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Abstract

Denote by QS the class of all non-degenerate planar quadratic differential systems and by
QSP the subclass of QS of all systems possessing at least one invariant parabola. In this paper
we consider the subfamily of QSP defined by the condition 7 # 0, which we denote by QSP ;.0).
We investigate all possible configurations of invariant parabolas and invariant straight lines which
systems in QSP ;) could possess and their geometric properties encoded in such configurations.
The classification presented here is taken modulo the action of the group of real affine transforma-
tions and time rescaling and it is given in terms of affine invariant polynomials. It yields a total of
146 distinct configurations. The obtained classification is an algorithm which makes possible for
any given real quadratic differential system in QSP o) to specify its configuration of invariant
parabolas and straight lines. This work will prove helpful in studying the integrability of the
systems in in QSP (;0).

1 Introduction and statement of main results

To every planar differential systems of the form

dr _
dt

dy
P — 1
@y, L =Qwy), 1)
where P, Q € R[x,y], i.e. P, @ are polynomials in z, y over R, is associated the vector fields

0

0



The degree of such a system is the integer m = max(deg P, deg ). In particular we say that a
system (1) is a quadratic differential system when m = 2 and here QS denotes the whole class of real
quadratic differential systems. From now on we are assuming that P and () are coprime polynomials.
Otherwise doing a rescaling of the time, systems (1) can be reduced to linear or constant systems.
Quadratic differential systems under such assumptions are called non—degenerate quadratic systems.

Quadratic systems emerge in various research fields including models of population dynamics [6],
fluid dynamics [9], control systems [11] and even quantum dynamics [3]. As a consequence, QS are
subject of great interest for mathematicians and researchers from other areas of science and, many
papers have been published on such systems, see for example [1] for a bibliographical survey.

Given f € C[x,y], we say that the curve f(z,y) = 0 is an invariant algebraic curve of systems (1)
if there exists K € C[z,y] (it is called cofator of the invariant curve f = 0) such that

of | ,of
P% + Qa—y =Kf.

Quadratic systems with an invariant algebraic curve have been studied by many authors, for
example Schlomiuk and Vulpe in [19, 21] have studied quadratic systems with invariant straight
lines; Qin Yuan-xum [14] have investigated the quadratic systems having an ellipse as limit cycle;
Druzhkova [10] presented the necessary and sufficient conditions on the coefficients of a quadratic
system and also on the coefficients of a conic so as to have the conic as an invariant curve of the
system; Christopher [7] presented a normal form for quadratic systems possessing invariant parabolas;
Cairé and Llibre in [5] studied the quadratic systems having invariant algebraic conics in order to

investigate the Darboux integrability of such systems.

The main goal of this research is to investigate non—degenerate quadratic systems having invariant
conics. The irreducible affine conics over the field R are the hyperbolas, ellipses and parabolas. One
way to distinguish them is to consider their points at infinity. The term hyperbola is used for a real
irreducible affine conic which has two real points at infinity. This distinguishes it from the other
two irreducible real conics: the parabola has just one real point at infinity at which the multiplicity
of intersection of the conic with the line at infinity is two, and the ellipse which has two complex
points at infinity.

Inside this proposal, the classification of QS with invariant hyperbolas [17, 16] and with invariant
ellipses [15, 13] are obtained in previous works. In this work we study the class QSP of non-
degenerate quadratic differential systems having an invariant parabolas. The investigation of such a
class of systems is done applying the invariant theory.

The group of real affine transformations and time rescaling acts on the class QS and due to this,
modulo this group action the quadratic systems depend on five parameters. The same group acts on
the QSP and modulo this action systems in this class depend on at most three parameters. As we
want this study to be intrinsic, independent of the normal form given to the systems, we use here
invariant polynomials and geometric invariants for the desired classification.

In the paper [23] the necessary and sufficient conditions for a non-degenerate quadratic system in
QS to have invariant parabolas are provided. Moreover in that paper the invariant criteria which
provide the number, position and multiplicity of such parabolas are determined.



The present paper is a continuation of [23]. More precisely using the conditions from that paper
we present the classification of all configurations of invariant parabolas and invariant lines which a
system in QSP(;.o) could possess. The investigation of the configurations of the family of systems
in QSP(,_g) is in progress.

An important ingredient in this work is the notion of configuration of algebraic solutions of a
polynomial differential system. This notion appeared for the first time in [19].

Definition 1. Consider a planar polynomial system which has a finite number of algebraic solutions
and a finite number of singularities, finite or infinite. By configuration of algebraic solutions of this
system we mean the set of algebraic solutions over C of the system, each one of these curves endowed
with its own multiplicity and together with all the real singularities of this system located on these
curves, each one of these singularities endowed with its own multiplicity.

We point out that in [8] the notions of multiplicities (infinitesimal; integrable; algebraic; geomet-
ric; holonomic) of an algebraic invariant curve are given. Here we use the definition of geometric
multiplicity based on perturbations in the family QS.

Definition 2. We say that an invariant conic ®(x,y) = p + gz + ry + sz + 2twy + uy? = 0,
(s,t,u) # (0,0,0), (p,q,7,s,t,u) € CO for a quadratic vector field X has multiplicity m if there exists
a sequence of real quadratic vector fields X converging to X, such that each X} has m distinct
(complex) invariant conics ®} = 0,..., P = 0, converging to ® = 0 as k — oo (with the topology of
their coefficients), and this does not occur for m+ 1. In the case when an invariant conic ®(z,y) =0
has multiplicity one we call it simple.

Our main results are stated in the following theorem.

Main Theorem. (A) The conditions n # 0, and x1 = x2 = 0 are necessary for a quadratic system
in the class QSP(,40) to possess at least one invariant parabola.

(B) Assume that for a system (S) in the class QSP(,.q) the condition x1 = x2 = 0 is satisfied.

e (B1) If n > 0 then the system (S) could possess only one of the configurations Config. P.1-
Config. P.11/ presented in Figure 1. Moreover for each one of these configurations the corre-
sponding conditions for its realization could be collected from Diagrams 1 and 2.

e (B2) If n <0 then the system (S) could possess only one of the configurations Config. P.115~
Config. P.146 presented in Figure 2. Moreover for each one of these configurations the corre-
sponding conditions for its realization could be collected from Diagram 3.

(C) The Diagrams 1, 2 and 3 actually contain the global bifurcation diagram in the 12-dimensional
space of parameters of the systems belonging to family QSP, .y, which possess at least one invariant
parabola. The corresponding conditions are given in terms of invariant polynomials with respect to
the group of affine transformations and time rescaling.
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Figure 1: Configurations of systems in QSP in the case n > 0
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Figure 1 (cont.): Configurations of systems in QSP in the case n > 0
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Figure 2 (cont.): Configurations of systems in QSP in the case n < 0

2 Preliminaries

Consider real quadratic systems of the form:

dx
— =po +pi(z,y) + p2(z,y) = P(x,y),

d
c% =g+ q(z,y) + ©(@,y) = Qz,y)

with homogeneous polynomials p; and ¢; (i = 0, 1,2) of degree ¢ in x,y:

po = aoo, pi1(x,y) =awr+any, p2(z,y)= ar? + 2a111y + a02y2,

90 =boo, q1(z,y) =bio7 + by, oz, y) = boox® + 2b117Y + bo2y”.

Such a system (2) can be identified with a point in R'2. Let @ = (ago,a10,ao1, a2, ai1, age,
b()(), blg, b()l, bgo, b11, bog) and consider the ring R[aoo, aig, .- -, a02, boo, blo, ey bgg, Z, y] which we shall
denote R[a, x, y].

It is known that on the set QS of all quadratic differential systems (2) acts the group Aff(2,R)
of affine transformations on the plane (cf. [20]). For every subgroup G C Aff(2,R) we have an
induced action of G on QS . We can identify the set QS of systems (2) with a subset of R!? via
the map QS — R!? which associates to each system (2) the 12-tuple @ = (aqo,...,bo2) of its
coefficients. We associate to this group action polynomials in x,y and parameters which behave well
with respect to this action, the GL—comitants, the T—comitants and the C'T—comitants. For their
detailed definitions as well as their constructions we refer the reader to the paper [20] (see also [1]).
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2.1 The main invariant polynomials associated to invariant parabolas

We single out the following five polynomials, basic ingredients in constructing invariant polynomials

for systems (2):

Di(a,x,y) =

— zqi(z,y), (i=0,1,2)
3pz+jd (i=12).

(3)
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As it was shown in [22] these polynomials of degree one in the coefficients of systems (2) are GL—
comitants of these systems. Let f, g € R[a, z,y] and

k
k o f kg
(k) — _1)h
(£.9) hz_%( b <h> Oxk—hoyh dzhoyk—h’

The polynomial (f, g)*) € Ra,z,y] is called the transvectant of index k of (f,g) (cf. [12], [18])).

Proposition 1 (see [24]). Any GL-comitant of systems (2) can be constructed from the elements
(3) by using the operations: +, —, %, and by applying the differential operation (x,)*).

Remark 1. We point out that the elements (3) generate the whole set of GL—-comitants and hence
also the set of affine comitants as well as the set of T-comitants.

We construct the following GG L—comitants of the second degree with respect to the coefficients of
the initial systems

Ty = (Co, )W, To=(Co,C), Ty =(Co, D)W,
Ty = (C,C)P,  Ts = (C,C)W,  Te = (Cr,C)?, (4)
T7 = (Ch, D2)(1) , Ty = (Cy, 02)(2) , Ty = (Co, D2)(1) .

Using these G L—comitants as well as the polynomials (3) we construct the additional invariant
polynomials. In order to be able to calculate the values of the needed invariant polynomials directly

14
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MC’onﬁg. P.13

n>0

0
Yi=x3= 0| &20#0 Do 18 F# Confia. P14
¢1=0

£5=0, Config. P16
B, —
2=0, Config. P .49

£19=0 D<0§9;0>C(mﬁg_p.17

£91#0

| D>0, config. P.20
=0 .

= M>C’0nﬁg. P.21

ﬂ M (next page)

(B—z)b (next page)

Diagram 2: Conditions for the configurations of systems in QSP in the case n > 0, (; =0
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g22—<0>C’0nﬁg. P.34

D<0 0
§22—>>C'0nﬁg.77.35’
B3 #0 D>0
———»Config. P.36
My M>C’0nﬁg. P.39
B 0
g_gli)g B2:O%Conﬁg.73.54
19= §23=0
&30 =0 1525y Config. P.49
=0 <0
21 D<0 El4—>C'onﬁg.77.6’0
514—>O>C0nﬁg.77.6’1
B, #£0 D>0
L —~ —»Config. P.63
(B2) D=0

———»Config. P.66
MConﬁg. P.71
|(B3) | Config. P.78

| (Ba) , Config. P.81 p
Ba#£0 ———»Config. P.101

£2470 [D>0, config. P.102
n > 0 B2:0
m —VCO’/Zﬁg.’P.]O(?

¢1=0 D#OMConﬁg.P.lw

(Bs) (560 <0
By £0 605 >0 =222 =~y Config. P.105

M» Config. P.106
€24=0 D=0, config.P.107

SQG#OMConﬁg.P.JOS

B, =0 §27—:O>C'onﬁg. P.109

€05 =0 M»C(mﬁg. P.110

€020 $6=0, Config. P.111
(Bs) —»Config. P.42

59—:0>C’0nﬁg. P.112

(Br) M»Conﬁg. P.118
C6;0>Conﬁg.73.114

Diagram 2 (cont.): Conditions for the configurations of systems in QSP in the case n > 0, {; =0
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D<0, config.P.115

| D>0, config. P.116
By £0

51 750 w»&mﬁg. P.117
&i,Conﬁg.’P.IZS

&i»Conﬁg.P.llg
§1=0[¢&

220, Config. P.120

_>§2 =0 Config. P.121

&7 <0
——» Config. P.122

D<0

&3 <0
(£) &>0 S8y Config. P.123

5520 o Config. P.124

D>0 &;OyConﬁg. P.125

By#0 ES;ObC’onﬁg.P.l,%

flgg—<0>00nﬁg. P.127

M»Conﬁg. P.128

§1#0

I
o

§a#0 D

70 | config. P.129

§1=0
By =0 2220, Config. P. 150

M Config. P.151

54;0» Config. P.132

£14<0 MConﬁg. P.133
D<0pH

n <0 €0>0, Config. P. 134

W Ev—) >0
ch ;‘jo 0 &4—>Conﬁg.73.135
! B1#0|D>0

»Config. P.136

£30<0, Config.P.137

(£3) D=010>0, 0nsig. 138
€30 =0 Config. P.139

By£0 D <0, config. P.140
B1=0 M»Conﬁg.?.lﬂ
MC’onﬁg.P.MQ
(€3) Bl—#obConﬁg.P.M(?
1B1 =0y Config. P.144
(E4) ﬂ»COnﬁg.P.145

CS;Oy(/‘onﬁg. P.146

Diagram 3: Conditions for the configurations of systems in QSP in the case n < 0
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for every canonical system we shall define here a family of T—comitants expressed through C;
(i=0,1,2) and D; (j =1,2):

= (Cy, Ts — 2Ty + D2)? /144,
f) [20 (Ty — 8Ty — 2D2) + C1(6T7 — Ty — (C1, Ts)™) + 6D (CLDy — Ty) — 9D202} /36,
E-— [Dl(zTg —Ty) — 3(C1, Ty)Y — Do(3T7 + D1 D) | /72,
F =[6D}(D? — 4Ty) + 4Dy Do(Ts + 6T7) +48Cq (D2, To)M) — 9D3Ty+288D1 E
~21(05.D)"” 4120 (0. D) " 86¢1 (02,70 48D, (D2, 75) V] /144,
B= {161)1 (Do, Ts)V) (3C1 Dy — 2Co Dy + AT) + 32C0 (Ds, To)") (3D1 Dy — 5T5 + 9T)

+2(Dy, To) Y (27C1 Ty — 18C1 D —32D1 T + 32 (Co, T5) )
+ 6 (Dg, )W [8Co(Ts — 12Ty) — 12C1 (D1 Dy + T7) + D1(26C2 Dy + 32T5) +Co (9T, + 96T3)]
+ 6 (Dy, Ts)M [32C Ty — C1 (12T 4 52D D) —32C5 D3] + 48D; (Do, 1)V (2D3 — Tg)
— 32D, Tg (D2, To)") + 9D3Ty (T — 2T7) — 16D; (Co, Ts) V) (D? + 4T3)
+12D; (C1,Ts)? (C1Da — 2C5D1) + 6Dy Do Ty (T — TD2 — 42Ty
+12Dy (O, T5) Y (T4 + 2Dy Do) + 96 D3 [D1 (C1, Te)™) + Dy (Co, TG)(l)] -
— 16D1 DT (2D3 + 3T%) — 4D Dy (D3 + 3T% + 613) + 6D D3 (TTs + 2T%)
—252D1 Do Ty Ty} /(2833),
K =(Ty + 4Ty + 4D3)/72, H = (8Ty — Ts + 2D3)/72.

These polynomials in addition to (3) and (4) will serve as bricks in constructing affine invariant
polynomials for systems (2).

The following 42 affine invariants Ay, ..., A4s form the minimal polynomial basis of affine invariants
up to degree 12. This fact was proved in [4] by constructing A, ..., A42 using the above bricks.

Ay = A4,

Ay = (Cy,D)¥ /12,

A = [027D )(1),D2)(1),D2)(1)/48,
Ay = (H,H)®,

As = (H,K)®)2,

A = (B, H)? /2,

A7 = [szﬁ)(2)7D2)(1)/87

Ag = [ﬁv A)(2),D2)(1)/87

Ag = [D, D)V, D) Dy) M a8,
Ap = [ﬁ A)(2),D2)(1)/8,

Ay = (F,K)® /4,

Ay = (F,H)? /4,

A = [Cy, H)M, H )2),D2)(1)/247
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Ay = (B, C2)®) /36,

A5 = (E,F)?)/4,

Ais = [B, D), )M B)? /16

A = [D, D)@, Do) D)W /64

Aig = [D,F)® D )(1)/16

Ay = [D,D)®, ) ) 116,

Agy = [Cy, D)@ F) 2)/16

Ay = [D,D)® K) /16,

Agy = ﬁ[CQ )(1) D )(1)7D2)(1)’D2)(1)D2)(1)7
Ay = [F.H)D,K)/s,

Aoy = [Cg,ﬁ)@), I’(‘)(l)’ﬁ) (2)/32’

Ags = [D,D)®,E)? /16,

Ay = (B, D) /36,

Agr = [B, D)V, H)®? 24,

Agg = [Co, K)®, D)V EY®) /16,

Agg = [D, F)D), D)( )/96

Ay = [C, D)@, D)V, D) 288,

Ay = [D, D)@, K)M H)® /64,

Ay = [B,D)®, Do) 0V, Dy)D /e,
Az = [D, Do), F)V Dy)M D)W /128,
Azy = [ﬁ,f))@) D )(1) )(1) )(1)/64,
Ags = [D, D)@, E)Y D)W D)™ /128,
Age = [D,E)@, D)V 7)® )/16

Ag; = [D,D)®» D)V D) /576,

Ags = [Co, D), D) DYV 1)@ 64,
Agzg = [ﬁ,ﬁ)@),ﬁ)(l),ﬁ)m)/&l,

Aw = [D, D)@, F)V k) 64,

Ay =[C2, D

)@, D) 7)), Dy)Y 64,
Ap = [D,F)®, F)D D)"Y 16,

In the above list, the bracket “[” is used in order to avoid placing the otherwise necessary up to
five parentheses “(”.

Using the elements of the minimal polynomial basis given above we construct two groups of affine
invariant polynomials. The first group contains invariant polynomials related to the existence of an
invariant parabola for a quadratic system and they are:

X1 = 3243 + 454, — 160 As5;

Y2 = 32A45(14Ag — 48Ag + 37TA10 + 24A11) + 16A5(76 A7 + TAA1s + 313A19 — 80499 — 167 Az1)
+ A4(160A3 + 368415 — 3363 A19 + 736 Az + 2109451 4 32(17A%, 4 27T A1 Ay + 2442
— 4849 A1s + 51A10A1s + 24411 Ays + 28846 A14 — 96A7A1,);
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X3 = 6520480A2 (407 A1g — 2253 A91) + 24 A15(1057715458 A19 + 5944853225 A1)
+ 28800A14(1872476 Ags — 122259 As) + 144A15(3620283092 A9 — 1554910481 As)
+ 1440A415(107225339 Ags — 19561440 A26) — 72A11 (8198511476 A2g — 2965514443 A3)
+ 652048(4544 A% + 12543, — 895542 A4s) — 9(264364688 A7, + 3941745484249 Aoy
— 54474141921 A3,) + 3448898760 A9 Asp;
X4 = 62713A%, + 45787 A9 A1y — 157928 A%, + 81202410 A 2 + A19353474A11 A1y — 145848 A,
+ 64320 A7 A15 + 2860045 A1 7;
(1 = 13A4 — 24As5;
G = — Ay
(3= 1645 — 17Ay;
G4 =9A1A4 — TA1 A5 — 2A16;
(s = 166Ag + 384 A9 — 1120A19 — 51241 — 62A19;
C6 = As;
C7 = 40(71436 A7 Agy — 640883 A7 Agy + 100862241 Azo) 4+ 12A15(3585035A14 + 14919259 45)
— 5(8092193A10 + 15970731 A11) A14 — (129780821 A0 + 269944167 A1) Ass;
(g = Ag;
Co = 1040(2256 A7 A5 + 143A3A91) — 264(162941 A1 + 315202411) A1z
+ 3A11(25887132A10 + 24385177 A11) + 2060360947 + 24896016 A%;
Clo = 25043 4+ 3441, — 41A9;
Ry = 531 A9 A, — 147245 A5 — 835241 Ag + 320A20 — 3216 Ag3 + 1488 Agy;
Ra = 15419 — 10Ag — 6 Ag;
R3 = 4800(6650951968 A14 A15 — 238213283042, — 9860550485 A%, ) 4 1600(4765089473 A1,
— 7838161089 A12) Agg + 640(15664652914 411 — 50944340271 A12) Arg
— 6(20392663986679A10 + 34357804389813A11 — 739275727012A12) Ay
+ 3(46944212550227 A1 + 83455057317969A1; — 22899810934956 A12) A1o;
Ry = 251A% + 25A15;
Ry = 6225042 + 8956 Ag — 46223 A9 — 5012941, + 14766 A15.

