θ 6= 0) and sign (1− g) is important only in the case n > 0 (i.e.

when (x3 − x1)(x4 − x1) > 0). On the other hand we have

x2 − x1 = −n/g ⇒ sign (x2 − x1) = −sign (gn).

For systems (31) calculations yield:

ξ11 =− 95982880 gn(g − 2)2(1 + g)2(3 + g)2(1 + 3g)2(1 + 4g + 3g2 + 2n)2,

ξ28 =3244620(1 + g)2(3 + g)2(1 + 3g)2(1 + 4g + 3g2 + 2n)2(g + 4n),

ξ29 =3244620(g − 1)g(1 + g)2(3 + g)(1 + 3g)(1 + 4g + 3g2 + 2n)2(g + 4n),

and we have the next remark.

Remark 2. We observe that due to the condition (32) we obtain that ξ11 6= 0 and sign (ξ11) =

−sign (gn). If we have ξ11 < 0 (i.e. gn > 0) then sign (ξ28) = sign (g + 4n). Moreover in the case

g > 0 and n > 0 we obtain sign (ξ29) = sign (g − 1).

Thus considering the above relations in the case D < 0 we detect the following configurations:

ξ11 < 0, n < 0 (then g < 0) ⇒ (x3 − x1)(x4 − x1) < 0, x2 < x1 ⇒ Config.P.31;

ξ11 < 0, n > 0 (then g > 0), g < 1 ⇒ x3 > x1, x4 > x1, x2 < x1 ⇒ Config.P.32;

ξ11 < 0, n > 0 (then g > 0), g > 1 ⇒ x3 < x1, x4 < x1, x2 < x1 ⇒ Config.P.33;

ξ11 > 0, n < 0 (then g > 0) ⇒ (x3 − x1)(x4 − x1) < 0, x2 > x1 ⇒ Config.P.34;

ξ11 > 0, n > 0 (then g < 0) ⇒ x3 > x1, x4 > x1, x2 > x1 ⇒ Config.P.35.

Taking into account Remark 2 we obtain the following invariant conditions:

ξ11 < 0, ξ28 < 0 ⇒ Config.P.31;

ξ11 < 0, ξ28 > 0, ξ29 < 0 ⇒ Config.P.32;

ξ11 < 0, ξ28 > 0, ξ29 > 0 ⇒ Config.P.33;

ξ11 > 0 ⇒
{
Config .P.34 or

Config .P.35 .

1.1.2: The subcase D > 0. Then Z3 < 0 and hence the finite singularities M3 and M4 are com-

plex. On the other hand this condition implies n > 0 and therefore the singular point M2(−n/g, 0)
could not coalesce withM1(0, 0). Moreover its position with respect to the singular pointM1 depends

on the sign of the parameter g.

It is easy to determine that the invariant line y = 0 has a common point with the parabola y = x2

and this is the point of tangencyM1(0, 0) and the finite singularityM2(−n/g, 0) lies on the invariant

line y = 0.

On the other hand due to n > 0 we obtain sign (ξ11) = −sign (gn) = −sign (g). Therefore we

obtain the configuration Config.P.36 if ξ11 < 0 and Config.P.37 if ξ11 > 0.

1.1.3: The subcase D = 0. Considering (32) we deduce that the condition D = 0 implies

nZ3 = 0. For systems (31) we calculate

ξ1 = 3(g − 2)(1 + g)2(3 + g)(1 + 3g)n2(1 + 4g + 3g2 + 2n)/8

and due to (32) we obtain that the condition n = 0 is equivalent to ξ1 = 0. So we examine two

possibilities: ξ1 6= 0 and ξ1 = 0.
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1.1.3.1: The possibility ξ1 6= 0. Then the condition D = 0 implies Z3 = 0. Considering (34)

we obtain n = (1− g)2/16 and then calculations yield

x1 = 0, y1 = 0; x2 = −(1− g)2

16g
, y2 = 0; x3 = x4 =

1− g

4
, y3 = y4 =

(1− g)2

16
;

sign (x2 − x1) = −sign (g), sign (x3 − x1) = sign (1− g).

Therefore we have a double singular point on the invariant parabola and for the parameter g we

have the following possible bifurcation values: g ∈ {0, 1}.
On the other hand considering for systems (31) with n = (1− g)2/16 (i.e. Z3 = 0) we calculate:

ξ11 = −2999465

32
(g − 2)2(g − 1)2g(1 + g)2(3 + g)2(1 + 3g)2(3 + 5g)4, θ = −8(g − 1)(2 + g),

ζ2 = 4g(g + 1), ζ4 = (g − 2)(3 + g)(1 + 3g)(3 + 5g)2/128, ξ12 = g(g − 1)3ψ1(g)

where ψ1(g) = 1105+1774g+961g2. We observe that Discrim [ψ1(g), g] = −1100544 < 0. Therefore

taking into account the conditions ζ4θ 6= 0 and we conclude that

sign (ξ11) = −sign (g), sign (ξ12) = sign (g(g − 1)).

So considering the above relations we determine the following configurations:

ξ12 < 0 ⇒ x2 < x1, x3 > x1 ⇒ Config.P.38;

ξ12 > 0, ξ11 < 0 ⇒ x2 < x1, x3 > x1 ⇒ Config.P.39;

ξ12 > 0, ξ11 > 0 ⇒ x2 > x1, x3 > x1 ⇒ Config.P.40.

1.1.3.2: The possibility ξ1 = 0. In this case n = 0 and the singular point M2(−n/g, 0)
coalesces withM1(0, 0). Moreover one of the singular points eitherM3 orM4 coalesces withM1(0, 0)

and we obtain a triple finite singularityM1(0, 0). It is clear that we could get two distinct singularities

depending on the position of the simple singularity (M3 or M4) and this position is defined by

sign (1− g) (see (35)).

Since in the case n = 0 for systems (31) we have

ξ10 = 24814861965(g − 1)g2(1 + g)6(1 + 3g)4/2

we conclude that sign (ξ10)= sign (g − 1). Therefore we get the configuration Config.P.41 if ξ10 < 0

and Config.P.42 if ξ10 > 0.

1.2: The case θ = 0. This implies (g − 1)(g + 2) = 0 and for systems (31) we calculate

ξ1 = 3(g − 2)(1 + g)2(3 + g)(1 + 3g)n2(1 + 4g + 3g2 + 2n)/8,

ξ5 = −21875(g − 1)(1 + g)(g − 2)(3 + g)(1 + 3g)n(1 + g + 2n)(1 + 4g + 3g2 + 2n)/8.
(36)

and we discuss two subcases: ξ1 6= 0 and ξ1 = 0.

1.2.1: The subcase ξ1 6= 0. This implies n 6= 0 and considering the condition (32) and B2 6= 0

(i.e. 1 + g + 2n 6= 0) we conclude that the condition g = 1 is equivalent to ξ5 = 0. So we consider

two possibilities: ξ5 6= 0 and ξ5 = 0.
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1.2.1.1: The possibility ξ5 6= 0. Then g− 1 6= 0 and the condition θ = 0 implies g = −2. It is

easy to determine that for g = −2 systems (31) do not have any invariant line parallel with y = 0.

On the other hand in the case g = −2 for systems (31) we have

D = 48n6(16n− 9), ξ11 = 76786304000n(5 + 2n)2, ζ4 = 5(5 + 2n)/4

and hence sign (ξ11) = sign (n). Moreover sign (D) = sign (16n− 9) and due to n 6= 0 we obtain that

D = 0 is equivalent to 16n− 9 = 0.

Therefore since g = −2 < 0, taking into consideration the examination of systems (31) given above

we arrive at the following configurations:

D < 0, ξ11 < 0 ⇒ Config.P.31;

D < 0, ξ11 > 0 ⇒ Config.P.35;

D > 0 ⇒ Config.P.37.

D = 0 ⇒ Config.P.40.

1.2.1.2: The possibility ξ5 = 0. Then g = 1 and this leads to the systems

ẋ = nx− y + x2 + xy, ẏ = 2y(n+ y)

possessing additionally the invariant line y + n = 0. Considering (34) we obtain:

x1 = 0, y1 = 0; x2 = −n, y2 = 0; x3,4 = ±
√
−n, y3 = y4 = −n.

We observe that the invariant line y = −n intersects the invariant parabola Φ(x, y) = x2 − y = 0 at

two points M3,4(±
√
−n,−n) which are distinct due to ξ1 6= 0 (i.e. n 6= 0). Moreover they are real if

n < 0 and complex if n > 0. We calculate D = 12288n7 and hence sign (D) = sign (n). Therefore

we arrive at the configuration Config.P.43 for D < 0 and Config.P.44 for D > 0.

1.2.2: The subcase ξ1 = 0. This implies n = 0 and then the line y = −n coalesces with y = 0

and we get one double invariant line. Moreover all finite singular point coalesce producing a singular

point M1(0, 0) of multiplicity four. As a result we get the configuration Config.P.45.

2: The possibility B2 = 0. First of all we set the next remark.

Remark 3. The condition B2 = 0 implies for systems (31) n 6= 0.

Indeed in the case n = 0 for systems (31) we get

B2 = −81g2(1 + g)4y4/2 6= 0

due to the condition ζ2 6= 0 (i.e. g(g + 1) 6= 0).

Thus n 6= 0 and since g + 1 6= 0 considering (33) we get the condition

(1 + g + 2n)(g + g2 + 2n)(g + 4n) = 0

and considering (36) we examine two cases: ξ5 6= 0 and ξ5 = 0.

2.1: The case ξ5 6= 0. Then by (36) we get 1+ g+2n 6= 0 and hence the condition B2 = 0 implies

(g + g2 + 2n)(g + 4n) = 0.

41



On the other hand for systems (31) we calculate

ξ13 = 27(1 + g)2(3 + g)(1 + 3g)n2(g + 4n)/4

and considering Remark 3 and the condition (32) we conclude that the condition ξ13 = 0 is equivalent

to g + 4n = 0.

2.1.1: The subcase ξ13 6= 0. Then g + 4n 6= 0 and therefore B2 = 0 implies g + g2 + 2n = 0. In

this case we get n = −g(g + 1)/2 and we arrive at the following family of systems

ẋ = (2x− 1− g)(gx+ y)/2, ẏ = −y(g + g2 + x− gx− 2y) (37)

possessing the invariant lines y = 0 and x = (g + 1)/2. Considering Lemma 1 for these systems we

calculate
B3 = −3(g − 1)g(1 + g)2(1 + 2g)x2y2/4, θ = −8(g − 1)(g + 2),

ξ5 = −21875(g − 2)(g − 1)2g(1 + g)4(3 + g)(1 + 2g)(1 + 3g)/16.

We observe that B3 6= 0 due to the condition ξ5 6= 0 and hence by Lemma 1 the above systems could

not have any invariant line in the third direction. However according to Lemma 2 we could have

parallel invariant lines if the condition θ = 0 holds. Due to B3 6= 0 (i.e. g − 1 6= 0) we deduce that

the condition θ = 0 is equivalent to g + 2 = 0. It is easy to determine that for g = −2 systems (37)

do not have any invariant line which is parallel either with y = 0 or x = (g + 1)/2.

Next we determine that systems (37) possess the following finite singularities Mi(xi, yi) (i =

1, 2, 3, 4) with the coordinates:

x1 = 0, y1 = 0; x2 =
1 + g

2
, y2 = 0; x3 = −g, y3 = g2; x4 =

1 + g

2
, y4 =

(1 + g)2

4
.

We observe that the invariant line x = (g + 1)/2 intersects the invariant parabola at the point M4

and the invariant line y = 0 (which is tangent to the parabola at M1) at the singular point M2. So

to determine the positions of the line x = (g + 1)/2 as well as of the singularities we calculate:

x2 − x1 =
1 + g

2
, x3 − x1 = −g, x3 − x4 = −1 + 3g

2
,

sign (x2 − x1) = sign (1 + g), sign (x3 − x1) = −sign (g), sign (x3 − x4) = −sign (1 + 3g).

As we can see for the parameter g we have the following possible bifurcation values: g ∈ {−1,−1/3, 0}.
On the other hand for systems (37) we calculate:

ζ2 = 4g(g + 1), ξ7 = 1174627500g4(1 + g)7(1 + 2g)2(1 + 3g),

ξ11 = 47991440(−2 + g)2g2(1 + g)5(3 + g)2(1 + 2g)2(1 + 3g)2

and we observe that

sign (ζ2) = sign (g(g + 1)), sign (ξ7) = sign ((g + 1)(1 + 3g)), sign (ξ11) = sign (g + 1).

Moreover in the case ζ2 < 0 we have −1 < g < 0 (i.e. g + 1 > 0) and then sign ξ7 = sign (1 + 3g).

Thus considering the above relations we detect the following configurations:
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ζ2 < 0, ξ7 < 0 (i.e. −1 < g < −1/3) ⇒ x2 > x1, x3 > x1, x3 > x4 ⇒ Config.P.46;

ζ2 < 0, ξ7 > 0 (i.e. −1/3 < g < 0) ⇒ x2 > x1, x1 < x3 < x4 ⇒ Config.P.47;

ζ2 > 0, ξ11 < 0 (i.e. g < −1) ⇒ x2 < x1, x3 > x1 ⇒ Config.P.48;

ζ2 > 0, ξ11 > 0 (i.e. g > 0) ⇒ x2 > x1, x3 < x1 ⇒ Config.P.49.

2.1.2: The subcase ξ13 = 0. This implies g+4n = 0 (i.e. n = −g/4) and we arrive at the family

of systems

ẋ = −gx/4− (1 + g)y/2 + gx2 + xy, ẏ = −y(g + 2x− 2gx− 4y)/2 (38)

possessing the invariant lines y = 0 and y = x− 1/4. For these systems we have

ξ5 = 21875(g − 2)g(1 + g)(g − 1)(2 + g)(3 + g)(1 + 2g)(1 + 3g)(2 + 3g)/128,

B3 = 3g(1 + g)(1 + 2g)(x− y)2y2/8, θ = −8(g − 1)(2 + g)

and since ξ5 6= 0 we obtain B3θ 6= 0. So by Lemmas 1 and 2 we conclude that the above systems

could not have a third invariant line.

Next we determine that systems (38) possess the finite singularities Mi(xi, yi) (i = 1, 2, 3, 4) with

the coordinates

x1 = 0, y1 = 0; x2 = 1/4, y2 = 0; x3 = 1/2, y3 = 1/4; x4 = −g
2
, y4 =

g2

4
;

sign (x4 − x1) = −sign (g), x4 − x3 = −(g + 1)/2 ⇒ sign (x4 − x3) = −sign (g + 1).

It could be checked directly that the invariant line y = x− 1/4 is tangent to the invariant parabola

at the singular pointM3(1/2, 1/4). Therefore considering the above relations we detect the following

configurations:

ζ2 < 0 (i.e. −1 < g < 0) ⇒ x4 > x1, x4 < x3 ⇒ Config.P.50;

ζ2 > 0 and g < −1 ⇒ x4 > x1, x4 > x3 ⇒ Config.P.51;

ζ2 > 0 and g > 0 ⇒ x4 < x1, x4 < x3 ⇒ ≃Config.P.51.

2.2: The case ξ5 = 0. Considering (36), the conditions (32) and Remark 3 imply (g − 1)(1 + g +

2n) = 0 and we examine two subcases: θ 6= 0 and θ = 0.

2.2.1: The subcase θ 6= 0. Then g−1 6= 0 and we get 1+g+2n = 0. Therefore n = −(1+g)/2 6= 0

and we arrive at the family of systems

ẋ = −(1 + g)(x+ y)/2 + gx2 + xy, ẏ = −y(1 + g + x− gx− 2y), (39)

possessing the invariant lines y = 0 and y = x and the finite singularities Mi(xi, yi) (i = 1, 2, 3, 4)

with the coordinates:

x1 = 0, y1 = 0; x2 =
1 + g

2g
, y2 = 0; x3 = 1, y3 = 1; x4 = −1 + g

2
, y4 =

(1 + g)2

4
.

On the other hand considering Lemma 1 we calculate

B3 = 3(g − 1)(1 + g)2(x− y)2y2/4 6= 0

due to the conditions (32) and θ 6= 0. Then by Lemma 1 we could not have any invariant line in the

third direction. Moreover by Lemma 2 we could not have parallel invariant lines due to θ 6= 0.
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Next considering the coordinates of the finite singularities of these systems it follows immediately:

sign (x4 − x1) = −sign (1 + g), sign (x2 − x1) = sign
(
g(1 + g)

)
,

x4 − x3 = −(g + 3)/2 ⇒ sign (x4 − x3) = −sign (g + 3).

We remark that g(g+1)(g+3) 6= 0 due to the condition (32) and hence for the parameter g we have

the following possible bifurcation values: g ∈ {−3,−1, 0}.
On the other hand for systems (39) we calculate:

ζ2 = 4g(1 + g), ξ9 = 5589813240(g − 1)2g2(1 + g)9(3 + g),

ξ10 = −223333757685(g − 1)2g2(1 + g)6(2 + g)(1 + 3g)2/2

and hence we have

sign (ζ2) = sign
(
g(1 + g)

)
, sign (ξ9) = sign

(
(1 + g)(3 + g)

)
, sign (ξ10) = −sign (2 + g).

Remark 4. We observe that the conditions ζ2 > 0 and ξ9 > 0 imply either g > 0 or g < −3. In

order to distinguish these two possibilities we use the invariant ξ10 even if this invariant does not

vanish in the bifurcation values of g.

Considering the above remark we arrive at the following configurations:

ζ2 < 0 (i.e. −1 < g < 0) ⇒ x2 < x1, x4 < x1 ⇒ Config.P.52;

ζ2 > 0, ξ9 < 0 (i.e. −3 < g < −1) ⇒ x2 > x1, x1 < x4 < x3 ⇒ Config.P.53;

ζ2 > 0, ξ9 > 0, ξ10 < 0 (i.e. g > 0) ⇒ x2 > x1, x3 < x1 ⇒ Config.P.54;

ζ2 > 0, ξ9 > 0, ξ10 > 0 (i.e. g < −3) ⇒ x2 > x1, x4 > x3 ⇒ Config.P.55.

2.2.2: The subcase θ = 0. This implies (g − 1)(g + 2) = 0 and we discuss two possibilities:

B3 6= 0 and B3 = 0.

2.2.2.1: The possibility B3 6= 0. We claim that in this case we get the same configuration

either if g = 1 or g = −2.

Indeed, assume first g = −2. Then calculations yield

ξ5 = −328125n(2n− 1)(5 + 2n)/2, B2 = −162(1 + n)(2n− 1)2y4,

B3 = 3y2
[
n(−5 + 4n)x2 + 2(1 + n)xy − (1 + n)y2

]
/2,

(40)

and evidently the condition ξ5 = B2 = 0 gives us n = 1/2. This leads to the system

ẋ = (x+ y)/2− 2x2 + xy, ẏ = y(1− 3x+ 2y) (41)

possessing three invariant affine lines: y = 0, y = x and y = x− 1/4. It is not difficult to determine

that this system has the configuration equivalent to Config.P.56.

Suppose now g = 1. Then we have

ξ5 = 0, B2 = −648(1 + n)2(1 + 4n)y4, B3 = −3(1 + n)y2(4nx2 + 2xy − y2)

and due to B3 6= 0 the condition B2 = 0 implies n = −1/4. In this case we arrive at the system

ẋ = −x/4− y + x2 + xy, ẏ = y(4y − 1)/2
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which via the affine transformation x1 = −x + 1/2, y1 = −x + y + 1/4 we could be brought to

system (41). Thus our claim is proved and we get the configuration Config.P.56.

2.2.2.2: The possibility B3 = 0. Considering (40) we conclude that the condition g = −2

implies B3 6= 0 and hence the condition θ = 0 gives us g = 1. In this case we arrive at the system

ẋ = (x− 1)(x+ y), ẏ = 2(y − 1)y

possessing four invariant affine lines: x = 1, y = 0, y = 1 and y = x. Therefore it is easy to determine

that this system possesses the configuration equivalent to Config.P.30.

3.1.2 The statement (A2)

According to this statement of Proposition 2 for systems (7) the condition ζ4 = 0 must hold.

Considering (8) we obtain

(g − 2)(3 + g)(1 + 7g + 15g2 + 9g3 − 4m+ 2n+ 6gn) = 0

and since (g − 2)(3 + g) 6= 0 (due to ζ1 6= 0) we get

m =
1

4
(1 + 3g)(1 + 4g + 3g2 + 2n).

Then we arrive at the 2-parameter family of systems

ẋ =
1

4
(1 + 3g)(1 + 4g + 3g2 + 2n) + nx− 1

2
(1 + g)y + gx2 + xy,

ẏ =
1

2
(1 + 3g)(1 + 4g + 3g2 + 2n)x+ 2ny + (g − 1)xy + 2y2

(42)

possessing the following two invariant parabolas: Φ1(x, y) = x2 − y = 0 and

Φ2 =(1 + 4g + 3g2 + 2n)(1 + 4g + 3g2 + 4n)) + 2(1 + g)(1 + 4g + 3g2 + 4n)x

+ 4g(1 + g)x2 − 2(1 + 6g + 5g2 + 4n)y = 0.
(43)

Following the statement (A2) for the above systems we calculate

ζ1 =2(g − 2)(3 + g), ζ2 = 4g(1 + g), ζ3 = 8(1 + 2g)2,

ζ4 =0, ζ5 = 19(g − 2)(3 + g)(1 + 4g + 3g2 + 4n)2/4,

R2 =− (g − 2)(3 + g)(8 + 27g + 27g2)(1 + 6g + 5g2 + 4n)/16,

B1 =g(1 + g)(1 + 2g)(1 + 3g)(2 + 3g)(1 + 4g + 3g2 + 2n)(1 + 6g + 5g2 + 4n)

× (1 + 6g + 6g2 + 4n)(1 + 6g + 9g2 + 4n)(5 + 14g + 9g2 + 4n)/32.

(44)

According to Lemma 1 for the existence of an invariant line of systems (42) the condition B1 = 0 is

necessary.
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3.1.2.1 The case B1 6= 0. Then we could not have any invariant line. We determine that

systems (42) possess four finite singularities Mi(xi, yi) (i = 1, 2, 3, 4) with the coordinates

x1 = −1 + 3g

2
, y1 =

(1 + 3g)2

4
; x2 = −(1 + g)(1 + 3g)2 + 4(1 + 2g)n

2g(1 + g)
,

y2 =
(1 + 3g)(1 + 4g + 3g2 + 2n)

2(1 + g)
; x3,4 =

1

2

(
1 + g ±

√
Z4

)
,

y3,4 = −1

2

(
2g + 2g2 + 2n∓ (g + 1)

√
Z4

)
, Z4 = −(1 + 6g + 5g2 + 4n).