The invariant polynomials from the second group are responsible for the classification of the
configurations of invariant parabolas and lines. They are:

€1 = 342A3 Ay + A9(35A10 — 15Ag — 1649 4+ 97A 1 — 83A12) — 48A1(4A14 + 3A15)
+ 16(2A32 + Agg — 3A34) + 90A31;
&= — Aq;
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€3 = 12(49836514 A2 — 40804544 Ag Ag — 63384469 Ag Ao — 4515985 A% + 93824435 Ag Ay,
— 23552547 A19 A1 + 5159531242, + 202411827 A3 A19) — 76317631544 Aoy
— 16(30603408 Ag A2 + 10917387 A7 A4 + 1401186047 A15 — 75865539 A5 A1z
— 115398446 A5 A1s — 54568383 A5 Aa1) — 4(86656770AgA14 + 404823654 A6 A15
— 68396637 A5 A19 + 25391678 A5 Azg) — 6A12(154041735A5 + 47473233 A1
— 170661233 A11 + 202411827 A12);
&4 = 800(175A5A5 A7 — 336 A1 A3 Ag — 16500413 A14 — 9300413415 — 47001 Ag Agg + 39861 A7 Ags
— 315045 A2y — 10242A7 Aoy + 168792 A5 Agg) + 240(173478 Ag Ay + 128774 A10A 16
+ 151602411 A1 + 134102412 A16 + 8799 A4 Agr — 13410245 Agy) — 1879552(3Ag A1 — A7 Agg)
+ 75(50400 A Agz — 646151 A4 Asg);
&5 = 2000(802A13A14 + 315A6A23 — 210A6A4) + 320(28 A1 A3 A1y — 13757 AgArs — 11282412 A16
+ 3336 A7 A2 + 1128245 Ao7) + 80(16038A13A15 — 30398 A10A16 — 36154411 A1 + 46738 Ag Aoo
— 45142A7 Aoz — 16233945 Agg) + 151552(349A16 — A7A2) — 15A44(28392A27 — 313721 Agg);
€6 = 1536(16671538A7 A1y — 565580047, — 5655800411 A1 — 134975925 A A5 + 1423622047 A1)
+ 128(42330182Ag Ag + 279065017 Ag A1y — 857954 A3 A1o + 13831306249 A1z
— 633595086 A6 A14 — 35417298 A5 Agg) + 64(171565045A3 + 34392160345 A17)
— 32(1111806317Ag A1 + 256225409AF, + 874265715 A19A11 + 2536914399 A10A12
— 03684138345 A15) — 16A5(2168875001A19 + 1048355233 A91) + A4(26458433203 A19
— 4734012269 A2, );
&7 = — A4[3200A12(14657As — 1615148 A1 + 318175A 1) — 640(388968 A3 — 7748782473
— 592379 A9 A12) — 160(13079737Ag A1g — 27509045 Ag Ay1 — 63353923 A9 A11 — 16215395419 A1
— 36662125A7,) + 412143395249 A1) ;
€ = — Ay [512A9(1275434 A, + 2193137 A1 — 170333 A12) — 1280(30087 A3 + 42403643
+ 1052798 A19 A1 + 4855043, + 61603 AgA12) — 640(608587 Ag Ao + 248041 Ag Ay
+ 430261 A10 A1z + 525475 A11 A12) |;
€o = — A4[48(675908847As Ag + 1141726617 Ag Ao + 7216376855419 A12 — 4015621128 A5 A14
+ 391590945047 A15) — 12(16745223889 A3 + 599705173545 A11 — 26372062499 A19A1;
+ 2601951027 Ag A1z — 791651665047 A14 — 30105649725 A6 A5 + 20512413539 A5 A7
— 1497206278 A4 A19 — 479171412944 Ag1) + 2(220220676003 Ag A1 + 5868717510342,
+ 1468556271943, + 9716839839411 A1 — 219193688911 A5A 15 — 4467110471 A5A9)
+ 3A45(36033875127 A9 — 37652431103 A21)];
€10 = A4[48(568199091031 A3 Ag — 248186616391 Ag Ao + 314207594667 Ag A1y + 5804879973 Ag A1
— 3905825755777 A19A19 — 2095407390920 A6 A14 — 546799764750 A7 A5) + 12(6550908482493 A2
— 3402501855145 A3 A11 — 3448022811579 A19 A1 + 2284925158471 Ag A1 + 2482932379806 A7 A14
— 11017448610465A6 A15 + 5894909506479 A5 A7) — 2(131290745988327 Ag A 1o
— 17334476527245A%, — 11980168965A%; + 21428060568795A11 A1 — 62352140313275A5 A5
+ 3924064256285 A5 Ago) — 3(2258722903315A5A19 4+ 9533558573843 A4 Ao — 10218122423819A45A21)];
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§11 = 162863
€12 = 1288AF + 117A19 + 351411 — 352A12;
€13 = 6143 — 20A17 — 8A15 + 24A19 — 2845 + 1241;
€14 = 9854411 — 300545 — 3296 Ag + 13578 A1 — 991 A19;
§15 = 845 — 9Ay;
€16 = (525Ag — 4448 Ag + 10554 A1 — 1378 A11 + 8087 A1o);
€17 = 1000545 + 9856 Ag — 38348 A19 — 27404 A 1 + 8371 A19;
€18 = 2240(15452233775A2, + 742923092360 A14A15 — 1452630862004 + 10151798384 411 Ag
— 68919094926 A15A1g — 1466322030541 Agg + 7194838365 A12A20) + 16 A19(88266907919051 Ag
+ 12824946044853 A11 + 119819326860153A15) — 7A21(138073671324637 A1 + 258358507987439 A1,

— 32813284182036A15);

€19 = 429A49(629A10 + 1275411 — 900A15) 4+ 100(2145Ag A1y — 1595 A5 A17 — 2970 A5 A5 + 2886 A3 Asg
— 559A5A04);

€00 = 4A5(ATA2 — 468A 15 + 3478 A9 + 9A50) — 9189 A5 Agy + 12(—682A41 Ags + 25924, Agg + 395 Ass
+35439);

€91 = 24(675906 As0 — 672409 A30 + 6578 A41 + 110106 A42) — T3404A5(74A 15 + Asg) + 4(9991143
— 2048846 A3g) — 15133791 A5 Aoy
§oo = 84A19 — 68410 — 141 A11;

23 = 5As — 3Ay;
Eoy = 625A2(12A2A3 — 775A1A6) — 62(13500/4% + 275A8 — 276A9)A9 -+ 10A3(2561A17 + 3240A48
+ 2550 419);

€95 = — (46A18 + 537 A19 + 134 A90);

Eo6 = 41A1 A5 + 16A14 — 18A15;

§or = Ay

€og = 64(72137434664 A2 4 3322490880 A3 — 58216412276 A%, — 217656099219 A9 A1 — 63098236389 A%,
— 250756327503 A19A12 — 71858710389 A11 A12 + 96 A9(449920640 A1 + 1009660963 A12)
+ 6A45(21795888048 Ag — 6602023142241 — 21118997424 A1 + 2573485725A15))
— 384(62739943233 Ag A14 — 27065693406 A7 A14 + 7592410800 A6 A15 — 10442342780 A7 A1)
+ A4(2998959134256 A7 + 4635359414448 A1g + 1132776129074 A19 — 1187818900002 Ao
— 5542617623395 A51) + 32A3(19078937382 A5 + 81853956367 A1 );

€99 = 497213324620 A3 — 1001736600522A42, — 870653569536 A9 A1, + 337754949134 A%,
+ Ag(2170429037822A 19 — 1858453397512 A9 + 2112595332132A4,1 — 304022217484A4,5)
— 987799827976 Ag A1 + 949933240214 A11 A1g + A10(—648979472052A11 + 956487534504 A12)
— 4(125652578829 A6 A4 + 240347919318 A7 A1y — 775425835368 A A5 + 405563103412A7 A15)
— A4(197626785161 Az + 1540932760870 A21) + A5(1910970964424 A7 + 2668708281714 A5
+ 182967974851 A19 + 280452031438 Ao + 2136843181298 Ay ):

&30 = 3512410 — 1695Ag — 544 A9 + 4576 A1 — 33294 5.
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2.2 Preliminary results involving the use of polynomial invariants

A few more definitions and results which play an important role in the proof of the part (B) of the
Main Theorem are needed. We do not prove these results here but we indicate where they can be
found.

Consider the differential operator £ = x - Ly — y - L constructed in [2] and acting on Ra, z, y],

where
0 0 1 0 0 0 1 0
L1 =2apg—— 2b b —byl =——
1 =2a00 Dao +a 105, 0 + 2a018 + 2600 77— b1 + b105— Do 2 01 oby’
0 0 1 8 0 0 1 0
Lo =2ap0=—— 2 —big=——-.
2 @00 8@01 + @0 Ba 02 + 2a108 ail + bOO 8[) + bOI 8b02 + 2 10 8b11

Using this operator and the affine invariant pg = Res, (pg(d,x,y), qg(d,x,y))/y4 we construct the
following polynomials

- 1 .4 .
Ni(a,lf,y) = H‘C()(#U% = 11"'747

where £ (o) = L(LU™V (10)) and L) (o) = pao.

These polynomials are in fact comitants of systems (2) with respect to the group GL(2,R) (see
[2]). Their geometrical meaning is revealed in Lemma 5.2 of [1]. Using these invariant polynomials
we construct the invariant polynomials D and R which are responsible for the existence of multiple
finite singularity of a quadratic system:

2
D = [3((u3, 13) @), 12)® — (6paopea — By + 13, pa) D] /48, R =33 — 8puops,

Next we construct the following 7-comitants (for the definition of T-comitants see [20]) which are
responsible for the existence of invariant straight lines of systems (2):

Bs(a,z,y) = (Cy, D )(1) = Jacob(Cg,D)
Bs(a,x,y) = (Bs, Bs)'” — 6B5(Cy, D)),
Bi(a) = Res, (C’g, )/y =-27937% (32733)(4)-

Lemma 1 (see [19]). For the existence of invariant straight lines in one (respectively 2; 3 distinct)
directions in the affine plane it is necessary that By = 0 (respectively By = 0; B3 =0).

To detect the parallel invariant lines we need the following invariant polynomials:

N(a,z,y) = D3 + Ty — 2Ty = 9N,
f(a) = 2A5 — A4 (= Discriminant (N (a, z,y))/1296).

Lemma 2 (see [19]). A necessary condition for the existence of one couple (respectively two couples)
of parallel invariant straight lines of a system (2) corresponding to a € R'? is the condition 6(a) = 0
(respectively N(a,z,y) =0).

Now we introduce some important G L-comitant in the study of the invariant conics. Considering
Cy(a,x,y) = ypa(a, x,y) — xq2(a, z,y) as a cubic binary form of = and y we calculate

n(a) = DiSCTim[CZ/$3,§], M (a,x,y) = Hessian[Cy],
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where £ = y/x or £ = x/y. We point out (see [22]) that the invariant polynomials Co, n and M are
responsible for the number of infinite singularities and their kind (real or complex).

In this paper we consider only the case n # 0, i.e. 7 > 0 and n < 0. In the first case by [22] a
quadratic system possesses at infinity three real distinct singularities whereas in the second case it
possesses one real and two complex singularities.

In [23] the classification of the class QSP of quadratic systems possessing at least one invariant
parabola is performed. More exactly in this paper necessary and sufficient conditions are determined
for a quadratic system to belong to QSP.

We extract from [23] only the information related to the case n # 0 and for this we need some
notations.

Definition 3. By the direction of an invariant parabola of a quadratic system (S) we mean the
direction of its axis of symmetry which intersects the invariant line Z = 0 at an infinite singular

point of (S).

In order to distinguish the invariant parabolas that a quadratic system could have we use the
following notations:

e U for a simple invariant parabola;

e U for two simple invariant parabolas in the same direction (they could intersect);
e UC for two simple invariant parabolas in different directions;

e U? for one double invariant parabola;

e UC for three simple invariant parabolas: two in one direction and one in another direction.

The proof of the next three propositions could be found in [23].

Proposition 2. Assume that for a non-degenerate arbitrary quadratic system the conditions n > 0,
x1 = 0 and {1 # 0 are satisfied. Then this system could possess invariant parabolas only in one
direction. More ezactly it could only possess one of the following sets of invariant parabolas: U, U
and U?. Moreover this system has one of the above sets of parabolas if and only if xo = 0 and one
of the following sets of conditions are satisfied, correspondingly:

(A1) G@#0,(G#0,0#0, R #0 = U;
(A2) @#0,3#0,4=0,R2#0,#0 = U;
(A3) G #0,G#0,4=0,R#0,=0 = U?%
(A1) #0,3#0,4=0,R=0,G#0 = U;
(As) G#0,3=0,4#0,R1#0 = U;
(Ag) #0,3=0,4=0,Ra#0¢#A0 = U;
(A7) (#0,3=0,4=0,Rs#0,G=0 = U?%
(Ag) (2#0,33=0,0=0,R2=0,G#0 =U;
(Ag) (=0, (¢#0, R1=0,R2#0 = U.
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Moreover in the case of the existence of an invariant parabola a system with n > 0 and (1 # 0
could be brought via an affine transformation and time rescaling to the following canonical form:
. 1 .
#=mtne—o(l+gy+ga’+ay, §=2mz+2ny+(g— Doy +2y° (5)

possessing the invariant parabola ®(x,y) = 2?2 —y=0.

Proposition 3. Assume that for a non-degenerate arbitrary quadratic system the conditions n > 0
and x1 = (1 = 0 are satisfied. Then this system could possess invariant parabolas in one or two
directions. More exactly it could only possess one of the following sets of invariant parabolas: U, U,
U2, UC and UC. Moreover this system has one of the above sets of invariant parabolas if and only
if x3 =0 and one of the following sets of conditions are satisfied, correspondingly:

(Bl) X47é07 §77éo7 R37é0 = U;
(B2) Xx4#0,(=0,Rs#0,G#0 =U;
(Bs) x4#0,(=0Rs#0, =0 = U

(34) X4750, C7:0, R4=0 = U,’
(B5s) x4=0,¢G#0,G0#0 = UC;
(Be) x4=0,G#0,0=0 Go#0 =U;
(37) X4:0, C5:0, Cﬁ#o = UC.

Moreover in the case of the existence of an invariant parabola a system with n > 0 and (1 = 0
could be brought via an affine transformation and time rescaling to the systems (5) with g = 2.

Proposition 4. Assume that for a non-degenerate arbitrary quadratic system the conditions n < 0,
x1 = 0 and (; # 0 are satisfied. Then this system could possess invariant parabolas only in one
(real) direction. More exactly it could only possess one of the following sets of invariant parabolas:
U, U and U?. Moreover this system has one of the above sets of invariant parabolas if and only if
x2 = 0 and one of the following sets of conditions are satisfied, correspondingly:

(51) C4750, R1 7&0 = U,’
(E2) G=0,R7#0,G6#0 = U;
(53) C4 =0, R~ 7& 0, C5 =0 = UZ;
(1) G=0,R7=0,#0 = U.
Moreover in the case of the existence of an invariant parabola a system with n < 0 could be brought
via an affine transformation and time rescaling to the following canonical form:

F=m+ 2n—Da/2+ gz* —gy/2 —zy, §=2mzx—z°+ 2ny + gry — 2%, (6)

with Cy = z(x? + y?), possessing the invariant parabola ®(x,y) = 2> —y = 0.

3 The proof of the Main Theorem

The statement (A) of Main Theorem follows from Lemma 2.4 of [23]. The statement (C') follows
directly from the form of the conditions given in Diagrams 1, 2 and 3. These conditions could be
evaluated for any point a € R'? corresponding to a quadratic system with the condition 1 # 0.

In order to prove the statement (B) of Main Theorem we have to examine the sets of conditions
provided by each one of Propositions 2, 3 and 4.
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3.1 Systems in QSP, ., with the condition (; # 0

In what follows we examine the configurations of the systems in QSP, . in each one of the cases
provided by Proposition 2. According to this proposition we consider the canonical form (5), i.e.
the systems

1
p=mtnz—(1+gy+ga’ +ay, §=2mz+2ny+(g— oy +2y” (7)

possessing the invariant parabola ®(z,y) = 22 —y = 0.

3.1.1 The statement (A;)

For systems (7) we calculate

(1=2(9—2)3+9), G@=49(1+g), ¢=38(1+29)
C1=(9—2)(3+9)(1 +7g +15¢> + 9g> — 4m + 2n + 6gn) /16,
Ri1=—159(1+9)(g —2)(3+ g)(1 + 7g + 15¢° + 99> — 4m + 2n + 6gn) /2, (8)
By =m(g + 8m + 4n)(gn — 2m — n)(1 + 29 + g*> — 4m + 2n + 2gn)
X (g +2g° 4 g> + 4m + 2n + 2gn) /4.

3.1.1.1 The case By #0. The according to Lemma 1 systems (7) could not possess any invariant
line.
Let us examine the finite singularities of these systems. Following [1, Proposition 5.1] we calculate
the invariant polynomial D = 48F2F,, where
Fi=—4m* +2(g + m(g* - 2n) — (g9 +1)*n*; o)
Fo =108m? + 2(g — 1)m(1 — 2g + ¢* — 18n) +n*(16n — 1 + 2g — ¢°).

So we discuss these two subcases: D # 0 and D = 0.

3.1.1.1.1 The subcase D # 0. We determine that systems (7) possess four finite singularities
M;(x,y;) (i =1,2,3,4) with the coordinates

_72m+n+gn _ 2m B 7 1/3 2/3
Ty = g(1+g) 7y1_1+g7 x2_621/3[y+(1 g)Z + 2 ]7
V2 =353 [3(Y +4n)2Z + Y2213 —2(g — 1)V 23 — 2(g — 1) 23 4 25/3,

1 ) .
Ty =i [~ (1+iV3)Y+2(1-g)2'/% - (1-iv3)2¥3],

1 . :
Ys =~ oz [~ 6(Y+4n)Z + (1 —V3)Y2 23 —2(1 +iV3) (g — 1)y 2?3 (10)
—2(1—iV3)(g — )23 + (1 +iv3) 2%/3];

1 _ .
= [(F1+VE)Y +2(1 - 9) 23— (1+iv3)2%3],
e [—6(Y+4n)Z + (1 +iV3)V2 213 — 2(1 - iV3) (g — )Y 2*/3

—2(1 +iV3)(g — )23 + (1 - iv/3)2%/3],
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where
_ 2 3 _ 2
Z=1-3g+3¢°>—g>—108m — 18n + 18gn + 6V3\/Fo, Y =(1—g)> —12n.

Calculations yield:
_
g*(1+g)?

and therefore we deduce that three singularities My, M3 and My of systems (7) are located on the

O(x2,2) = P(x3,y3) = P(w4,94) =0, P(z1,91) =

invariant parabola. Moreover M is located outside the parabola and could belong to it if and only
if the condition F; = 0 holds, where F; is given in (9). However we have D = 48]—"12}"2 # 0 and
hence on the parabola we always have three distinct singularities.

On the other hand according to [1, Proposition 5.1] if D > 0 systems (7) possess two real and
two complex finite singularities. For D < 0 we could have either four real or four complex finite
singularities. However since M is a real singular point for these systems we conclude that in the
case D < 0 we have four real finite distinct singularities.

Thus since the real singularity M is outside the invariant parabola and all three finite singularities
on the parabola (real or complex) are distinct and furthermore we could not have any invariant line
we arrive at the configuration Config. P.1if D < 0 and Config. P.2if D > 0.

3.1.1.1.2 The subcase D = (0. This implies F;F2 = 0 and for systems (7) we calculate:
§1=-60F1 = F1=0 & & =0.
So we examine two possibilities: & # 0 and & = 0.

1: The possibility & # 0. Then F; # 0 and therefore the condition D = 0 implies F» = 0.

We observe that the polynomial F» is quadratic with respect to the parameter m and we calculate
Discrim [Fo, m] = 4(1 — 29 + g — 12n)3.

Therefore since the parameters m, n and g of systems (7) must be real we conclude that the condition
1 —2g+ ¢g> — 12n > 0 has to be fulfilled. So setting a new parameter v: 1 —2g + ¢g?> — 12n = v?> >0
we get n = [(g — 1)> — v?] /12 and then we calculate

]—"2:é[Qle—(l—g—Fv)Q(g—l-f—Qv)} [216m — (1~ g —v)*(g—1-2v)] =0

and due to the change v — —v we could force the first factor to vanish. Then we obtain
m=(1-g+v)%(g—1+2v)/216

and considering the expression for the parameters m and n we arrive at the 2-parameter family of

systems
o (1—g+v)2(g—1+4+20 —1)2 —? 1
oo L=g+v)(g )+(9 ) 2= 20+ g)y + g0? + 2y,
216 12 2 (11)
. 1—g+v)2(g—1+20 —1)2 —p?
y:( g+v)°(g ) (g — )y + 202,

108
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possessing the invariant parabola ®(z,y) = 22 — y = 0. We observe that for the above systems we
have the following conditions on the parameters g and v:

CC3GR1 #0 & g(g—2)(1+9)B+9)(1+29)(2+4g — v)(4+8g +v) # 0;
8#0 e (9-2)B3+9)(g—1-v)(2+g—v)(2+4g—v)(4+8g+v)?

X (4—2g —2¢* — 4v — 8gv + v?) # 0; (12)
Bi#0 & (9—1—-v)24+g—v)2+49—v)(29—2+v)(1 +2g+v)(4+ 29 +v)

X (g—14+2v)(2+ g+ 2v) #0.

We determine that systems (14) possess three finite singularities M;(x;,y;) (i = 1,2,3) with the

coordinates
1l—g+v (1—g+v)? 1—g—2v (1—g—2v)2
€T = - = - €T = - = -
1 6 , Y1 36 ) 2 6 , Y2 36 ) (13)
e (1 —g+v)(5g°> —4 — g+ 4v + 5gv — v?) C(l—g+v)*(g—1+2v)
’ 54g(1+g) e 108(1 + g) '

We calculate

(g—1—-0v)2%(2+g—v)%(4— 29 —2¢% — 4v — 8gv + v?)
2916¢2%(1 + g)?

O(z1,y1) = P(z2,y2) =0, P(z3,y3) =

and we conclude that the singular points M; and M, are located on the invariant parabola.
On the other hand considering the conditions (12) we obtain that M3 will be located on ®(x,y) = 0
if and only if
a=4-29(1+g)—4v—8gv+v*>=0.
However considering (12) we conclude that o # 0 (due to & # 0) and hence the singularity Ms is
not located on the invariant parabola in the considered case.

We claim that M is a multiple singularity of systems (11). Indeed, applying the corresponding
translation, we could place My at the origin of coordinates and we arrive at the systems

(9g—v—1) (5g*> +bgv — g — v + 4v — 4) (29 +v +1)(4g — v + 2)?

s o 2
T 54(g + 1) v 549(g + 1) y+get+ay,
. _glg+2v—1)(g —v—1) 2 g—v—1, 4 2
- —1 224+ 7T 6P (v —2
54(g + 1) v+ (9 -2y +2y +54g(g+1)[ 9" - (v=2)

—g(v—2)(3v —2) +2¢%(1 + 31})] v,

where My (0,0) is a singularity of the above systems corresponding to the singularity Mj.

Considering [1], we calculate the following invariant polynomials: g = pus = 0 and

uzzf3714v(g*v71)(g*v+2)[(2g+v*2)w+6y] [9(g —v—1)z+ (2 +4g — v)y],

and by [1, Lemma 5.2, statement (ii)] the point My is of multiplicity at least 2. We observe that due
to the condition &; # 0 we have pe = 0 if and only if v = 0. In this case we calculate

1
e =0, 1 ==5-(9=1)[g(g—1)(4+5g)x +2(13g + 169° — 2)y] # 0,
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due to & # 0. According to [1, Lemma 5.2, statement (ii)] we have a double point if v # 0 and a
triple one if v = 0.

On the other hand for systems (11) we have

1

_ 1 — )22 N2,2 2

&2

and due to the conditions (12) we conclude that the condition v = 0 is equivalent to & = 0.
Thus for systems (11) we have the configuration Config. P.3 if & # 0 and Config. P.4 if £ = 0.

2: The possibility & = 0. This implies F; = 0 and we observe that the polynomial F; is quadratic
with respect to the parameter m and we calculate

Discrim [Fy,m] = 4¢*(1 + g)*(¢* — 4n).

Since g(g + 1) # 0 (due to (o # 0) we must have g?> — 4n > 0. So we set a new parameter u as
follows: g% —4n = u? > 0 and we get n = (9> — u?)/4. Then calculation yields

Fi= e [8m— (14 g)(g +u)?] [$m — (1 + 9)(g —w)?] =0

and due to the change u — —u we could force the second factor to vanish. In this case we obtain

m=(1+4g)(g—u)*/8

and considering the expression for the parameters m and n we arrive at the 2-parameter family of

systems
1+g g—U2 92—U2 1
_{ )é ) +7 :L‘—§(1+g)y+g:c2+xy, "
14
o (+glg—uw)? | ¢ —u?
= i ey 5yt (9 Dy +2°

possessing the invariant parabola ®(z,y) = 22 — y = 0. We observe that for the above systems we
have the following condition on the parameters g and u:

(16GBGURL#0 < (g—2)g(1+ )3+ g)(1+29)(1 + 29 +u)(1 + 5g + 5g* — u — 2gu) # 0; 15)
B #0 & gl4+9)(g—uw)(14+g—u)(1+29—u)(—1+u)(1+u)#O0.

We determine that systems (14) possess three finite singularities M;(x;,y;) (i = 1,2,3) with the

coordinates
U — u— g)? 1
T = 97 ylz( 9) ; wmeg=-(1-ut/2Z1),
1 2 4 4 (16)
Y23 = g[l — 29— 2¢° + 2gu+ u* F (u— 1)\/Z1}, Zy = —4¢* + 4g(—1 4+ u) + (1 + u)%

We calculate
Q(x1,y1) = ®(22,12) = P(23,3) =0

and therefore all three singularities are located on the invariant parabola.
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We point out that M; is a multiple singularity of systems (14). Indeed, applying the corresponding
translation, we could place M; at the origin of coordinates and we arrive at the systems

_ 1 1 ,
& == 5909 —wzr+ 5(u—29 -1y +ga” +ay,

1 1

g =59(9 —w’z + 520 —u+1)(g - Wy + (9 — Day + 27,

where M (0,0) is a singularity of the above systems corresponding to the singularity Mj.

Considering [1], we calculate the following invariant polynomials: pg = pus = 0 and

p2 = %9(9 +1)(g—u)g —u+1D[glg — w3z’ + (29 — 1 + —w)ay + 2°] £0,

due to the conditions (15). By [1, Lemma 5.2, statement (ii)] the point Mj is of multiplicity exactly 2.

On the other hand it is clear that the singularities My and M3 could be complex (respectively
real; coinciding) if Z; < 0 (respectively Z; > 0; Z; = 0). We observe that for systems (14) we have:

&=g*1+9)%g—w?(1+g-—u?’2

and due to the conditions (15) we conclude that the sign of Z; is governed by the invariant polynomial
&5. So we discuss three cases: £ < 0, & > 0 and & = 0.

1.1: The case & < 0. This implies Z; < 0 and then systems (14) possess only one real singular
point M; (which is double) and evidently we get the configuration Config. P.5.

1.2: The case & > 0. Then Z; > 0 and this implies the existence of three real singularities and we
have to determine the position of the double point with respect to the simple ones. So we calculate

(r3—x1)(xa —21) = (9—u)(l+g—u)/2 =a1/2, sign ((:L‘g — 1) (2o — xl)) =sign(aq), (17)

where a1 # 0 due to By # 0. This means that the singularity M; could not coalesce with one of the
singularities My or Mj.

On the other hand for systems (14) calculations yield:

27249129

> 9*(1+ 9)*aiZ.

&3

So due to the conditions (15) we deduce that sign (§3) = sign (a1 21).

Therefore in the case &3 < 0 the double singular point M7 is located on the parabola between M,
and M3 and we arrive at the configuration Config. P.6.

If £&3 > 0 we evidently get the configuration Config. P.7.

1.8: The case & = 0. Then Z; = 0 which implies the coalescence of the singularities Ms and
Ms. Therefore systems (14) possess two double singularities located on the invariant parabola. So
we obtain the configuration Config. P.8.

It remains to mention that the case u = 0 (i.e. when the discriminant of F; vanishes) is included
in the previous examination because the condition u # 0 was not necessary. So in this case we obtain
the same configurations for the provided conditions, respectively.
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3.1.1.2 The case B; =0. Considering (8) we observe that the condition By = 0 splits into five
conditions at the coefficient level. However due to an affine transformation we could decrease this
number. More exactly we have the following lemma.

Lemma 3. The condition (g + 8m + 4n)(1 + 2g + g> — 4m + 2n + 2gn) = 0 for systems (7) could
be transferred to the condition m(gn — 2m —n) = 0 via an affine transformation.

Proof: Applying to systems (7) the transformation
1 =—x+1/2, y1=—x+y+1/4,

we obtain the systems
) 1 1 g 2
B =— g(g +8m + 4n) + Z(l +2g +4n)z; + S~ (1+g)x1 + 7191,
. 1 1
g1 == 7(9+8m+An)zs + S(1+ 29+ dn)ys — (9 + 2wy + 241

So setting the new parameters

1 1
m1:—§(9+8m+4n), nlzz(1+29+4n), g=—1+g) =

(18)
1 1
m= —g(gl +8my +4ny), n= 1(1 +291 +4n1) g=—(1+q1),

we obtain the family of systems

L + 0 2 . 2

i1 =my +nry — y1 + 9171 +1y1, Y =2maxn + 2myn + (g1 — Dy + 27
which coincide with family (7) (up to notations). Then considering (18) calculations yield:

g+ 8m+4n = —8my, 142g+ g> —4m+ 2n+ 2gn = 2(2my +ny — gin1)

and this completes the proof of the lemma. B

Thus by Lemma 3 in order to examine the condition B; = 0 it is sufficient to consider the condition
m(gn — 2m —n)(g + 29> + ¢> + 4m + 2n + 2gn) = 0.

In order to determine the invariant conditions which distinguish the three possibilities provided
by the above equality, for systems (7) we calculate:

&4 =21 -255%m(g + 8m + 4n)(y,

- _ 5 _ _ 2 (19)
& =—14-5"(gn —2m —n)(1 + 29 + g° — 4m + 2n + 2gn) (4.

Hence due to (4 # 0 the condition £, = 0 is equivalent to m(g + 8m + 4n) = 0 (this implies By = 0),
whereas the condition &5 = 0 is equivalent to (gn — 2m —n)(1 +2g + ¢g> — 4m + 2n + 2gn = 0) (this
also implies By = 0).
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3.1.1.2.1 The subcase {4 # 0. Then m(g + 8m + 4n) # 0 and we consider two possibilities:
557&0and§5:0.

1: The possibility &5 # 0. In this case we have (gn — 2m — n)(1 + 2g + g% — 4m + 2n + 2gn) # 0
and therefore the condition By = 0 implies g + 2¢g% + ¢ + 4m + 2n + 2gn = 0. This yields m =
—(1+9)(g + g +2n)/4 and we get the family of systems

1
:L":—Z(l+g—2$)(9+g2+2n—|—2gm—|—2y),

. 1+9)(g+9°+2n
y:—( g)(929 )x+2ny+(g—1)xy+2y2

(20)

possessing the invariant line z = (g + 1)/2. For these systems we calculate

By = —81¢*(1 + ¢)%(g + ¢° + 2n)(1 + 49 + 2¢* + 4n)(1 + 2g + ¢° + 4n)?z*,
&1 =13125g(1+ g)(g — 2)(3 + g)(1+ 29) (9 + ¢°* + 2n) (14 4g + 2¢° + 4n)(1+ 69 + 5g° + 4n),
& = — (21875/16) (g — 2)g(1 + 9)(3 + ¢)(1 + 29)(1 + 29 + g + 4n)?*(1 4 6g + 5¢° + 4n),

and we observe that the condition £4&5 # 0 implies By # 0. Then by Lemma 1 besides the invariant
line x = (g + 1)/2 systems (20) could not possess invariant lines in other directions. However they
could have a parallel invariant line and by Lemma 2 for this it is necessary 8 = 0 and this condition
implies (g —1)(g+2) = 0. A straightforward calculation shows us that none of the conditions g = 1
or g = —2 could imply the appearance of an additional parallel invariant line.

Next we determine that systems (20) possess four finite singularities M;(z;,y;) (i = 1,2, 3,4) with
the coordinates

1+ 14 g)2 1+ + g%+ 2n 1
xlz—g,zﬂ:@; wo=— Y = ITIL T = (— 9+ V),
2 4 2 2 2 (21)
1
y3,4:§(—9—2n¢9\/22)7 Zy = —(29+ ¢* + 4n).

We determine that the singularities M7, M3 and M, are located on the invariant parabola. At
the same time M; and Mj are located on the invariant line © = (g + 1)/2 and M; is the point of
intersection of this invariant line with the parabola.

In order to determine the reciprocal position of the singularities M; and Ms on the vertical invariant
line we calculate
1+49+3¢>+4n _  ao

Yo — Y = — 1 = T = sign (y2 — y1) = —sign (az). (22)

Since the singularities My and Ms are either complex or real or coinciding depending on the value
of Z we need to distinguish these conditions using affine invariant polynomials. For systems (20)
we calculate:

G =15(9— DB +9)(1+20)(1+ 69+ 56 + 4n) = (9 — 23 +9)(1 +20)6,

3 4 4092 2 (23)
D=- 19 (1 +g) 52042Z2? CQ = 49(1 +g)?

and due to (2(4 # 0 we conclude that D = 0 is equivalent to asZs = 0. Moreover if D # 0 then
sign (D) = —sign (Z3). So we discuss three cases: D < 0, D >0 and D = 0.
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1.1: The case D < 0. This implies Zs > 0 and systems (20) possess four real singularities. Clearly
it is necessary to know the position of the real singularities M3 4 with respect to M; all located on
the invariant parabola. We calculate

B2
4 )
sign ((z3 — z1)(z4 — 1)) = sign (B2), sign ((z1 — a3) + (@1 — 24)) = —sign (1 + 2g).

(z3 — z1)(2a — 1) = (x3 — 21) + (x4 — 1) = —(1 + 29),

We observe that 82 # 0 due to the condition {4 # 0 and moreover as # 0 due to D # 0.

On the other hand we need the invariant polynomials which govern the signs of 52 and as. So for
systems (20) we calculate:

€7 = 1174627500 g (1 + 9)*(1 + 29)? 3527, & = 618225009%(1 + g)*(1 + 29)? a5 Zo

and due to the condition D < 0 which implies g(1+ ¢)(1+2g)asB2 # 0 and Z; > 0 (this also implies
&7€s # 0) we have the next relations:

sign (82) = sign (§7),  sign (a2) = sign (&s).

Thus considering the above relations in the case D < 0 we detect the following configurations:

§7<0,8%<0 = (r3—x1)(ra—21)<0,y2>11 = Config. P.9,

£1<0,6>0 = (z3—x1)(ra—21) <0,y2<y1 = Config. P.10,
§&7>0,8<0 = (r3—x1)(ra—2x1)>0,y2>1y1 = Config. P.11,
& >0,6>0 = (z3—x1)(xa—2x1) >0, y2<y1 = Config. P.12.

1.2: The case D > 0. Then Zy < 0 and we claim that this condition implies s > 0. Indeed
supposing the contrary (i.e. aa < 0) we must have Z3 + as < 0. However calculations yield:

Zo+oo=—(20+¢*+4n)+ (1 +4g9+3¢> +4n) = (1+g)® + ¢> > 0. (24)

The contradiction we obtained proves our claim.

Therefore since My and M3 are complex we arrive at the configuration Config. P.135.

1.8: The case D = 0. Considering (23) we deduce that due to (2(4 # 0 the condition D = 0
implies asZs = 0.

On the other hand for systems (20) we calculate:

& =0"1+9)(g—2) B+ 9)(1+29)azfa, (3 =8(1+29).

So due to (2¢3¢4 # 0 (i.e. g(1+9)(g—2)(3+ g)(1+2g)B2 # 0) we obtain that the condition ag =0
is equivalent to & = 0. So we discuss two subcases: & # 0 and & = 0.

1.3.1: The subcase & # 0. In this case the condition D = 0 implies Zo = 0. Then M3 and My
coalesce producing a double point located on the invariant parabola. Considering (24) we deduce
that the condition Zs = 0 implies ao > 0.

Thus it is not too difficult to determine that in this case we arrive at the configuration Config. P.14.
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1.8.2: The subcase & = 0. This implies ag = 0 and as we have mentioned earlier (see formulas
(22)) in this case we get yo = y; and hence the intersection point M; of the invariant line z = (g+1)/2
with the parabola becomes a double singularity of systems (20). Moreover the position of the real
singularities M3 and My with respect to M; depends on the sign of 3s.

So the condition ag = 0 implies n = —(1 + ¢)(1 + 3¢g)/4 and then we obtain
P2 =29(1+g), G =49(1+g) = sign(B2) = sign (G2)-

Thus in the case as = 0 (i.e. £ = 0) we obtain the following two configurations:

(<0 = (rz—z1)(xa—21) <0,y2=9y1 = Config. P.15;
(>0 = (r3—x1)(xa—2x1)>0,y2=1y1 = Config. P.16.
2: The possibility {5 = 0. Considering (19) and the condition {4 # 0 we obtain that the condition
&5 = 0 implies
(gn —2m —n)(1 +2g + ¢*> — 4m + 2n + 2gn) = 0.

On the other hand according to Lemma 3 it is sufficient to examine the condition given by the

first factor because the condition defined by the second factor could be brought to the first one via
an affine transformation.

So in what follows we assume that for systems (7) the condition gn — 2m — n = 0 holds. Then
m = n(g — 1)/2 and we arrive at the family of systems

. n(g —1 1 .
x:¥+nx—§(l+g)y+gm2+xy, = m+y)(gx —x+2y) (25)

which possess the invariant line y = —n and the invariant parabola ®(z,y) = 22 — y = 0. For these
systems we calculate

By = — 81g%(1 + 4n) [(1 + g)* + 4n] *y*/2,

€4 =26250(g — 1)g(1 + 9)(g — 2)(3 + g)n(1 + 4n)(1 + 6g + 9g° + 4n) (26)

and we consider two cases: By # 0 and By = 0.

2.1: The case By # 0. In this case by Lemma 1 systems (25) could not possess invariant lines in

other directions than the invariant line y = —n. But by Lemma 2 these systems could possess an
invariant line parallel to the existent one if § = —8(g — 1)(2+¢) = 0. So due to £ # 0 the condition
implies ¢ = —2. However in this case systems (25) do not have any invariant line parallel to y = —n.

Next we determine that systems (25) possess the finite singularities M;(z;,y;) (1 = 1,2,3,4) with
the coordinates

1- 1—g)2
z1=V-n, g1 = v = —Von, yo = —ny a3 = 2g,y3=( 4g);
2n ~n(g—1)

(27)

Ty = — 9
T T Ty

We observe that singular points M7, My and Mj are located on the invariant parabola ®(z,y) =
22 —y = 0. Moreover M; and My are the points of intersection of the invariant line y = —n and

they are either complex for n > 0 or real for n < 0 or they coincide if n = 0.
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On the other hand for systems (25) calculations yield:
D = 48¢"n3(1 — ¢ 4 4n)*(1 — 2g + ¢° + 4n)? = 48¢"'n3 o3 32
and it is clear that in the case D # 0 we have sign (D) = sign (n).
To determine the position of the singular point M, we calculate

nas
O(r4,y4) = +g2

and since n # 0 (due to {4 # 0) we deduce that the singular point My lies on the invariant parabola
if and only if ag = 0.

To examine the configurations of systems we consider three subcases: D < 0, D > 0 and D = 0.

2.1.1: The subcase D < 0. Then n < 0 and the singular point M; and Ms are real and in order
to determine the position of the singularity M3 with respect to the real singularities My and My we
calculate

(23 —z1)(z3 —22) = (1 —g)? +4n = F3, (x3—x1) + (3 —22) =1 — g;
sign ((z3 — x1)(z3 — x2)) = sign (83), sign ((w3 — x1) + (z3 — 2)) =sign (1 — g).

We observe that asf3 # 0 due to D # 0 and we have to determine invariant polynomials which
are responsible for the signs of 83 and g — 1. Calculations yield:

€9 =5589813240 g5(1 + ¢)2(1 + 29 + ¢* + 4n)?Bs,

28
€10 =24814861965 (g — 1)g*(1 + 9)*(1 + 2g + g* + 4n)*(1 + 6g + 9g° + 4n)? /2, (28)

and taking into account the condition {4By # 0 and (26) we deduce that sign (83) = sign (§9) and
sign (g — 1) = sign (&10)-
Thus considering the above relations in the case D < 0 we arrive at the following configurations:
& <0 = (r3—x1)(r3 —22) <0 = Config. P.17,
9 >0,60<0 = (z3—x1)>0,(z3—22) >0 = Config.P.18;
€ >0,80>0 = (r3—x1)<0,(zg—122) <0 = Config.P.19.

2.1.2: The subcase D > 0. Then n > 0 and the singular points M; and My are complex. So
due to the condition ag # 0 we arrive at the configuration Config. P.20.

2.1.83: The subcase D = 0. This implies nas B3 = 0 and we have to distinguish these three
cases. From (28) we observe that due to ,B2 # 0 the condition & = 0 is equivalent to 53 = 0.

On the other hand for systems (25) we have
Gs = gn(l +2g + g° + 4n)

and due to By # 0 the condition (s = 0 is equivalent to n = 0. So we discuss the above mentioned
possibilities.