(45)

In order to determine the position of the finite singularities with respect to the parabolas Φ1(x, y) = 0

and Φ2(x, y) = 0 we calculate

Φ1(x1, y1) = Φ1(x3, y3) = Φ1(x4, y4) = 0; Φ2(x2, y2) = Φ2(x3, y3) = Φ2(x4, y4) = 0.

Therefore we deduce that the finite singularities M3 and M4 are the points of intersection of these

two invariant parabolas. We observe that the points of intersection of the invariant parabolas are

complex if Z4 < 0 and they are real if Z4 > 0.

On the other hand for systems (42) we calculate:

D = −3Z4(1 + 4g + 3g2 + 4n)2 α2
4 β

2
4/4, (46)

where

α4 = 5 + 22g + 21g2 + 4n, β4 = (1 + g)(1 + 3g)(1 + 6g + 7g2) + 4(1 + 2g)2n. (47)

So if D 6= 0 then sign (D) = −sign (Z4) and we discuss three possibilities: D < 0, D > 0 and

D = 0.

1: The possibility D < 0. Then Z4 > 0 and systems (42) possess four real singularities and it is

necessary to know the positions of the singularities M3,4 with respect to M1 and M2. We calculate

(x1 − x3)(x1 − x4) =
α4

4
, (x1 − x3) + (x1 − x4) = 1 + 2g,

(x2 − x3)(x2 − x4) = − Z4β4
4g2(1 + g)2

, (x2 − x3) + (x2 − x4) = −(1 + 2g)Z4

g(1 + g)
.

Therefore considering the condition Z4 > 0 we obtain

sign
(
(x1 − x3)(x1 − x4)

)
= sign (α4), sign

(
(x1 − x3) + (x1 − x4)

)
= sign (1 + 2g);

sign
(
(x2 − x3)(x2 − x4)

)
= −sign (β4),

sign
(
(x2 − x3) + (x2 − x4)

)
= −sign (g(1 + g)(1 + 2g)).

Clearly we need invariant polynomials governing the signs of α4 and β4. For systems (42) we

calculate:

ξ14 = 1235α4β4/2, ξ30 = 1235
[
Z4β4 − g2(1 + g)2α4

]
/2, ζ2 = 4g(1 + g).

And we have

sign (ξ14) = sign (α4β4), sign (ζ2) = sign (g(1 + g)).
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Moreover in the case ξ14 < 0 (i.e. α4β4 < 0) and D < 0 (i.e. Z4 > 0) we obtain

sign (ξ30) = sign (Z4β4 − g2(1 + g)2α4) = sign (β4).

On the other hand considering the form of the invariant parabola Φ2(x, y) = 0 we have

y =− 1

Z4

[
(1 + g)(1 + 4g + 3g2 + 4n)x− 1

2
(1 + 4g + 3g2 + 2n)(1 + 4g + 3g2 + 4n)

]

− 2g(1 + g)

Z4
x2.

(48)

Therefore since Z4 > 0 we deduce that the invariant parabolas Φ1(x, y) = 0 and Φ2(x, y) = 0

are tangent at the infinity to the same part (respectively to different parts) of the invariant line at

infinity Z = 0 if ζ2 < 0 (respectively ζ2 > 0). So we consider these two cases separately.

1.1: The case ζ2 < 0. Then g(g + 1) < 0 and considering the above relations in this case we

obtain the following configurations:

ξ14 < 0, β4 < 0, 2g + 1 < 0 (i.e. β4 < 0, α4 > 0, −1 < g < −1/2) ⇒
x2 − x3 > 0, x2 − x4 > 0, x1 − x3 > 0, x1 − x4 > 0 ⇒ Config.P.57;

ξ14 < 0, β4 < 0, 2g + 1 > 0 (i.e. β4 < 0, α4 > 0, −1/2 < g < 0) ⇒
x2 − x3 < 0, x2 − x4 < 0, x1 − x3 < 0, x1 − x4 < 0 ⇒ ≃ Config.P.57;

ξ14 < 0, β4 > 0 (i.e. β4 > 0, α4 < 0, −1 < g < 0) ⇒
(x2 − x3)(x2 − x4) < 0, (x1 − x3)(x1 − x4) < 0 ⇒ Config.P.58;

ξ14 > 0, β4 < 0, 2g + 1 < 0 (i.e. β4 < 0, α4 < 0, −1 < g < −1/2) ⇒
x2 − x3 > 0, x2 − x4 > 0, (x1 − x3)(x1 − x4) < 0 ⇒ Config.P.59;

ξ14 > 0, β4 < 0, 2g + 1 > 0 (i.e. β4 < 0, α4 < 0, −1/2 < g < 0) ⇒
x2 − x3 < 0, x2 − x4 < 0, (x1 − x3)(x1 − x4) < 0 ⇒ ≃ Config.P.59;

ξ14 > 0, β4 > 0, 2g + 1 < 0 (i.e. β4 > 0, α4 > 0, −1 < g < −1/2) ⇒
(x2 − x3)(x2 − x4) < 0, x1 − x3 > 0, x1 − x4 > 0 ⇒ ≃ Config.P.59;

ξ14 > 0, β4 > 0, 2g + 1 > 0 (i.e. β4 > 0, α4 > 0, −1/2 < g < 0) ⇒
(x2 − x3)(x2 − x4) < 0, x1 − x3 < 0, x1 − x4 < 0 ⇒ ≃ Config.P.59.

1.2: The case ζ2 > 0. Then g(g + 1) > 0 and we obtain the following configurations:

ξ14 < 0, β4 < 0, 2g + 1 < 0 (i.e. β4 < 0, α4 > 0, g < −1) ⇒
x2 − x3 < 0, x2 − x4 < 0, x1 − x3 > 0, x1 − x4 > 0 ⇒ Config.P.60;

ξ14 < 0, β4 < 0, 2g + 1 > 0 (i.e. β4 < 0, α4 > 0, g > 0) ⇒
x2 − x3 > 0, x2 − x4 > 0,x1 − x3 < 0, x1 − x4 < 0 ⇒ ≃ Config.P.60;

ξ14 > 0, β4 < 0, 2g + 1 < 0 (i.e. β4 < 0, α4 < 0, g < −1) ⇒
x2 − x3 < 0, x2 − x4 < 0, (x1 − x3)(x1 − x4) < 0 ⇒ Config.P.61;

ξ14 > 0, β4 < 0, 2g + 1 > 0 (i.e. β4 < 0, α4 < 0, g > 0) ⇒
x2 − x3 > 0, x2 − x4 > 0, (x1 − x3)(x1 − x4) < 0 ⇒ ≃ Config.P.61;

ξ14 > 0, β4 > 0, 2g + 1 < 0 (i.e. β4 > 0, α4 > 0, g < −1) ⇒
(x2 − x3)(x2 − x4) < 0, x1 − x3 > 0, x1 − x4 > 0 ⇒ ≃ Config.P.61;

ξ14 > 0, β4 > 0, 2g + 1 > 0 (i.e. β4 > 0, α4 > 0, g < −1) ⇒
(x2 − x3)(x2 − x4) < 0, x1 − x3 < 0, x1 − x4 < 0 ⇒ ≃ Config.P.61.
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Applying the Mathematica function “FindInstance” (or “Reduce”) we detect that the conditions

D < 0, ζ2 > 0, ξ14 < 0 and β4 > 0 (i.e. Z4 > 0, g(g + 1) > 0, α4 < 0 and β4 > 0) are incompatible.

We observe that in both cases (i.e. ζ2 < 0 and ζ2 > 0) the configurations do not depend on the

sign (1 + 2g). As a result we obtain the following lemma.

Lemma 4. Assume that for systems (42) the condition D < 0 holds. Then these systems possess

the following configurations if and only if the corresponding conditions are satisfied:

ζ2 < 0, ξ14 < 0, ξ30 < 0 ⇔ Config.P.57;

ζ2 < 0, ξ14 < 0, ξ30 > 0 ⇔ Config.P.58;

ζ2 < 0, ξ14 > 0 ⇔ Config.P.59;

ζ2 > 0, ξ14 < 0 ⇔ Config.P.60;

ζ2 > 0, ξ14 > 0 ⇔ Config.P.61.

2: The possibility D > 0. Then Z4 < 0 and systems (42) possess only two real singularities: M1

(located on the parabola Φ1(x, y) = 0) and M2 (located on the parabola Φ2(x, y) = 0). As it was

mentioned earlier the direction of the second invariant parabola depends on the sign of g(1+ g) (see

(48)).

So considering the condition D > 0 (i.e. Z4 < 0) we arrive at the configuration Config.P.62 if

ζ2 < 0 (i.e. g(g + 1) < 0) and Config.P.63 if ζ2 > 0 (i.e. g(g + 1) > 0).

3: The possibility D = 0. Then considering (46), (44) and the condition ζ5R2 6= 0 (i.e. Z4(1 + 4g +

3g2 + 4n) 6= 0) we conclude that the condition D = 0 implies α4β4 = 0. We have the next lemma.

Lemma 5. For systems (42) the condition β4 = 0 could be brought via an affine transformation to

the condition α4 = 0.

Proof: We apply to systems (42) the transformation

x1 = δx− (1 + g)(1 + 4g + 3g2 + 4n)

2Z4
, y1 = δy − (1 + g)(1 + 3g)(1 + 4g + 3g2 + 4n)

4Z4
,

t1 = 1/δ, δ = −2g(1 + g)

Z4

(49)

and setting the notation

n1 = −(1 + g)(1 + 11g + 31g2 + 21g3 + 4n+ 20gn)

4(1 + 6g + 5g2 + 4n)
⇒

n = −(1 + g)(1 + 11g + 31g2 + 21g3 + 4n1 + 20gn1)

4(1 + 6g + 5g2 + 4n1)

(50)

we arrive at the family of systems

ẋ1 =
1

4
(1 + 3g)(1 + 4g + 3g2 + 2n1) + n1x1 −

1

2
(1 + g)y1 + gx21 + x1y1,

ẏ1 =
1

2
(1 + 3g)(1 + 4g + 3g2 + 2n1)x1 + 2n1y1 + (g − 1)x1y1 + 2y21.

(51)
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We observe that this family of systems coincide with (42) up to notation of the variables and

parameters. Considering (50) for the above systems we calculate:

β4(g, n1) = (1 + g)(1 + 3g)(1 + 6g + 7g2) + 4(1 + 2g)2n1 =

g2(1 + g)2(5 + 22g + 21g2 + 4n)

1 + 6g + 5g2 + 4n
= −g

2(1 + g)2α4(g, n)

Z4
;

α4(g, n1) = (5 + 22g + 21g2 + 4n1) =

4(1 + 10g + 34g2 + 46g3 + 21g4 + 4n+ 16gn+ 16g2n)

1 + 6g + 5g2 + 4n
= −4β4(g, n)

Z4
.

We observe that due to g(g + 1)Z4 6= 0 the condition β4(g, n1) = 0 (respectively α4(g, n1) = 0) for

systems (51) implies α4(g, n) = 0 (respectively β4(g, n) = 0) for systems (42). This completes the

proof of the lemma.

Thus in what follows we assume that the condition α4 = 5 + 22g + 21g2 + 4n = 0 holds and this

gives us n = −(1 + 3g)(5 + 7g)/4. Then we obtain the following family of systems

ẋ =− 1

8
(1 + 3g)2(3 + 5g) +

1

4
(1 + 3g)(5 + 7g)x− 1

2
(1 + g) y + gx2 + xy,

ẏ =− 1

4
(1 + 3g)2(3 + 5g)x+

1

2
(1 + 3g)(5 + 7g) y + (g − 1)xy + 2y2

(52)

possessing the two invariant parabolas: Φ1(x, y) = x2 − y = 0 and

Φ2 =− (1 + 3g)2(2 + 3g)(3 + 5g)− 4(1 + g)(1 + 3g)(2 + 3g)x+ 4g(1 + g)x2 + 8(1 + 2g)2y = 0.

Considering (45) we detect that for α4 = 0 the singular point M4 coalesce with M1 producing a

double finite singularity. So we obtain that systems (52) possess three finite singularities Mi(xi, yi)

(i = 1, 2, 3) (M1 is double) with the coordinates

x1 = −1 + 3g

2
, y1 =

(1 + 3g)2

4
; x2 =

(1 + 3g)(4 + 13g + 11g2)

2g(1 + g)
,

y2 = −(1 + 3g)2(3 + 5g)

4(1 + g)
; x3 =

3 + 5g

2
, y3 = −(3 + 5g)2

4
.

Considering the investigation of the singularities of systems (42) we did earlier we deduce that the

singular points M1(≡M4) and M3 are the points of intersection of the invariant parabolas whereas

M2 is located on the parabola Φ2(x, y) = 0. We calculate

(x2 − x1)(x2 − x3) =
(1 + 2g)2(1 + 3g)(2 + 3g)(2 + 7g + 7g2)

g2(1 + g)2
,

(x2 − x1) + (x2 − x3) =
4(1 + 2g)3

g(1 + g)

and since Discrim [2 + 7g + 7g2, g] = −7 < 0 we obtain

sign
(
(x2 − x1)(x2 − x3)

)
= sign

(
(1 + 3g)(2 + 3g)

)
,

sign
(
(x2 − x1) + (x2 − x3)

)
= sign

(
g(1 + g)(1 + 2g)

)
.

We point out that sign (1 + 2g) is necessary only if (1 + 3g)(2 + 3g) > 0.
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On the other hand for systems (52) we have

ζ2 = 4g(1 + g), ζ5 = 19(g − 2)(3 + g)(1 + 3g)2(2 + 3g)2,

ξ3 = 217993032 g(1 + g)(1 + 3g)3(2 + 3g)3(2 + 7g + 7g2)2

and due to ζ2ζ5 6= 0 we obtain

sign (ξ3) = sign
(
g(1 + g)(1 + 3g)(2 + 3g)

)
, sign (ζ2) = sign (g(1 + g)).

We claim that the condition ζ2 > 0 implies ξ3 > 0. Indeed assume ζ2 > 0 and suppose the contrary,

that ξ3 < 0. This implies (1+3g)(2+3g) < 0 i.e. −2/3 < g < −1/3 and therefore we get −1 < g < 0,

i.e. g(g + 1) < 0. This means ζ2 < 0 and this contradiction proves our claim.

Thus considering the above relations for systems (52) we obtain the following configurations:

ζ2 < 0, ξ3 < 0, 2g + 1 < 0 (i.e. −1 < g < −2/3) ⇒ x2 − x1 > 0, x2 − x3 > 0 ⇒ Config.P.64;

ζ2 < 0, ξ3 < 0, 2g + 1 > 0 (i.e. −1/3 < g < 0) ⇒ x2 − x1 < 0, x2 − x3 < 0 ⇒ ≃ Config.P.64;

ζ2 < 0, ξ3 > 0 (i.e. −2/3 < g < −1/3) ⇒ (x2 − x1)(x2 − x3) < 0 ⇒ Config.P.65.

ζ2 > 0, 2g + 1 < 0 (i.e. g < −1) ⇒ x2 − x1 < 0, x2 − x3 < 0 ⇒ Config.P.66;

ζ2 > 0, 2g + 1 > 0 (i.e. g > 0) ⇒ x2 − x1 > 0, x2 − x3 > 0 ⇒ ≃ Config.P.66.

We observe that the detected configurations do not depend sign (2g + 1) and we arrive at the

following lemma.

Lemma 6. Assume that for systems (42) the condition D = 0 holds. Then these sytems possess the

following configurations if and only if the corresponding conditions are satisfied:

ζ2 < 0, ξ3 < 0 ⇔ Config.P.64;

ζ2 < 0, ξ3 > 0 ⇔ Config.P.65;

ζ2 > 0 ⇔ Config.P.66.

3.1.2.2 The case B1 = 0. Considering (44) and the condition ζ2ζ3R2 6= 0 (i.e. g(g + 1)(2g +

1)(1 + 6g + 5g2 + 4n) 6= 0) we conclude that the condition B1 = 0 is equivalent to

(1 + 3g)(2 + 3g)(1 + 4g + 3g2 + 2n)(1 + 6g + 6g2 + 4n)

× (1 + 6g + 9g2 + 4n)(5 + 14g + 9g2 + 4n)/32 = 0.
(53)

However due to some transformations we could reduce the number of the cases provided by the

condition B1 = 0. We have the next lemma.

Lemma 7. The condition (53) could be transferred via affine transformations and time rescaling to

the condition

(1 + 3g)(1 + 4g + 3g2 + 2n) = 0. (54)

Proof: To proof this lemma we follow two steps: (i) we apply a transformation which replaces the

line y = 0 with y = x and keeps the invariant parabola Φ1(x, y) = x2 − y = 0 and (ii) we apply

a transformation which transfers the invariant parabola Φ2(x, y) = 0 (see (43)) to the invariant

parabola Φ1(x, y) = x2 − y = 0.

Step (i) Applying to systems (42) the transformation

x1 = −x+ 1/2, y1 = −x+ y + 1/4
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we obtain the systems

ẋ1 =− 1

8
(2 + 3g)(1 + 6g + 6g2 + 4n) +

1

4
(1 + 2g + 4n)x1 +

g

2
y1 − (1 + g)x21 + x1y1,

ẏ1 =− 1

4
(2 + 3g)(1 + 6g + 6g2 + 4n)x1 +

1

2
(1 + 2g + 4n)y1 − (g + 2)x1y1 + 2y21.

Then setting the new parameters

n1 =
1

4
(1 + 2g + 4n), g1 = −(1 + g) ⇒

n =
1

4
(1 + 2g1 + 4n1) g = −(1 + g1),

(55)

we obtain the family of systems

ẋ1 =
1

4
(1 + 3g1)(1 + 4g1 + 3g21 + 2n1) + n1x1 −

1 + g1
2

y1 + g1x
2
1 + x1y1,

ẏ =
1

2
(1 + 3g1)(1 + 4g1 + 3g21 + 2n1)x1 + 2n1y1 + (g1 − 1)x1y1 + 2y21

which coincide with family (42) (up to notations). Then considering (55) calculations yield:

2 + 3g = −(1 + 3g1), 1 + 6g + 6g2 + 4n = 2(1 + 4g1 + 3g21 + 2n1),

5 + 14g + 9g2 + 4n = 1 + 6g1 + 9g21 + 4n1

and clearly we reduce the condition (53) to the condition

(1 + 3g)(1 + 4g + 3g2 + 2n)(1 + 6g + 9g2 + 4n) = 0.

Step (ii) As it was shown in the proof of Lemma 5 via the transformation (49) systems (42) can

be brought to the same canonical form (51) but with a new parameter n1 of the form (50). Then

calculations yield

1 + 6g + 9g2 + 4n1 =
8g2(1 + 4g + 3g2 + 2n)

4(1 + 6g + 5g2 + 4n)

and we conclude that due to g 6= 0 the condition 1 + 6g + 9g2 + 4n = 0 could be transferred to

1 + 4g + 3g2 + 2n = 0. As a result we arrive at the condition (54) and this completes the proof of

Lemma 7.

For systems (42) we calculate

ξ15 = 2(1 + 3g)(2 + 3g)

and we discuss two possibilities: ξ15 6= 0 and ξ15 = 0.

1: The possibility ξ15 6= 0. Then 1 + 3g 6= 0 and considering (54) and Lemma 7 we deduce that the

condition B1 = 0 implies 1 + 4g + 3g2 + 2n = 0.

This yields n = −(1 + g)(1 + 3g)/2 and we obtain the following 1-parameter family of systems

ẋ =− 1

2
(1 + g)(1 + 3g)x− 1

2
(g + 1)y + gx2 + xy,

ẏ =− y(1 + 4g + 3g2 + x− gx− 2y)
(56)
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which besides the invariant parabolas

Φ1(x, y) = x2 − y = 0, Φ2(x, y) = (1 + g)(1 + 3g)x− 2gx2 − (1 + g)y = 0

possesses the invariant line y = 0. Considering Lemmas 1 and 2 we calculate

θ = −8(g − 1)(2 + g), B2 = 243g(1 + g)4(1 + 2g)2(2 + 3g)y4/2. (57)

So we examine the cases B2 6= 0 and B2 = 0.

2.1: The case B2 6= 0. Then by Lemma 1 we could not have invariant lines in other direction

than y = 0. However by Lemma 2 we could have parallel invariant lines if θ = 0.

2.1.1: The subcase θ 6= 0. We determine that systems (56) possess four finite singularities

Mi(xi, yi) (i = 1, 2, 3, 4) with the coordinates

x1 = 0, y1 = 0; x2 =
(1 + g)(1 + 3g)

2g
, y2 = 0; x3 = 1 + g, y3 = (1 + g)2,

x4 = −1 + 3g

2
, y4 =

(1 + 3g)2

4
.

Considering the conditions provided by the statement (A2) for systems (56) we have:

ζ1ζ2ζ3ζ5R2 6= 0 ⇔ g(1 + g)(g − 2)(3 + g)(1 + 2g)(1 + 3g)(8 + 27g + 27g2) 6= 0. (58)

We observe that the invariant parabolas have two points of intersection: M1 and M3. Moreover we

observe that the invariant line y = 0 has the contact point M1 with the parabola Φ1(x, y) = 0 and

two points of intersection M1 and M2 with the parabola Φ2(x, y) = 0.

So three finite singularities are fixed as the intersections of invariant curves and their positions are

determined by the values of the parameter g.

On the other hand the singular point M4 is located on the invariant parabola Φ1(x, y) = 0 and it

is floating. So we need to determine its position with respect to the other two singularities located

on the same invariant curve. So we calculate:

(x4 − x1)(x4 − x3) =
1

4
(1 + 3g)(3 + 5g), (x4 − x1) + (x4 − x3) = −2(1 + 2g).

Therefore we obtain

sign
(
(x4 − x1)(x4 − x3)

)
= sign

(
(1 + 3g)(3 + 5g)

)
,

sign
(
(x4 − x1) + (x4 − x3)

)
= −sign (1 + 2g).

We observe that the direction of the second invariant parabola depends on sign (g(g + 1)).

On the other hand for systems (56) calculations yields:

ζ2 = 4g(g + 1), ξ16 =
3705

2
g2(1 + g)2(1 + 3g)(3 + 5g),

ξ17 =
3705

4
(1 + g)2(1 + 2g)(1 + 3g)(3 + 5g)
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and hence we have

sign (ζ2) = sign
(
g(g + 1)

)
, sign (ξ16) = sign

(
(1 + 3g)(3 + 5g)

)
,

sign (ξ17) = sign
(
(1 + 2g)(1 + 3g)(3 + 5g)

)
.

Thus we determine the following configurations:

ζ2 < 0, ξ16 < 0 (i.e. −3/5 < g < −1/3) ⇒ (x4 − x1)(x4 − x3) < 0 ⇒ Config.P.67;

ζ2 < 0, ξ16 > 0, ξ17 < 0 (i.e. −1 < g < −3/5) ⇒ x4 > x1, x4 > x3 ⇒ Config.P.68;

ζ2 < 0, ξ16 > 0, ξ17 > 0 (i.e. −1/3 < g < 0) ⇒ x4 < x1, x4 < x3 ⇒ Config.P.69;

ζ2 > 0, ξ17 < 0 (i.e. g < −1) ⇒ x4 > x1, x4 > x3 ⇒ Config.P.70;

ζ2 > 0, ξ17 > 0 (i.e. g > 0) ⇒ x4 < x1, x4 < x3 ⇒ Config.P.71.

2.1.2: The subcase θ = 0. This condition implies (g− 1)(g+2) = 0 and since for systems (56)

we have

ζ6 = (g − 1)(1 + g)(2 + 5g + 5g2)/8

we consider two possibilities: ζ6 6= 0 and ζ6 = 0.

2.1.2.1: The possibility ζ6 6= 0. In this case the condition θ = 0 implies g = −2. Then we

get the system

ẋ =− 5x

2
+
y

2
− 2x2 + xy, ẏ = −y(5 + 3x− 2y)

which besides the invariant parabolas

Φ1(x, y) = x2 − y = 0, Φ2(x, y) = 5x+ 4x2 + y = 0

possesses only one invariant line y = 0. This means that the condition g = −2 does not imply the

appearance of an additional parallel invariant line. So since we have g = −2 < −1 we arrive at the

configuration Config.P.70 (detected above).

2.1.2.2: The possibility ζ6 = 0. Then θ = 0 implies g = 1 and we arrive at the system

ẋ =− 4x− y + x2 + xy, ẏ = 2y(y − 4),

possessing the invariant lines y = 0 and y = 4 as well as the invariant parabolas

Φ1(x, y) = x2 − y = 0, Φ2(x, y) = −4x+ x2 + y = 0.

In this case we obtain the configuration Config.P.72.

2.2: The case B2 = 0. Considering (57) and (58) the condition B2 = 0 implies g = −2/3 and we

arrive at the system

ẋ =
x

6
− y

6
− 2x2

3
+ xy, ẏ =

1

3
y(1− 5x+ 6y). (59)

possessing the invariant lines y = 0 and y = x− 1/4 as well as the invariant parabolas

Φ1(x, y) = x2 − y = 0, Φ2(x, y) = x− 4x2 + y = 0.

We determine that the invariant line y = x − 1/4 is tangent to the invariant parabola Φ1(x, y) = 0

at the point M4(1/2, 1/4) as well as to the parabola Φ2(x, y) = 0 at the point M2(1/4, 0). So it is

not too difficult to find out that in this case we get configuration Config.P.73.

Thus in the case B1 = 0 and ξ15 6= 0 we proved the following lemma.
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Lemma 8. Assume that for systems (42) the conditions B1 = 0 and ξ15 6= 0 hold. Then these

systems possess the following configurations if the corresponding conditions are satisfied:

B2 6= 0, θ 6= 0, ζ2 < 0, ξ16 < 0 ⇒ Config.P.67;

B2 6= 0, θ 6= 0, ζ2 < 0, ξ16 > 0, ξ17 < 0 ⇒ Config.P.68;

B2 6= 0, θ 6= 0, ζ2 < 0, ξ16 > 0, ξ17 > 0 ⇒ Config.P.69;

B2 6= 0, θ 6= 0, ζ2 > 0, ξ17 < 0 ξ17 > 0 ⇒ Config.P.70;

B2 6= 0, θ 6= 0, ζ2 > 0, ξ17 > 0 ξ17 > 0 ⇒ Config.P.71;

B2 6= 0, θ = 0, ζ6 6= 0 ⇒ Config.P.70;

B2 6= 0, θ = 0, ζ6 = 0 ⇒ Config.P.72;

B2 = 0 ⇒ Config.P.73.

2: The possibility ξ15 = 0. Then considering the proof of Lemma 7 we may assume 1+3g = 0. Then

g = −1/3 and we arrive at the 1-parameter family of systems

ẋ =nx− y

3
− x2

3
+ xy, ẏ =

2

3
y(3n− 2x+ 3y), (60)

which besides the invariant parabolas

Φ1(x, y) = x2 − y = 0, Φ2(x, y) = 9n2 − 6nx+ x2 + (9n− 1)y = 0,

possesses the invariant line y = 0. Considering Lemmas 1 and 2 we calculate

B2 = −8(1 + 3n)(9n− 1)(12n− 1)y4/9, D = 4096n6(9n− 1)/243,

θ = 160/9 6= 0, ζ5 = −4256n2/9, R2 = 28(9n− 1)/81.

So we discuss the cases B2 6= 0 and B2 = 0.

2.1: The case B2 6= 0. Then by Lemmas 1 and 2 we could not have another invariant line.

On the other hand considering (45) systems (60) possess four finite singularities Mi(xi, yi) (i =

1, 2, 3, 4) with the coordinates

x1 = 0, y1 = 0; x2 = 3n, y2 = 0; x3,4 =
1

3

(
1±

√
1− 9n

)
, y3,4 =

1

9

(
2− 9n± 2

√
1− 9n

)
.

We observe that in this case we have n(1 − 9n) 6= 0 due to ζ5R2 6= 0 and we conclude that all

finite singularities are distinct. Moreover we determine that the invariant line y = 0 is tangent to

the parabola Φ1(x, y) = 0 at the singular point M1(0, 0) as well as to the parabola Φ2(x, y) = 0 at

M2(3n, 0).

Since D 6= 0 and sign (1− 9n) = −sign (D) we examine two subcases: D < 0 and D > 0.

2.1.1: The subcase D < 0. Then 1 − 9n > 0 (i.e. n < 1/9) and we arrive at the unique

configuration Config.P.74 independently of the position of the singularity M2(3n, 0) with respect of

M1(0, 0).

2.1.2: The subcase D > 0. This implies 1 − 9n < 0, i.e. the singularities M3 and M4 are

complex and in this case we arrive at the configuration Config.P.75.
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2.2: The case B2 = 0. Since 9n− 1 6= 0 due to R2 6= 0 the condition B2 = 0 yields

(1 + 3n)(12n− 1) = 0.

1.2.1: The subcase 1 + 3n = 0. Then n = −1/3 and this leads to the system

ẋ =− 1

3
x− 1

3
y − 1

3
x2 + xy, ẏ =

2

3
y(−1− 2x+ 3y).

Then applying the transformation x1 = (1 − x)/4, y1 = (y − x)/4, t1 = 4t we get system (59)

possessing the configuration Config.P.73.

1.2.2: The subcase 12n− 1 = 0. This implies n = 1/12 and we arrive at the system

ẋ =
1

12
x− 1

3
y − 1

3
x2 + xy, ẏ =

1

6
y(1− 8x+ 12y),

which via the affine transformation x1 = −x+ 1/2, y1 = y − x+ 1/4 can be brought to the system

(59) possessing the configuration Config.P.73.

3.1.3 The statement (A3)

In this case the conditions ζ4 = ζ5 = 0 and considering (44) and the condition ζ1 6= 0 (i.e. (g −
2)(g + 3)) we get the condition

1 + 4g + 3g2 + 4n = 0 ⇒ n = −1

4
(1 + g)(1 + 3g).

This leads to the family of systems

ẋ =
1

8
(1 + g)(1 + 3g)2 − 1

4
(1 + g)(1 + 3g)x− 1

2
(1 + g)y + gx2 + xy,

ẏ =
1

4
(1 + g)(1 + 3g)2 x− 1

2
(1 + g)(1 + 3g)y + (g − 1)xy + 2y2

(61)

possessing the parabola Φ(x, y) = x2 − y = 0 which is of multiplicity 2.

Following the statement (A3) for the above systems we calculate

ζ1 =2(g − 2)(3 + g), ζ2 = 4g(1 + g), ζ3 = 8(1 + 2g)2, ζ4 = ζ5 = 0,

R2 =− g(1 + g)(g − 2)(3 + g)(8 + 27g + 27g2)/8,

B1 =g
4(1 + g)4(1 + 2g)(1 + 3g)3(2 + 3g)3/8.

(62)

Therefore since the quadratic polynomial 8+ 27g+27g2 has negative discriminant, for systems (61)

we have the condition:

ζ1ζ2ζ3R2 6= 0 ⇒ g(1 + g)(g − 2)(3 + g)(1 + 2g) 6= 0. (63)

According to Lemma 1 for the existence of an invariant line of systems (61) the condition B1 = 0

is necessary. So we discuss two cases: B1 6= 0 and B1 = 0.
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3.1.3.1 The case B1 6= 0. Then we could not have any invariant line. We determine that

systems (61) possess three finite singularities Mi(xi, yi) (i = 1, 2, 3) with the coordinates

x1 = −1 + 3g

2
, y1 =

(1 + 3g)2

4
; x2,3 =

1

2

(
1 + g ±

√
−2g(1 + g)

)
,

y2,3 =
g + 1

4

(
1− g ± 2

√
−2g(1 + g)

)
.

(64)

We point out thatM1 is a multiple singularity of systems (61). Indeed, applying the corresponding

translation, we could place M1 at the origin of coordinates and we arrive at the systems

ẋ =− 1

2
g(3g + 1)x− (2g + 1)y + gx2 + xy,

ẏ =
1

2
g(3g + 1)2x+ (2g + 1)(3g + 1)y + (g − 1)xy + 2y2,

where M0(0, 0) is a singularity of the above systems corresponding to the singularity M1.

Considering [1], we calculate the following invariant polynomials: µ4 = µ3 = 0 and

µ2 =
1

2
g(g + 1)(3g + 1)(3g + 2)

[
g(1 + 3g)x2 + 4gxy + 2y2

]
6= 0,

due to the condition B1 6= 0. By [1, Lemma 5.2, statement (ii)] the point M0 is of multiplicity

exactly 2.

We calculate

Φ(x1, y1) = Φ(x2, y2) = Φ(x3, y3) = 0

and clearly all three singularities are located on the invariant parabola. On the other hand the

singular points M2 and M3 could be either complex or real or coinciding, depending on the value of

the product g(g+1) 6= 0 (due to ζ2 6= 0). Since ζ2 = 4g(g+1) we consider two subcases: ζ2 < 0 and

ζ2 > 0.

1: The subcase ζ2 < 0. This implies g(g+1) < 0, i.e. −1 < g < 0. In this case all three singularities

located on the invariant parabola are real and we need to determine the position of the double

singularityM1 with respect to the simple singularitiesM2 andM3. So considering (64) we calculate:

(x2 − x1)(x3 − x1) = (1 + 3g)(2 + 3g)/2 ⇒ sign
(
(x2 − x1)(x3 − x1)

)
= sign

(
(1 + 3g)(2 + 3g)

)
.

On the other hand for systems (61) we calculate

ξ15 = 2(1 + 3g)(2 + 3g) 6= 0

due to B1 6= 0. Therefore in the case ξ15 < 0 the double pointM1 is located between the singularities

M2 and M3 and we arrive at the configuration Config.P.76.

In the case ξ15 > 0 the double point M1 is located outside the curvilinear interval (M2,M3) and

we get the configuration Config.P.77.

2: The subcase ζ2 > 0 Then g(g + 1) > 0 and clearly the singularities M2 and M3 are complex. In

this case evidently we can get the unique configuration Config.P.78.
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3.1.3.2 The case B1 = 0. Considering (62) and the condition (63) we conclude that the condi-

tion B1 = 0 is equivalent to (1 + 3g)(2 + 3g) = 0.

If g = −1/3 then we arrive at the system

ẋ = −(y + x2 − 3xy)/3, ẏ = −2y(2x− 3y)/3 (65)

possessing the invariant line y = 0 which is tangent to the double invariant parabola at the singular

point M1(0, 0). Moreover in this case the singular point M3 coalesced with M1 producing a triple

singularity. As a result we get the configuration Config.P.79.

Assume now g = −2/3. Then we get the system

ẋ = (1 + 2x− 4y − 16x2 + 24xy)/24, ẏ = (x+ 2y − 20xy + 24y2)/12

which via the affine transformation x1 = −x+ 1/2, y1 = y − x+ 1/4 can be brought to the system

(65) possessing the configuration Config.P.79.

Thus we have proved the following lemma.

Lemma 9. Assume that for a quadratic system the conditions (A3) are satisfied. Then this system

possesses one of the following configurations if and only if the corresponding conditions are satisfied,

respectively:

B1 6= 0, ζ2 < 0, ξ15 < 0 ⇒ Config.P.76;

B1 6= 0, ζ2 < 0, ξ15 > 0 ⇒ Config.P.77;

B1 6= 0, ζ2 > 0, ξ15 > 0 ⇒ Config.P.78;

B1 = 0 ⇒ Config.P.79.

3.1.4 The statement (A4)

In this case the condition ζ4 = R2 = 0 holds and considering (44) and the condition ζ1 6= 0 (i.e.

(g− 2)(g+3) 6= 0) we get (8 + 27g+27g2)(1 + 6g+5g2 +4n) = 0. However the discriminant of the

quadratic polynomial 8 + 27g + 27g2 equals −135 < 0. So we obtain the condition

1 + 6g + 5g2 + 4n = 0 ⇒ n = −1

4
(1 + g)(1 + 5g).

This leads to the family of systems

ẋ =
1

8
(1 + g − 2x)(1 + 4g + 3g2 − 4gx− 4y),

ẏ =
1

4
(1 + g)2(1 + 3g)x− 1

2
(1 + g)(1 + 5g)y + (g − 1)xy + 2y2,

(66)

possessing the invariant parabola Φ(x, y) = x2 − y = 0 and the invariant line x = (g + 1)/2.

Following the statement (A4) for the above systems we calculate

ζ1 =2(g − 2)(3 + g), ζ2 = 4g(1 + g), ζ3 = 8(1 + 2g)2,

ζ4 =0 = R2, ζ5 = 19(g − 2)g2(1 + g)2(3 + g),

B1 =0, B2 = −648g5(1 + g)5(1 + 3g)(2 + 3g)x4.

(67)
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Therefore for systems (61) we have the condition:

ζ1ζ2ζ3ζ5 6= 0 ⇒ g(1 + g)(g − 2)(3 + g)(1 + 2g) 6= 0. (68)

We discuss two possibilities: B2 6= 0 and B2 = 0.

1: The possibility B2 6= 0. In this case by Lemma 1 systems (66) could not possess invariant lines

in other directions than the invariant line x = (g + 1)/2.

On the other hand by Lemma 2 these systems could possess an invariant line parallel to the

existent one if θ = (g − 1)(g + 2) = 0. However a straightforward calculation shows us that neither

the condition g = 1 nor g = −2 does not imply the appearance of an additional parallel invariant

line.

Next we determine that systems (66) possess three finite singularities Mi(xi, yi) (i = 1, 2, 3) with

the coordinates

x1 =
1 + g

2
, y1 =

(1 + g)2

4
; x2 =

1 + g

2
, y2 =

1

4
(1 + g)(1 + 3g);

x3 = −1 + 3g

2
, y3 =

(1 + 3g)2

4
.

It is not difficult to detect that the invariant line x = (g + 1)/2 intersect the invariant parabola at

the singular point M1.

We point out thatM1 is a multiple singularity of systems (66). Indeed, applying the corresponding

translation, we could place M1 at the origin of coordinates and we arrive at the systems

ẋ =gx2 + xy, ẏ = g(1 + g)2x− g(1 + g)y + (−1 + g)xy + 2y2,

where M0(0, 0) is a singularity of the above systems corresponding to the singularity M1.

Considering [1], we calculate the following invariant polynomials: µ4 = µ3 = 0 and

µ2 = g2(1 + g)2(1 + 2g)x(gx+ y) 6= 0,

due to the condition (68). By [1, Lemma 5.2, statement (ii)] the pointM0 is of multiplicity exactly 2.

On the other hand the singularityM2 is located on the invariant line whereasM3 is located on the

invariant parabola and both these singularities are floating. So we need to determine the position of

these points with respect to the double singularity M1. So we calculate:

y2 − y1 = g(1 + g)/2 ⇒ sign (y2 − y1) = sign
(
g(g + 1)

)
,

x3 − x1 = −(1 + 2g) ⇒ sign (x3 − x1) = −sign (1 + 2g),

and we observe that for systems (66) we have ζ2 = 4g(g + 1) and hence sign (ζ2) = sign
(
g(g + 1)

)
.

Thus we arrive at the following configurations:

ζ2 < 0, 2g + 1 < 0 (i.e. −1 < g < −1/2) ⇒ y2 < y1, x3 > x1 ⇒ Config.P.80;

ζ2 < 0, 2g + 1 > 0 (i.e. −1/2 < g < 0) ⇒ y2 < y1, x3 < x1 ⇒ ≃ Config.P.80;

ζ2 > 0, 2g + 1 < 0 (i.e. g < −1) ⇒ y2 > y1, x3 > x1 ⇒ Config.P.81;

ζ2 > 0, 2g + 1 > 0 (i.e. g > 0) ⇒ y2 > y1, x3 < x1 ⇒ ≃ Config.P.81.
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2: The possibility B2 = 0. Considering (67) and the condition (68) we conclude that the condition

B2 = 0 is equivalent to (1 + 3g)(2 + 3g) = 0.

If g = −1/3 then we arrive at the system

ẋ = −(3x− 1)(x− 3y)/9, ẏ = 2y(1− 6x+ 9y)/9 (69)

possessing additionally the invariant line y = 0 which is tangent to the invariant parabola at the

singular point M3(0, 0) and intersects the invariant line x = 1/3 at the singular point M2(1/3, 0).

Therefore we obtain the configuration Config.P.82.

Assume now g = −2/3. This leads to the system

ẋ = −(6x− 1)(8x− 1− 12y)/72, ẏ = (−x+ 14y − 60xy + 72y2)/36

which via the affine transformation x1 = −x + 1/2, y1 = −x + y + 1/4 we could be brought to

system (69) possessing the configuration Config.P.82.

Thus we have proved the following lemma.

Lemma 10. Assume that for a quadratic system the conditions (A4) are satisfied. Then this system

possesses one of the following configurations if and only if the corresponding conditions are satisfied,

respectively:

B2 6= 0, ζ2 < 0 ⇒ Config.P.80;

B2 6= 0, ζ2 > 0 ⇒ Config.P.81;

B2 = 0, ζ2 > 0 ⇒ Config.P.82.

3.1.5 The statement (A5)

According to Proposition 2 the condition ζ3 = 0 must be fulfilled. Considering (8) we get g = −1/2

and we arrive at the 2-parameter family of systems

ẋ =m+ nx− y/4− x2/2 + xy, ẏ = 2mx+ 2ny − 3xy/2 + 2y2 (70)

possessing the parabola Φ(x, y) = x2 − y = 0. For these systems we calculate

ζ1 =− 25/2, ζ2 = −1, ζ3 = 0, ζ4 = 25(32m+ 8n− 1)/512,

R1 =375(32m+ 8n− 1)/256,

B1 =m(16m− 4n− 1)(4m+ 3n)(16m+ 8n− 1)(32m+ 8n− 1)/512.

(71)

3.1.5.1 The case B1 6= 0. We observe that the family of systems (70) is a subfamily of (7)

defined by the condition g = −1/2. Therefore it is clear that systems (70) possess four finite

singularities Mi(x̃i, ỹi) (i = 1, 2, 3, 4) where considering (10) we have

x̃i = xi
∣∣
{g=−1/2}

, ỹi = yi
∣∣
{g=−1/2}

, i = 1, 2, 3, 4.

As it was proved for the family (7) in the case D 6= 0 these systems could possess only two distinct

configurations: Config.P.1 if D < 0 and Config.P.2 if D > 0. The same two configurations could be
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obtained in the particular case g = −1/2, because this value of the parameter g is not a bifurcation

value for the mentioned two configurations.

Assuming D = 0 we get F1F2 = 0 where F1 and F2 are given in (9). So taking g = −1/2 we

follow the examination of the two possibilities: ξ1 6= 0 and ξ1 = 0.

1: The possibility ξ1 6= 0. Then F1 6= 0 and hence the condition D = 0 implies F2 = 0. In this case

we arrive at the systems (11) which for g = −1/2 become

ẋ =
(3 + 2v)2(4v − 3)

1728
− 4v2 − 9

48
x− 1

4
y − 1

2
x2 + xy,

ẏ =
(3 + 2v)2(4v − 3)

864
x− 4v2 − 9

24
y − 3

2
xy + 2y2.

(72)

For the above systems we calculate

ξ1 = 25 · 2−123−8v3(2v − 3)2(3 + 2v)2(9 + 2v2), ξ2 = 2−113−8v2(2v − 3)2(3 + 2v)2(9 + 2v2)2,

and clearly the condition ξ1 6= 0 implies ξ2 6= 0. Therefore following the examination of the 2-

parameter family of systems (11) we conclude that the 1-parameter family of systems (72) could

possess the unique configuration Config.P.3.

2: The possibility ξ1 = 0. Then F1 = 0 and we arrive at the systems (14) which for g = −1/2

become

ẋ =
(1 + 2u)2

64
+

1− 4u2

16
x− 1

4
y − 1

2
x2 + xy,

ẏ =
(1 + 2u)2

32
x+

1− 4u2

8
y − 3

2
xy + 2y2,

possessing the invariant parabola Φ(x, y) = x2 − y = 0. For these systems we calculate:

ξ2 = (4u2 − 1)2(2 + u2)/2048, ξ3 =
27249129

2048
(4u2 − 1)3(2 + u2)

B1 = 2−18u(u2 − 1)(4u2 − 1)3

and due to the condition B1 6= 0 we have ξ2 > 0 and ξ3 6= 0.

So according to the investigation done for systems (14) in the case g = −1/2 we get the configu-

ration Config.P.6 for ξ3 < 0 and Config.P.7 for ξ3 > 0.

3.1.5.2 The case B1 = 0. Considering (71) and the condition ζ4 6= 0 we deduce that B1 = 0 is

equivalent to

m(16m− 4n− 1)(4m+ 3n)(16m+ 8n− 1) = 0.

However considering Lemma 3 we have the following corollary.

Corollary 1. [Lemma 3] The condition (16m− 4n− 1)(16m+ 8n− 1) = 0 for systems (70) could

be transferred to the condition m(4m+ 3n) = 0 via an affine transformation.

It is important to point out that in the proof of Lemma 3 the transformed systems the parameter

g1 = −(1 + g) (see (18)) in the case g = −1/2 we get g1 = −1/2 and therefore the homogeneous

quadratic part of systems (70) is conserved.
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Taking into account the above corollary we conclude that it is sufficient to consider the condition

m(4m+ 3n) = 0. (73)

For systems (70) we have

ζ4 = 25(32m+ 8n− 1)/512, ξ4 = 328125m(16m+ 8n− 1)(32m+ 8n− 1)/16 (74)

and we consider two subcases: ξ4 6= 0 and ξ4 = 0.