2.1.3.1: The possibility €9 # 0. Then P3 # 0 and the condition D = 0 implies nasz = 0. So
we examine two cases: (g # 0 and (g = 0.
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2.1.8.1.1: The case (g # 0. Then n # 0 and this implies a3 = 0 and we obtain n =

(g% — 1)/4. Considering (27) we observe that in this case the singular point My coalesces with M3

producing a double singular point on the invariant parabola. So we obtain that the finite singularities
of systems (25) have the following coordinates:

1—g2

xl:T’ ylz

l—g
7 gy = — — .
4 ) 2 2 y Y2 )

3 4 5 v Y3 4 1
We note that in this case 3 = 2¢g(g — 1) and it is clear that we need to determine in invariant way
the signs of the expressions 1 —¢? and g(g—1). So for systems (25) with n = (g% — 1)/4 we calculate:

&= (1-g*)%g", & =44718505920(g — 1)g°(1 + g)*

and we observe that sign (&) = sign (1 — ¢g?) and sign (&) = sign (g(g — 1)).
Thus in the case a3 = 0 which implies to D = 0 (then we have a double real singularity on the
invariant parabola) we obtain the following configurations:
& <0 = M; and My are complex = Config. P.21;
§>0,8 <0 = (r3—x1)(x3—22) <0 = Config. P.22;
§>0,8% >0 = (x3—x1)>0,(x3—22) >0 = Config. P.23.

2.1.3.1.2: The case (g = 0. This implies n = 0 and the three finite singular points M,
My and My coalesce and we get the triple singular point (0,0) located on the invariant parabola
which is also the point of tangency of the line y = 0 with the parabola. We observe that the singular
point M3((1—g)/2,(1—g)*/4) coalesces with the triple point if and only if g = 1. However we have
g— 170 due to & # 0.
Thus considering the relation sign (¢ — 1) = sign (£19) we obtain the configuration Config. P.24 if
&10 < 0 and Config. P.25 if &9 > 0.

2.1.8.2: The possibility £ = 0. This implies #3 = 0 and hence we get n = —(g — 1)2/4. We
observe that in this case considering (27) we obtain

1 (9 —1)° 1 (9 —1)
= — —12 = = —_ _12 — .
o) 2 (g )7y1 4 ;X2 2 (g )73/2 4 3
R St S € SO e S C ek
2 1 2(1+g)’ A1+g)

We observe that the singular point M3 coincides either with M7 or Ms. And since 7 is positive and
x9 is negative we conclude that M3 coalesces with M; if 1 — g > 0 and with Ms if 1 — g < 0.0n the
other hand for systems (25) with n = —(g — 1)2/4 we have

€10 = 12705209326080(g — 1)g%(1 + ¢)*

and hence we have sign (£10) = sign (¢ — 1). Therefore it is not difficult to determine that we obtain
the configuration Config. P.26 if £&19 < 0 and Config. P.27 if &9 > 0.

2.2: The case By = 0. Since &4 # 0 (i.e. g(1+ 4n) # 0) considering (26) this condition implies
(1+g)?+4n=0.
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Then we get n = —(1 + g)2/4 and this leads to the family of systems

1 1
t=—g(+g=20)(-1+¢" +dgo+4y), §=—7(1+29+9" —dy)(—z+gr+2y)  (29)

which possess the following three invariant affine lines:
l+9g—22=0, 1+429+¢°—4y=0, 1—g?>—4dx+4y=0.

For these systems we have By = B3 = 0 and we see that the above systems possess invariant line
in three directions. However we could have parallel invariant lines and by Lemma 2 for this it is
necessary # = 0. So we discuss two subcases: 6 # 0 and 6 = 0.

2.2.1: The subcase 8 # 0. We determine that the above systems possess the finite singularities
M;(x;,y:) (i =1,2,3,4) with the coordinates:

LY y1:(1+g)2_ oy _Ltg y2:(1+g)2,
2 PR 2 R
P et R ) SR T N et
9 PR 9 T

We detect that the singular point M is the point of intersection of all three invariant lines together
with the invariant parabola. Since this point as well as the singular point M, are located on the
vertical invariant line 1 4+ g — 2z = 0 the position of these two points are important for determining
the configurations of systems (29). So we obtain

glg+1)
2

We point out that the position of the vertical invariant line z = (g + 1)/2 is also important and we

Y=y =~ = sign (ys —y1) = —sign (g(g +1)).
have to consider sign (¢ + 1).
On the other hand for systems (29) we calculate:

and then we determine the following configurations:

G2<0(ie. —-1<g<0) = x21>0,y4>y1 = Config. P.28,
(o >0and g < —1 = x1<0,y4<y1 = Config.P.29,
(e >0and g >0 = 21>0,ya<y1 = ~Config.P.29.

2.2.2: The subcase § = 0. This condition implies (g — 1)(g +2) = 0. If g = 1 we arrive at the
system

t=(@-D+y), y=2y—-1y (30)
possessing four invariant affine lines: * = 1, y = 0, y = 1 and y = x. Therefore it is easy to determine
that this system possesses the configuration Config. P.30.

Assuming g = —2 we arrive at system
t=(1+2x)3—-8x+4y)/8, y=—(4y—1)(3z —2y)/4

which via the transformation 1 = —x +1/2, y; = —z + y + 1/4 could be brought to the system
(30) having the configuration Config. P.30.
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3.1.1.2.2 The subcase {, = 0. Considering (19) and the condition (4 # 0 we obtain that the
condition &4 = 0 implies
m(g +8m +4n) = 0.

On the other hand according to Lemma 3 it is sufficient to examine the condition m = 0 because
the condition g 4+ 8m + 4n = 0 could be brought to m = 0 via an affine transformation.

So m = 0 and we arrive at the family of systems

. 1 9 .
$=m—§(1+g)y+9x +xy, §=y2n—z+gr+2y) (31)

which possess the invariant line y = 0 and the invariant parabola ®(z,y) = 22 —y = 0. It is clear
that the invariant line y = 0 is tangent to the invariant parabola at the origin of coordinates.

We determine that for the above systems the following condition holds:
(102G R1 #0 = g(1+9)(g—2)(3+9)(1 +29)(1+39)(1 + 49 + 3¢° +2n) £ 0. (32)
For the above systems we calculate
By =—81(1+g)*(1+g+2n)(g+g°> +2n)(g +4n)y*/2, 0=-8(g—1)(2+g) (33)
and we consider two possibilities: By # 0 and Bs = 0.

1: The possibility B # 0. Then besides the invariant line y = 0 systems (31) could not possess
invariant lines in other directions. However we could have a parallel invariant line to the line y = 0
and by Lemma 2 for this it is necessary 6 = 0. So we discuss two cases: 6 # 0 and 6 = 0.

1.1: The case 0 # 0. We determine that systems (31) possess four finite singularities M;(x;, y;)
(1 =1,2,3,4) with the coordinates

n 1
1 =0, y1=0; z2=——, y2=0; x3,421(1—gi\/Z>3),
i ’ (34)
ysa=g[(1=9)? =8n+ (1 - 9)VZ], Z=(1-9)~16n

We observe that ®(x3,y3) = ®(x4,y4) = 0 and this means that the singular points M3 and My are
located on the invariant parabola. Moreover the singularity Ma lies on the invariant line y = 0 and
coalesces with M; if and only if n = 0. The singularities M3 and My are complex (respectively, real)
if Z3 < 0 (respectively, Z3 > 0) and they coincide (producing a multiple singular point) if Zs = 0.

On the other hand for systems (31) we have
D = 48(1 + g)*n®(—1 + 29 — ¢* + 16n) = —48(1 + g)*n®Z3
and we discuss three subcases: D < 0, D >0 and D = 0.

1.1.1: The subcase D < 0. Then Z3 > 0 and therefore the finite singularities M3 and My
are real and they are distinct because n # 0 (due to D # 0). Clearly we need to determine their
positions on the parabola with respect to the singularity M; and we calculate:

(#3 —21) (24 — 1) =1y (23 —21) + (24 —21) = (1 — 9)/2;

sign (w3 — z1)(z4 — 1)) =sign(n), sign ((z3 — z1) + (x4 — 21)) =sign (1 — g). (35)
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We point out that g — 1 # 0 (due to € # 0) and sign (1 — g) is important only in the case n > 0 (i.e.
when (z3 — 21)(z4 — 1) > 0). On the other hand we have

xg —x1 = —nfg = sign(ry —x1) = —sign (gn).
For systems (31) calculations yield:
€11 = — 95982880 gn(g — 2)%(1 + 9)%(3 + ¢)*(1 + 39)*(1 + 4g + 3¢g* + 2n)?,

€og =3244620(1 + 9)*(3 + 9)*(1 + 39)*(1 + 4g + 3¢* + 2n)*(g + 4n),
€29 =3244620(g — 1)g(1 + 9)*(3 + 9)(1 + 39) (1 + 4g + 3¢° + 2n)*(g + 4n),

and we have the next remark.

Remark 2. We observe that due to the condition (32) we obtain that 11 # 0 and sign (§11) =
—sign (gn). If we have &1 < 0 (i.e. gn > 0) then sign ({28) = sign (g + 4n). Moreover in the case
g >0 and n > 0 we obtain sign ({29) = sign (g — 1).

Thus considering the above relations in the case D < 0 we detect the following configurations:

€11 <0, n <0 (then g < 0) = (3 —x1)(xg — 1) <0, 29 <2y = Config. P.31,

11 <0,n >0 (theng>0),9g<1 = x3>x1, 24> 21, T2 <1 = Config. P.32;

€11 <0,n>0(theng>0),9g>1 = x3<xy, 24 <21, T2 <21 = Config. P.33;

€11 >0, n <0 (then g > 0) = (xzg —x1)(x4 —21) <0, 22 > 21 = Config. P.34;

&11 >0, n >0 (then g < 0) = X3 > X1, T4 > T1, To > X1 = Config. P.35.
Taking into account Remark 2 we obtain the following invariant conditions:

§11 <0, 28 <0 = Config. P.31,

11 <0, &8 >0, &9 < 0 = Config. P.32;
&11 <0, €98 >0, &9 >0 = Config. P.535

Config. P.34 or
0
S > - {C’onﬁg.P.35.

1.1.2: The subcase D > 0. Then Z3 < 0 and hence the finite singularities M3 and M, are com-
plex. On the other hand this condition implies n > 0 and therefore the singular point Ms(—n/g,0)
could not coalesce with M (0,0). Moreover its position with respect to the singular point M7 depends
on the sign of the parameter g.

It is easy to determine that the invariant line y = 0 has a common point with the parabola y = 2
and this is the point of tangency M (0,0) and the finite singularity Ms(—n/g,0) lies on the invariant
line y = 0.

On the other hand due to n > 0 we obtain sign (§;1) = —sign (gn) = —sign (g). Therefore we
obtain the configuration Config. P.36 if 11 < 0 and Config. P.37if &1 > 0.

1.1.3: The subcase D = 0. Considering (32) we deduce that the condition D = 0 implies
nZs = 0. For systems (31) we calculate

& =3(g—2)(1+9)°B+g)(1+39)n°(1 +4g + 3g> + 2n)/8

and due to (32) we obtain that the condition n = 0 is equivalent to & = 0. So we examine two
possibilities: & # 0 and & = 0.
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1.1.8.1: The possibility & # 0. Then the condition D = 0 implies Z3 = 0. Considering (34)
we obtain n = (1 — ¢)?/16 and then calculations yield

1l-9* 0 1-g - (1-9g)?
169 73/2—(); €T3 = T4 = 4 Ys = Ya = 16 )

sign (xg — x1) = —sign (g), sign(zsz — 1) = sign (1 — g).

1 =0, y1 =0; 292 =—

Therefore we have a double singular point on the invariant parabola and for the parameter g we
have the following possible bifurcation values: g € {0,1}.

On the other hand considering for systems (31) with n = (1 — ¢)?/16 (i.e. Z3 = 0) we calculate:

€ = _2993%@ —-2)%(g - 1)’g(1 4 9)*(3+ 9)*(1 + 39)*(3+ 59)*, 6 = —8(g — 1)(2+ g),

G=4g(g+1), ¢=(9-2)3+9g)(1+39)(3+59)%/128, &2 =g(g—1)*¥1(g)

where 11 (g) = 1105+ 17749 +961g. We observe that Discrim [¢1(g), g] = —1100544 < 0. Therefore
taking into account the conditions (40 # 0 and we conclude that

sign (£11) = —sign (g), sign (&12) = sign (9(g — 1)).

So considering the above relations we determine the following configurations:

10 <0 = x9 <x1,x3>x1 = Config.P.38,
£10>0,61 <0 = xo<xy,x3>21 = Config.P.39,
£129>0,61>0 = x9>x1, 23>21 = Config. P.40.

1.1.83.2: The possibility & = 0. In this case n = 0 and the singular point My(—n/g,0)
coalesces with M;(0,0). Moreover one of the singular points either Mz or My coalesces with M;(0,0)
and we obtain a triple finite singularity M;(0,0). It is clear that we could get two distinct singularities
depending on the position of the simple singularity (Ms or M,) and this position is defined by

sign (1 — g) (see (35)).
Since in the case n = 0 for systems (31) we have

€10 = 24814861965(g — 1)g%(1 + ¢)5(1 + 3¢)*/2

we conclude that sign (£19)= sign (¢ — 1). Therefore we get the configuration Config. P.41 if {10 < 0
and Config. P.42 if &9 > 0.

1.2: The case § = 0. This implies (g — 1)(g +2) = 0 and for systems (31) we calculate

& =3(g—2)(1+9)>B+g)(1+3g)n*(1 +4g + 3¢> + 2n)/8,

(36)
& = —21875(g — 1)(1 + g)(g — 2)(3+ 9)(1 + 3g)n(L + g + 2n)(1 + 4g + 3¢* + 2n) /8.
and we discuss two subcases: £ # 0 and £ = 0.

1.2.1: The subcase & # 0. This implies n # 0 and considering the condition (32) and By # 0
(i.e. 14 g+ 2n # 0) we conclude that the condition g = 1 is equivalent to {5 = 0. So we consider
two possibilities: &5 # 0 and &5 = 0.
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1.2.1.1: The possibility &5 # 0. Then g — 1 # 0 and the condition § = 0 implies g = —2. It is
easy to determine that for g = —2 systems (31) do not have any invariant line parallel with y = 0.

On the other hand in the case g = —2 for systems (31) we have
D = 48n°%(16n — 9), &1 = 76786304000n(5 + 2n)?, (4 = 5(5 + 2n)/4

and hence sign (§11) = sign (n). Moreover sign (D) = sign (16n —9) and due to n # 0 we obtain that
D = 0 is equivalent to 16n — 9 = 0.

Therefore since g = —2 < 0, taking into consideration the examination of systems (31) given above
we arrive at the following configurations:

D <0, &1 <0 = Config. P.31;
D <0,&1 >0 = Config. P.35;
D>0 = Config. P.37.
D=0 = Config. P.40.

1.2.1.2: The possibility &5 = 0. Then g = 1 and this leads to the systems
i=nz—y+a*+zy, §=2yn+y)
possessing additionally the invariant line y +n = 0. Considering (34) we obtain:
1 =0, y1 =0; 22 =—n, y3 =0; x3,4::|:\/—7n, Ys =Yg = —N.

We observe that the invariant line y = —n intersects the invariant parabola ®(z,y) = 22 —y = 0 at
two points Ms 4(++/—n, —n) which are distinct due to & # 0 (i.e. n # 0). Moreover they are real if
n < 0 and complex if n > 0. We calculate D = 12288n" and hence sign (D) = sign (n). Therefore
we arrive at the configuration Config. P.43 for D < 0 and Config. P.44 for D > 0.

1.2.2: The subcase £, = 0. This implies n = 0 and then the line y = —n coalesces with y = 0
and we get one double invariant line. Moreover all finite singular point coalesce producing a singular
point M7 (0,0) of multiplicity four. As a result we get the configuration Config. P.45.

2: The possibility By = 0. First of all we set the next remark.
Remark 3. The condition By = 0 implies for systems (31) n # 0.
Indeed in the case n = 0 for systems (31) we get
By = =81¢°(1+ ¢)*y*/2 # 0

due to the condition (2 # 0 (i.e. g(g+ 1) #0).
Thus n # 0 and since g + 1 # 0 considering (33) we get the condition

(1+g+2n)(g+g*+2n)(g+4n) =0
and considering (36) we examine two cases: & # 0 and & = 0.

2.1: The case 5 # 0. Then by (36) we get 1+ g+ 2n # 0 and hence the condition Bz = 0 implies
(9+ 9% +2n)(g +4n) = 0.
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On the other hand for systems (31) we calculate
€13 = 27(1 + 9)*(3 + g)(1 + 39)n* (g + 4n) /4

and considering Remark 3 and the condition (32) we conclude that the condition &13 = 0 is equivalent
to g+4n =0.

2.1.1: The subcase £13 # 0. Then g + 4n # 0 and therefore By = 0 implies g + ¢g> +2n = 0. In
this case we get n = —g(g + 1)/2 and we arrive at the following family of systems

i=02r—1-g)(gz+y)/2, §=-ylg+9g° +z—gz—2y) (37)

possessing the invariant lines y = 0 and x = (g + 1)/2. Considering Lemma 1 for these systems we
calculate

By = =3(g = 1)g(1+9)°(1 +29)2°y* /4, §=—8(g—1)(9 +2),

& = —21875(g — 2)(g — 1)°9(1 + 9)* (3 + g) (1 + 29)(1 + 39)/16.

We observe that Bs # 0 due to the condition &5 # 0 and hence by Lemma 1 the above systems could
not have any invariant line in the third direction. However according to Lemma 2 we could have
parallel invariant lines if the condition # = 0 holds. Due to B3 # 0 (i.e. g — 1 # 0) we deduce that
the condition § = 0 is equivalent to g + 2 = 0. It is easy to determine that for g = —2 systems (37)
do not have any invariant line which is parallel either with y = 0 or x = (¢ + 1)/2.

Next we determine that systems (37) possess the following finite singularities M;(z;,y;) (i =
1,2,3,4) with the coordinates:

1+ 1+ 1+g9)°
x1 =0, y1 =0; mQZTg, Yo=0; z3=—g, ys=9°; T4= 29, ( 49).

Ya =

We observe that the invariant line z = (g 4+ 1)/2 intersects the invariant parabola at the point My
and the invariant line y = 0 (which is tangent to the parabola at M;) at the singular point M. So
to determine the positions of the line x = (g + 1)/2 as well as of the singularities we calculate:

1+yg 1+3g
2 2
sign (z2 — z1) = sign (1 + g), sign (z3 —21) = —sign (g), sign (z3 — x4) = —sign (1 + 3g).

T2 —T1 = y L3 — X1 = —g, T3 — T4 =

As we can see for the parameter g we have the following possible bifurcation values: g € {—1,—1/3,0}.

On the other hand for systems (37) we calculate:

G =4g(g+ 1), & = 11746275000 (1 + )7(1 + 29)%(1 + 39),
€11 = 47991440(—2 + 9)*g*(1 + 9)° (3 + 9)* (1 + 29)*(1 + 3g)*

and we observe that
sign (C2) = sign (g(g + 1)), sign(&7) =sign ((¢ + 1)(1 +3g)), sign (£11) = sign (g9 + 1).
Moreover in the case (3 < 0 we have —1 < g <0 (i.e. g+ 1 > 0) and then sign&; = sign (1 + 3g).

Thus considering the above relations we detect the following configurations:
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(2<0,& <0 (le. —1<g<—1/3) = xo>umy, 23> 21,23 >14 = Config. P.40;
(2<0,& >0 (e —1/3<g<0) = T > 1, vl <33 < 1T4 = Config. P.47,
(2>0,&1<0 (ie. g<—1) = x9 < a1, T3 > I = Config. P.48,
C2>0,&11>0(ie. g>0) = 29> T, 3 < 1 = Config. P.49.

2.1.2: The subcase {13 = 0. This implies g+4n = 0 (i.e. n = —g/4) and we arrive at the family
of systems
&= —gr/d—(1+9)y/2+ 92" +ay, §=—ylg+2z— 29z —4y)/2 (38)

possessing the invariant lines y = 0 and y = z — 1/4. For these systems we have

& = 21875(g — 2)g(1 + g9)(g — (2 + g)(3 + g)(1 +29)(1 + 39)(2 + 39) /128,
By =3g(1+g)(1+29)(x —y)*y*/8, 0=—-8(g—1)(2+g)

and since & # 0 we obtain B3 # 0. So by Lemmas 1 and 2 we conclude that the above systems
could not have a third invariant line.

Next we determine that systems (38) possess the finite singularities M;(z;,y;) (1 = 1,2,3,4) with
the coordinates
2
21=0, y1=0; z2=1/4, 12=0; 23=1/2, y3=1/4; 4= *%, Ys = gz;

sign (zg — x1) = —sign(g), x4 —x3=—(9+1)/2 = sign (x4 —x3) = —sign (g + 1).
It could be checked directly that the invariant line y = x — 1/4 is tangent to the invariant parabola
at the singular point M3(1/2,1/4). Therefore considering the above relations we detect the following
configurations:
G2<0(ie. -1<g<0) = x4>x1,24<x3 = Config.P.50,
(a2 >0and g < —1 = w4 >x1, 24 >23 = Config. P.51;
(o >0and g >0 = 1<z, ry<xy = ~Config.P.51.