3.1.5.2.1 The subcase ξ4 6= 0. Then m 6= 0 and from (73) we obtain 4m + 3n = 0. This

implies m = −3n/4 and we arrive at the family of systems

ẋ =− 3n/4 + nx− y/4− x2/2 + xy, ẏ = −(n+ y)(3x− 4y)/2 (75)

which is a subfamily of (25) defined by the condition g = −1/2. Considering (27) for g = −1/2

we obtain the following four finite singularities Mi(xi, yi) (i = 1, 2, 3, 4) of systems (25) with the

coordinates

x1 =
√
−n, y1 = −n; x2 = −

√
−n, y2 = −n; x3 =

3

4
, y3 =

9

16
;

x4 = −4n, y4 = −3n.

As it was mentioned for systems (25) the finite singular points M1, M2 and M3 are located on the

invariant parabola Φ(x, y) = x2 − y = 0. Moreover M1 and M2 are the points of intersection of the

invariant line y = −n with the parabola.

On the other hand we have Φ(x4, y4) = n(3 + 16n). Therefore we conclude that M4 could be

located on the invariant parabola if and only if either n = 0 or n = −3/16.

For systems (75) we calculate

B2 = −81(1 + 4n)(1 + 16n)2y4/128, ξ4 = −984375n(1 + 4n)(1 + 16n)/64

and due to ξ4 6= 0 we have B2 6= 0. We observe that due to ξ4 6= 0 (i.e. n 6= 0) the singularities M1

and M2 could be either complex or real. So we calculate

D = 3n3(3 + 16n)2(9 + 16n)2/256

and hence in the case D 6= 0 we have sign (D) = sign (n). Moreover for D 6= 0 we have n(3+16n) 6= 0

and hence the singular point M4 could not be located on the invariant parabola. So we discuss three

possibilities: D < 0, D > 0 and D = 0.

1: The possibility D < 0. This implies n < 0 and then the finite singularities M1 and M2 are real.

In order to determine the position of M3 with respect to M1 and M2 we calculate

(x3 − x1)(x3 − x2) = (9 + 16n)/16 ⇒ sign
(
(x3 − x1)(x3 − x2)

)
= sign (9 + 16n),

(x3 − x1) + (x3 − x2) = 3/2 > 0.

Therefore we conclude that in the case (x3 − x1)(x3 − x2) > 0 we have x3 − x1 > 0 and x3 − x2 > 0.
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On the other hand for systems (75) calculations yield

ξ9 =
698726655

2048
(1 + 16n)2(9 + 16n)

and since ξ9 6= 0 (due to Dζ4 6= 0) we obtain sign (ξ9) = sign (9 + 16n).

So in the case D < 0 we arrive at the configuration Config.P.17 if ξ9 < 0 and Config.P.18 if

ξ9 > 0.

2: The possibility D > 0. Then n > 0 and the singularities M1 and M2 are complex. Since due to

D > 0 (i.e. n(3 + 16n) 6= 0) the singularity M4 does not lie on the invariant parabola we get the

configuration Config.P.20.

3: The possibility D = 0. Since ξ4 6= 0 we have n 6= 0 and therefore the condition D = 0 implies

(3 + 16n)(9 + 16n) = 0. We observe that ξ9 = 0 if and only if 9 + 16n = 0 because 1 + 16n 6= 0 due

to ξ4 6= 0.

Thus we arrive at the configuration Config.P.23 if ξ9 6= 0 and Config.P.26 if ξ9 = 0.

3.1.5.2.2 The subcase ξ4 = 0. Then considering (74) and the condition ζ4 6= 0 we obtain

m(16m + 8n − 1) = 0. Taking into consideration Corollary 1 it is sufficient to examine the case

m = 0. Then we obtain the 1-parameter family of systems

ẋ =nx− y/4− x2/2 + xy, ẏ = y(4n− 3x+ 4y)/2 (76)

which is a subfamily of (31) defined by the condition g = −1/2. Considering (34) for g = −1/2 we

obtain that the above systems possess the following four finite singularities Mi(xi, yi) (i = 1, 2, 3, 4)

with the coordinates

x1 = 0, y1 = 0; x2 = 2n, y2 = 0; x3,4 =
1

8
(3±

√
9− 64n), y3,4 =

1

32
(9− 32n± 3

√
9− 64n).

As it was mentioned for systems (31) the singular points M3 and M4 are located on the invariant

parabola. Moreover the singularityM2 lies on the invariant line y = 0 and its position with respect to

M1 depends on sign (n). It is clear that M2 coalesces with M1 if and only if n = 0. The singularities

M3 and M4 are complex (respectively, real) if 9 − 64n < 0 (respectively, 9 − 64n > 0) and they

coincide (producing a multiple point) if 9− 64n = 0.

On the other hand for systems (76) we calculate:

ζ4 = 25(8n− 1)/512, D = 3n6(64n− 9)/4,

B2 = −81(1 + 4n)(8n− 1)2y4/128, ξ11 = 524906375n(8n− 1)2/81
(77)

and evidently due to ζ4 6= 0 we have sign (ξ11) = sign (n) and if D 6= 0 we obtain sign (D) =

sign (64n− 9).

So considering Lemma 1 we discuss two possibilities: B2 6= 0 and B2 = 0.

1: The possibility B2 6= 0. Then by Lemma 1 systems (76) could not have invariant lines in other

directions different from y = 0. We examine three cases: D < 0, D > 0 and D = 0.
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1.1: The case D < 0. This implies 9− 64n > 0 and hence the singularities M3 and M4 are real.

In order to determine the position of M3 and M4 with respect to M1 we calculate

(x3 − x1)(x4 − x1) = n ⇒ sign
(
(x3 − x1)(x4 − x1)

)
= sign (n),

(x3 − x1) + (x4 − x1) = 3/2 > 0.

Therefore we conclude that in the case (x3 − x1)(x4 − x1) > 0 we have x3 − x1 > 0 and x4 − x1 > 0.

So it is not too difficult to determine that in this case systems (76) possess the configuration

Config.P.31 if ξ11 < 0 (i.e. n < 0) and Config.P.35 if ξ11 > 0 (i.e. n > 0).

1.2: The case D > 0. Then 9 − 64n < 0 and systems (76) possess two real and two complex

finite singularities. Since the condition 9 − 64n < 0 implies n > 0 we arrive at the configuration

Config.P.37.

1.3: The case D = 0. Then we obtain n(9 − 64n) = 0 and since ξ11 = 0 is equivalent to n = 0,

in the case ξ11 6= 0 we have 9 − 64n = 0 and the singular points M3 and M4 coalesce producing a

double singular point and we arrive at the configuration Config.P.40.

Assume now ξ11 = 0, i.e. n = 0. Then we have a coalescence of three finite singularities:

M4 =M2 =M1. As a result we get the configuration Config.P.41.

2: The possibility B2 = 0. Considering (77) and the condition ζ4 6= 0 we obtain n = −1/4. Then we

arrive at the system

ẋ = −x/4− y/4− x2/2 + xy, ẏ = y(−1− 3x+ 4y)/2

which belongs to the family of systems (39). Therefore since g = −1/2 we have −1 < g < 0 and

considering the examination of the family (39) we obtain the configuration Config.P.52.

Thus we have proved the following lemma.

Lemma 11. Assume that for a quadratic system the conditions (A5) are satisfied. Then this system

possesses one of the following configurations if and only if the corresponding conditions are satisfied,

respectively:

B1 6= 0, D < 0 ⇒ Config.P.1;

B1 6= 0, D > 0 ⇒ Config.P.2;

B1 6= 0, D = 0, ξ1 6= 0 ⇒ Config.P.3;

B1 6= 0, D = 0, ξ1 = 0, ξ3 < 0 ⇒ Config.P.6;

B1 6= 0, D = 0, ξ1 = 0, ξ3 > 0 ⇒ Config.P.7;

B1 = 0, ξ4 6= 0, D < 0, ξ9 < 0 ⇒ Config.P.17;

B1 = 0, ξ4 6= 0, D < 0, ξ9 > 0 ⇒ Config.P.18;

B1 = 0, ξ4 6= 0, D > 0 ⇒ Config.P.20;

B1 = 0, ξ4 6= 0, D = 0, ξ9 6= 0 ⇒ Config.P.23;

B1 = 0, ξ4 6= 0, D = 0, ξ9 = 0 ⇒ Config.P.26;

B1 = 0, ξ4 = 0, B2 6= 0, D < 0, ξ11 < 0 ⇒ Config.P.31;

B1 = 0, ξ4 = 0, B2 6= 0, D < 0, ξ11 > 0 ⇒ Config.P.35;
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B1 = 0, ξ4 = 0, B2 6= 0, D > 0 ⇒ Config.P.37;

B1 = 0, ξ4 = 0, B2 6= 0, D = 0, ξ11 6= 0 ⇒ Config.P.40;

B1 = 0, ξ4 = 0, B2 6= 0, D = 0, ξ11 = 0 ⇒ Config.P.41;

B1 = 0, ξ4 = 0, B2 = 0 ⇒ Config.P.52.

3.1.6 The statements (A6), (A7) and (A8)

According to Proposition 2 all these three statements have the common condition ζ3 = ζ4 = 0.

Considering (71) we have to force the condition 32m+8n− 1 = 0 and we get m = (1− 8n)/32. This

leads to one-parameter family

ẋ =(4x− 1)(8n− 1− 4x+ 8y)/32, ẏ = (x− 8nx+ 32ny − 24xy + 32y2)/16 (78)

which possess the following two invariant parabolas: Φ1(x, y) = x2 − y = 0 and

Φ2 = (8n− 1)(16n− 1)− 4(16n− 1)x+ 16x2 + 8(16n− 3)y = 0.

Moreover these systems have the invariant line x = 1/4.

Following the statements (A6) – (A8) for the above systems we calculate

ζ1 =− 25/2, ζ2 = −1, ζ3 = ζ4 = 0, ζ5 = −475

256
(16n− 1)2, R2 =

125

1024
(16n− 3). (79)

Since we have the unique parameter n, according to Proposition 2 we arrive at the statements:

(A6) if ζ5R2 6= 0; (A7) if ζ5 = 0; (A8) if R2 = 0.

We examine each one of these three possibilities.

3.1.6.1 The possibility ζ5R2 6= 0. Then (16n−1)(16n−3) 6= 0 and by Proposition 2 (statement

(A6)) the invariant parabolas Φ1(x, y) = 0 and Φ2(x, y) = 0 are distinct. For these systems we

calculate

B1 = 0, B2 = − 81

2048
(8n− 1)2(1 + 16n)2x4, θ = 18 6= 0,

and since θ 6= 0 by Lemma 2 these systems could possess an invariant line parallel to the existent

one.

On the other hand according to Lemma 1 for the existence of an invariant line in other direction

different than x = 0 the condition B2 = 0 is necessary. So we discuss two cases: B2 6= 0 and B2 = 0.

1: The case B2 6= 0. We determine that systems (78) possess four finite singularities Mi(xi, yi)

(i = 1, 2, 3, 4) with the coordinates

x1 =
1

4
, y1 =

1

16
; x2 =

1

4
, y2 =

1− 8n

8
;

x3,4 =
1

4

(
1±

√
3− 16n

)
, y3,4 =

1

8

(
2− 8n±

√
3− 16n

)
.

(80)

We observe that the invariant parabolas have two points of intersection: M3 and M4. Moreover we

observe that the invariant line x = 1/4 intersects the parabola Φ1(x, y) = 0 at the point M1 and the

parabola Φ2(x, y) = 0 at the point M2.
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So all four finite singularities are fixed as the intersections of invariant curves and their positions

are determined by the values of the parameter n. We observe that the finite singularities M3 and

M4 are real if 3− 16n > 0 and complex if 3− 16n < 0.

On the other hand for systems (78) we have

D = 3(16n− 3)3(16n− 1)2/1048576 6= 0

due to ζ5R2 6= 0. Therefore sign (D) = sign (16n− 3).

So in the case B2 6= 0 we arrive at the configuration Config.P.83 if D < 0 and Config.P.84 if

D > 0.

2: The case B2 = 0. Considering (79) this implies (8n− 1)(1 + 16n) = 0.

2.1: The subcase 8n− 1 = 0. Then n = 1/8 and we get the system

ẋ =− (4x− 1)(x− 2y)/8, ẏ = y(1− 6x+ 8y)/4 (81)

possessing the following five invariant curves (two parabolas and three invariant lines):

Φ1(x, y) = x2 − y, Φ2(x, y) = −x+ 4x2 − 2y, x = 1/4, y = 0, y = x− 1/4.

So it is easy to detect the unique configuration Config.P.85.

2.2: The subcase 1 + 16n = 0. In this case n = −1/16 and we arrive at the system

ẋ = −(4x− 1)(3 + 8x− 16y)/64, ẏ = −(16y − 1)(3x− 4y)/32

which can be brought to the system (81) via the following affine transformation:

x1 = x/2 + 1/8, y1 = y/2− 1/32, t1 = 2t.

So in this case we get the same configuration Config.P.87.

3.1.6.2 The possibility ζ5 = 0. Considering (79) we get n = 1/16 and this leads to the system

ẋ = −(4x− 1)(1 + 8x− 16y)/64, ẏ = (x+ 4y − 48xy + 64y2)/32.

possessing the invariant line x = 1/4 and the double invariant parabola Φ1(x, y) = x2 − y = 0

because the conditions provided by the statement (A7) of Proposition 2 are fulfilled. In this case

the singular points M1 and M2 coalesced and it is not difficult to detect that in this case we get the

configuration Config.P.86.

3.1.6.3 The possibility R2 = 0. Considering (79) this implies n = 3/16 and we obtain the

system

ẋ = −(4x− 1)(−1 + 8x− 16y)/64, ẏ = (−x+ 12y − 48xy + 64y2)/32

possessing the unique invariant parabola Φ1(x, y) = x2 − y = 0 (according to the statement (A8)

of Proposition 2) and the invariant line x = 1/4. Considering (80) we determine that in this case

the singularities M3 and M4 coalesced with M1 producing a triple singularity. So we arrive at the

configuration Config.P.87.

Thus we have proved the following lemma.
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Lemma 12. Assume that for a quadratic system the conditions η > 0, χ1 = 0, ζ1ζ2 6= 0 and

ζ3 = ζ4 = 0 hold. Then this system possesses one of the following configurations if and only if the

corresponding conditions are satisfied, respectively:

R2 6= 0, ζ5 6= 0, B2 6= 0, D < 0 ⇒ Config.P.83;

R2 6= 0, ζ5 6= 0, B2 6= 0, D > 0 ⇒ Config.P.84;

R2 6= 0, ζ5 6= 0, B2 = 0 ⇒ Config.P.85;

R2 6= 0, ζ5 = 0 ⇒ Config.P.86;

R2 = 0 ⇒ Config.P.87.

3.1.7 The statement (A9)

According to Proposition 2 the condition ζ2 = 0 must be fulfilled. Considering (8) we get g(g+1) = 0.

Following the proof of Lemma 3 we conclude that the condition g+1 = 0 could be brought to the

condition g = 0 due to an affine transformation (see formulas (18)).

So it is sufficient to examine only the case g = 0. In this case we arrive at the 2-parameter family

of systems

ẋ =m+ nx− y/2 + xy, ẏ = 2mx+ 2ny − xy + 2y2 (82)

possessing the parabola Φ(x, y) = x2 − y = 0. Considering the statement (A9) for these systems we

calculate
ζ1 =− 12, ζ2 = 0, ζ6 = (2m+ n)/2, R1 = 0, R2 = 6(2m+ n),

B1 =2m(4m− 1− 2n)(2m+ n)3.
(83)

Remark 5. Following [1, Lemma 5.2, statement (i)] for systems (82) we calculate

µ0 = 0, µ1 = −2(2m+ n)y 6= 0

due to the condition ζ6 6= 0. Therefore according to [1, Lemma 5.2, statement (i)] we conclude

that one of the singular points of systems (82) has gone to infinity and coalesced with the infinite

singularity N [1 : 0 : 0] producing a double infinite singularity of the type (1, 1).

3.1.7.1 The case B1 6= 0. We observe that the family of systems (82) is a subfamily of (7)

defined by the condition g = 0. Considering the finite singularities of (7) given in (10) we remark

that in the case g = 0 the singular point M1(x1, y1) with the coordinates

x1 = −2m+ n+ gn

g(1 + g)
, y1 =

2m

1 + g

has gone to infinity. According to Remark 5 this singularity coalesced with the infinite singularity

N [1 : 0 : 0] producing a double infinite singularity of the type (1, 1).

Therefore we deduce that systems (82) possess three finite singularities Mi(x̃i, ỹi) (i = 2, 3, 4)

where considering (10) we have

x̃i = xi
∣∣
{g=0}

, ỹi = yi
∣∣
{g=0}

, i = 2, 3, 4.

So taking into consideration [1, Proposition 5.1] for systems (82) we calculate

µ0 = 0, D = 48(2m+ n)4(−2m+ 108m2 + 36mn− n2 + 16n3), R = 12(2m+ n)2y2.
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We observe that R 6= 0 due to ζ6 6= 0 and by Proposition 5.1 from [1] we have three finite distinct

real singularities if D < 0 and one real and two complex if D > 0. Considering the double point at

infinity of the type (1, 1) we arrive at the configuration Config.P.88 if D < 0 and Config.P.89 if

D > 0.

Assume now that for systems (82) the condition D = 48F2
1F2 = 0 where

F1 = −(2m+ n)2, F2 = −2m+ 108m2 + 36mn− n2 + 16n3.

Since F1 6= 0 due to ζ6 6= 0 we conclude that the condition D = 0 is equivalent to F2 = 0.

Setting a new parameter v similarly as in the generic case (see page 27) we arrive at the 1-parameter

family of systems

ẋ =
(1 + v)2(2v − 1)

216
− v2 − 1

12
x− 1

2
y + xy,

ẏ =
(1 + v)2(2v − 1)

108
x− v2 − 1

6
y − xy + 2y2,

(84)

which is a subfamily of (11) defined by the condition g = 0.

We recall that systems (11) possess three finite singularities given in (13) and M1 is of multiplicity

at least two. We observe that for g = 0 the singular point M3 has gone to infinity and according

to Remark 5 this singularity coalesces with the infinite singularity N [1 : 0 : 0] producing a double

infinite singularity of the type (1, 1).

Thus we deduce that systems (84) possess at most two different finite singularities M1(x̃1, ỹ1)

(multiple) and M2(x̃2, ỹ2) where considering (13) we have

x̃1 =
1 + v

6
, ỹ1 =

(1 + v)2

36
; x̃2 =

1− 2v

6
, ỹ2 =

(1− 2v)2

36
.

We observe that the singular point M2 coalesces with the double point M1 if and only if v = 0.

Thus considering the condition B1 6= 0 (i.e. systems (84) do not have any invariant line) we arrive

at the configuration Config.P.90 if v 6= 0 and Config.P.91 if v = 0.

On the other hand for systems (84) we calculate

ξ2 =
1

209952
v2(v − 2)6(1 + v)2, ζ6 =

1

108
(v − 2)2(1 + v)

and due to ζ6 6= 0 we conclude that the condition v 6= 0 is equivalent to ξ2 6= 0. Therefore we get

the configuration Config.P.90 if ξ2 6= 0 and Config.P.91 if ξ2 = 0.

3.1.7.2 The case B1 = 0. Considering (83) and the condition ζ6 6= 0 (i.e. 2m + n 6= 0) we

deduce that the condition B1 = 0 is equivalent to m(4m− 1− 2n) = 0.

On the other hand for systems (82) we calculate:

ξ1 = 9(4m− 1− 2n)(2m+ n)2/4, ζ6 = (2m+ n)/2

and due to ζ6 6= 0 we conclude that the condition 4m − 1 − 2n = 0 is equivalent to ξ1 = 0. So we

discuss two subcases: ξ1 6= 0 and ξ1 = 0.
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1: The subcase ξ1 6= 0. Then the condition B1 = 0 yields m = 0 and this leads to the 1-parameter

family of systems

ẋ =
1

2
(2nx− y + 2xy), ẏ = y(2n− x+ 2y) (85)

possessing the parabola Φ(x, y) = x2 − y = 0 and the invariant line y = 0. Calculations yield

B2 = −324n2(1 + 2n)y4

and considering Lemma 1 we discuss two possibilities: B2 6= 0 and B2 = 0.

1.1: The possibility B2 6= 0. We determine that systems (85) possess three finite singularities

Mi(xi, yi) (i = 1, 2, 3) with the coordinates

x1 = 0, y1 = 0; x2,3 =
1

4

(
1±

√
1− 16n

)
, y2,3 =

1

8

(
1− 8n±

√
1− 16n

)
. (86)

According to Remark 5 the forth finite singularity coalesced with an infinite one and we have a

singular point of type (1, 1).

We observe that M1 is the point of tangency of y = 0 with the invariant parabola and that M2

and M3 are either real or complex or coinciding, depending on the value of 1− 16n.

So in order to determine the positions of the real singularities M2 and M3 with respect to M1 we

calculate:

(x2 − x1)(x3 − x1) = n, (x2 − x1) + (x3 − x1) = 1/2 > 0.

On the other hand for systems (85) calculations yield:

D = −48n6(1− 16n), R2 = 6n

and therefore due to R2 6= 0 we have sign (R2) = sign (n) and sign (D) = −sign (1− 16n).

Thus in the case B2 6= 0 we arrive at the following four configurations:

D < 0 R2 < 0 ⇒ Config.P.92;

D < 0 R2 > 0 ⇒ Config.P.93;

D > 0 ⇒ Config.P.94;

D = 0 ⇒ Config.P.95.

1.2: The possibility B2 = 0. This implies (1 + 2n)n = 0 and since n 6= 0 (due to ζ6 = n/2 6= 0)

we get 1 + 2n = 0. Then n = −1/2 and we obtain the system

ẋ =
1

2
(−x− y + 2xy), ẏ = y(−1− x+ 2y), (87)

possessing two invariant lines: y = 0 and y = x. Considering (86) we get three real finite singularities

and this leads to the configuration Config.P.96.

2: The subcase ξ1 = 0. This implies m = (1 + 2n)/4 and we arrive at the 1-parameter family of

systems

ẋ =
1

4
(1 + 2n+ 4nx− 2y + 4xy), ẏ =

1

2
(x+ 2nx+ 4ny − 2xy + 4y2), (88)
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possessing the parabola Φ(x, y) = x2− y = 0 and the invariant line y = x− (2n+1)/2. Calculations

yield

B2 = −81(1 + 2n)(1 + 4n)2(x− y)4

and considering Lemma 1 we examine two possibilities: B2 6= 0 and B2 = 0.

2.1: The possibility B2 6= 0. We determine that the above systems possess three finite singularities

Mi(xi, yi) (i = 1, 2, 3) with the coordinates

x1 = −1

2
, y1 =

1

4
; x2,3 =

1

2

(
1±

√
−(1 + 4n)

)
, y2,3 =

1

2

(
− 2n±

√
−(1 + 4n)

)
.

We observe that the singularities M2 and M3 are the points of intersection of the invariant line

y = x− (2n+ 1)/2 with the invariant parabola and they are real (respectively complex; coinciding)

if 1 + 4n < 0 (respectively 1 + 4n > 0; 1 + 4n = 0). And again in the case of real singularities we

calculate

(x2 − x1)(x3 − x1) = (5 + 4n), (x2 − x1) + (x3 − x1) = 2 > 0.

On the other hand for systems (88) calculations yield:

D = 3(1 + 4n)5(5 + 4n)2/4, ξ3 = 8164197(1 + 4n)3(5 + 4n)/2

and therefore for D 6= 0 we have sign (D) = sign (1 + 4n) and sign (ξ3) = sign
(
(1 + 4n)(5 + 4n)

)
.

Thus in the case B2 6= 0 and D 6= 0 we arrive at the following configurations:

D < 0, ξ3 < 0 ⇒ Config.P.97;

D < 0, ξ3 > 0 ⇒ Config.P.98;

D > 0 ⇒ Config.P.99.

Assume now D = 0. This implies (1 + 4n)(5 + 4n) = 0. Since ζ6 = (1 + 4n)/4 6= 0 we get

5 + 4n = 0 and this means that one of the singularities M2 or M3 coalesces with M1. So we arrive

at the configuration Config.P.100.

2.2: The possibility B2 = 0. This implies (1+2n)(1+4n) = 0 and since 1+4n 6= 0 (due to ζ6 6= 0)

we get 1 + 2n = 0. Then n = −1/2 and we arrive at system (87) the configuration Config.P.96.

Thus we have proved the following lemma.

Lemma 13. Assume that for a quadratic system the conditions (A9) are satisfied. Then this system

possesses one of the following configurations if and only if the corresponding conditions are satisfied,

respectively:

B1 6= 0, D < 0 ⇒ Config.P.88;

B1 6= 0, D > 0 ⇒ Config.P.89;

B1 6= 0, D = 0, ξ2 6= 0 ⇒ Config.P.90;

B1 6= 0, D = 0, ξ2 = 0 ⇒ Config.P.91;

B1 = 0, ξ1 6= 0, B2 6= 0, D < 0, R2 < 0 ⇒ Config.P.92;

B1 = 0, ξ1 6= 0, B2 6= 0, D < 0, R2 > 0 ⇒ Config.P.93;

B1 = 0, ξ1 6= 0, B2 6= 0, D > 0 ⇒ Config.P.94;
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B1 = 0, ξ1 6= 0, B2 6= 0, D = 0 ⇒ Config.P.95;

B1 = 0, ξ1 6= 0, B2 = 0 ⇒ Config.P.96;

B1 = 0, ξ1 = 0, B2 6= 0, D < 0, ξ3 < 0 ⇒ Config.P.97;

B1 = 0, ξ1 = 0, B2 6= 0, D < 0, ξ3 > 0 ⇒ Config.P.98;

B1 = 0, ξ1 = 0, B2 6= 0, D > 0 ⇒ Config.P.99;

B1 = 0, ξ1 = 0, B2 6= 0, D = 0 ⇒ Config.P.100;

B1 = 0, ξ1 = 0, B2 = 0 ⇒ Config.P.96.

Since all the statements provided by Proposition 2 are considered hence this proposition is proved.

3.2 Systems in QSP(η>0) with the condition ζ1 = 0

In what follows we examine each one of the statements (B1) to (B7) provided by Proposition 3.

According to this proposition a system satisfying the conditions provided by one of the statements

(B1) to (B7) could be brought to the form:

ẋ = m+ nx− 3y

2
+ 2x2 + xy, ẏ = 2mx+ 2ny + xy + 2y2, (89)

and this system possesses the invariant parabola Φ1(x, y) = x2 − y = 0.

3.2.1 The statement (B1)

According to this statement for systems (89) we calculate χ3 = 0 and

χ4 =61875 U1 U3, ζ7 = −52875

2
U1 U2 U3, R3 = 3850561006875 U1 U2 U3, (90)

where
U1 = 1 + 4m+ 2n, U2 = 4m− 147− 14n,

U3 = 18m+ 1372m2 − 84mn+ 27n2 + 144n3.

On the other hand following Lemma 1 we calculate

B1 = m(2m− n)(2m+ 3n+ 9)(4m− 6n− 9)(1 + 4m+ 2n) (91)

and considering Lemma 1 we discuss two cases: B1 6= 0 and B1 = 0.

3.2.1.1 The case B1 6= 0. We observe that the family of systems (89) is a subfamily of (7)

defined by the condition g = 2. Therefore it is clear that systems (89) possess four finite singularities

Mi(x̃i, ỹi) (i = 1, 2, 3, 4) where considering (10) we have

x̃i = xi
∣∣
{g=2}

, ỹi = yi
∣∣
{g=2}

, i = 1, 2, 3, 4.

On the other hand for systems (89) we have

D = 48F̃2
1 F̃2, F̃1 = F1

∣∣
{g=2}

, F̃1 = F1

∣∣
{g=2}

,

where F1 and F2 are given in (9).
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As it was proved for the family (7) in the case D 6= 0 these systems could possess only two distinct

configurations: Config.P.1 if D < 0 and Config.P.2 if D > 0. The same two configurations could

be obtained in the particular case g = 2, because this values of the parameter g is not a bifurcation

value for the mentioned two configurations.

Assume now D = 0. This implies F̃1F̃2 = 0 and we have to distinguish what factor vanishes. We

point out that the invariant polynomial ξ1 which governed the condition F1 = 0 for systems (7) in

generic case (i.e. g 6= 2) vanishes for g = 2. So we have to use another invariant polynomial and for

systems (89) we calculate:

ξ18 = 17969284698750 U2 U3 F̃1.

Therefore due to the condition ζ7 6= 0 we obtain that the condition F̃1 = 0 is equivalent to ξ18 = 0.

So we examine two subcases: ξ18 6= 0 and ξ18 = 0.

1: The possibility ξ18 6= 0. Then F̃1 6= 0 and hence the condition D = 0 implies F̃2 = 0. Following

the investigation of the family of systems (7) in the particular case g = 2 we arrive at the systems

(11) which for g = 2 become

ẋ =
1

216
(2v + 1)(v − 1)2 − 1

12
(v2 − 1)x− 3y

2
+ 2x2 + xy,

ẏ =
1

108
(2v + 1)(v − 1)2x− 1

6
(v2 − 1)y + xy + 2y2.

(92)

For the above systems we calculate

ξ2 = 2−53−8(v − 4)2(v − 1)2v2(v2 − 20v − 8)2,

ξ18 = 998293594375(v − 10)(v − 4)4(v − 1)4(20 + v)2(4 + 5v)2(v2 − 20v − 8)/3188646

and we observe that due to ξ18 6= 0 the condition ξ2 = 0 is equivalent to v = 0.

Therefore following the examination of the 2-parameter family of systems we conclude that the

1-parameter family of systems (92) in the case B1ξ18 6= 0 possesses the configuration Config.P.3 if

ξ2 6= 0 and Config.P.4 if ξ2 = 0.

2: The possibility ξ18 = 0. Then we have F̃1 = 0 and this implies D = 0. Following the investigation

of the family of systems (7) in the particular case g = 2 we arrive at the systems (14) which for

g = 2 become

ẋ =
3

8
(u− 2)2 − 1

4
(u2 − 4)x− 3y

2
+ 2x2 + xy,

ẏ =
3

4
(u− 2)2x−−1

2
(u2 − 4)y + xy + 2y2.

(93)

For the above systems we calculate

χ4 = −556875(u− 3)5(u− 2)2(13 + u)/4, ξ2 = 9(u− 3)2(u− 2)2Z̃1/2,

ξ3 = 490484322α̃3
1Z̃1, Z̃1 = Z1

∣∣
{g=2}

, α̃1 = α1

∣∣
{g=2}

,

where Z1 and α1 are the polynomials defined for systems (14) (see (16) and (17)).

We observe that due to the condition χ4 6= 0 we have

sign (ξ2) = sign (Z̃1), sign (ξ3) = sign (Z̃1α̃1),
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and following the examination of the 2-parameter family of systems (14) we conclude that the 1-

parameter family of systems (93) in the case B1 6= 0 possesses the following configurations if and

only if the corresponding conditions are satisfied:

ξ2 < 0 ⇒ Config.P.5;

ξ2 > 0, ξ3 < 0 ⇒ Config.P.6;

ξ2 > 0, ξ3 > 0 ⇒ Config.P.7;

ξ2 = 0 ⇒ Config.P.8.

3.2.1.2 The case B1 = 0. Considering (91) and the condition χ4 6= 0 (i.e. 4m+ 2n+ 1 6= 0) we

observe that the condition B1 = 0 is equivalent to

m(2m− n)(2m+ 3n+ 9)(4m− 6n− 9) = 0.

For systems (89) calculations yield:

ξ19 = −12870000m (2m− n) (2m+ 3n+ 9),

ξ20 = −540m (2m− n)U1 U3, ξ21 = −110106mU1 U2 U3,
(94)

and we consider two subcases: ξ19 6= 0 and ξ19 = 0.

3.2.1.2.1 The subcase ξ19 6= 0. Thenm(2m−n)(2m+3n+9) 6= 0 and therefore the condition

B1 = 0 yields 4m − 6n − 9 = 0. This implies m = 3(3 + 2n)/4 and we arrive at the 1-parameter

family of systems
ẋ =(9 + 6n+ 4nx+ 8x2 − 6y + 4xy)/4,

ẏ =(9x+ 6nx+ 4ny + 2xy + 4y2)/2,
(95)

which possess the invariant line y = x− (3+2n)/2 and four finite singularities Mi(xi, yi) (i = 1, 2, 4)

with the coordinates

x1 = −3

2
, y1 =

9

4
; x2 = −3 + 4n

4
, y2 =

3 + 2n

4
;

x3,4 =
1

2

(
1±

√
−(5 + 4n)

)
, y3,4 =

1

2

(
− 2− 2n±

√
−(5 + 4n)

)
.

We determine that the singularitiesM1,M3 andM4 are located on the invariant parabola. Moreover

M3 and M4 are the points of intersections of the invariant line y = x− (3+2n)/2 with the invariant

parabola Φ1(x, y) = x2 − y = 0. We calculate

Φ1(x2, y2) =
1

16
(4n− 3)(5 + 4n)

and we conclude that M2 could be located on the parabola if and only if 4n − 3 = 0, because for

systems (95) we have

χ4ζ7R3 6= 0 ⇔ (5 + 4n)(9 + 4n)(69 + 4n) 6= 0. (96)

In order to determine the position of the singularity M1 with respect to M3 and M4 (when they are

real) we calculate

(x1 − x3)(x1 − x4) = (21 + 4n)/4 ⇒ sign
(
(x1 − x2)(x1 − x3)

)
= sign (21 + 4n),

(x1 − x3) + (x1 − x4) = −4 < 0.
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Thus we observe that for the parameter n we have the following possible bifurcation values: n ∈
{−21/4,−5/4, 3/4}. Moreover we point out that due to the condition (96) the condition 5 + 4n 6= 0

must hold (i.e. n 6= −5/4) and hence the singularities M3 and M4 could not coincide.

On the other hand according to Lemma 1 for the existence of an invariant line in other direction

different than y = x the condition B2 = 0 is necessary. For systems (95) we calculate

B2 = −729(3 + 2n)(9 + 4n)2(x− y)4, D = 243(4n− 3)2(5 + 4n)3(21 + 4n)2/4,

ξ9 = 16299895407840(9 + 4n)2(21 + 4n),

and in the case D 6= 0 we have

sign (D) = sign (5 + 4n), sign (ξ9) = sign (21 + 4n).

Considering Lemma 1 we examine two possibilities: B2 6= 0 and B2 = 0.

1: The possibility B2 6= 0. We observe that for D 6= 0 all four finite singular points of systems (95)

are distinct. So we discuss two cases: D 6= 0 and D = 0.

1.1: The case D 6= 0. Considering the bifurcation values of the parameter n mentioned above we

determine for systems (95) the following configurations (depending on the parameter n):

D < 0, ξ9 < 0 (i.e. n < −21/4) ⇒ ≃ Config.P.17;

D < 0, ξ9 > 0 (i.e. −21/4 < n < −5/4) ⇒ ≃ Config.P.19;

D > 0 (i.e. n > −5/4) ⇒ ≃ Config.P.20.

1.2: The case D = 0. Then due to the condition (96) we get (4n−3)(21+4n) = 0 and we observe

that the condition 21 + 4n = 0 is governed by the invariant polynomial ξ9. Therefore we arrive at

the configuration Config.P.21 if ξ9 6= 0 and Config.P.27 if ξ9 = 0.

2: The possibility B2 = 0. Considering the condition (96) we get n = −3/2 and this leads to the

system

ẋ =
1

2
(−3x+ 4x2 − 3y + 2xy), ẏ = y(−3 + x+ 2y),

possessing two invariant lines y = x and y = 0 besides the invariant parabola. So it is not too

difficult to determine that this system possesses the configuration Config.P.54.

3.2.1.2.2 The subcase ξ19 = 0. Then m(2m − n)(2m + 3n + 9) = 0 and we examine two

possibilities: ξ20 6= 0 and ξ20 = 0.

1: The possibility ξ20 6= 0. In this case considering (94) we obtain m(2m− n) 6= 0 and therefore we

get 2m + 3n + 9 = 0. This implies m = −3(3 + n)/2 and we arrive at the 1-parameter family of

systems

ẋ =
1

2
(2x− 3)(3 + n+ 2x+ y), ẏ = −3(3 + n)x+ 2ny + xy + 2y2, (97)

which is a subfamily of (20) defined by the condition g = 2. The family (20) was investigated earlier
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and considering (21) for g = 2 (i.e. for systems (97)) we have

Z2 = −4(2 + n), α2 = 21 + 4n, β2 = 33 + 4n,

B2 = −5832(3 + n)(9 + 4n)2(17 + 4n)x4, D = −972Z2α
2
2β

2
2 ,

B3 = −9(9 + 4n)x2(12x2 + 4nx2 − 24xy − 8nxy − 5y2)/2,

ξ7 = 1057164750000Z2α
2
2β2, ξ8 = 55640250000Z2α2β

2
2 ,

ξ18 = −7277560302993750(6 + n)(9 + 4n)(57 + 4n)α2β2.

We observe that for the parameter n we have the following possible bifurcation values:

n ∈ {−33/4,−21/4,−2}. Considering (90) for systems (97) we obtain

χ4ζ7R3 6= 0 ⇔ (6 + n)(9 + 4n)(17 + 4n)(57 + 4n)β2 6= 0 (98)

and therefore we have β2B3 6= 0. Moreover due to the above condition we obtain that ξ18 = 0 if and

only if α2 = 0.

Thus in the case B2 6= 0, following the investigation of the family (20) for g = 2 we get the

following configurations (depending on the parameter n):

D < 0, ξ7 < 0 (i.e. n < −33/4) ⇒ Config.P.9;

D < 0, ξ7 > 0, ξ8 < 0 (i.e. −33/4 < n < −21/4) ⇒ Config.P.11;

D < 0, ξ7 > 0, ξ8 > 0 (i.e. −21/4 < n < −2) ⇒ Config.P.12;

D > 0 (i.e. n > −2) ⇒ Config.P.13;

D = 0, ξ18 6= 0 (i.e. n = −2) ⇒ Config.P.14;

D = 0, ξ18 = 0 (i.e. n = −21/4) ⇒ Config.P.16.

Assuming B2 = 0 and considering the condition (98) we get n = −3 and we arrive at the system

ẋ =
1

2
(2x− 3)(2x+ y), ẏ = y(−6 + x+ 2y),

possessing two invariant lines x = 3/2 and y = 0 besides the invariant parabola. So it is not too

difficult to determine that this system possesses the configuration Config.P.49.

2: The possibility ξ20 = 0. Then from (94) we obtain m(2m − n) = 0 and we discuss two cases:

ξ21 6= 0 and ξ21 = 0.

2.1: The case ξ21 6= 0. Then m 6= 0 and we obtain m = n/2. This leads to the following

1-parameter family of systems

ẋ =
n

2
+ nx− 3y

2
+ 2x2 + xy, ẏ = (n+ y)(x+ 2y), (99)

which is a subfamily of (25) defined by the condition g = 2. The family (25) was investigated earlier

and considering (27) for g = 2 (i.e. for systems (99)) we conclude that these systems possess four

singularities Mi(xi, yi) (i = 1, 2, 3, 4) with the coordinates

x1 =
√
−n, y1 = −n; x2 = −

√
−n, y2 = −n; x3 = −1

2
, y3 =

1

4
; x4 = −2n

3
, y4 =

n

3
.

For the above systems we calculate

θ = −32 6= 0, B2 = −162(1 + 4n)(9 + 4n)2y4, χ4 = 61875n(1 + 4n)(9 + 4n)(1 + 36n)
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and therefore B2 6= 0 due to χ4 6= 0. Following the examination of the configurations of systems

(25) for g = 2 we obtain:

α3 = 4n− 3, β3 = 1 + 4n, D = 768n3α2
3β

2
3 , ξ9 = 3219732426240(9 + 4n)2β3

and due to χ4 6= 0 in the case D 6= 0 we have

sign (D) = sign (n), sign (ξ9) = sign (β3).

Moreover due to χ4 6= 0 (i.e. nβ3 6= 0) the condition α3 = 0 is equivalent to D = 0.

Thus we arrive at the following configurations: (depending on the parameter n):

D < 0, ξ9 < 0 (i.e. n < −1/4) ⇒ Config.P.17;

D < 0, ξ9 > 0 (i.e. −1/4 < n < 0) ⇒ Config.P.19.

D > 0 (i.e. 3/4 6= n > 0 ) ⇒ Config.P.20;

D = 0 (i.e. n = 3/4 ) ⇒ Config.P.21.

2.2: The case ξ21 = 0. Then m = 0 and we obtain the 1-parameter family of systems

ẋ = nx− 3y

2
+ 2x2 + xy, ẏ = y(2n+ x+ 2y), (100)

which is a subfamily of (31) defined by the condition g = 2. The family (31) was investigated earlier

and considering (34) for g = 2 (i.e. for systems (100)) we have

Z3 = 1− 16n, B2 = −1458(3 + n)(1 + 2n)(3 + 2n)y4, θ = −32 6= 0,

B3 = −9n(7 + 4n)x2y2/2− 9(3 + n)xy3 + 9(3 + n)y4/2 6= 0,

D = −3888n6Z3, ξ22 = 1050n, χ4 = 556875n2(1 + 2n)(3 + 16n).

So due to the condition χ4 6= 0 in the case D 6= 0 we have

sign (D) = −sign (Z3), sign (ξ22) = sign (n).

Thus in the case B2 6= 0, following the investigation of the family (31) for g = 2 we get the

following configurations (depending on the parameter n):

D < 0, ξ22 < 0 (i.e. n < 0) ⇒ Config.P.34;

D < 0, ξ22 > 0 (i.e. 0 < n < 1/16) ⇒ Config.P.33;

D > 0 (i.e. n > 1/16) ⇒ Config.P.36;

D = 0 (i.e. n = 1/16) ⇒ Config.P.39.

Assume now B2 = 0. Since the condition χ7 6= 0 implies 1 + 2n 6= 0 we get (3 + 2n)(3 + n) = 0.

Since for systems (100) we have ξ23 = −225(3 + n)/4 we arrive at the configuration Config.P.54 in

the case ξ23 6= 0 (then n = −3/2) and Config.P.49 in the case ξ23 6= 0 (i.e. n = −3).

3.2.2 The statements (B2), (B3) and (B4)

According to Proposition 3 all these three statements have the common condition ζ7 = 0. Considering

(90) and the condition χ4 6= 0 we have to force the condition U2 = 4m− 147− 14n = 0 and we get

m = 7(21 + 2n)/4. This leads to 1-parameter family

ẋ =(147 + 14n+ 4nx+ 8x2 − 6y + 4xy)/4,

ẏ =(147x+ 14nx+ 4ny + 2xy + 4y2)/2,
(101)
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for which we calculate

χ4 = 61875(37 + 4n)(69 + 4n)(357 + 4n)(301 + 36n),

ζ8 = 5(21 + 4n)2/4, R4 = 19500(33 + 4n).
(102)

So following Proposition 3 we have to distinguish three possibilities: ζ8R4 6= 0 (statement (B2)),

ζ8 = 0 (statement (B3)) and R4 = 0 (statement (B4)). We examine each one of these possibilities.

3.2.2.1 The possibility ζ8R4 6= 0. Then 33 + 4n 6= 0 and then systems (101) possess the

following two invariant parabolas:

Φ1(x, y) = x2 − y = 0, Φ2(x, y) = −(21 + 2n)(21 + 4n) + 6(21 + 4n)x+ 24x2 − 2(33 + 4n)y = 0.

We observe that systems (101) is a subfamily of (42) defined by the condition g = 2. The family

(42) was investigated earlier and considering (45) and (47) for g = 2 (i.e. for systems (101)) we have

Z4 = −(33 + 4n), α4 = 133 + 4n, β4 = 861 + 100n, θ = −32 6= 0,

D = −3(21 + 4n)2Z4α
2
4β

2
4/4, ζ2 = 24 > 0, ξ14 = 35100000α4β4,

B1 = 105(21 + 2n)(33 + 4n)(37 + 4n)(49 + 4n)(69 + 4n)/2.

We observe that due to ζ8R4 6= 0 we have Z4(21 + 4n) 6= 0 and in the case D 6= 0 we obtain

sign (D) = −sign (Z4), sign (ξ14) = sign (α4β4).

Moreover the direction of the invariant parabola Φ2(x, y) = 0 depends on sign (33 + 4n).

According to Lemma 1 for the existence of an invariant line of systems (102) the condition B1 = 0

is necessary. So we consider two cases: B1 6= 0 and B1 = 0.

3.2.2.1.1 The case B1 6= 0. Then we could not have any invariant line. In this case for

the parameter n we detect only three possible bifurcation values: n ∈ {−133/4,−861/100,−33/4}.
Moreover we point out that due to the condition R4 6= 0 we have Z4 6= 0 (i.e. n 6= −33/4).

So considering these possible bifurcation values of the parameter n in the case B1 6= 0 for systems

(101) we determine the following configurations (depending on the parameter n):

D < 0, ξ14 < 0 (i.e. −133/4 < n < −861/100) ⇒ Config.P.60;

D < 0, ξ14 > 0, β4 < 0 (i.e. n < −133/4) ⇒ Config.P.61;

D < 0, ξ14 > 0, β4 > 0 (i.e. −861/100 < n < −33/4) ⇒ Config.P.61;

D > 0 (i.e. n > −33/4) ⇒ Config.P.63;

D = 0, β4 6= 0 (i.e. n = −133/4) ⇒ Config.P.66;

D = 0, β4 = 0 (i.e. n = −861/100) ⇒ Config.P.66.