2.2: The case & = 0. Considering (36), the conditions (32) and Remark 3 imply (¢ — 1)(1 + g +
2n) = 0 and we examine two subcases: 6 # 0 and 0 = 0.

2.2.1: The subcase 0 # 0. Then g—1 # 0 and we get 1+g+2n = 0. Therefore n = —(1+g)/2 # 0
and we arrive at the family of systems

i=—(1+g)(z+y)/2+92° +zy, §=—y(l+g+z—gz—2y), (39)
possessing the invariant lines y = 0 and y = 2 and the finite singularities M;(x;,v;) (i = 1,2,3,4)
with the coordinates:

I+g l1+g 1+ g)?
$1:O>y1:0; $2:77y2:0; 173:1,93:1; '174:_773/4:( )
29 2 4

On the other hand considering Lemma 1 we calculate

By =3(g—1)(1+9)*(z —y)*y* /4 #0

due to the conditions (32) and § # 0. Then by Lemma 1 we could not have any invariant line in the
third direction. Moreover by Lemma 2 we could not have parallel invariant lines due to 6 # 0.
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Next considering the coordinates of the finite singularities of these systems it follows immediately:

sign (x4 — x1) = —sign (1 + g), sign (ro — 1) = sign (g(l + g)),
xy —x3 = —(9+3)/2 = sign (x4 — x3) = —sign (g + 3).
We remark that g(g+1)(g+3) # 0 due to the condition (32) and hence for the parameter g we have
the following possible bifurcation values: g € {—3,—1,0}.
On the other hand for systems (39) we calculate:

G =4g(1+g), & =5589813240(g — 1)°g°(1 +9)°(3 + g),
€10 = —223333757685(g — 1)%¢%(1 + 9)%(2 + g)(1 + 39)?/2

and hence we have

sign (¢2) = sign (g(1+g)), sign (&) =sign ((1+9)(3+g)), sign(&10) = —sign (2 + g).

Remark 4. We observe that the conditions (3 > 0 and & > 0 imply either g > 0 or g < —3. In
order to distinguish these two possibilities we use the invariant £19 even if this invariant does not
vanish in the bifurcation values of g.

Considering the above remark we arrive at the following configurations:

(2<0(ie. —1<g<0) = To < Ty, Tg < T = Config. P.52;
(2>0,8& <0 (ie. -3<g<-—1) = To>1, 11 <34 <x3 = Config.P.53;
(2>0,8 >0,&0<0 (ie. g >0) = 29> a1, 3 < T = Config. P.54;
(2>0,8>0,&0>0(ie. g<—3) = x9>m, T4 >3 = Config. P.55.

2.2.2: The subcase # = 0. This implies (¢ — 1)(g + 2) = 0 and we discuss two possibilities:
Bg#O&HngZO.

2.2.2.1: The possibility Bs # 0. We claim that in this case we get the same configuration
either if g=1 or g = —2.

Indeed, assume first ¢ = —2. Then calculations yield
& = —328125n(2n — 1)(5 4+ 2n)/2, By = —162(1 4+ n)(2n — 1)%y%, (40)
Bz = 3y*[n(—5+4n)z”® + 2(1 + n)zy — (1 + n)y?] /2,
and evidently the condition £ = By = 0 gives us n = 1/2. This leads to the system
b= (x+y)/2 -2 +zy, §=y(l—3z+2y) (41)

possessing three invariant affine lines: y = 0, y = x and y = x — 1/4. It is not difficult to determine
that this system has the configuration equivalent to Config. P.56.

Suppose now g = 1. Then we have
€5 =0, By= —648(1+n)*(1+4n)y*, Bz = —3(1+ n)y*(4nz® + 2zy — 3?)
and due to Bs # 0 the condition By = 0 implies n = —1/4. In this case we arrive at the system

i=—z/d-y+a®+ay, §=ydy—1)/2
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which via the affine transformation x; = —x +1/2, y; = —x + y + 1/4 we could be brought to
system (41). Thus our claim is proved and we get the configuration Config. P.56.

2.2.2.2: The possibility Bs = 0. Considering (40) we conclude that the condition g = —2
implies B3 # 0 and hence the condition § = 0 gives us g = 1. In this case we arrive at the system

bt=-1)(r+y), §=2uy—1)y

possessing four invariant affine lines: z = 1, y = 0, y = 1 and y = x. Therefore it is easy to determine
that this system possesses the configuration equivalent to Config. P.30.

3.1.2 The statement (Az)

According to this statement of Proposition 2 for systems (7) the condition ¢4 = 0 must hold.
Considering (8) we obtain

(g—2)3+g)(1+7g+15¢% +9¢g> — 4m + 2n + 6gn) =0
and since (g —2)(3+ g) # 0 (due to ¢; # 0) we get
m = %(1 +3¢)(1 +4g + 39 + 2n).
Then we arrive at the 2-parameter family of systems

o1 1
=7 (1+39)(1 +4g +3¢° + 2n) + nz — S (14 )y + g2” + 2y,

42
1 , B , (42)

7 —2(1 +39)(1+4g+39° +2n)z+2ny + (g — ay + 2y

possessing the following two invariant parabolas: ®1(z,y) = 22 —y = 0 and
Dy =(1+4g + 3¢ + 2n)(1 + 4g + 3¢* + 4n)) + 2(1 + g)(1 + 4g + 3¢° + 4n)zx (43)

+4g(1 + g)z® — 2(1 + 6g + 5g* + 4n)y = 0.
Following the statement (LAz) for the above systems we calculate
G =2(9-2)B+9), G=49(1+9), G=8(1+29)°
=0, ¢5=19(9—2)(3+9)(1 +4g+3¢° +4n)*/4,
Ro=—(g—2)(3+g)(8+ 27g + 27¢%)(1 + 6g + 5g° + 4n) /16, (44)

By =g(1+ ¢)(142¢)(1 +39)(2 4 3¢)(1 + 4g + 3¢ + 2n)(1 4 6g + 5g° + 4n)
X (14 6g + 6% + 4n)(1 + 69 + 99> + 4n) (5 + 14g + 99> + 4n)/32.

According to Lemma 1 for the existence of an invariant line of systems (42) the condition B; = 0 is
necessary.
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3.1.2.1 The case By # 0. Then we could not have any invariant line. We determine that
systems (42) possess four finite singularities M;(z;,vy;) (i = 1,2,3,4) with the coordinates

143y (14 39) (1+9)(1+39)* +4(1 + 29)n
T= o = T = 5 ;
9(1+9)
(1+3g)(1+ 4g + 39 + 2n) 1
_ - = (1+g++/Z (45)
Y2 2(1+9) ; T34 2( +g 4),

1
Y34 = —5(29—1—25]2 +2nF (g + 1)\/Z4), Zy=—(1 —1—69—1—592 +4n).

In order to determine the position of the finite singularities with respect to the parabolas ®1(z,y) =0
and ®g(z,y) = 0 we calculate
Q1 (z1,y1) = P1(23,y3) = P1(wa,y1) = 0;  Pa(w2,y2) = Pa(w3,y3) = P2(24,y4) = 0.

Therefore we deduce that the finite singularities M3 and M, are the points of intersection of these
two invariant parabolas. We observe that the points of intersection of the invariant parabolas are
complex if Z; < 0 and they are real if Z4 > 0.

On the other hand for systems (42) we calculate:
D = —3Z,(1+4g + 3¢° + 4n)* o 57 /4, (46)

where
a1 =5+22g+21g° +4n, Bs= (1+g)(1+3g)(1+ 69+ 7g*) + 4(1 + 29)*n. (47)

So if D # 0 then sign (D) = —sign (Z) and we discuss three possibilities: D < 0, D > 0 and
D=0.

1: The possibility D < 0. Then Z; > 0 and systems (42) possess four real singularities and it is
necessary to know the positions of the singularities M3 4 with respect to M; and M. We calculate

(z1 —23)(21 — 74) = %, (21 — x3) + (21 — 74) = 1 + 29,
(w2 — x3) (w2 — 14) = _‘W(Zf%g)Q’ (w2 — a3) + (w2 —w4) = —%.

Therefore considering the condition Z4 > 0 we obtain

sign ((z1 — x3)(z1 — 24)) =sign (au), sign ((z1 — x3) + (¥1 — 24)) = sign (1 + 29);
sign ((:EQ —x3) (22 — 904)) = —sign (B4),
sign ((z2 — x3) + (w2 — 24)) = —sign (g(1 + g)(1 + 29)).

Clearly we need invariant polynomials governing the signs of a4y and (4. For systems (42) we
calculate:

€1a = 12350u434/2, &30 = 1235[Z4B1 — ¢* (1 + g)*cu] /2, (o =4g(1+ g).

And we have
sign (£14) = sign (aufBs), sign (¢2) = sign (g(1 + g)).
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Moreover in the case £14 < 0 (i.e. aufs < 0) and D <0 (i.e. Zy > 0) we obtain
sign (€30) = sign (ZufBs — g2(1 + g)%ay) = sign (By).
On the other hand considering the form of the invariant parabola ®5(z,y) = 0 we have

1 1
— |1+ 9)(1+4g+ 39 + 4n)x — 501 +4g 4 39% + 2n)(1 + 4g + 3¢> + 4n)
4
2
2901 +9)x2_
Zy

y =
(48)

Therefore since Z4 > 0 we deduce that the invariant parabolas ®1(z,y) = 0 and ®s(x,y) = 0
are tangent at the infinity to the same part (respectively to different parts) of the invariant line at
infinity Z = 0 if (2 < 0 (respectively (2 > 0). So we consider these two cases separately.

1.1: The case (2 < 0. Then g(¢9 + 1) < 0 and considering the above relations in this case we
obtain the following configurations:

€14<0,B8,<0,29+1<0(ie. Bu<0,04>0, -1 <g<—1/2) =

r9—x3 >0, 29 —24 >0, 21 —23 >0, 21 —24 >0 = Config. P.57,
€14<0,84<0,294+1>0 (e B4<0,a4>0,-1/2<g<0) =

To—23<0, 29 —24<0,21 —23<0, 21 —24<0 = =~ Config. P.57,
€14<0,B8, >0 (ie. B4>0,4<0,—1<g<0) =

(x2 —x3)(x2 —24) <0, (21 —23) (21 —24) <O = Config. P.58;
€14>0,8,<0,29+1<0 (le. B4<0,4<0,-1<g<—1/2) =

x9g —xg >0, 29 — x4 >0, (£1 —23) (1 —24) <0 = Config. P.59;
€14>0,8,<0,29+1>0 (e B1<0,a4<0,-1/2<g<0) =

X9 —x3 <0, 20 — 24 <0, (x1 —23)(21 —24) <0 = ~ Config.P.59;
€14>0,B8,>0,29+1<0(ie. B4>0,04>0, -1 <g<—1/2) =

(g —x3)(xe —4) <0, 21 —3 >0, 27 — 24 >0 = ~ Config.P.59,
€14>0,8,>0,29+1>0(ie. B4>0,4>0,-1/2<g<0) =

(o — x3) (22 — 24) <0 r1 —x3<0, 21 —14 <0 = ~ Config. P.59.

1.2: The case (2 > 0. Then g(g + 1) > 0 and we obtain the following configurations:

€14<0,6,<0,29+1<0 (ie. B4 <0,04>0,9<—1) =

To—ax3<0,20—24<0,21—23>0,21 —24 >0 = Config. P.60;
€14<0,B8,<0,29+1>0 (ie. B4 <0, a4 >0,9>0) =

To—x3>0, 29 —x4 >001 —23<0, 21 —x4 <0 = =~ Config. P.60;
€14>0,8,<0,294+1<0(ie. B4<0, 4 <0, g<—1) =

X9 — 13 <0, 29 — w4 <0, (x1 —23)(r1 —24) <0 = Config. P.61,
€14>0,8,<0,29+1>0 (ie. B4 <0, 4 <0,g>0) =

X9 —xg >0, 29 — g >0, (£1 —23)(r1 —24) <0 = ~ Config. P.61;
€14>0,81>0,294+1<0 (le B4>0, 4 >0, g<—1) =

(xg —x3)(xg —x4) <0, 21 —23 >0, 21 — 24 >0 = ~ Config. P.61;
€14>0,8,>0,29+1>0 (e B1>0,a4>0,9<—1) =

(xg —x3)(xg —x4) <0, 21 —23 <0, 21 —24 <O = ~ Config.P.61.
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Applying the Mathematica function “FindInstance” (or “Reduce”) we detect that the conditions
D<0,0>0&4<0and 84 >0 (ie. Z4>0,9(g+1) >0, ag <0 and B4 > 0) are incompatible.

We observe that in both cases (i.e. (2 < 0 and (3 > 0) the configurations do not depend on the
sign (1 + 2g). As a result we obtain the following lemma.

Lemma 4. Assume that for systems (42) the condition D < 0 holds. Then these systems possess
the following configurations if and only if the corresponding conditions are satisfied:

(2<0,&4<0,&0<0 < Config.P.57;
(2<0,&4<0,8&0>0 <« Config. P.58;
(2<0,&4>0 < Config. P.59;
(2>0,84<0 & Config. P.60;
(2>0,84>0 & Config. P.61.

2: The possibility D > 0. Then Z; < 0 and systems (42) possess only two real singularities: M;
(located on the parabola ®;(z,y) = 0) and M> (located on the parabola ®3(z,y) = 0). As it was
mentioned earlier the direction of the second invariant parabola depends on the sign of g(1+ g) (see
(48)).

So considering the condition D > 0 (i.e. Z4; < 0) we arrive at the configuration Config. P.62 if
C2 <0 (ie. g(g+1) <0) and Config. P.63if (2 >0 (i.e. g(g+1) > 0).

3: The possibility D = 0. Then considering (46), (44) and the condition (sRs # 0 (i.e. Z4(1+ 4g +
392 + 4n) # 0) we conclude that the condition D = 0 implies a4; = 0. We have the next lemma.

Lemma 5. For systems (42) the condition 34 = 0 could be brought via an affine transformation to
the condition ay = 0.

Proof: We apply to systems (42) the transformation

(14 g)(1 4 4g + 3¢> + 4n) (14 ¢)(1+39)(1 4 4g + 3g% + 4n)

x1 Y 2Z4 y Y1 Yy 4Z4 ’ (49)
29(1+9)
t1=1/6, § = ——7—-
1 =1/5, 7
and setting the notation
(1+9)(1 4 11g + 31g> + 21¢° + 4n + 20gn)
ny = —
! 4(1 + 69 + 5g2 + 4n) (50)
C(1+g)(1+ 119+ 31g% + 21¢g° + 4ny + 20gny)
4(1+6g + 592 + 4nq)
we arrive at the family of systems
1 2 1 2
@1 =7 (1+39)(1+4g+ 39"+ 2n1) + a1 — 5 (1 +g)yr + ga1 + 21y1,
(51)

1
i1 =5(1+39)(L+4g + 3¢” + 2m) &1 + 2mys + (9 — Daays +2y7.
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We observe that this family of systems coincide with (42) up to notation of the variables and
parameters. Considering (50) for the above systems we calculate:

Ba(g,m1) = (1+ g)(1+3g)(1 + 69 + 7¢%) + 4(1 + 29)*n1 =
g*(14 g)%(5 +22g + 21g% + 4n) B _92(1 +9)%au(yg, n)
1469+ 592+ 4n Z ’
as(g,n1) = (54229 + 21g° + 4ny) =

4(1 4 10g + 349 + 46¢° + 219" + 4n + 16gn + 16¢°n)  4f4(g,n)

1469+ 59+ 4n Z

We observe that due to g(g + 1)Z4 # 0 the condition B4(g,n1) = 0 (respectively a4(g,n1) = 0) for
systems (51) implies ay(g,n) = 0 (respectively B4(g,n) = 0) for systems (42). This completes the
proof of the lemma. ]

Thus in what follows we assume that the condition ay = 5 + 22g + 21¢2 + 4n = 0 holds and this
gives us n = —(1 4 3¢)(5 + 7g)/4. Then we obtain the following family of systems

1 1 1
I =— g(l +3g)2(37L 59) + Z(l +39)(5+7g)x — 5(1 +g)y+ga¢2 + xy,

1 1
g =— 1(1 +39)%(3 +59) x + 5(1 +39)(5+79)y + (9 — Dy + 2y

(52)

possessing the two invariant parabolas: ®1(x,y) = 22 —y = 0 and
Py =—(1+39)*(2+39)(3+59) — 4(1+ g)(1 + 39)(2 + 3g)x + 4g(1 + g)2* + 8(1 + 29)*y = 0.

Considering (45) we detect that for ay = 0 the singular point My coalesce with M; producing a
double finite singularity. So we obtain that systems (52) possess three finite singularities M;(x;, y;)
(1 =1,2,3) (M is double) with the coordinates

1+3g (14 39)? (14 3g)(4+ 139 + 11g?)
Ty = — y YL = ——— 5 X2 = )
2 4 29(1+9)
(14 39)%(3+ 59) 3+ 5g (3 +59)?
Y2 = — y 3= —(F— YB3=—"",— -
4(1 +g) 2 4

Considering the investigation of the singularities of systems (42) we did earlier we deduce that the
singular points M; (= M,) and M3 are the points of intersection of the invariant parabolas whereas
M is located on the parabola ®9(x,y) = 0. We calculate

(1+29)*(1+39)(2+39)(2+ 79 + 79°)
g*(1+g)?
4(1 + 2¢9)3
g(1+g)

(w2 — @1) (22 — 23) =

(xg —x1) + (2 — x3) =

and since Discrim [2 + 7g + 7¢2, g] = —7 < 0 we obtain

sign ((mg —x1) (22 — xg)) = sign ((1 +39)(2+ 3g)),
sign (g — 1) + (w2 — :1;3)) = sign (g(l +9)(1+ 29)).

We point out that sign (1 4 2g) is necessary only if (1 + 3¢)(2 + 3g) > 0.
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On the other hand for systems (52) we have
G =49(1+9), G =19(9—2)(3+g)(1+39)*(2+39)*,
€3 = 217993032 g(1 + ¢)(1 + 39)3(2 + 39)%(2 + g + 7g°)*
and due to (3¢5 # 0 we obtain

sign (€3) = sign (9(1 + g)(1 4+ 39)(2+ 3g)), sign (¢2) = sign (g(1 + g)).

We claim that the condition {» > 0 implies €3 > 0. Indeed assume (3 > 0 and suppose the contrary,
that &5 < 0. This implies (1+3¢)(2+3g) < 0ie. —2/3 < g < —1/3 and therefore we get —1 < g < 0,
ie. g(g+ 1) < 0. This means (2 < 0 and this contradiction proves our claim.

Thus considering the above relations for systems (52) we obtain the following configurations:

(2<0,83<0,294+1<0 (ie. -1<g<—-2/3)=x9—2x1 >0, 29 —23>0= Config.P.64;
(2<0,83<0,294+1>0(ie. —1/3<g<0) =x9—21<0,29—123<0= =~ Config.P.64;

(2<0,&>0 (le. —2/3<g<—1/3) = (x2 —x1)(x2 —23) <0 = Config. P.65.
(2>0,29g4+1<0 (ie. g< —1) = 29— 11 <0, 20 — 23 <0 = Config. P.66;
(2>0,29g4+1>0 (ie. g >0) = x9 —x1 >0, z2 —x3 > 0 = =~ Config. P.66.

We observe that the detected configurations do not depend sign (29 + 1) and we arrive at the
following lemma.

Lemma 6. Assume that for systems (42) the condition D = 0 holds. Then these sytems possess the
following configurations if and only if the corresponding conditions are satisfied:

(2<0,& <0 < Config. P.64;

(2<0,& >0 < Config. P.65;

G2>0 < Config. P.66.

3.1.2.2 The case B; = 0. Considering (44) and the condition (2(3R2 # 0 (i.e. g(g+ 1)(29 +

1)(1 + 6g + 59 + 4n) # 0) we conclude that the condition By = 0 is equivalent to
(14 39)(2 4 39)(1 + 4g + 39 + 2n)(1 + 69 + 69> + 4n) (53)
x (14 6g +9¢* + 4n)(5 + 14g + 9g° + 4n)/32 = 0.

However due to some transformations we could reduce the number of the cases provided by the
condition B; = 0. We have the next lemma.

Lemma 7. The condition (53) could be transferred via affine transformations and time rescaling to
the condition
(14 39)(1 + 4g + 3¢g* + 2n) = 0. (54)

Proof: To proof this lemma we follow two steps: (i) we apply a transformation which replaces the
line y = 0 with y = = and keeps the invariant parabola ®(z,y) = 2> —y = 0 and (4i) we apply
a transformation which transfers the invariant parabola ®a(z,y) = 0 (see (43)) to the invariant
parabola ®;(z,y) = 2% —y = 0.

Step (i) Applying to systems (42) the transformation

r1=—x+1/2, y1=—-x+y+1/4
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we obtain the systems

1 1
i1 == 2(2+39)(1+ 69 + 6g° + 4n) + (1 + 29 + 4n)a1 + Ty — (1+ g)a} + 21y,

8 4 2
1 1
U =— 1(2 +39)(1+ 69+ 69> + dn)xy + 5(1 + 29+ 4n)y1 — (g + 2)z19y1 + 2y%.

Then setting the new parameters

1
m=1(1+2+4n), g =-(1+g) =

1
n = 1(1 +2g1 +4n1) g=—(1+g1),

(55)

we obtain the family of systems

+ 01
2

1
v 25(1 +391)(1+ 491 + 39% +2n1)z1 + 2y + (g1 — Dayyr + ny

Y1+ 9196% + x1y1,

1 1
i1 =7 (1+3g1)(1 + 491 + 391 +2n1) + niay —

which coincide with family (42) (up to notations). Then considering (55) calculations yield:

2439 =—(1+3g1), 1+406g+06g>+4n=2(1+4g; +3g; + 2n1),
541494 99> +4n = 1+ 6g1 + 997 + 4ny

and clearly we reduce the condition (53) to the condition

(1+39)(1 +4g + 3¢* + 2n)(1 + 6g + 9¢% + 4n) = 0.

Step (i) As it was shown in the proof of Lemma 5 via the transformation (49) systems (42) can
be brought to the same canonical form (51) but with a new parameter n; of the form (50). Then
calculations yield
892(1 + 4g + 3g> + 2n)

4(1 + 69 + 5g? + 4n)

and we conclude that due to g # 0 the condition 1 + 6g + 9g% + 4n = 0 could be transferred to
14 4g + 39>+ 2n = 0. As a result we arrive at the condition (54) and this completes the proof of

1+6g+9g° +4n, =

Lemma 7. [
For systems (42) we calculate
15 = 2(1 + 39)(2 + 39)

and we discuss two possibilities: &5 # 0 and &5 = 0.

1: The possibility {15 # 0. Then 1+ 3g # 0 and considering (54) and Lemma 7 we deduce that the
condition By = 0 implies 1 + 4g + 3¢ + 2n = 0.
This yields n = —(1 + ¢)(1 + 3¢g)/2 and we obtain the following 1-parameter family of systems

1 1
i=—=(149)(1+39)z — =(g+ 1)y + gz + zv,
2( 9)( q9) 2(9 J+g Yy (56)

y=—y(l+49+3¢> +z — gz — 2y)
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which besides the invariant parabolas
Ci(z,y) ="~y =0, Pa(z,y) = (1+g)(1+3g)z — 292" — (1 +g)y =0
possesses the invariant line y = 0. Considering Lemmas 1 and 2 we calculate
6=—8(g—1)(2+9), Ba2=243¢(1+9)"(1+29)*(2+39)y"/2. (57)
So we examine the cases By # 0 and By = 0.

2.1: The case By # 0. Then by Lemma 1 we could not have invariant lines in other direction
than y = 0. However by Lemma 2 we could have parallel invariant lines if 6 = 0.

2.1.1: The subcase § # 0. We determine that systems (56) possess four finite singularities
M;(x;,y;) (i =1,2,3,4) with the coordinates

(1+9)(1+3g)

29
1+3g _ (1+3g)?
2 y Y4 = 4 .

x1=0, y1 =0; 9= L2 =0; z3=1+g, y3=(1+g)%

Ty =
Considering the conditions provided by the statement (LAz) for systems (56) we have:

GGRGGR2#0 < g(1+9)(g—2)3+g)(1+29)(1+ 3g)(8+27g +27¢%) # 0. (58)

We observe that the invariant parabolas have two points of intersection: M; and Mj3. Moreover we
observe that the invariant line y = 0 has the contact point M; with the parabola ®;(x,y) = 0 and
two points of intersection M; and My with the parabola ®5(z,y) = 0.

So three finite singularities are fixed as the intersections of invariant curves and their positions are
determined by the values of the parameter g.

On the other hand the singular point My is located on the invariant parabola ®;(x,y) = 0 and it
is floating. So we need to determine its position with respect to the other two singularities located
on the same invariant curve. So we calculate:

1
(24 — 21)(24 — 23) = Z(l +39)(3+59), (x4 — 1)+ (24 — 23) = —2(1 + 29).
Therefore we obtain

sign (x4 — 1) (24 — mg)) = sign ((1 +39)(3+ 59)),
sign ((z4 — x1) + (w4 — x3)) = —sign (1 + 2g).

We observe that the direction of the second invariant parabola depends on sign (g(g + 1)).
On the other hand for systems (56) calculations yields:

C2=4g(g+1), &i6= @gQ(l +9)°(1 +39)(3 + 59),
17 = 2 (14 9)%(1 + 20)(1 + 3)(3 + 59)
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and hence we have
sign (C2) = sign (g9(g + 1)), sign (£16) = sign ((1+39)(3 + 59)),
sign (£17) = sign ((1 +2¢9)(1+39)(3+ 59)).

Thus we determine the following configurations:

(2<0,&6<0 (ie. =3/5<g<—1/3) = (x4 — x1)(24 — 23) < 0 = Config. P.067,
(2<0,86>0,87<0 (ie. =1 <g<—=3/5) = x4>x1,24>23 = Config. P.08S;
(2<0,&16>0,&7>0 (i.e. —1/3<g<0) = T4 < X1, T4 < T3 = Config. P.69;
>0, &7 <0 (ie. g< —1) = 34> 21, T4 > T3 = Config. P.70,
C2>0,&7>0 (le. g>0) = 14 <1, Ty < T3 = Config. P.71.

2.1.2: The subcase § = 0. This condition implies (g — 1)(g+2) = 0 and since for systems (56)
we have

G6=(9—1)(1+g)(2+5g+5g9)/8

we consider two possibilities: (g # 0 and (g = 0.

2.1.2.1: The possibility (s # 0. In this case the condition # = 0 implies ¢ = —2. Then we

get the system

5
¢:—§+%—2x2+xy, g =—y(5+ 3z — 2y)

which besides the invariant parabolas
Oy (z,y) = 22—y =0, Oy (z,y) = Sr 4422 +y=0

possesses only one invariant line y = 0. This means that the condition ¢ = —2 does not imply the
appearance of an additional parallel invariant line. So since we have ¢ = —2 < —1 we arrive at the
configuration Config. P.70 (detected above).

2.1.2.2: The possibility (¢ = 0. Then 8 = 0 implies g = 1 and we arrive at the system
b=—dr—y+aitay, §=2yly—4),
possessing the invariant lines y = 0 and y = 4 as well as the invariant parabolas
Oy(z,y) =2’ —y=0, Py(z,y)=—-dx+2>+y=0.
In this case we obtain the configuration Config. P.72.

2.2: The case By = 0. Considering (57) and (58) the condition By = 0 implies g = —2/3 and we

arrive at the system

. or oy 22° 1
-z _J_ == = _y(l—=5 6y). 59
P=s—g 3t ¥ 33/( x + 6y) (59)

possessing the invariant lines y = 0 and y = x — 1/4 as well as the invariant parabolas
Oy(z,y) =2 —y=0, Py(x,y)=z—42"+y=0.

We determine that the invariant line y =  — 1/4 is tangent to the invariant parabola ®(z,y) =0
at the point My(1/2,1/4) as well as to the parabola ®o(z,y) = 0 at the point Ma(1/4,0). So it is
not too difficult to find out that in this case we get configuration Config. P.73.

Thus in the case By = 0 and &15 # 0 we proved the following lemma.
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Lemma 8. Assume that for systems (42) the conditions By = 0 and &15 # 0 hold. Then these
systems possess the following configurations if the corresponding conditions are satisfied:

By#0,0#0, (<0, &6<0 = Config. P.67;
By #0,0#0, (<0, &6>0,87<0 = Config.P.68;
By #£0,0#0,(<0,&6>0,&7>0 = Config. P.69;
By #0,0#0,(2>0,&7<0&7>0 = Config. P.70;
By#0,0#0,0>0,6>0&7>0 = Config. P.71;
By#0,0=0,( #0 = Config. P.70;
By#0,0=0,(=0 = Config. P.72;
By=0 = Config. P.73.

2: The possibility £;5 = 0. Then considering the proof of Lemma 7 we may assume 1+3¢g = 0. Then

g = —1/3 and we arrive at the 1-parameter family of systems
2
2
i;:nm—%—%—i—xy, y':§y(3n—2x+3y), (60)

which besides the invariant parabolas
O (z,y)=2>—y=0, Py(z,y)=9In>—6nz+z°+ (9n—1)y =0,
possesses the invariant line y = 0. Considering Lemmas 1 and 2 we calculate

By = —8(1 4+ 3n)(9n — 1)(12n — 1)y*/9, D = 4096n5(9n — 1)/243,
0 =160/9 #0, (5= —4256n?/9, Ro=28(9n —1)/81.

So we discuss the cases By # 0 and By = 0.

2.1: The case By # 0. Then by Lemmas 1 and 2 we could not have another invariant line.

On the other hand considering (45) systems (60) possess four finite singularities M;(x;,y;) (i =
1,2,3,4) with the coordinates

1 1
21 =0,y =0; x9=3n, y2 =0; x374:§(1:t\/1—9n),y374:§(2—9nj:2\/1—9n).

We observe that in this case we have n(1 — 9n) # 0 due to (5R2 # 0 and we conclude that all
finite singularities are distinct. Moreover we determine that the invariant line y = 0 is tangent to
the parabola ®(x,y) = 0 at the singular point M;(0,0) as well as to the parabola ®9(x,y) = 0 at
M2 (3%, O) .

Since D # 0 and sign (1 — 9n) = —sign (D) we examine two subcases: D < 0 and D > 0.

2.1.1: The subcase D < 0. Then 1 —9n > 0 (ie. n < 1/9) and we arrive at the unique
configuration Config. P.7/ independently of the position of the singularity Ms(3n,0) with respect of
M;(0,0).

2.1.2: The subcase D > (0. This implies 1 — 9n < 0, i.e. the singularities M3 and M, are
complex and in this case we arrive at the configuration Config. P.75.
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2.2: The case By = 0. Since 9n — 1 # 0 due to Ry # 0 the condition By = 0 yields

(1+3n)(12n — 1) = 0.

1.2.1: The subcase 1 4+ 3n =0. Then n = —1/3 and this leads to the system

i ety Ly j 2( 1 — 2z + 3y)
rXL=—=T— -Yy— = X = —Yy(—1 — 2o .
3¢ 3Y 3 v 9=3Y y

Then applying the transformation x; = (1 —z)/4, y1 = (y — x)/4, t; = 4t we get system (59)
possessing the configuration Config. P.73.

1.2.2: The subcase 12n — 1 = 0. This implies n = 1/12 and we arrive at the system

11 1 1
b=gor = gy - §w2 +ay, § =gyl —8r+12y),

which via the affine transformation 1 = —z+1/2, y; =y —x + 1/4 can be brought to the system
(59) possessing the configuration Config. P.75.
3.1.3 The statement (.As3)

In this case the conditions {4 = (5 = 0 and considering (44) and the condition {; # 0 (i.e. (g —
2)(g + 3)) we get the condition

1
14+4g+3¢°+4n =0 = n=—(1+g)(1+3g).

This leads to the family of systems

—_

1 1
#=2(l+9)(1+ 39)° — 11+ 91 +39)z -1 + 9)y + g2* + wy,

1 ) 1 ) (61)
Y =1(1 +9)(1+39)°z — 5(1 +9)(1+39)y + (g — Dzy + 2y

possessing the parabola ®(z,y) = 2> — y = 0 which is of multiplicity 2.

Following the statement (\Ag) for the above systems we calculate

G=2(9-2(B+g), @=49(1+9), =8(1+29)° G=¢ =0,
Ro=—g(1l+9)(g—2)(3+9)(8+27g +27¢%)/8, (62)
By =g"(1+ g)*(1 4 29)(1 + 39)*(2 + 39)%/8.

Therefore since the quadratic polynomial 8 4+ 27g + 27¢? has negative discriminant, for systems (61)
we have the condition:

C1GBR2#0 = g(1+9)(9—2)(3+g)(1+2g) #0. (63)

According to Lemma 1 for the existence of an invariant line of systems (61) the condition By = 0
is necessary. So we discuss two cases: By # 0 and By = 0.
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3.1.3.1 The case By # 0. Then we could not have any invariant line. We determine that
systems (61) possess three finite singularities M;(z;,y;) (i = 1,2,3) with the coordinates

1+3 1+ 3g)? 1
T = — 5 g7y1=%; x2,3=§(1+9i\/—29(1+9))7

+1
Y2,3 = gT(l —g+2y/-29(1+g)).

(64)

We point out that M; is a multiple singularity of systems (61). Indeed, applying the corresponding
translation, we could place M; at the origin of coordinates and we arrive at the systems

1
T =— 59(39 + 1Dz — (29 + Dy + go* + xy,

1
y =599+ 1)’z 4 (29 +1)(3g + 1)y + (9 — Dy + 297,

where My(0,0) is a singularity of the above systems corresponding to the singularity M.
Considering [1], we calculate the following invariant polynomials: pg = ps = 0 and

19(9 +1)(3g+1)(3g + 2)[g(1 + 3g)a”® + 4gay + 2y°] # 0,

M2=§

due to the condition By # 0. By [1, Lemma 5.2, statement (ii)] the point My is of multiplicity
exactly 2.

We calculate
Q(x1,y1) = ®(2,12) = P(23,3) =0

and clearly all three singularities are located on the invariant parabola. On the other hand the
singular points Ms and M3 could be either complex or real or coinciding, depending on the value of
the product g(g+1) # 0 (due to (2 # 0). Since (2 = 4¢g(g + 1) we consider two subcases: (2 < 0 and
(2 > 0.

1: The subcase (o < 0. This implies g(g+1) <0, i.e. —1 < g < 0. In this case all three singularities
located on the invariant parabola are real and we need to determine the position of the double
singularity M; with respect to the simple singularities M and M3. So considering (64) we calculate:

(z2 — w1)(z3 — 21) = (1 + 39)(2 4 39)/2 = sign ((z2 — z1)(z3 — 1)) = sign ((1+ 39)(2 + 39)).
On the other hand for systems (61) we calculate

§15 =2(1 +3g)(2+39) #0

due to By # 0. Therefore in the case 15 < 0 the double point M; is located between the singularities
My and M3 and we arrive at the configuration Config. P.76.

In the case 15 > 0 the double point M; is located outside the curvilinear interval (Ms, M3) and
we get the configuration Config. P.77.

2: The subcase (2 > 0 Then g(g + 1) > 0 and clearly the singularities My and Mj3 are complex. In
this case evidently we can get the unique configuration Config. P.78.
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3.1.3.2 The case B; =0. Considering (62) and the condition (63) we conclude that the condi-
tion By = 0 is equivalent to (14 3¢)(2 + 3¢) = 0.

If g = —1/3 then we arrive at the system
&= —(y+a® —3wy)/3, §=-2y(2x—3y)/3 (65)

possessing the invariant line y = 0 which is tangent to the double invariant parabola at the singular
point M;(0,0). Moreover in this case the singular point Mj coalesced with M; producing a triple
singularity. As a result we get the configuration Config. P.79.

Assume now g = —2/3. Then we get the system
&= (14 2z — 4y — 162° + 24xy) /24, o = (x + 2y — 20zy + 24y°) /12

which via the affine transformation 21 = —x +1/2, y; =y — x + 1/4 can be brought to the system
(65) possessing the configuration Config. P.79.

Thus we have proved the following lemma.

Lemma 9. Assume that for a quadratic system the conditions (As) are satisfied. Then this system
possesses one of the following configurations if and only if the corresponding conditions are satisfied,

respectively:
B 7& 0, <0,&5<0 = Config.P.76;
By #0, (<0, &5 >0 = Config. P.77;
By #0,(>0,&5>0 = Config. P.78;
B =0 = Config. P.79.

3.1.4 The statement (A4)

In this case the condition {4 = Re = 0 holds and considering (44) and the condition ¢; # 0 (i.e.
(9—2)(g+3) #0) we get (8+27g +27¢g?)(1 + 6g + 59> + 4n) = 0. However the discriminant of the
quadratic polynomial 8 + 27¢ + 27¢? equals —135 < 0. So we obtain the condition

1
146g+5¢°+4n=0 = n= —1(1+9)(1 +59).
This leads to the family of systems

1
=2 (14— 22)(1+ 49+ 39° — dgz — dy),

o1 ) 1 , (66)
y=1(1+9) (14 3g)x — 5(1+9)(1+5g)y+(g—1)xy+2y ,

possessing the invariant parabola ®(x,%) = 22 — y = 0 and the invariant line z = (g +1)/2.

Following the statement (LA4) for the above systems we calculate

G =2(g—2)(3+9), GG=49(1+g), ¢ =38(1+29)
G =0="Ra, (=19g9-2)*(1+9)’B+9), (67)
By =0, By = —648¢°(1+ ¢)°(1 + 3¢)(2 + 3¢)z™.
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Therefore for systems (61) we have the condition:

QGGG #0 = g(1+9)(9—2)(3+9)(1+29) #0. (68)
We discuss two possibilities: By # 0 and Bs = 0.

1: The possibility By # 0. In this case by Lemma 1 systems (66) could not possess invariant lines
in other directions than the invariant line z = (g +1)/2.

On the other hand by Lemma 2 these systems could possess an invariant line parallel to the
existent one if § = (g — 1)(g + 2) = 0. However a straightforward calculation shows us that neither
the condition g = 1 nor g = —2 does not imply the appearance of an additional parallel invariant
line.

Next we determine that systems (66) possess three finite singularities M;(x;,v;) (i = 1,2,3) with
the coordinates

l+g (1+g)? l+g 1
= — = — = — :71 1 3 .
x1 2 y Y1 A ;X2 2 , Y2 4( +g)( + g)a
oo L1439 ~ (1+3g)°
3= 75 ,y3—74 .

It is not difficult to detect that the invariant line x = (g 4+ 1)/2 intersect the invariant parabola at
the singular point M;.

We point out that M; is a multiple singularity of systems (66). Indeed, applying the corresponding
translation, we could place M; at the origin of coordinates and we arrive at the systems

i=g2®+ay, §=g(1+9)°z—g(l+g)y+(-1+g)zy+2y°

where My (0,0) is a singularity of the above systems corresponding to the singularity Mj.

Considering [1], we calculate the following invariant polynomials: pgy = pus = 0 and

p2 = g*(1+ 9)*(1 + 29)z(gz +y) # 0,

due to the condition (68). By [1, Lemma 5.2, statement (ii)] the point M is of multiplicity exactly 2.

On the other hand the singularity M> is located on the invariant line whereas M3 is located on the
invariant parabola and both these singularities are floating. So we need to determine the position of
these points with respect to the double singularity M;. So we calculate:

y2—y1=g(1+9)/2 = sign(y2 —y1) =sign (9(g + 1)),
xg—x1 = —(1+2g9) = sign(z3 —x1) = —sign (1 + 2g),

and we observe that for systems (66) we have (; = 4g(g + 1) and hence sign ((2) = sign (g(g + 1)).
Thus we arrive at the following configurations:
(2<0,294+1<0 (le. -1<g<—-1/2) = ya<uyy,x3>wx1 = Config. P.80,
(2<0,294+1>0 (ie. —1/2<g<0) =y <y, x3 < a1 = =~ Config. P.80;
(2>0,29g4+1<0 (ie. g<—1) = yo >y1, x3 >x1 = Config. P.81;
(2>0,29g4+1>0 (i.e. g >0) = Yo >y, x3 < x1 = =~ Config. P.81.
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2: The possibility By = 0. Considering (67) and the condition (68) we conclude that the condition
By = 0 is equivalent to (1 + 3¢)(2+ 3g) = 0.

If g = —1/3 then we arrive at the system
t=—0Bx—1)(x—3y)/9, v=2y(1—06x+9y)/9 (69)

possessing additionally the invariant line y = 0 which is tangent to the invariant parabola at the
singular point M3(0,0) and intersects the invariant line x = 1/3 at the singular point Ms(1/3,0).
Therefore we obtain the configuration Config. P.82.

Assume now g = —2/3. This leads to the system

i=—(6x—1)(8z —1—129)/72, = (—z+ 14y — 60zy + 72y%)/36
which via the affine transformation 1 = —x + 1/2, y; = —x + y + 1/4 we could be brought to
system (69) possessing the configuration Config. P.82.
Thus we have proved the following lemma.
Lemma 10. Assume that for a quadratic system the conditions (Ay4) are satisfied. Then this system

possesses one of the following configurations if and only if the corresponding conditions are satisfied,
respectively:

By #0, (<0 = Config. P.80;
By #0,( >0 = Config.P.81;
By =0, >0 = Config.P.82.