We observe that we could join the above conditions as follows:

D < 0, ξ14 < 0 ⇒ Config.P.60;

D < 0, ξ14 > 0 ⇒ Config.P.61;

D > 0 ⇒ Config.P.63;

D = 0 ⇒ Config.P.66.
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3.2.2.2 The case B1 = 0. Considering (102) and the condition χ4ζ8R4 6= 0 we observe that the

condition B1 = 0 is equivalent to 49+4n = 0. This implies n = −49/4 and the corresponding system

(101) possesses the invariant line y = 49/4 and we obtain the configuration which is equivalent to

Config.P.71.

3.2.2.3 The possibility ζ8 = 0. Considering (102) this condition gives us n = −21/4 and we

arrive at the system
ẋ =(147− 42x− 12y + 16x2 + 8xy)/8,

ẏ =(147x− 42y + 4xy + 8y2)/4.
(103)

On the other hand for n = −21/4 we obtain

Φ1(x, y) = x2 − y = 0, Φ2(x, y) = 24(x2 − y) = 0,

i.e. the above system has a double invariant parabola. Moreover in this case we have one real

singular point M1(x1, y1) and two complex M2,3(x2,3, y2,3), where

x1 = −7

2
, y1 =

49

4
; x2,3 =

3

2
± i

√
3, y2,3 = −3

4
± 3i

√
3.

We point out that M1 is a double singularity of systems (103) being located on the double invariant

parabola Φ1(x, y) = x2 − y = 0. Therefore we arrive at the configuration Config.P.78.

3.2.2.4 The possibility R4 = 0. Considering (102) this condition implies n = −33/4 and we

obtain the system

ẋ =(2x− 3)(−21 + 8x+ 4y)/8, ẏ = (63x− 66y + 4xy + 8y2)/4.

We observe that for n = −33/4 the second invariant parabola becomes the reducible conic: Φ2(x, y) =

6(2x− 3)2 = 0.

So the above system possesses the invariant line x = 3/2 and the invariant parabola Φ1(x, y) =

x2 − y = 0 and it is not too difficult to determine that we have a configuration which is equivalent

to Config.P.81.

3.2.3 The statement (B5)

According to Proposition 3 we must have the condition χ4 = 0 and ζ5ζ9 6= 0. So for systems (89) we

calculate:
χ4 = 61875(1 + 4m+ 2n)V, ξ24 = 14062(4m− 14n− 147)V,

ζ5 = 25(196m− 46n− 3)(4m− 147− 14n)/16,

ζ9 = −2970000(4m− 14n− 147)(10m+ 196m2 − 88mn+ 15n2),

where

V = 18m+ 1372m2 − 84mn+ 27n2 + 144n3.

We consider two possibilities: ξ24 6= 0 and ξ24 = 0.
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3.2.3.1 The possibility ξ24 6= 0. Then V 6= 0 and the condition 1 + 4m + 2n = 0 implies

m = −(1 + 2n)/4. This leads to the 1-parameter family of systems

ẋ =− 1

4
(2n+ 1) + nx− 3y

2
+ 2x2 + xy, ẏ = −1

2
(2n+ 1)x+ 2ny + xy + 2y2, (104)

which possess the invariant line y = x− 1/4 and two invariant parabolas:

Φ1(x, y) = x2 − y = 0, Φ2(x, y) = −1− 2n+ 2(1 + 4n)x− 2(−1 + 4n)y − 8y2 = 0.

For these systems we have

ζ5 = 25(37 + 4n)(13 + 36n), ξ24 = −140625(5 + 4n)2(37 + 4n)(13 + 36n)/16,

ζ9 = 11 · 304(1 + 4n)(37 + 4n)(13 + 36n), B1 = 0, θ = −32 6= 0,

B2 = −81(1 + 2n)(1 + 4n)(17 + 4n)(x− y)4, D = 3(1 + 4n)(5 + 4n)6/4.

(105)

Therefore following Lemma 1 we discuss two subcases: B2 6= 0 and B2 = 0.

1: The subcase B2 6= 0. Then by Lemmas 1 and 2 (since θ 6= 0) we conclude that systems (104)

could possess only one invariant line (which is y = x− 1/4).

We determine that systems (104) possess four finite singularities Mi(xi, yi) (i = 1, 2, 3, 4) with the

coordinates

x1 =
1

2
, y1 =

1

4
; x2 =

1− 4n

12
, y2 = −1 + 2n

6
;

x3,4 = −1

2

(
1±

√
−1− 4n

)
, y3,4 =

1

2

(
− 2n±

√
−1− 4n

)
.

We observe that the invariant parabolas have three points of intersection: M1, M3 and M4 and the

singularities M3 and M4 could be real or complex depending on the value of 1 + 4n 6= 0 (due to

ζ9 6= 0). Moreover the direction of the invariant parabola Φ2(x, y) = 0 also depends on the value of

1 + 4n.

It is easy to determine that the invariant line y = x−1/4 is tangent to the both invariant parabola

at the point M1. The singularity M2 is located on the invariant line and we calculate

Φ1(x2, y2) =
1

144
(5 + 4n)2 6= 0, Φ2(x2, y2) = − 1

18
(5 + 4n)2 6= 0

due to ξ23 6= 0. Considering (105) that D 6= 0 due to ζ9ξ24 6= 0 and sign (D) = sign (5 + 4n).

On the other hand we need to know the position of the singularity M2 with respect to M1 and we

calculate:

x2 − x1 =
1− 4n

12
− 1

2
= −5 + 4n

12
⇒ sign (x2 − x1) = −sign (5 + 4n).

So all finite singularities (except M2) are fixed as the intersection points of invariant curves and

their positions are determined by the values of the parameter n. More exactly in the case B2 6= 0

for the parameter n we have the following bifurcation values: n ∈ {−5/4,−1/4}.
So considering these possible bifurcation values of the parameter n in the case B2 6= 0 for systems

(101) we determine the following configurations:

D < 0 and n < −5/4 ⇒ Config.P.101;

D < 0 and n > −5/4 ⇒ ≃ Config.P.101;

D > 0 (i.e. n > −1/4) ⇒ Config.P.102.
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Thus we obtain the configuration Config.P.101 if D < 0 and Config.P.102 if D > 0.

2: The subcase B2 = 0. Considering the condition ζ9 6= 0 we get (1 + 2n)(17 + 4n) = 0.

If 1 + 2n = 0 we get n = −1/2 and we arrive at the system

ẋ = (−x+ 4x2 − 3y + 2xy)/2, ẏ = y(−1 + x+ 2y),

possessing the following four invariant curves (two parabolas and two invariant lines):

Φ1(x, y) = x2 − y = 0, Φ2(x, y) = x− 3y + 4y2 = 0, y = x− 1/4, y = 0.

As a result we arrive at the configuration Config.P.103.

Assuming n = −17/4 we get the system

ẋ = (−3 + 2x)(−5 + 8x+ 4y)/8, ẏ = (15x− 34y + 4xy + 8y2)/4

possessing the invariant lines y = x− 1/4 and x = 3/2 and the invariant parabolas

Φ1(x, y) = x2 − y = 0, Φ2(x, y) = 15− 64x+ 72y − 16y2.

We observe that the line x = 3/2 is tangent to Φ2(x, y) = 0 at the singular point M4(3/2, 9/4). As

a result we get the configuration equivalent to Config.P.103.

3.2.3.2 The possibility ξ24 = 0. This implies V = 0 and we calculate

Discrim [V,m] = 36(1− 28n)(3 + 28n)2 ≡ γ(n)

and since the parameters m and n are real the condition γ(n) ≥ 0 is necessary.

We claim that the condition ζ5 6= 0 implies that 3 + 28n 6= 0. Indeed setting n = −3/28 we

calculate

V =
(2744m+ 27)2

5488
= 0 ⇒ m = − 27

2744
,

and this implies ζ5 = 0. So our claim is proved.

Therefore and the condition 1−28n ≥ 0 is necessary for the existence of real roots of the polynomial

V. Then we can set a new parameter u as follows: 1− 28n = u2 ≥ 0. Then n = (1− u2)/28 and we

obtain

V =
1

5488
(15 + 2744m+ 24u+ 3u2 − 6u3)(15 + 2744m− 24u+ 3u2 + 6u3) = 0.

Due to the change u→ −u we may assume that the second factor vanishes and we get

m = −3(u− 1)2(5 + 2u)/2744.

This leads to the 1-parameter family of systems

ẋ =− 3(u− 1)2(5 + 2u)

2744
− u2 − 1

28
x− 3y

2
+ 2x2 + xy,

ẏ =− 3(u− 1)2(5 + 2u)

1372
x− u2 − 1

14
y + xy + 2y2,

(106)
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which possess two invariant parabolas:

Φ1(x, y) = x2 − y = 0, Φ2(x, y) = 3(u− 1)4 + 112(u− 1)3x+ 1176(u− 1)2y − 38416y2 = 0.

For these systems we have

ζ5 = 25(u− 50)(u− 22)(u2 − 4)(3u− 10)(3u+ 46)/38416,

ζ9 = 2227500(u− 50)(u− 22)(u2 − 4)(u− 1)3(3u− 10)(3u+ 46)/823543,

ζ10 = −15(354160 + 48u− 1336u2 + 64u3 + 27u4 − 19u5 + 3u6)/38416,

D = −357−18(u− 1)6(6 + u)8(34 + u)2(2 + 5u)2

(107)

On the other hand for systems (106) we have

B1 = −33 2−5 7−15(u− 22)(u− 8)3(u− 1)3(6 + u)3(13 + u)(20 + u)(5 + 2u)(3u− 10)(4 + 3u) (108)

and following Lemma 1 we discuss two subcases: B1 6= 0 and B1 = 0.

1: The case B1 6= 0. Then by Lemma 1 systems (106) could not possess any invariant line.

We determine that systems (106) possess four finite singularities Mi(xi, yi) (i = 1, 2, 3, 4) with the

coordinates

x1 = −5 + 2u

14
, y1 =

(5 + 2u)2

196
; x2 =

(u− 1)(22 + 26u+ u2)

1372
, y2 = −(u− 1)2(5 + 2u)

1372
;

x3 =
1− u

14
, y3 =

(1− u)2

196
; x4 =

3(u− 1)

14
, y4 =

9(u− 1)2

196
.

(109)

We observe that the invariant parabolas have two points of intersection: M3 and M4. Moreover the

finite singularityM1 (respectively,M2) is located on the invariant parabola Φ1(x, y) = 0 (respectively

Φ2(x, y) = 0) and the direction of the invariant parabola Φ2(x, y) = 0 depends on the value of

u− 1 6= 0 (due to ζ9 6= 0).

Since the condition D = 0 implies the existence of a multiple singularity we examine two subcases:

D 6= 0 and D = 0.

1.1: The subcase D 6= 0. Then all the singularities of systems (106) are different and in order

to determine the positions of the singularities M1 and M2 with respect to the common points of

intersection M3 and M4 of the parabolas we calculate:

x3 − x1 =
6 + u

14
, x3 − x2 = −(u− 1)(6 + u)(20 + u)

1372
,

x4 − x1 =
2 + 5u

14
, x4 − x2 = −(u− 8)(u− 1)(34 + u)

1372
.

Moreover the singular point M2 which lies on the parabola Φ2(x, y) = 0 could be located above

or below its axis y = yv where yv is the ordinate of the vertex of this parabola. For the parabola

Φ2(x, y) = 0 we obtain yv = 3(u− 1)2/196 and then we calculate

y2 − yv = −(u− 1)2(13 + u)/686 ⇒ sign (y2 − yv) = −sign (13 + u).
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On the other hand we have

Φ1(x2, y2) =
(u− 1)2(6 + u)3(34 + u)

1882384
, Φ2(x1, y1) = −(6 + u)3(2 + 5u)

and we observe that for the parameter u we distinguish the following possible bifurcation values:

u ∈ {−34,−20,−13,−6,−2/5, 1, 8}. We point out that due to the condition ζ5ζ9B1D 6= 0 we have

(u− 8)(u− 1)(u+ 20)(u+ 13)(u+ 6)(34 + u)(2 + 5u) 6= 0.

So considering the possible bifurcation values of the parameter u in the case B1 6= 0 and D 6= 0 for

systems (106) we determine the following configurations:

u < −34 ⇒ x3 > x4, x1 > x3, x2 < x4, y2 > yv ⇒ Config.P.104;

−34 < u < −20 ⇒ x3 > x4, x1 > x3, x4 < x2 < x3, y2 > yv ⇒ Config.P.105;

−20 < u < −13 ⇒ x3 > x4, x1 > x3, x4 < x3 < x2, y2 > yv ⇒ Config.P.105;

−13 < u < −6 ⇒ x3 > x4, x1 > x3, x4 < x3 < x2, y2 < yv ⇒ Config.P.105;

−6 < u < −2/5 ⇒ x3 > x4, x4 < x1 < x3, x4 < x2 < x3, y2 < yv ⇒ ≃ Config.P.105;

−2/5 < u < 1 ⇒ x3 > x4, x1 < x3, x4 < x2 < x3, y2 < yv ⇒ ≃ Config.P.104;

1 < u < 8 ⇒ x3 > x4, x1 < x3, x4 < x2 < x3, y2 < yv ⇒ Config.P.106;

u > 8 ⇒ x3 > x4, x1 < x3, x4 < x2 < x3, y2 < yv ⇒ Config.P.106.

So considering the above obtained configurations and the corresponding conditions we deduce the

following common conditions:

Config.P.105 ⇔ (u+ 34)(5u+ 2) < 0;

Config.P.104 ⇔ (u+ 34)(5u+ 2) > 0 and u− 1 < 0;

Config.P.106 ⇔ (u+ 34)(5u+ 2) > 0 and u− 1 > 0.

On the other hand for systems (106) we have

ξ25 = 2−37−95913(u− 1)3(6 + u)4(34 + u)(2 + 5u),

ζ5ζ9 = 2−27−11345611(u− 1)3(−50 + u)2(−22 + u)2(−2 + u)2(2 + u)2(−10 + 3u)2(46 + 3u)2,

and due to Dζ5ζ9 6= 0 we have

ξ25 6= 0, sign (ξ25) = sign
(
(u− 1)(34 + u)(2 + 5u)

)
, sign (ζ5ζ9) = sign (u− 1).

This leads to the following invariant conditions:

ξ25 < 0 ⇔ Config.P.104;

ξ25 > 0, ζ5ζ9 < 0 ⇔ Config.P.105;

ξ25 > 0, ζ5ζ9 > 0 ⇔ Config.P.106.

1.2: The subcase D = 0. Considering the condition B1 6= 0 this implies (34 + u)(2 + 5u) = 0.

Taking into consideration the position of the invariant parabolas and the coordinates (109) of systems

(106) we obtain:

u = −34 ⇒ x3 > x4, x1 > x3, x2 = x4, y2 > yv ⇒ Config.P.107;

u = −2/5 ⇒ x3 > x4, x1 = x4, x4 < x2 < x3, y2 < yv ⇒ ≃ Config.P.107.

So we deduce that in the case B1 6= 0 and D = 0 we get the unique configuration Config.P.107.
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2: The case B1 = 0. Considering (108) and (107) we conclude that due to ζ9 6= 0 the condition

B1 = 0 is equivalent to

(u− 8)(6 + u)(13 + u)(20 + u)(5 + 2u)(4 + 3u) = 0.

However we could decrease the number of the factors.

First of all we give the following remark.

Remark 6. We remark that in the case u − 1 6= 0 (i.e. when the second parabola exists) applying

the transformation

x1 =
343

(u− 1)3
y − 21

4(u− 1)
, y1 =

343

(u− 1)3
x+

147

4(u− 1)2
, t1 =

(u− 1)3

343
t

we arrive at the family of systems of the same form (106):

ẋ1 =− 3(u1 − 1)2(5 + 2u1)

2744
− u21 − 1

28
x1 −

3y1
2

+ 2x21 + x1y1,

ẏ1 =− 3(u1 − 1)2(5 + 2u1)

1372
x1 −

u21 − 1

4
y + x1y1 + 2y21

with the parameter u1 =
48 + u

u− 1
(then u =

48 + u1
u1 − 1

).

Considering Remark 6 and the relation u =
48 + u1
u1 − 1

we calculate

(u+ 13) =
7(5 + 2u1)

u1 − 1
; (u+ 20) =

7(3u1 + 4)

u1 − 1
.

So to determine the configurations given by the condition B1 = 0 it is sufficient to consider the

conditions provided by the equality

(u− 8)(6 + u)(5 + 2u)(4 + 3u) = 0.

2.1: The possibility u = −4/3. This leads to the system

ẋ = (−1− 2x+ 144x2 − 108y + 72xy)/72, ẏ = (x+ 2y)(−1 + 36y)/36

possessing the invariant line y = 1/36 and two invariant parabolas:

Φ1(x, y) = x2 − y = 0, Φ2(x, y) = 1− 16x+ 72y − 432y2.

We determine that te configuration of the above system correspond to Config.P.108.

2.2: The possibility u = 8. This leads to the system

ẋ = (−3 + 2x)(3 + 8x+ 4y)/8, ẏ = (x+ 2y)(−9 + 4y)/4

possessing three invariant lines y = 9/4, y = x+ 3/4 and x = 3/2 and two invariant parabolas:

Φ1(x, y) = x2 − y = 0, Φ2(x, y) = 3 + 16x+ 24y − 16y2.
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We observe that all five invariant curves intersect at the singular point M4(3/2, 9/4). So we get the

configuration Config.P.109.

2.3: The possibility u = −5/2. In this case arrive at the system

ẋ = (−3x+ 32x2 − 24y + 16xy)/16, ẏ = y(−3 + 8x+ 16y)/4

possessing the invariant line y = 0 and two invariant parabolas:

Φ1(x, y) = x2 − y = 0, Φ2(x, y) = 3− 32x+ 96y − 256y2.

We observe that the invariant line y = 0 is tangent to the parabola Φ1(x, y) = 0 at the pointM1(0, 0)

and intersect the second parabola at M2(3/32, 0). It is not too difficult to determine that in this

case we have the configuration Config.P.110.

2.4: The possibility u = −6. In this case we get the system

ẋ = (3− 10x+ 16x2 − 12y + 8xy)/8, ẏ = (3x− 10y + 4xy + 8y2)/4

possessing the invariant line y = x− 1/4 and the invariant parabolas

Φ1(x, y) = x2 − y = 0, Φ2(x, y) = 3− 16x+ 24y − 16y2 = 0.

Considering the coordinates (109) of systems (106) we observe that for u = −6 the singular points

M2, M3 and M1 coalesced producing a triple singular point. Moreover this triple singularities is a

point of tangency of the invariant line y = x − 1/4 with both parabolas. As a result we get the

configuration Config.P.111.

On the other hand for systems (106) we have

ζ9 =
2227500

823543
(u− 50)(u− 22)(u2 − 4)(u− 1)3(3u− 10)(3u+ 46),

ζ6 = − 3

1372
(6 + u)(292− 52u+ 5u2), Discrim [292− 52u+ 5u2] = −3136 < 0,

ξ26 =
3

941192
(u− 50)(u2 − 4)(u− 1)(3u+ 46)(6 + u)(13 + u)(5 + 2u),

ξ27 =
1

2744
(u− 8)(380 + 52u+ 9u2), Discrim [380 + 52u+ 9u2] = −10976 < 0.

We observe that due do ζ9 6= 0 the condition ξ26 6= 0 is equivalent to (6 + u)(13 + u)(5 + 2u) 6= 0.

Moreover considering Remark 6 we conclude that for ξ26 = 0 we may assume (6 + u)(5 + 2u) = 0

because the condition 13 + u = 0 could be brought to 5 + 2u = 0 via an affine transformation and

time rescalling.

Thus in the case B1 = 0 systems (106) possess the following configurations if and only if the

corresponding conditions are satisfied:

ξ26 6= 0, ξ27 6= 0 (then u = −4/3) ⇔ Config.P.108;

ξ26 6= 0, ξ27 = 0 (then u = 8) ⇔ Config.P.109;

ξ26 = 0, ζ6 6= 0 (then u = −5/2) ⇔ Config.P.110;

ξ26 = 0, ζ6 = 0 (then u = −6) ⇔ Config.P.111.
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3.2.4 The statement (B6)

In this case the condition χ4 = ζ9 = 0 must be fulfilled. Due to the condition ζ5 6= 0 we obtain that

ζ9 = 0 is equivalent to W = 0. Straightforward calculations gives us that the systems of equations

χ4 = 0 and W = 0 could have only the following solutions Si = (mi, ni) (i = 1, 2, 3, 4):

S1 = (0, 0), S2 =
(
− 1

8
,−1

4

)
, S3 =

(
− 5

72
,−13

36

)
, S4 =

(
− 27

2944
,−3

8

)
.

However we have
χ4(Si) = ζ9(Si) = 0, i = 1, 2, 3, 4,

ζ5(S1) 6= 0, ζ5(S2) 6= 0, ζ5(S3) = ζ5(S4) = 0,

and hence only the solutions S1 and S2 satisfy the conditions of statement (B6). Therefore we

examine only these two solutions.

We observe that each one of them gives us a concrete system (without parameters) and it remains

to construct the corresponding system having a single fixed configuration of the invariant parabolas

and lines.

For systems (89) we calculate:

ξ9 =3617252510
[
65536m4 − 32m3(6131 + 3252n)− 16m2(−32110− 7953n+ 484n2)

+ 6m(10221− 53292n+ 5540n2 + 4336n3)− 9(−2304− 7857n− 12140n2 + 836n3 + 240n4)
]
.

We observe that under the conditions of statement (B6) the condition ξ9 = 0 leads to the solution

S2, because ξ9(S2) = 0 and ξ9(S1) 6= 0. Then we examine two possibilities: ξ9 6= 0 and ξ9 = 0.

3.2.4.1 The possibility ξ9 6= 0. Then the conditions provided by statement (B6) lead to the

solution S1 and therefore we have m = n = 0. In this case we arrive at the system

ẋ = −3y

2
+ 2x2 + xy, ẏ = y(x+ 2y), (110)

possessing the invariant line y = 0 and the invariant parabola Φ(x, y) = x2 − y = 0.

We determine that the above system possesses the following two singular points: M1(0, 0) and

M2(−1/2, 1/4). We observe that the point M1 is the point of tangency of the invariant line with the

parabola. Moreover this point is a triple singularity of system (110), because we have

µ4 = µ3 = µ2 = 0, µ1 = −3(x+ 2y) 6= 0,

and by [1, Lemma 5.2, statement (ii)] the point M1 is of multiplicity exactly 3. As a result we get

the configuration Config.P.42.