3.1.5 The statement (As)

According to Proposition 2 the condition {3 = 0 must be fulfilled. Considering (8) we get g = —1/2
and we arrive at the 2-parameter family of systems

& =m—+nx—y/d—2*/24+zy, §=2mz+2ny— 3zy/2+ 2> (70)
possessing the parabola ®(z,y) = 22 — y = 0. For these systems we calculate

Cl=—25/2, Go=—1, (3=0, C4=25(32m +8n — 1)/512,
Ry =375(32m + 8n — 1)/256, (71)
B; =m(16m — 4n — 1)(4m + 3n)(16m + 8n — 1)(32m + 8n — 1) /512.

3.1.5.1 The case B; # 0. We observe that the family of systems (70) is a subfamily of (7)
defined by the condition g = —1/2. Therefore it is clear that systems (70) possess four finite
singularities M;(z;, 9;) (i = 1,2,3,4) where considering (10) we have

ji = xi|{g:_1/2}7 gl = yi|{g:_1/2}7 1= 1527374°

As it was proved for the family (7) in the case D # 0 these systems could possess only two distinct
configurations: Config.P.1if D < 0 and Config. P.2if D > 0. The same two configurations could be
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obtained in the particular case g = —1/2, because this value of the parameter g is not a bifurcation
value for the mentioned two configurations.

Assuming D = 0 we get F1.F, = 0 where F; and F» are given in (9). So taking g = —1/2 we
follow the examination of the two possibilities: £ # 0 and & = 0.

1: The possibility & # 0. Then F; # 0 and hence the condition D = 0 implies F2 = 0. In this case
we arrive at the systems (11) which for g = —1/2 become

34+20)24v —3) 4?-—-9 1 1
Br202(v-3) 4w-9 1 1,

_(3+2v)2(4v—3)x7 40 —9 3 Lo
- 864 o4 YT T

For the above systems we calculate
€1 =25-271237803(20 — 3)2(3 + 20)%(9 + 20?), & = 27137802 (20 — 3)%(3 + 20)%(9 + 20?)?,

and clearly the condition £ # 0 implies &2 # 0. Therefore following the examination of the 2-
parameter family of systems (11) we conclude that the 1-parameter family of systems (72) could
possess the unique configuration Config. P.3.

2: The possibility & = 0. Then F; = 0 and we arrive at the systems (14) which for g = —1/2

become
(1+42u)? 1 —4u? 1 1,

SV R T L R R
(14 2u)? 1 — 4u? 3 9
= - = 2
) 39 T+ 3 ) B Ty + 2y,
possessing the invariant parabola ®(x,7y) = 22 —y = 0. For these systems we calculate:
27249129
£ = (4u® —1)%(2 +u?) /2048, & = W(W —1)3(2 +u?)

By =27 Bu(u? — 1)(4u? — 1)3

and due to the condition By # 0 we have & > 0 and &3 # 0.

So according to the investigation done for systems (14) in the case ¢ = —1/2 we get the configu-
ration Config. P.6 for &3 < 0 and Config. P.7 for &3 > 0.

3.1.5.2 The case B; = 0. Considering (71) and the condition {4 # 0 we deduce that By = 0 is
equivalent to
m(16m — 4n — 1)(4m + 3n)(16m + 8n — 1) = 0.

However considering Lemma 3 we have the following corollary.

Corollary 1. [Lemma 3] The condition (16m — 4n — 1)(16m + 8n — 1) = 0 for systems (70) could
be transferred to the condition m(4m + 3n) = 0 via an affine transformation.

It is important to point out that in the proof of Lemma 3 the transformed systems the parameter
g1 = —(1+ g) (see (18)) in the case g = —1/2 we get g1 = —1/2 and therefore the homogeneous
quadratic part of systems (70) is conserved.
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Taking into account the above corollary we conclude that it is sufficient to consider the condition
m(4m + 3n) = 0. (73)

For systems (70) we have
C1=25(32m +8n —1)/512, & = 328125m(16m + 8n — 1)(32m + 8n —1)/16 (74)

and we consider two subcases: £ # 0 and &4 = 0.

3.1.5.2.1 The subcase & # 0. Then m # 0 and from (73) we obtain 4m + 3n = 0. This
implies m = —3n/4 and we arrive at the family of systems

i=—3n/d+nx—y/d—2*/2+xy, §=—(n+y)(3z—4dy)/2 (75)

which is a subfamily of (25) defined by the condition ¢ = —1/2. Considering (27) for g = —1/2
we obtain the following four finite singularities M;(z;,v;) (i = 1,2,3,4) of systems (25) with the

coordinates 5 9
TL= VN, Yr= =N Ty ==V, Yo = o0 I3 = 0 Y3 = e

x4 = —4n, ys = —3n.

As it was mentioned for systems (25) the finite singular points M7, My and Ms are located on the
invariant parabola ®(z,y) = 22 —y = 0. Moreover M, and M, are the points of intersection of the

invariant line y = —n with the parabola.
On the other hand we have ®(x4,y4) = n(3 + 16n). Therefore we conclude that My could be
located on the invariant parabola if and only if either n = 0 or n = —3/16.

For systems (75) we calculate
By = —81(1 4 4n)(1 + 16n)%y*/128, & = —984375n(1 4 4n)(1 + 16n) /64

and due to {4 # 0 we have By # 0. We observe that due to {4 # 0 (i.e. n # 0) the singularities M;
and M> could be either complex or real. So we calculate

D = 3n%(3 4 161)%(9 + 16n)2/256

and hence in the case D # 0 we have sign (D) = sign (n). Moreover for D # 0 we have n(3+16n) # 0
and hence the singular point My could not be located on the invariant parabola. So we discuss three
possibilities: D < 0, D > 0 and D = 0.

1: The possibility D < 0. This implies n < 0 and then the finite singularities M; and M are real.
In order to determine the position of Mg with respect to My and My we calculate

(x5 — x1)(z3 — w2) = (9+ 16n)/16 = sign ((z3 — z1)(z3 — x2)) = sign (9 + 16n),
($3 — :El) + (SC3 - 1’2) = 3/2 > 0.

Therefore we conclude that in the case (z3 — x1)(x3 — z2) > 0 we have 3 —x; > 0 and x3 — 2 > 0.
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On the other hand for systems (75) calculations yield

698726655

2
& = 5048 (14 16n)%(9 + 16n)

and since {9 # 0 (due to D(y # 0) we obtain sign (§y) = sign (9 + 16n).

So in the case D < 0 we arrive at the configuration Config. P.17 if & < 0 and Config. P.18 if
&9 > 0.

2: The possibility D > 0. Then n > 0 and the singularities M; and Ms are complex. Since due to
D > 0 (i.e. n(3+ 16n) # 0) the singularity M4 does not lie on the invariant parabola we get the
configuration Config. P.20.

8: The possibility D = 0. Since £, # 0 we have n # 0 and therefore the condition D = 0 implies
(34 16n)(9+ 16n) = 0. We observe that £ = 0 if and only if 9 + 16n = 0 because 1 + 16n # 0 due
to &4 # 0.

Thus we arrive at the configuration Config. P.23 if {9 # 0 and Config. P.26 if & = 0.

3.1.5.2.2 The subcase £ = 0. Then considering (74) and the condition (4 # 0 we obtain
m(16m + 8n — 1) = 0. Taking into consideration Corollary 1 it is sufficient to examine the case
m = 0. Then we obtain the 1-parameter family of systems

i =nr—y/4—2*/2+zy, 7=y(4n — 3z +4y)/2 (76)

which is a subfamily of (31) defined by the condition g = —1/2. Considering (34) for g = —1/2 we
obtain that the above systems possess the following four finite singularities M;(x;,v;) (i = 1,2,3,4)
with the coordinates

1 1
x1=0, y1=0; 22=2n, yp=0; w34 = §(3 +v9 —64n), Y34 = 3—2(9 — 32n 4+ 3vV9 — 64n).

As it was mentioned for systems (31) the singular points M3 and M, are located on the invariant
parabola. Moreover the singularity Ms lies on the invariant line y = 0 and its position with respect to
M; depends on sign (n). It is clear that M coalesces with Mj if and only if n = 0. The singularities
M3 and M, are complex (respectively, real) if 9 — 64n < 0 (respectively, 9 — 64n > 0) and they
coincide (producing a multiple point) if 9 — 64n = 0.

On the other hand for systems (76) we calculate:

¢4 =25(8n —1)/512, D = 3n°(64n — 9)/4,

2,4 2 (77)
By = —81(1 +4n)(8n — 1)%y1 /128, &1 = 524906375 n(8n — 1)%/81

and evidently due to ¢4 # 0 we have sign (£;1) = sign(n) and if D # 0 we obtain sign (D) =
sign (64n — 9).

So considering Lemma 1 we discuss two possibilities: By # 0 and By = 0.

1: The possibility By # 0. Then by Lemma 1 systems (76) could not have invariant lines in other
directions different from y = 0. We examine three cases: D < 0, D > 0 and D = 0.
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1.1: The case D < 0. This implies 9 — 64n > 0 and hence the singularities M3 and M, are real.
In order to determine the position of Mg and My with respect to My we calculate

(z3 — x1) (x4 — 21) =n = sign ((z3 — 21)(z4 — 21)) = sign (n),

(x3 —x1) + (14 — 1) = 3/2 > 0.

Therefore we conclude that in the case (x3 — x1)(x4 —x1) > 0 we have 3 — 21 > 0 and x4 — 21 > 0.

So it is not too difficult to determine that in this case systems (76) possess the configuration
Config. P.31 if £&11 < 0 (i.e. n < 0) and Config. P.35 if &1 > 0 (i.e. n > 0).

1.2: The case D > 0. Then 9 — 64n < 0 and systems (76) possess two real and two complex
finite singularities. Since the condition 9 — 64n < 0 implies n > 0 we arrive at the configuration

Config. P.37.

1.3: The case D = 0. Then we obtain n(9 — 64n) = 0 and since &;1; = 0 is equivalent to n = 0,
in the case £11 # 0 we have 9 — 64n = 0 and the singular points M3 and My coalesce producing a
double singular point and we arrive at the configuration Config. P.40.

Assume now &1 = 0, i.e. n = 0. Then we have a coalescence of three finite singularities:
My = My = M;. As a result we get the configuration Config. P.41.

2: The possibility By = 0. Considering (77) and the condition (4 # 0 we obtain n = —1/4. Then we
arrive at the system

b= —x/4—y/d—2*)2+xy, §=y(—1—3x+4y)/2

which belongs to the family of systems (39). Therefore since g = —1/2 we have —1 < g < 0 and
considering the examination of the family (39) we obtain the configuration Config. P.52.

Thus we have proved the following lemma.

Lemma 11. Assume that for a quadratic system the conditions (As) are satisfied. Then this system
possesses one of the following configurations if and only if the corresponding conditions are satisfied,

respectively:
B1#0,D<O0 = Config. P.1;
By #0,D>0 = Config. P.2;
B1#0,D=0,& #0 = Config. P.3;
B1#0,D=0,£=0,83<0 = Config. P.6;
B1#£0,D=0,£4=0,8>0 = Config. P.7;
B1=0,6&4#0,D<0,&&<0 = Config. P.17;
B1=0,8#0,D<0,&>0 = Config.P.18;
B =0,&%#0,D>0 = Config. P.20;
B1=0,8#0,D=0,&&#0 = Config. P.25;
B1=0,84#0,D=0,&%&=0 = Config. P.26;
B1=0,64=0,By#0,D<0,&1<0 = Config. P.31;
B1=0,64=0,B#0,D<0, &1 >0 = Config. P.35;
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B =0,8=0,By#0,D>0 = Config. P.37;
B =0,6=0,By#0,D=0,&1#0 = Config. P.40;
B = 0, 54 =0, B 75 0, D= 0, 511 =0 = Conﬁg.P.41;
B1=0,8=0,By=0 = Config. P.52.

3.1.6 The statements (Ag), (A7) and (Ag)

According to Proposition 2 all these three statements have the common condition (5 = (4 = 0.
Considering (71) we have to force the condition 32m +8n —1 = 0 and we get m = (1 —8n)/32. This
leads to one-parameter family

@ =(4r —1)(8n — 1 —4x + 8y)/32, 9 = (x — 8nx + 32ny — 24ay + 32y*)/16 (78)
which possess the following two invariant parabolas: ®1(z,y) = 22 —y = 0 and
®y = (8n — 1)(16n — 1) — 4(16n — 1)x + 162* 4+ 8(16n — 3)y = 0.
Moreover these systems have the invariant line z = 1/4.
Following the statements (\Ag) — (Ag) for the above systems we calculate

G=-25/2, Cb=—1, (3=C1=0, (5= —%(1671 — 1%, Ry=—(16n—-3). (79)

Since we have the unique parameter n, according to Proposition 2 we arrive at the statements:
(Ag) if Ry #0; (A7) if s =0; (Ag) if Ra=0.

We examine each one of these three possibilities.

3.1.6.1 The possibility (R # 0. Then (16n—1)(16n—3) # 0 and by Proposition 2 (statement
(Ag)) the invariant parabolas ®i(x,y) = 0 and ®o(z,y) = 0 are distinct. For these systems we

lculat
calculate 81

2048
and since € # 0 by Lemma 2 these systems could possess an invariant line parallel to the existent

By =0, By=— (8n — 1)%(1 + 16n)%z*, 6 =18 #0,
one.

On the other hand according to Lemma 1 for the existence of an invariant line in other direction
different than x = 0 the condition By = 0 is necessary. So we discuss two cases: By # 0 and Bs = 0.

1: The case By # 0. We determine that systems (78) possess four finite singularities M;(x;,y;)
(1 =1,2,3,4) with the coordinates

1 1 1 1—8n
Tr=—7, Y1 =757 2=, Y2 = ] )
(80)

4 16 4
rsa= (143 T60), ysa= (2~ S0+ V3~ 10n).

We observe that the invariant parabolas have two points of intersection: M3 and My. Moreover we
observe that the invariant line x = 1/4 intersects the parabola ®;(x,y) = 0 at the point M; and the
parabola ®s(x,y) = 0 at the point M.
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So all four finite singularities are fixed as the intersections of invariant curves and their positions
are determined by the values of the parameter n. We observe that the finite singularities M3 and
My are real if 3 —16n > 0 and complex if 3 — 16n < 0.

On the other hand for systems (78) we have
D = 3(16n — 3)3(16n — 1)2/1048576 # 0

due to (sRa # 0. Therefore sign (D) = sign (16n — 3).

So in the case By # 0 we arrive at the configuration Config. P.83 if D < 0 and Config. P.84 if
D > 0.

2: The case By = 0. Considering (79) this implies (8n — 1)(1 + 16n) = 0.

2.1: The subcase 8n — 1 = 0. Then n = 1/8 and we get the system

t=—(dx—1)(r—2y)/8, y=y(l—6x+8y)/4 (81)
possessing the following five invariant curves (two parabolas and three invariant lines):
Oy (z,y) =2 -y, Po(z,y) = —ax+42® -2y, z=1/4, y=0, y=x—1/4,

So it is easy to detect the unique configuration Config. P.85.

2.2: The subcase 1+ 16n = 0. In this case n = —1/16 and we arrive at the system

&t =—(4e —1)(3+4+ 8z — 16y)/64, y=—(16y —1)(3z — 4y)/32
which can be brought to the system (81) via the following affine transformation:
r1=x/241/8, y1=y/2—1/32, t; =2t.

So in this case we get the same configuration Config. P.87.

3.1.6.2 The possibility (; = 0. Considering (79) we get n = 1/16 and this leads to the system
i = —(4x —1)(1 + 8z — 16y) /64, ¢ = (x + 4y — 48xy + 64y?)/32.

possessing the invariant line z = 1/4 and the double invariant parabola ®;(z,y) = 22> —y = 0
because the conditions provided by the statement (A7) of Proposition 2 are fulfilled. In this case
the singular points M; and My coalesced and it is not difficult to detect that in this case we get the
configuration Config. P.86.

3.1.6.3 The possibility Ry = 0. Considering (79) this implies n = 3/16 and we obtain the
system

i =—(4r —1)(—1 + 8z — 16y)/64, = (—x + 12y — 48zy + 64y%)/32
possessing the unique invariant parabola ®(z,y) = 22 —y = 0 (according to the statement (Ag)
of Proposition 2) and the invariant line # = 1/4. Considering (80) we determine that in this case
the singularities M3 and My coalesced with M; producing a triple singularity. So we arrive at the

configuration Config. P.87.

Thus we have proved the following lemma.
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Lemma 12. Assume that for a quadratic system the conditions n > 0, x1 = 0, (1(o # 0 and
(3 = C4 = 0 hold. Then this system possesses one of the following configurations if and only if the
corresponding conditions are satisfied, respectively:

Ro#0,(#0, Bo#0, D<0 = Config. P.83;
Ro#0,C#0, By 20, D>0 = Config.P.84;
Ro 75 0, ¢ 75 0, Bo=0 = Config. P.85;
Ro#0, (=0 = Config. P.86;
Ra =0 = Config. P.87.

3.1.7 The statement (Ayg)

According to Proposition 2 the condition (2 = 0 must be fulfilled. Considering (8) we get g(g+1) = 0.
Following the proof of Lemma 3 we conclude that the condition g + 1 = 0 could be brought to the
condition g = 0 due to an affine transformation (see formulas (18)).
So it is sufficient to examine only the case g = 0. In this case we arrive at the 2-parameter family
of systems
F=m4nz—y/24+zy, §=2mz+2ny—xy+ 2> (82)
possessing the parabola ®(z,y) = 22 —y = 0. Considering the statement (Ag) for these systems we

calculate

G=-12, (=0, ¢=(2m+n)/2, R1 =0, R2=06(2m+n), (83)
By =2m(4m — 1 — 2n)(2m + n)>.

Remark 5. Following [1, Lemma 5.2, statement (i)] for systems (82) we calculate

po =0, p1=-22m+n)y#0

due to the condition (¢ # 0. Therefore according to [1, Lemma 5.2, statement (i)] we conclude
that one of the singular points of systems (82) has gone to infinity and coalesced with the infinite
singularity N[1: 0 : 0] producing a double infinite singularity of the type (1,1).

3.1.7.1 The case B; # 0. We observe that the family of systems (82) is a subfamily of (7)
defined by the condition g = 0. Considering the finite singularities of (7) given in (10) we remark
that in the case g = 0 the singular point M (z1,y1) with the coordinates

2m+n—+gn _2m
Ji+g) 11y

has gone to infinity. According to Remark 5 this singularity coalesced with the infinite singularity

Tr] =

N[1:0:0] producing a double infinite singularity of the type (1,1).
Therefore we deduce that systems (82) possess three finite singularities M;(Z;, 9;) (i = 2,3,4)
where considering (10) we have

T; :xi‘{gzo}v ﬂi:yi’{g:0}7 1227374
So taking into consideration [1, Proposition 5.1] for systems (82) we calculate

po =0, D =48(2m + n)*(=2m + 108m? + 36mn — n® + 16n3), R = 12(2m + n)*y>.
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We observe that R # 0 due to (s # 0 and by Proposition 5.1 from [1] we have three finite distinct
real singularities if D < 0 and one real and two complex if D > 0. Considering the double point at
infinity of the type (1,1) we arrive at the configuration Config. P.88 if D < 0 and Config. P.89 if
D > 0.

Assume now that for systems (82) the condition D = 48 F2F, = 0 where
Fi=—2m+n)? Foy=—2m+108m?* + 36mn — n’® + 16n°.

Since Fj # 0 due to (g # 0 we conclude that the condition D = 0 is equivalent to F» = 0.

Setting a new parameter v similarly as in the generic case (see page 27) we arrive at the 1-parameter

family of systems

1 2(20 — 1 21 1
x:( +v) (20 )—U T — -y + w2y,

216 12 2
84

o (14+0)%(2v-1) v? -1 9y (84)

= xTr — — X

Y 108 G YTty

which is a subfamily of (11) defined by the condition g = 0.

We recall that systems (11) possess three finite singularities given in (13) and M; is of multiplicity
at least two. We observe that for ¢ = 0 the singular point M3 has gone to infinity and according
to Remark 5 this singularity coalesces with the infinite singularity N[1 : 0 : 0] producing a double
infinite singularity of the type (1,1).

Thus we deduce that systems (84) possess at most two different finite singularities M;(Z1, 91)
(multiple) and Ms(Z2, §2) where considering (13) we have

14w o (A+w)? . 1-20 _ (1—20)?

€T = 6 7y1:Ta I = 6 y Y2 = 36

We observe that the singular point Ms coalesces with the double point M; if and only if v = 0.

Thus considering the condition B; # 0 (i.e. systems (84) do not have any invariant line) we arrive
at the configuration Config. P.90 if v # 0 and Config. P.91 if v = 0.

On the other hand for systems (84) we calculate

1
= v
209952

Ly - 2)2(1+v)

20— 2)0(1+ 0%, G = o

3

and due to (g # 0 we conclude that the condition v # 0 is equivalent to & # 0. Therefore we get
the configuration Config. P.90 if & # 0 and Config. P.91 if &, = 0.