3.2.4.2 The possibility ξ9 = 0. In this case we get the solution S2, i.e. m = −1/8 and

n = −1/4. So we arrive at the system

ẋ = −1

8
− x

4
− 3y

2
+ 2x2 + xy, ẏ =

1

4
(4y − 1)(x+ 2y),

possessing the invariant lines y = 1/4 and y = x−1/4 and the invariant parabola Φ(x, y) = x2−y = 0.

As a result we get the configuration Config.P.112.
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3.2.5 The statement (B7)

In this case the condition χ4 = ζ5 = 0 and ζ6 6= 0 must be fulfilled. Straightforward calculations

gives us that the systems of equations χ4 = 0 and ζ5 = 0 could have only the following solutions

S̃i = (mi, ni) (i = 1, . . . , 6):

S̃1 =
(
− 27

2744
,− 3

28

)
, S̃2 =

(
− 2205

8
,−357

4

)
, S̃3 =

(539
72

,−301

36

)
,

S̃4 =
(35
8
,−37

4

)
, S̃5 =

(
− 5

72
,−13

36

)
, S̃6 =

(
− 189

8
,−69

4

)
,

We split these solutions into two sets:

G1 = {S̃1, S̃2, S̃3}, G2 = {S̃4, S̃5, S̃6}.

Lemma 14. Assume that the conditions of statement (B7) are satisfied and then the system of

equations χ4 = ζ5 = 0 generates six solutions S̃i = (mi, ni) (i = 1, . . . , 6) given above. In this case

the invariant polynomial ξ6 distinguishes the set G1 from the set G2.

Proof: To prove this lemma it is sufficient to evaluate ξ6 for the elements of each one of the sets.

For systems (89) we calculate

ξ6 = 29342877985m(1 + 4m+ 2n)(−147 + 50m+ 61n+ 8n2),

and we obtain

ξ6(S̃i) 6= 0, i = 1, 2, 3, ξ6(S̃j) = 0, j = 4, 5, 6,

and we complete the proof of the lemma.

According to the above lemma we discuss two cases: ξ6 6= 0 and ξ6 = 0.

3.2.5.1 The case ξ6 6= 0. Then we have to examine the elements of the first set G1.

1: The subcase S̃1. Then we have m = −27/2744 and n = −3/28 and we get the system

ẋ = 2x2 + xy − 3x

28
− 3y

2
− 27

2744
, ẏ = xy − 27x

1372
+ 2y2 − 3y

14
, (111)

possessing three invariant parabolas Φ1(x, y) = x2 − y = 0 and

Φ2(x, y) = 3 + 112x+ 1176y − 38416y2 = 0, Φ3(x, y) = −243 + 3024x− 10584y + 38416y2 = 0.

We observe that the singular point M1(3/14, 9/196) is the point of intersection of all three invariant

parabolas. So we get the configuration Config.P.113.

Next we prove that the systems generated by S̃2 and S̃3 could be brought to system (111) via an

affine transformation and a time rescaling.

Consider first the solution S̃2, i.e. m = −2205/8 and n = −357/4. This leads to the system

ẋ = 2x2 + xy − 357x

4
− 3y

2
− 2205

8
, ẏ = xy − 2205x

4
+ 2y2 − 357y

2
,
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which via the transformation

x1 = −3/28 + y/343, y1 = 3/196 + x/343, t1 = 343t,

could be brought to the system (111).

Analogously, taking the solution S̃3, i.e. m = 539/72 and n = −301/36, we arrive at the system

ẋ = 2x2 + xy − 301x

36
− 3y

2
+

539

72
, ẏ = xy +

539x

36
+ 2y2 − 301y

18
,

which via the transformation

x1 = 9/28− 27y/343, y1 = 27/196− 27x/343, t1 = −343t/27,

could be brought to the system (111).

3.2.5.2 The case ξ6 = 0. Then we have to examine the elements of the first set G2.

1: The subcase S̃4. Then we have m = 35/8 and n = −37/4 and we get the system

ẋ = 2x2 + xy − 37x

4
− 3y

2
+

35

8
, ẏ = xy +

35x

4
+ 2y2 − 37y

2
, (112)

possessing the invariant line y = x− 1/4 and three invariant parabolas Φ1(x, y) = x2 − y = 0 and

Φ2(x, y) = 5− 12x+ 3x2 + y = 0, Φ3(x, y) = −35 + 144x− 152y + 16y2 = 0.

We observe that the singular point M1(1/2, 1/4) is the point of intersection of all four invariant

curves. So we get the configuration Config.P.114.

Next we prove that the systems generated by S̃5 and S̃6 could be brought to system (112) via an

affine transformation and a time rescaling.

Consider first the solution S̃5, i.e. m = −5/72 and n = −13/36. This leads to the system

ẋ = 2x2 + xy − 13x

36
− 3y

2
− 5

72
, ẏ = −((5x)/36)− (13y)/18 + xy + 2y2,

which via the transformation

x1 = 11/4− 9y, y1 = 19/4− 9x, t1 = −t/9,

could be brought to the system (112).

Analogously, taking the solution S̃6, i.e. m = −189/8 and n = −69/4, we arrive at the system

ẋ = 2x2 + xy − 69x

4
− 3y

2
− 189

8
, ẏ = xy − 189x

4
+ 2y2 − 69y

2
,

which via the transformation

x1 = 2− x/3, y1 = 7− y/3, t1 = −3t,

could be brought to the system (112).
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3.3 Configurations of systems in QSP(η<0)

In what follows we examine the configurations of the systems in QSP(η<0) in each one of the cases

provided by Proposition 4. According to this proposition we consider the canonical form (6), i.e.

the systems

ẋ = m+ (2n− 1)x/2 + gx2 − gy/2− xy, ẏ = 2mx− x2 + 2ny + gxy − 2y2, (113)

with C2 = x(x2 + y2), possessing the invariant parabola Φ(x, y) = x2 − y = 0.

In what follows we examine the configurations of the systems in QSP(η<0) in each one of the cases

provided by Proposition 4.

3.3.1 The statement (E1)

For systems (113) we calculate

ζ4 =(25 + g2)(3g + 9g3 − 4m− 6gn)/16,

R1 =15(1 + g2)(25 + g2)(3g + 9g3 − 4m− 6gn)/2.
(114)

3.3.1.1 The case B1 6= 0. Then according to Lemma 1 systems (113) could not possess any

invariant line.

Let us examine the finite singularities of these systems. Following [1, Proposition 5.1] we calculate

the invariant polynomial D = 12F ′
1
2F ′

2, where

F ′
1 =− 2gm− 2g3m+ 4m2 − n− g2n− 4gmn+ g2n2,

F ′
2 =8− g2 − 72gm+ 8g3m+ 432m2 − 48n+ 4g2n+ 144gmn+ 96n2 − 4g2n2 − 64n3,

(115)

and we discuss two subcases: D 6= 0 and D = 0.

3.3.1.1.1 The subcase D 6= 0. We determine that systems (113) possess four finite singular-

ities Mi(xi, yi) (i = 1, 2, 3, 4) with the coordinates

x1 =− gn− 2m

g2 + 1
, y1 =

2gm+ n

g2 + 1
; x2 =

1

6Y1/3

[
Y2/3 + Y1/3g − 3g2 + 2Z

]
,

y2 =
1

6
(

3
√
W (2Z − 3g2) + 4gW2/3 +W

)[3
√

3F ′
2Z + 3W2/3

(
g3 + 10gn− 5g + 12m

)

+W1/3Z
(
2Z − 3g2

)
+ 3

(
g
(
g4 + 22g2n− 11g2 + 84n2 − 84n+ 21

)
+ 36mZ

)
+ gW4/3

]
;

x3 =
1

12Y1/3

[ (
−1 + i

√
3
)
Y2/3 + 2gY1/3 −

(
1 + i

√
3
) (

2Z − 3g2
) ]
,

y3 =
1

−48gY2/3 + 6
(
1 + i

√
3
)
Y1/3 (2Z − 3g2) + 6

(
1− i

√
3
)
Y
[
− 6Y2/3

(
g3 + 10gn− 5g + 12m

)

+
(
1 + i

√
3
)
Y4/3g +

(
1 + i

√
3
)
Y1/3Z

(
2Z − 3g2

)

+
(
1− i

√
3
)
YZ +

(
1− i

√
3
)
g
(
2Z − 3g2

)2 ]
;
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x4 =
1

12Y1/3

[ (
−1− i

√
3
)
Y2/3 + 2gY1/3 −

(
1− i

√
3
) (

2Z − 3g2
) ]
,

y4 =
1

−48gY2/3 + 6
(
1− i

√
3
)
Y1/3 (2Z − 3g2) + 6

(
1 + i

√
3
)
Y
[
− 6Y2/3

(
g3 + 10gn− 5g + 12m

)

+
(
1− i

√
3
)
Y4/3g +

(
1− i

√
3
)
Y1/3Z

(
2Z − 3g2

)

+
(
1 + i

√
3
)
YZ +

(
1 + i

√
3
)
g
(
2Z − 3g2

)2 ]
,

where

X = 24− 3g2 − 216gm+ 24g3m+ 1296m2 − 144n+ 12g2n+ 432gmn+ 288n2 − 12g2n2 − 192n3,

Y = g3 + 18gn− 9g + 108m+ 3
√
X , W = −9g + g3 + 108m+ 18gn+ 3

√
3F ′

2,

Z = −3 + 2g2 + 6n.

Calculations yield:

Φ(x2, y2) = Φ(x3, y3) = Φ(x4, y4) = 0, Φ(x1, y1) =
F ′
1

(1 + g2)2

and therefore we deduce that three singularities M2, M3 and M4 of systems (113) are located at the

invariant parabola. Moreover M1 is located outside the parabola and could belong to it if and only

if the condition F ′
1 = 0 holds, where F ′

1 is given in (115). However we have D = 12F ′2
1F ′

2 6= 0 and

hence on the parabola we always have three distinct singularities.

On the other hand according to [1, Proposition 5.1] ifD > 0 systems (113) possess two real and two

complex finite singularities. For D < 0 we could have either 4 real or 4 complex finite singularities.

However since M1 is a real singular point for these systems we conclude that in the case D < 0 we

have 4 real finite distinct singularities.

Thus since the real singularityM1 is outside the invariant parabola and all three finite singularities

on the parabola (real or complex) are distinct and furthermore we could not have any invariant line

we arrive at the configuration Config.P.115 if D < 0 and Config.P.116 if D > 0.

3.3.1.1.2 The subcase D = 0. This implies F ′
1F ′

2 = 0 and we calculate:

ξ1 = −6ζ4F ′
1.

Therefore we deduce that due to ζ4 6= 0 the condition F ′
1 = 0 is equivalent to ξ1 = 0. So we examine

two possibilities: ξ1 6= 0 and ξ1 = 0.

1: The possibility ξ1 6= 0. In this case the condition D = 0 implies F ′
2 = 0. Since this polynomial is

quadratic with respect to the parameter m we calculate

Discrim [F ′
2,m] = 64(g2 + 12n− 6)3.

Therefore since the parameters m, n and g of systems (113) must be real we conclude that the

condition g2 + 12n− 6 ≥ 0 has to be fulfilled. So setting a new parameter v: g2 + 12n− 6 = v2 ≥ 0

we get n = (6− g2 + v2)/12 and then we calculate

F ′
2 =

1

108

[
216m− (g + v)2(g − 2v)

][
216m− (g − v)2(g + 2v)

]
= 0

88



and due to the change v → −v we could force the first factor to vanish. Then we obtain

m = (g − 2v)(g + v)2/216

and considering the expression for the parameters m and n we arrive at the 2-parameter family of

systems

ẋ =
(g − 2v)(g + v)2

216
− g2 − v2

12
x− g

2
y + gx2 − xy,

ẏ =
(g − 2v)(g + v)2

108
x+

6− g2 + v2

6
y + gxy − 2y2,

(116)

possessing the invariant parabola Φ(x, y) = x2 − y = 0. We observe that for the above systems we

have the following conditions on the parameters g and v:

ξ1 6= 0 ⇔ (8g − v)2(4g + v)
(
2g2 − 8gv − v2 + 18

) (
g2 + 2gv + v2 + 9

)
6= 0;

B1 6= 0 ⇔ (2g − v)(4g + v)(36 + 4g2 − 4gv + v2)(g2 + 2gv + v2 + 9)

× (g2 − 4gv + 4v2 + 9) 6= 0.

(117)

We determine that systems (116) possess three finite singularities Mi(xi, yi) (i = 1, 2, 3) with the

coordinates

x1 =
−27g + 5g3 − 6gv2 − v3

54(1 + g2)
, y1 =

54− 9g2 + g4 + 9v2 − 3g2v2 − 2gv3

108(1 + g2)
;

x2 =
g − 2v

6
, y2 =

(g − 2v)2

36
; x3 =

g + v

6
, y3 =

(g + v)2

36
.

We calculate

Φ(x2, y2) = Φ(x3, y3) = 0, Φ(x1, y1) = −
(
2g2 − 8gv − v2 + 18

) (
g2 + 2gv + v2 + 9

)2

2916 (g2 + 1)2

and we conclude that the singular points M2 and M3 are located on the invariant parabola, whereas

M1 is outside the invariant parabola due to the conditions (117).

We claim that M3 is a multiple singularity of systems (116). Indeed, applying the corresponding

translation, we could place M3 at the origin of coordinates and we arrive at the systems

ẋ =
1

18
(g + v)(4g + v)x− 1

6
(4g + v)y + gx2 − xy,

ẏ =
1

54
(g + v)

(
2g2 + gv − v2 − 18

)
x+

1

18

(
v2 − 2g2 − gv + 18

)
y + gxy − x2 − 2y2,

where M0(0, 0) is a singularity of the above systems corresponding to the singularity M3.

Considering [1], we calculate the following invariant polynomials: µ4 = µ3 = 0 and

µ2 =
1

324
v
[
(g + v)2 + 9

]
[(v − 2g)x+ 6y]

[
(3− g2 − gv)x+ (4g + v)y

]
,

and by [1, Lemma 5.2, statement (ii)] the point M0 is of multiplicity at least 2. We observe that due

to the condition B1 6= 0 we have µ2 = 0 if and only if v = 0. In this case we calculate

µ2 = 0, µ1 = − 1

27

[
(5g4 + 27)x− 32g3y

]
6= 0.
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According to [1, Lemma 5.2, statement (ii)] we have a double point if v 6= 0 and a triple one if v = 0.

On the other hand for systems (116) we calculate

ξ2 =
1

209952
v2(18 + 2g2 − 8gv − v2)2(9 + g2 + 2gv + v2)2,

and due to (117) we obtain that the condition v = 0 is equivalent to ξ2 = 0.

Thus for systems (116) we obtain the configuration Config.P.117 if ξ2 6= 0 and Config.P.118 if

ξ2 = 0.

2: The possibility ξ1 = 0. We obtain F ′
1 = 0 and since this polynomial is quadratic with respect to

the parameter m, we calculate

Discrim [F ′
1,m] = 4(1 + g2)2(g2 + 4n).

It is clear that for the existence of real solutions of the equation F ′
1 = 0, the condition g2 + 4n ≥ 0

must hold. So we set a new parameter u as follows: g2 + 4n = u2 ≥ 0 and we get n = (u2 − g2)/4.

Then calculation yields

F ′
1 = − 1

16

[
8m− (g − u)(2 + g2 − gu)

][
8m− (g + u)(2 + g2 + gu)

]
= 0

and due to the change u→ −u we could force the first factor to vanish. In this case we obtain

m = (g − u)(2 + g2 − gu)/8

and considering the expression for the parameters m and n we arrive at the 2-parameter family of

systems

ẋ =
(g − u)(2 + g2 − gu)

8
+
u2 − g2 − 2

4
x− g

2
y + gx2 − xy,

ẏ =
(g − u)(2 + g2 − gu)

4
x− g2 − u2

2
y + gxy − 2y2,

(118)

possessing the invariant parabola Φ(x, y) = x2 − y = 0. We determine that systems (118) possess

three finite singularities Mi(xi, yi) (i = 1, 2, 3) with the coordinates

x1 =
g − u

2
, y1 =

(g − u)2

4
; x2,3 =

1

4

(
u±

√
Y1

)
,

y2,3 =
1

8

[
u2 + 2gu− 2g2 − 4± u

√
Y1

]
, Y1 = u2 + 4gu− 4g2 − 8.

We calculate

Φ(x1, y1) = Φ(x2, y2) = Φ(x3, y3) = 0

and therefore all three singularities are located on the invariant parabola. Moreover, we point

out that M1 is a singularity of systems (118) having multiplicity at least 2. Indeed, applying the

corresponding translation, we could place M1 at the origin of coordinates and we arrive at the

systems

ẋ =
1

2
(g2 − gu− 1)x+

1

2
(u− 2g)y + gx2 − xy,

ẏ =
1

2
(g − u)(g2 − gu− 1)x+

1

2
(g − u)(2g − u)y − x2 + gxy − 2y2,
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where M0(0, 0) is a singularity of the above systems corresponding to the singularity M1.

Considering [1], we calculate the following invariant polynomials: µ4 = µ3 = 0 and

µ2 =
1

2
(g2 + 1)

[
(g − u)2 + 1

][
(g2 − gu+ 1)x2 + (u− 2g)xy + 2y2

]
.

We observe that µ2 6= 0 and by [1, Lemma 5.2, statement (ii)] the point M0 is of multiplicity

exactly 2.

On the other hand, the singularities M2 and M3 could be either real or complex depending on the

value of Y1. In order to determine the position of the double singularity M1 with respect to M2 and

M3 in the case they are real (i.e., Y1 > 0), we calculate:

(x2 − x1)(x3 − x1) =
(
(g − u)2 + 1

)
/2 > 0.

Therefore we deduce that in the case Y1 > 0 both singularities M2 and M3 are located on the same

side of the double point M1. It is clear that for Y1 = 0 the points M2 and M3 coalesce and we obtain

two double points located on the invariant parabola.

For systems (118) calculations yield

ξ2 =
1

8
(1 + g2)2

[
1 + (g − u)2

]2
Y1,

and hence we obtain that sign (ξ2) = sign (Y1) if ξ2 6= 0.

Thus we obtain that systems (118) possess the configuration Config.P.119 if ξ2 < 0; Config.P.120

if ξ2 > 0 and Config.P.121 if ξ2 = 0.

3.3.1.2 The case B1 = 0. For systems (113) we calculate

B1 = − 1

64

[
g + g3 + 4m− 2gn

][
(g − 8m)2 + (1− 4n)2

]
Ψ(g,m, n),

where

Ψ(g,m, n) = 16m2 + 8gm(3 + 2n) + (4 + g2)(1 + g2 + 4n+ 4n2).

On the other hand we calculate

ξ4 =
13125

2
(25 + g2)(3g + 9g3 − 4m− 6gn)

[
(g − 8m)2 + (1− 4n)2

]
,

ζ4 = (25 + g2)(3g + 9g3 − 4m− 6gn)/16

and due to ζ4 6= 0 we obtain that ξ4 = 0 is equivalent to (g − 8m)2 + (1− 4n)2 = 0. So we examine

two subcases: ξ4 6= 0 and ξ4 = 0.

3.3.1.2.1 The subcase ξ4 6= 0. Then the condition B1 = 0 implies either g+g3+4m−2gn = 0

or Ψ(g,m, n) = 0. We have the next lemma.

Lemma 15. For systems (113), if ξ4 6= 0 then the condition B1 = B2 = 0 is equivalent to

Ψ(g,m, n) = 0.
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Proof: Assume first that the condition Ψ(g,m, n) = 0 holds and we calculate Discrim [Ψ,m] =

−64(g2 − 4n− 2)2 ≤ 0. So in order to have a real solution with respect to m it is necessary that the

condition g2 − 4n− 2 = 0 holds. This yields n = (g2 − 2)/4 and we obtain

Ψ(g,m) =
1

4
(4g + g3 + 8m)2, B2 = (4g + g3 + 8m)2φ(g,m, x, y),

where φ(g,m, x, y) is a polynomial of degree four in x and y. Therefore clearly the condition

Ψ(g,m) = 0 implies B2 = 0.

Assume now that for systems (113) the conditions B1 = B2 = 0 and ξ4 6= 0 are fulfilled and

suppose the contrary that the condition Ψ(g,m, n) 6= 0 holds. Then the condition B1 = 0 yields

g + g3 + 4m− 2gn = 0. This gives us m = −g(g2 − 2n+ 1)/4 and we calculate

Ψ(g, n) = (1 + g2)(g2 − 4n− 2)2,

B2 = −81

2

(
g2 + 1

)2(
g2 − 4n− 2

)2[
4g4 + g2(8− 16n) + (1− 4n)2

]
x4,

Discrim [4g4 + g2(8− 16n) + (1− 4n)2, n] = −256g2 < 0,

due to ζ4 6= 0. Therefore the condition B2 = 0 implies Ψ(g, n) = 0 and the contradiction we obtained

completes the proof of Lemma 15.

So in what follows we discuss two possibilities: B2 6= 0 and B2 = 0.

1: The possibility B2 6= 0. Then by Lemma 15 we have Ψ(g,m, n) 6= 0 and the condition B1 = 0

implies g+g3+4m−2gn = 0. This gives us m = −g(g2−2n+1)/4 and we arrive at the 2-parameter

family of systems:

ẋ =− 1

4
g(g2 − 2n+ 1) +

1

2
(2n− 1)x− g

2
y + gx2 − xy,

ẏ =− 1

2
g(g2 − 2n+ 1)x+ 2ny − x2 + gxy − 2y2,

(119)

possessing the invariant line L1(x, y) = 2x+g = 0 besides the invariant parabola Φ(x, y) = x2−y = 0.

For the above systems we calculate

ζ4 = g(g2 + 25)(5g2 − 4n+ 2)/8, θ = −8(g2 + 9).

Since θ 6= 0, according to Lemma 2 systems (119) could not have an invariant line parallel with

2x+ g = 0. On the other hand, according to Lemma 1 we could not have invariant line in another

direction because B2 6= 0.

Next we determine that systems (119) possess four finite singularitiesMi(xi, yi) (i = 1, 2, 3, 4) with

the coordinates

x1 = −g
2
, y1 =

g2

4
; x2 = −g

2
, y2 =

2n− g2

2
;

x3,4 =
1

2

(
g ±

√
Y2

)
, y3,4 =

1

2

(
2n− 1± g

√
Y2

)
, Y2 = 4n− g2 − 2.

We calculate

Φ(x1, y1) = Φ(x3, y3) = Φ(x4, y4) = L1(x1, y1) = L1(x2, y2) = 0, Φ(x2, y2) = (3g2 − 4n)/4,
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and we deduce that the singularity M1 is the point of intersection of the invariant line with the

invariant parabola. Moreover the pointM2 is located on the invariant line and it could belong to the

invariant parabola if and only if 3g2 − 4n = 0. Finally, we observe that M3 and M4 could be either

real or complex or coinciding (depending on the value of Y2) and they lie on the invariant parabola.

In order to detect the reciprocal positions of the finite singularities we calculate

(x3 − x1)(x4 − x1) = (5g2 − 4n+ 2)/4 = γ1/4, y2 − y1 = (4n− 3g2)/4 = δ1/4.

Therefore we deduce that in the case Y2 > 0 the singularitiesM2 andM3 are located on the same side

(respectively opposite sides) with respect to the singular point M1 if γ1 > 0 (respectively γ1 < 0).

We observe that γ1 6= 0 due to the condition ζ4 6= 0.

On the other hand we note that y2 > y1 if δ1 > 0 and y2 < y1 if δ1 < 0. Moreover y2 = y1 if δ1 = 0

and in this case the point of intersection of the invariant line with the parabola is a double singular

point of systems (119).

We determine that the invariant polynomial D which is responsible for the existence of multiple

finite singularities for systems (119) has the form

D = −3

4
(g2 + 1)4Y2γ

2
1δ

2
1 , ζ4 = g(25 + g2)γ1/8,

ξ7 = 4698510000g2(1 + g2)2Y2γ1δ
2
1 , ξ8 = −247290000g2(1 + g2)2Y2δ1γ

2
1 .

So due to ζ4 6= 0 in the case D 6= 0 we obtain

sign (D) = −sign (Y2), sign (ξ7) = sign (Y2γ1), sign (ξ8) = −sign (Y2δ1),

and we examine two cases: D 6= 0 and D = 0.

1.1: The case D 6= 0. Then Y2 6= 0 and systems (119) have four distinct finite singularities.

Remark 7. We observe that γ1 + δ1 = 2(g2 + 1) > 0. Therefore the conditions γ1 < 0 and δ1 < 0

are incompatible.

Considering this remark in the case D 6= 0 we determine that systems (119) have the following

configurations:

D < 0, ξ7 < 0 ⇒ (x3 − x1)(x4 − x1) < 0, y2 > y1 ⇒ Config.P.122;

D < 0, ξ7 > 0, ξ8 < 0 ⇒ (x3 − x1)(x4 − x1) > 0, y2 > y1 ⇒ Config.P.123;

D < 0, ξ7 > 0, ξ8 > 0 ⇒ (x3 − x1)(x4 − x1) > 0, y2 < y1 ⇒ Config.P.124;

D > 0, ξ8 < 0 ⇒ y2 < y1 ⇒ Config.P.125;

D > 0, ξ8 > 0 ⇒ y2 > y1 ⇒ Config.P.126.

1.2: The case D = 0. Since γ1 6= 0 due to ζ4 6= 0 this condition implies Y2δ1 = 0 and we calculate

ξ1 = −3g(1 + g2)2(25 + g2)γ1δ1/16

and since γ1 6= 0 we conclude that the condition δ1 = 0 is equivalent to ξ1 = 0. So we discuss two

subcases: ξ1 6= 0 and ξ1 = 0.
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1.2.1: The subcase ξ1 6= 0. Then Y2 = 0 (i.e. n = (g2 + 2)/4) and we obtain that M3

coalesces with M4 producing a double singular point on the parabola. Moreover the position of M2

is determined by the value of δ1. For systems (119) with n = (g2 + 2)/4 we calculate:

ξ1ζ8 = −3g4(1 + g2)3(25 + g2)δ1/2, ζ4 = g3(25 + g2)/2.

So due to ζ4 6= 0 we obtain that sign (ξ1ζ8) = −sign (δ1) and therefore in the case D = 0 and ξ1 6= 0

we arrive at the configuration Config.P.127 if ξ1ζ8 < 0 and Config.P.128 if ξ1ζ8 > 0.

1.2.2: The subcase ξ1 = 0. This condition implies n = 3g2/4 and then the singular point M2

coalesces with M1 and we observe that in this case γ1 = 2(g2 + 1) > 0.

On the other hand for n = 3g2/4 we have

Y2 = 2(g2 − 1), ξ2 = (g2 − 1)(1 + g2)4

and clearly the condition ξ2 = 0 is equivalent to Y2 = 0. This implies the coalescence of M3 with

M4 obtaining two double singularities located on the invariant parabola.

Thus in the case D = ξ1 = 0 we get the configuration Config.P.129 if ξ2 6= 0 and Config.P.130 if

ξ2 = 0.

2: The possibility B2 = 0. So we have B1 = B2 = 0 and by Lemma 15 the condition Ψ(g,m, n) = 0

holds. Considering the proof of Lemma 15 we arrive at the following conditions:

g2 − 4n− 2 = 0 ⇒ n = (g2 − 2)/4; 4g + g3 + 8m = 0 ⇒ m = −g(4 + g2)/8.

This leads to the 1-parameter family of systems

ẋ =− 1

8
g(g2 + 4) +

1

4
(g2 − 4)x− g

2
y + gx2 − xy,

ẏ =− 1

4
g(g2 + 4)x+

1

2
(g2 − 2)y − x2 + gxy − 2y2,

(120)

possessing three invariant lines

L1(x, y) = 2x+ g = 0, L2,3(x, y) = 4(y ± ix)− g(g ∓ 2i) = 0,

besides the invariant parabola. We determine that systems (120) possess four finite singularities

Mi(xi, yi) (i = 1, 2, 3, 4) with the coordinates

x1 = −g
2
, y1 =

g2

4
; x2 = −g

2
, y2 = −g

2 + 2

4
;

x3,4 =
1

2

(
g ± 2i

)
, y3,4 =

1

4

(
g ± 2i

)2
,

We calculate

Φ(x1, y1) = Φ(x3, y3) = Φ(x4, y4) = 0, Φ(x2, y2) = (g2 + 1)/2,

L1(x1, y1) = L1(x2, y2) = L2(x1, y1) = L2(x3, y3) = L3(x4, y4) = 0.

and we deduce that the singularityM1 is the point of intersection of all three invariant lines with the

invariant parabola. Moreover the point M2 is located on the invariant line and it could not belong

to the invariant parabola because g2+1 6= 0. In addition, since y2−y1 = −(g2+1)/2 < 0 we deduce

that the point M2 on the vertical invariant line L1 = 0 is located below M1.

Thus we arrive at the unique configuration Config.P.131 which the systems (120) could possess.
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3.3.1.2.2 The subcase ξ4 = 0. This implies (g − 8m)2 + (1 − 4n)2 = 0 and we get m = g/8

and n = 1/4. Then we obtain the following 1-parameter family of systems

ẋ =
g

8
− x

4
− gy

2
+ gx2 − xy, ẏ =

gx

4
+
y

2
− x2 + gxy − 2y2, (121)

which besides the invariant parabola Φ(x, y) = x2 − y = 0 possess two complex invariant lines

L1,2(x, y) = 4(y ± ix)− 1 = 0.

For these systems we calculate

ζ4 = g(25 + g2)(1 + 9g2)/16, B3 = −3g(1 + g2)(x2 + y2)2/4,

and since ζ4 6= 0 (g 6= 0) we obtain B3 6= 0. So according to Lemma 1, these systems could not have

invariant line in the third (real) direction.

We determine that systems (121) possess four finite singularities Mi(xi, yi) (i = 1, 2, 3, 4) with the

coordinates

x1 = 0, y1 =
1

4
; x2 =

g

2
, y2 =

g2

4
; x3,4 = ± i

2
, y3,4 = −1

4
.

We calculate

Φ(x2, y2) = Φ(x3, y3) = Φ(x4, y4) = 0, Φ(x1, y1) = −1/4,

and we observe that the real singular point M1 is a point of intersection of the complex invariant

lines and it is located outside of the invariant parabola. The second real singular pointM2 is located

on the parabola and its position is governed by the real parameter g 6= 0. As a result we arrive at

the unique configuration Config.P.132.

3.3.2 The statement (E2)

According to Proposition 4 in this case the conditions ζ4 = 0 and R7ζ5 6= 0 must be fulfilled.

Considering (114), the condition ζ4 = 0 implies

3g + 9g3 − 4m− 6gn = 0 ⇒ m = 3g(3g2 − 2n+ 1)/4,

and we arrive at the following family of systems

ẋ =
3

4
g
(
3g2 − 2n+ 1

)
+

1

2
(2n− 1)x− gy

2
+ gx2 − xy,

ẏ =
3

2
g
(
3g2 − 2n+ 1

)
x+ 2ny − x2 + gxy − 2y2,

(122)

possessing two invariant parabolas Φ1(x, y) = x2 − y = 0 and

Φ2(x, y) = (3g2 − 4n)(1 + 3g2 − 2n) + 2g(3g2 − 4n)x− 4(1 + g2)x2 + 2(2 + 5g2 − 4n)y = 0.

For systems (122) we calculate

ζ5 =19(g2 + 25)(3g2 − 4n)2/4, R7 = 16120(3g2 + 1)(5g2 − 4n+ 2),

θ =− 8(g2 + 9), B1 = −g(g2 + 1)(9g2 + 1)(5g2 − 4n+ 2)Ψ2Ψ3/32,
(123)

where

Ψ2(g, n) = 81g4 + g2(28− 72n) + 4(1 + 2n)2, Ψ3(g, n) = 36g4 + g2(16− 48n) + (1− 4n)2.

According to Lemma 1 systems (122) could have at least one invariant line only if B1 = 0. So we

discuss two possibilities: B1 6= 0 and B1 = 0.
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3.3.2.1 The possibility B1 6= 0. We determine that systems (121) possess four finite singulari-

ties Mi(xi, yi) (i = 1, 2, 3, 4) with the coordinates

x1 =
3g

2
, y1 =

9g2

4
; x2 =

g(3 + 9g2 − 8n)

2(1 + g2)
, y2 =

9g4 + g2(3− 6n) + 2n

2(1 + g2)
;

x3,4 =
1

2

(
− g ±

√
Y3

)
, y3,4 =

1

2

(
2n− 1− 2g2 ∓ g

√
Y3

)
, Y3 = 4n− 5g2 − 2.

(124)

We calculate

Φ1(x1, y1) = Φ1(x3, y3) = Φ1(x4, y4) = 0, Φ2(x2, y2) = Φ2(x3, y3) = Φ2(x4, y4) = 0,

and we deduce that the singularities M3 and M4 are the points of intersection of both invariant

parabolas. Moreover the point M1 (respectively M2) is located on the invariant parabola Φ1 = 0

(respectively Φ2 = 0).

In order to detect the positions of the singularities M1 and M2 with respect to M3 and M4 (in the

case Y3 > 0) we calculate:

(x3 − x1)(x4 − x1) = (2 + 21g2 − 4n)/4 = γ2/4,

(x3 − x2)(x4 − x2) = − Y3

4 (g2 + 1)2
[
21g4 + 2g2(5− 8n) + 1

]
= − Y3

4 (g2 + 1)2
δ2.

We observe that

sign
(
(x3 − x1)(x4 − x1)

)
= sign (γ2), sign

(
(x3 − x2)(x4 − x2)

)
= −sign (Y3δ2).

So we deduce that the point M1 (respectively M2) is located on the invariant parabola Φ1 = 0

(respectively Φ2 = 0) between M3 and M4 if and only if γ2 < 0 (respectively Y3δ2 < 0).

On the other hand for systems (121) we calculate

D = −3(3g2 − 4n)2Y3γ
2
2δ

2
2/4, ξ14 = 1235γ2δ2/2, ξ30 = 1235

(
Y3δ2 − (1 + g2)2γ2

)
/2. (125)

We observe that in the case D 6= 0 we have

sign (D) = −sign (Y3), sign (ξ14) = sign (γ2δ2).

Moreover in the case ξ14 < 0 (i.e. γ2δ2 < 0) and D < 0 (i.e. Y3 > 0) we obtain

sign (ξ30) = sign (Y3δ2 − (1 + g2)2γ2) = sign (δ2).

So we discuss two cases: D 6= 0 and D = 0.

3.3.2.1.1 The case D 6= 0. We observe that in the case D > 0 the singular pointsM3 andM4

are complex and clearly in this case it is not necessary to distinguish the signs of the polynomials γ2
and δ2.

Thus taking into account the information we mentioned above we detect that in the case D 6= 0

we arrive at the following configurations:
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D < 0, γ2 < 0, δ2 > 0 ⇒ (x3 − x1)(x4 − x1) < 0, (x3 − x2)(x4 − x2) < 0 ⇒ Config.P.134;

D < 0, γ2 > 0, δ2 < 0 ⇒ (x3 − x1)(x4 − x1) > 0, (x3 − x2)(x4 − x2) > 0 ⇒ Config.P.133;

D < 0, γ2 < 0, δ2 < 0 ⇒ (x3 − x1)(x4 − x1) < 0, (x3 − x2)(x4 − x2) > 0 ⇒ Config.P.135;

D < 0, γ2 > 0, δ2 > 0 ⇒ (x3 − x1)(x4 − x1) > 0, (x3 − x2)(x4 − x2) < 0 ⇒ ≃Config.P.135;

D > 0 ⇒ ⇒ Config.P.136.

We observe that in the case γ2δ2 > 0 we obtain two equivalent configurations given by Config.P.135

and we deduce that in the case D 6= 0 systems (122) possess the following configuration if and only

if the corresponding invariant conditions are satisfied:

D < 0, ξ14 < 0, ξ30 < 0 ⇒ Config.P.133;

D < 0, ξ14 < 0, ξ30 > 0 ⇒ Config.P.134;

D < 0, ξ14 > 0 ⇒ Config.P.135;

D > 0 ⇒ Config.P.136.

3.3.2.1.2 The case D = 0. Considering the value of the invariant polynomials given above

and the conditions ζ5 6= 0 (i.e. 3g2 − 4n 6= 0) and R7 6= 0 (i.e. Y2 6= 0) we obtain that D = 0 implies

γ2δ2 = 0. Taking into account (125) we deduce that this condition is equivalent to ξ14 = 0.

We claim that in the case ξ14 = 0 systems (122) possess the configuration Config.P.137 if ξ30 < 0;

Config.P.138 if ξ30 > 0 and Config.P.139 if ξ30 = 0.

Indeed assume ξ14 = 0, i.e. γ2δ2 = 0. In order to prove our claim we examine each one of these

two possibilities.

1: The subcase δ2 = 0. This condition implies

n = (1 + 10g2 + 21g4)/(16g2), γ2 =

(
7g2 − 1

) (
9g2 + 1

)

4g2

and we determine that the singular point M2 coalesces with M4. If in addition γ2 = 0 then M1

coalesces with M3 and we obtain two double singularities on the parabola.

So we detect that systems (121) possess the configuration which is equivalent to Config.P.137 if

γ2 > 0; to Config.P.138 if γ2 < 0 and to Config.P.139 if γ2 = 0.

Considering (125) we observe that for δ2 = 0 we have sign (ξ30) = −sign (γ2) and our claim is

proved in this case.

2: The subcase γ2 = 0. This implies n = (2 + 21g2)/4 and we observe that in this case the singular

point M1 coalesces with M3 and we calculate

δ2 = (1− 7g2)(1 + 9g2).

It is not too difficult to detect that in the case γ2 = 0 systems (121) possess the configuration

Config.P.137 if δ2 < 0; to Config.P.138 if δ2 > 0 and to Config.P.139 if δ2 = 0.

It remains to observe that considering (125) for γ2 = 0 we obtain Y3 = 16g2 > 0 and therefore we

have sign (ξ30) = sign (δ2) and this completes the proof of our claim.
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3.3.2.2 The possibility B1 = 0. Considering (123) this condition implies g(5g2−4n+2)Ψ2Ψ3 =

0. We claim that due to the condition R7 6= 0 the condition B1 = 0 is equivalent to g = 0. Indeed,

assuming g 6= 0 we obtain

Discrim [Ψ2, n] = −4096g2 < 0, Discrim [Ψ3, n] = −256g2 < 0,

and hence the equation Ψ2 = 0 as well as Ψ3 = 0 could not have real solution with respect to the

parameter n. This completes the proof of our claim.

Thus we have g = 0 and we arrive at the 1-parameter family of systems

ẋ =
1

2
x(2n− 2y − 1), ẏ = −x2 + 2ny − 2y2, (126)

possessing the invariant line x = 0 and the invariant parabolas

Φ1(x, y) = x2 − y = 0, Φ2(x, y) = x2 + (2n− 1)y − n(2n− 1) = 0.

For these systems we calculate

ζ5 = 1900n2, R7 = −32240(2n− 1), B2 = −162(2n+ 1)2(4n− 1)2x4.

We discuss two cases: B2 6= 0 and B2 = 0.

3.3.2.2.1 The case B2 6= 0. Then by Lemma 1 we could not have invariant lines in another

direction. Considering (124) we obtain for g = 0 that systems (126) possess four finite singularities

Mi(xi, yi) (i = 1, 2, 3, 4) with the coordinates

x1 = 0, y1 = 0; x2 = 0, y2 = n;

x3,4 =
1

2

(
±

√
Y3

)
, y3,4 =

1

2

(
2n− 1

)
, Y3 = 2(2n− 1).

We observe that the invariant line x = 0 intersects the invariant parabola Φ1 = 0 at the point M1

and the invariant parabola Φ2 = 0 at the point M2.

For systems (126) we have

D = −12n2Y 3
3 ⇒ sign (D) = −sign (Y3).

Since all the singular points are fixed as points of intersection of invariant curves and D 6= 0 due

to the condition ζ5R7 6= 0 we arrive at the configuration Config.P.140 if D < 0 and Config.P.141

if D > 0.

3.3.2.2.2 The case B2 = 0. This implies (2n+ 1)(4n− 1) = 0.

Assume 4n− 1 = 0. This implies n = 1/4 and we arrive at the system

ẋ =− 1

4
x(4y + 1), ẏ =

1

2

(
−2x2 − 4y2 + y

)
, (127)

possessing three invariant lines L1(x, y) = x = 0 and L2,3(x, y) = y± ix− 1/4 = 0 and the invariant

parabolas Φ1(x, y) = x2 − y = 0 and Φ2(x, y) = −4x2 + 2y − 1/2 = 0.
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We observe that the point M2(0, 1/4) is the point of intersection of the above complex lines. As

a result we obtain that the above system possesses the configuration Config.P.142.

Now if 2n+ 1 = 0 (i.e. n = −1/2) we arrive at the system

ẋ =− x(1 + y), ẏ = −x2 − y − 2y2,

which can be brought to system (127) via the affine transformation and time rescaling

x1 = x/2, y1 = y/2 + 1/4, t1 = 2t,

possessing the configuration Config.P.142.

3.3.3 The statement (E3)

According to Proposition 4 in this case the conditions ζ4 = ζ5 = 0 and R7 6= 0 hold. Considering

(123), the condition ζ5 = 0 implies

3g2 − 4n = 0 ⇒ n = 3g2/4,

and we get the following 1-parameter family of systems

ẋ =
3

8
g
(
3g2 + 2

)
+

1

4

(
3g2 − 2

)
x− gy

2
+ gx2 − xy,

ẏ =
3

4

(
3g2 + 2

)
gx+

3g2y

2
− x2 + gxy − 2y2,

(128)

possessing according to Proposition 4 the double invariant parabola Φ(x, y) = x2 − y = 0.

For the above systems we compute

ζ4 = ζ5 = 0, R7 = 32240(1 + g2)(1 + 3g2) 6= 0, θ = −8(g2 + 9),

B1 = −g(1 + g2)4(1 + 9g2)3/4.

According to Lemma 1 systems (128) could have at least one invariant line only if B1 = 0. So we

discuss two possibilities: B1 6= 0 and B1 = 0.

1: The possibility B1 6= 0. We determine that systems (128) possess the following three finite

singularities Mi(xi, yi) (i = 1, 2, 3) with the coordinates:

x1 =
3g

2
, y1 =

9g2

4
; x2,3 = −1

2

[
g ± i

√
2(1 + g2)

]
,

y2,3 =
1

4

[
− 2− g2 ± 2gi

√
2(1 + g2)

]
.

(129)

It is clear that the real singular point M1 is double as it is located on the double invariant parabola

and this could be proved directly.

It could be checked that the complex singular points M2 and M3 are also situated on the invariant

parabola. However this is not relevant according to the Definition 1 of a configuration.

Then we deduce that in the case B1 6= 0 systems (128) have the unique configuration Config.P.143.

2: The possibility B1 = 0. Then g = 0 and system (128) with g = 0 possesses the additional invariant

line x = 0. So considering the singularities (129) for g = 0 we arrive at the unique configuration

Config.P.144.
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3.3.4 The statement (E4)

According to Proposition 4 in this case the conditions ζ4 = R7 = 0 and ζ5 6= 0 hold. Considering

(123), the condition R7 = 0 implies

5g2 − 4n+ 2 = 0 ⇒ n = (2 + 5g2)/4,

and we arrive at the following 1-parameter family of systems

ẋ =
1

8
(g + 2x)

(
3g2 + 4gx− 4y

)
,

ẏ =
3g3x

4
+

1

2

(
5g2 + 2

)
y − x2 + gxy − 2y2,

(130)

possessing the invariant parabola Φ(x, y) = x2 − y = 0 and the invariant line 2x+ g = 0. For these

systems we have B2 = −648(1 + g2)5(1 + 9g2)x4 6= 0 and by Lemma 1 we could not have other

invariant lines.

On the other hand we determine that systems (130) possess three finite singularities Mi(xi, yi)

(i = 1, 2, 3) with the coordinates:

x1 = −g
2
, y1 =

g2

4
; x2 = −g

2
, y2 =

1

4

(
3g2 + 2

)
; x3 =

3g

2
, y3 =

9g2

2
.

We claim that the singular point M1 is a multiple singularity of systems (130). Indeed, applying

the corresponding translation, we could place M1 at the origin of coordinates and we arrive at the

systems
ẋ =x(gx− y),

ẏ =g(1 + g2)x− x2 + (1 + g2)y + gxy − 2y2,

where M0(0, 0) is a singularity of the above systems corresponding to the singularity M1.

Considering [1], we calculate the following invariant polynomials:

µ4 = µ3 = 0, µ2 = 2g(1 + g2)2x(gx− y),

µ1 = −(1 + g2)(x+ 5g2x− 4gy),

and by [1, Lemma 5.2, statement (ii)] the point M0 is of multiplicity at least 2. We observe that

µ2 = 0 if and only if g = 0. But in this case µ1 6= 0. Therefore according to [1, Lemma 5.2, statement

(ii)] we have a double point if g 6= 0 and a triple one if g = 0. We observe that this condition is

governed by the invariant polynomial ζ3 = 32g2.

We determine that the multiple singular pointM1 is the point of intersection of the line 2x+g = 0

with the invariant parabola and the pointM3 is also located on the invariant parabola. Moreover the

singular point M3 coalesces with M1 for g = 0 producing a triple finite singularity of systems (130).

On the other hand the singularity M2 is located on the invariant line above the point M1 because

y2 − y1 = (g2 + 1)/2 > 0. Therefore we arrive at the configuration Config.P.145 if ζ3 6= 0 and

Config.P.146 if ζ3 = 0.
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