3.1.7.2 The case B; = 0. Considering (83) and the condition (s # 0 (i.e. 2m + n # 0) we
deduce that the condition B; = 0 is equivalent to m(4m — 1 —2n) = 0.

On the other hand for systems (82) we calculate:
& =9@m—1-2n)2m +n)*/4, (= (2m +n)/2

and due to (5 # 0 we conclude that the condition 4m — 1 — 2n = 0 is equivalent to & = 0. So we
discuss two subcases: £ # 0 and & = 0.
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1: The subcase & # 0. Then the condition By = 0 yields m = 0 and this leads to the 1-parameter
family of systems

;t:%(an—y—{—Qxy), y=y(2n —x + 2y) (85)
possessing the parabola ®(z,y) = 22 — y = 0 and the invariant line y = 0. Calculations yield
By = —324n*(1 + 2n)y*
and considering Lemma 1 we discuss two possibilities: Bs # 0 and By = 0.

1.1: The possibility By # 0. We determine that systems (85) possess three finite singularities
M;(zi, ;) (i = 1,2,3) with the coordinates

1 1
21 =0, y =0; :E273:Z(1j:\/1—16n), y273:§(1—8ni\/1—16n). (86)

According to Remark 5 the forth finite singularity coalesced with an infinite one and we have a
singular point of type (1,1).

We observe that M is the point of tangency of y = 0 with the invariant parabola and that My
and M3 are either real or complex or coinciding, depending on the value of 1 — 16n.

So in order to determine the positions of the real singularities M and M3 with respect to M; we
calculate:

(xe —x1) (3 —21) =n, (r2—21)+ (23 —21) =1/2> 0.

On the other hand for systems (85) calculations yield:
D = —48n5(1 — 16n), Ro = 6n

and therefore due to Ry # 0 we have sign (R2) = sign (n) and sign (D) = —sign (1 — 16n).
Thus in the case By # 0 we arrive at the following four configurations:

D<O0Ry<0 = Config.P.92
D<0Ry>0 = Config.P.93
D>0 = Config. P.94;
D=0 = Config. P.95.

1.2: The possibility Bs = 0. This implies (1 + 2n)n = 0 and since n # 0 (due to (g = n/2 # 0)
we get 1 +2n = 0. Then n = —1/2 and we obtain the system

1
i=§(—w—y+2xy), y=y(—1—x+2y), (87)

possessing two invariant lines: y = 0 and y = . Considering (86) we get three real finite singularities
and this leads to the configuration Config. P.96.

2: The subcase & = 0. This implies m = (1 + 2n)/4 and we arrive at the 1-parameter family of
systems

1 1
z :1(1 +2n + 4dnx — 2y + 4xy), Y= §($ + 2nx + 4dny — 2y + 4y%), (88)
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possessing the parabola ®(z,y) = 22 —y = 0 and the invariant line y = 2 — (2n + 1) /2. Calculations
yield
By = —81(1 + 2n)(1 + 4n)?(z — y)*

and considering Lemma 1 we examine two possibilities: By # 0 and By = 0.

2.1: The possibility Bs # 0. We determine that the above systems possess three finite singularities
M;(x;,y:) (i =1,2,3) with the coordinates

1 1

rr=—35, Y1 =

1 1
5 T 37273:5(11 —(144n)), y273:§(—2n:|: —(1+4n)).

We observe that the singularities My and Ms are the points of intersection of the invariant line
y =z — (2n+ 1)/2 with the invariant parabola and they are real (respectively complex; coinciding)
if 14 4n < 0 (respectively 1 +4n > 0; 1 + 4n = 0). And again in the case of real singularities we
calculate

(x2 —z1)(x3 —21) = (5+4n), (x2—x1)+ (x3—21)=2>0.

On the other hand for systems (88) calculations yield:
D = 3(1+4n)%(5 +4n)?/4, & = 8164197(1 + 4n)>(5 + 4n)/2

and therefore for D # 0 we have sign (D) = sign (1 + 4n) and sign (£3) = sign ((1 + 4n)(5 + 4n)).
Thus in the case By # 0 and D # 0 we arrive at the following configurations:
D<0,& <0 = Config. P.97,

D<0,& >0 = Config. P.98;
D>0 = Config. P.99.
Assume now D = 0. This implies (1 + 4n)(5 4+ 4n) = 0. Since (¢ = (1 + 4n)/4 # 0 we get
54 4n = 0 and this means that one of the singularities Ms or M3 coalesces with M. So we arrive
at the configuration Config. P.100.

2.2: The possibility By = 0. This implies (142n)(1+4n) = 0 and since 144n # 0 (due to (s # 0)
we get 1 +2n = 0. Then n = —1/2 and we arrive at system (87) the configuration Config. P.96.

Thus we have proved the following lemma.

Lemma 13. Assume that for a quadratic system the conditions (Ag) are satisfied. Then this system
possesses one of the following configurations if and only if the corresponding conditions are satisfied,

respectively:
B1#0,D<O0 = Config. P.88;
B #0,D>0 = Config. P.89;
B1#0,D=0,&&#0 = Config. P.90;
B #0,D=0,&&=0 = Config. P.91;
B1=0,§#0,By#0,D<0,Ra <0 = Config. P.92;
B1=0,6#0,Bs#0,D<0, Ry >0 = Config.P.93;
B1=0,&+#0,Bs#0,D >0 = Config. P.94;
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B =0, #0,B,#0,D=0 = Config. P.95;
B1=0,&#0, By =0 = Config. P.96;
B1=0,=0,B,#0,D<0,&& <0 = Config. P.97;
B1=0,6&=0,B,#0,D<0,& >0 = Config.P.98;
B1=0,6=0,Bs#0,D>0 = Config. P.99;
B =0,6&=0,B,#0,D=0 = Config. P.100;
B1=0,6=0,B=0 = Config. P.96.

Since all the statements provided by Proposition 2 are considered hence this proposition is proved. g

3.2 Systems in QSP, ., with the condition (; =0

In what follows we examine each one of the statements (B1) to (By) provided by Proposition 3.

According to this proposition a system satisfying the conditions provided by one of the statements

(B1) to (Br) could be brought to the form:
. 3y 2 — 2
x—m+nx—3+2m +zy, y=2mx+2ny+zy+2y°,

and this system possesses the invariant parabola ®1(z,y) = 22 —y = 0.

3.2.1 The statement (B;)

According to this statement for systems (89) we calculate y3 = 0 and

52875
x4 =61875 Uy Us, (r = ———— U lplhs, Ry = 3850561006875 Uy Uy Us,

where
Uy =14+4m+2n, Uy = 4m — 147 — 14n,

Us = 18m + 1372m? — 84mn + 27n® + 144n3.

On the other hand following Lemma 1 we calculate
By =m(2m —n)(2m +3n+9)(4m — 6n — 9)(1 + 4m + 2n)

and considering Lemma 1 we discuss two cases: By # 0 and B} = 0.

(89)

(90)

(91)

3.2.1.1 The case B; # 0. We observe that the family of systems (89) is a subfamily of (7)
defined by the condition g = 2. Therefore it is clear that systems (89) possess four finite singularities

M; (%, y;) (i =1,2,3,4) where considering (10) we have
B =il gy Ui = Vil gy, 1= 1,2,3,4.
On the other hand for systems (89) we have
D =48FiFs, Fi=TFil, p Fi=Fil, o

where F; and F» are given in (9).
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As it was proved for the family (7) in the case D # 0 these systems could possess only two distinct
configurations: Config. P.1 if D < 0 and Config. P.2 if D > 0. The same two configurations could
be obtained in the particular case g = 2, because this values of the parameter ¢ is not a bifurcation
value for the mentioned two configurations.

Assume now D = 0. This implies F1F» = 0 and we have to distinguish what factor vanishes. We
point out that the invariant polynomial & which governed the condition F; = 0 for systems (7) in
generic case (i.e. g # 2) vanishes for g = 2. So we have to use another invariant polynomial and for
systems (89) we calculate:

€18 = 17969284698750 Us Us F.

Therefore due to the condition (7 # 0 we obtain that the condition j-:l = 0 is equivalent to &5 = 0.
So we examine two subcases: 15 # 0 and &5 = 0.

1: The possibility &8 # 0. Then Fi # 0 and hence the condition D = 0 implies Fy = 0. Following
the investigation of the family of systems (7) in the particular case g = 2 we arrive at the systems
(11) which for g = 2 become

1 1 3
P=——2u+1)(v -1 - =(v* - 1)z — RLI + zy,

21 12 2
16 2 1 2 2 (92)
j=— (20 +1)(v—1)2% — ~(v? — 1 22
v 108( v+1)(v—1)x 6(11 Yy + xy + 2y

For the above systems we calculate

£ =277378(v — 4)%(v — 1)%0%(v? — 200 — 8)?,
€18 = 998293594375(v — 10) (v — 4)* (v — 1)*(20 + v)?(4 + 5v)?(v? — 20v — 8)/3188646

and we observe that due to &g # 0 the condition & = 0 is equivalent to v = 0.

Therefore following the examination of the 2-parameter family of systems we conclude that the
1-parameter family of systems (92) in the case B1{1s # 0 possesses the configuration Config. P.3 if
& # 0 and Config. P.4 if & = 0.

2: The possibility ;3 = 0. Then we have F1 = 0 and this implies D = 0. Following the investigation
of the family of systems (7) in the particular case ¢ = 2 we arrive at the systems (14) which for

g = 2 become

1
& :§(u —2)? — Z(UQ —4)r — 73211 + 227 + zy,
; . (93)
Y :Z(u —2)%z — —§(u2 — 4y + xy + 2%

For the above systems we calculate

Xa = —556875(u — 3)° (u — 2)*(13 + u) /4, & =9(u—3)*(u—2)*Z1/2,
_ =3 o =
&3 = 4904843226771, 71 = 74| fg—2}r 01 = o (g=2}"

where Z; and «; are the polynomials defined for systems (14) (see (16) and (17)).
We observe that due to the condition x4 # 0 we have

sign (&) = sign (Z1), sign (&) = sign (Z16),
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and following the examination of the 2-parameter family of systems (14) we conclude that the 1-
parameter family of systems (93) in the case By # 0 possesses the following configurations if and
only if the corresponding conditions are satisfied:

& <0 = Config. P.5;
£ >0,8 <0 = Config. P.6;
£>0,8>0 = Config.P.7,
& =0 = Config. P.8.

3.2.1.2 The case By =0. Considering (91) and the condition x4 # 0 (i.e. 4m+2n+1 # 0) we
observe that the condition B; = 0 is equivalent to

m(2m —n)(2m + 3n + 9)(4m — 6n — 9) = 0.
For systems (89) calculations yield:

19 = —12870000m (2m — n) (2m + 3n + 9),

94
fgo = —540m(2m — n) Ul u;),, 521 = —110106mu1 Z/{Q L{3, ( )

and we consider two subcases: £19 # 0 and £19 = 0.

3.2.1.2.1 The subcase {19 # 0. Then m(2m—n)(2m+3n+9) # 0 and therefore the condition
B; = 0 yields 4m — 6n — 9 = 0. This implies m = 3(3 + 2n)/4 and we arrive at the l-parameter
family of systems
& =(9 + 6n + 4nx + 82? — 6y + 4day) /4,

95
§ =(92 + 6na + 4ny + 22y + 4°) /2, (95)

which possess the invariant line y = x — (34 2n)/2 and four finite singularities M;(x;, y;) (i = 1,2,4)
with the coordinates

3 9 3+ 4n 3+ 2n
€T = —— = - x = — = N
1 27 Y1 47 2 4 y Y2 4 )
1 1
x374:§(1j: —(5+4n)), y374:§(—2—2n:|: —(5+4n)).

We determine that the singularities My, M3 and My are located on the invariant parabola. Moreover
M3z and My are the points of intersections of the invariant line y =  — (3 +2n)/2 with the invariant
parabola ®1(z,y) = 22 —y = 0. We calculate

1
Py (w2,y2) = E(Zln —3)(5+4n)
and we conclude that Ms could be located on the parabola if and only if 4n — 3 = 0, because for
systems (95) we have
X4GTR3 #0 < (54 4n)(9 + 4n)(69 + 4n) # 0. (96)

In order to determine the position of the singularity M; with respect to M3 and M, (when they are
real) we calculate

(z1— x3)(z1 — 24) = (21 +4n)/4 = sign ((z1 — z2)(z1 — x3)) = sign (21 + 4n),
(x1 —x3) + (r1 —x4) = —4 < 0.
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Thus we observe that for the parameter n we have the following possible bifurcation values: n €
{—21/4,-5/4,3/4}. Moreover we point out that due to the condition (96) the condition 5+ 4n # 0
must hold (i.e. n # —5/4) and hence the singularities M3 and My could not coincide.

On the other hand according to Lemma 1 for the existence of an invariant line in other direction
different than y = x the condition By = 0 is necessary. For systems (95) we calculate

By = —729(3 +2n)(9 4 4n)*(x — y)*, D = 243(4n — 3)%(5 + 4n)3(21 + 4n)?/4,
€9 = 16299895407840(9 + 4n)2(21 + 4n),

and in the case D # 0 we have
sign (D) = sign (5 + 4n), sign (&) = sign (21 + 4n).

Considering Lemma 1 we examine two possibilities: By # 0 and By = 0.

1: The possibility Ba # 0. We observe that for D # 0 all four finite singular points of systems (95)
are distinct. So we discuss two cases: D # 0 and D = 0.

1.1: The case D # 0. Considering the bifurcation values of the parameter n mentioned above we
determine for systems (95) the following configurations (depending on the parameter n):

D<0,{%<0 (ie. n<—21/4) = ~ Config. P.17,
D<0,&>0 (ie. —21/4<n<—=5/4) = ~ Config.P.19,
D>0 (ie.n>—5/4) = =~ Config. P.20.

1.2: The case D = 0. Then due to the condition (96) we get (4n—3)(21+4n) = 0 and we observe
that the condition 21 + 4n = 0 is governed by the invariant polynomial £9. Therefore we arrive at
the configuration Config. P.21 if & # 0 and Config. P.27 if & = 0.

2: The possibility By = 0. Considering the condition (96) we get n = —3/2 and this leads to the
system

.1 .

= 5(—39& +42% = 3y + 2zy), y=y(—3+x+2y),
possessing two invariant lines y = x and y = 0 besides the invariant parabola. So it is not too
difficult to determine that this system possesses the configuration Config. P.54.

3.2.1.2.2 The subcase &9 = 0. Then m(2m —n)(2m + 3n +9) = 0 and we examine two
possibilities: €99 # 0 and 29 = 0.

1: The possibility {20 # 0. In this case considering (94) we obtain m(2m — n) # 0 and therefore we
get 2m + 3n + 9 = 0. This implies m = —3(3 4+ n)/2 and we arrive at the 1-parameter family of
systems

1
& :5(2:(; —3)3+n+2z2+7y), §=-33+n)z+2ny+zy+ 2 (97)

which is a subfamily of (20) defined by the condition g = 2. The family (20) was investigated earlier
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and considering (21) for g = 2 (i.e. for systems (97)) we have

Zo=—4(24n), ag=21+4n, [y =33+ 4n,

By = —5832(3 +n)(9 + 4n)%(17 + 4n)z*, D = —9727,0333,
B3 = —9(9 + 4n)x?(1222 + 4na® — 24zy — Snxy — 5y%)/2,
€7 = 1057164750000 220332, €Es = 55640250000 Z2cr0 33,
18 = —T7277560302993750(6 + n)(9 4 4n) (57 + 4n)asfa.

We observe that for the parameter n we have the following possible bifurcation values:
n € {—33/4,—21/4,—2}. Considering (90) for systems (97) we obtain

X4CiR3 £ 0 & (64 n)(9 4 4n)(17 + 4n) (57 + 4n)By # 0 (98)

and therefore we have 3 B3 # 0. Moreover due to the above condition we obtain that £;g = 0 if and
only if ag = 0.

Thus in the case By # 0, following the investigation of the family (20) for ¢ = 2 we get the
following configurations (depending on the parameter n):

D <0, <0 (ie. n < —33/4) = Config.P.9;
D<0,&&>0,8 <0 (ie. —33/4<n<—21/4) = Config. P.11;
D<0,6>0,8>0 (le. —21/4<n< —2) = Config. P.12
D >0 (ie. n>-2) = Config. P.13;
D=0, &5 #0 (ie. n=-2) = Config. P.14;
D=0,¢&g=0(ie. n=-21/4) = Config. P.16.
Assuming By = 0 and considering the condition (98) we get n = —3 and we arrive at the system

1
T = 5(230 -3)2z+vy), y=y(—6+x+2y),

possessing two invariant lines x = 3/2 and y = 0 besides the invariant parabola. So it is not too
difficult to determine that this system possesses the configuration Config. P.49.

2: The possibility &9 = 0. Then from (94) we obtain m(2m — n) = 0 and we discuss two cases:
§21 # 0 and &1 = 0.

2.1: The case {1 # 0. Then m # 0 and we obtain m = n/2. This leads to the following
1-parameter family of systems

.on 3 .
x:§+na:—?y+2x2+xy, y=m+y)(x+2y), (99)

which is a subfamily of (25) defined by the condition g = 2. The family (25) was investigated earlier
and considering (27) for g = 2 (i.e. for systems (99)) we conclude that these systems possess four
singularities M;(z;,y;) (i = 1,2,3,4) with the coordinates

1 1 2n n
Ty =vVv—"n, Y1 =—N; T2=—V—"N, Yya=—1; LL'3:_§, y3:1’ 1.4:_?9 y4:§

For the above systems we calculate

0=-32#£0, By=—162(1+4n)(9+4n)%y", x4 = 61875n(1 + 4n)(9 + 4n)(1 + 36n)
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and therefore By # 0 due to x4 # 0. Following the examination of the configurations of systems
(25) for g = 2 we obtain:

a3 =4n—3, B3=1+4n, D =768na3B2, & = 3219732426240(9 + 4n)?ps
and due to x4 # 0 in the case D # 0 we have
sign (D) = sign (n), sign (&) = sign (Gs).
Moreover due to x4 # 0 (i.e. nf3 # 0) the condition s = 0 is equivalent to D = 0.

Thus we arrive at the following configurations: (depending on the parameter n):

D <0, & <0 (ie. n < —1/4) = Config. P.17
D <0,& >0 (ie. —1/4<n<0) = Config.P.19.
D >0 (ie. 3/4#n>0) = Config. P.20;
D=0 (ie. n=3/4) = Config. P.21.
2.2: The case €21 = 0. Then m = 0 and we obtain the 1-parameter family of systems
3
x':nx—?y+2m2+:cy, y=y(2n+x+2y), (100)

which is a subfamily of (31) defined by the condition g = 2. The family (31) was investigated earlier
and considering (34) for g = 2 (i.e. for systems (100)) we have

Z3=1-16n, By = —1458(3 +n)(1+2n)(3 +2n)y*, 0= —-32#£0,
Bs = —9n(7 +4n)z*y? /2 — 9(3 + n)zy® + 9(3 + n)y*/2 # 0,
D = 38881573, &2 = 1050n, x4 = 556875n2(1 + 2n)(3 + 16n).
So due to the condition x4 # 0 in the case D # 0 we have

sign (D) = —sign (Z3), sign (§22) = sign (n).

Thus in the case By # 0, following the investigation of the family (31) for ¢ = 2 we get the
following configurations (depending on the parameter n):

D <0, &2 <0 (ie. n<0) = Config. P.34;
D <0, &2 >0 (e 0<n<1/16) = Config.P.33;
D >0 (i.e. n>1/16) = Config. P.30;
D=0 (i.e. n=1/16) = Config. P.39.

Assume now By = 0. Since the condition x7 # 0 implies 1 + 2n # 0 we get (3 +2n)(3+n) = 0.
Since for systems (100) we have €3 = —225(3 + n)/4 we arrive at the configuration Config. P.54 in
the case €23 # 0 (then n = —3/2) and Config. P.49 in the case &3 # 0 (i.e. n = —3).

3.2.2 The statements (Bz2), (B3) and (By)

According to Proposition 3 all these three statements have the common condition (7 = 0. Considering
(90) and the condition y4 # 0 we have to force the condition Us = 4m — 147 — 14n = 0 and we get
m = 7(21 4+ 2n)/4. This leads to 1-parameter family

& =(147 + 14n + 4nz + 82° — 6y + 4xy) /4,

101
y =(147x + ldnz + 4ny + 2zy + 44%) /2, (101
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for which we calculate

X4 = 61875(37 + 4n) (69 + 4n) (357 + 4n) (301 + 36n),

102
(s = 5(21 + 4n)%/4, R4 = 19500(33 + 4n). (102)

So following Proposition 3 we have to distinguish three possibilities: (R4 # 0 (statement (Bz)),
(s = 0 (statement (Bg)) and R4 = 0 (statement (B4)). We examine each one of these possibilities.

3.2.2.1 The possibility (sR4 # 0. Then 33 4+ 4n # 0 and then systems (101) possess the
following two invariant parabolas:

y(z,y) =22 —y =0, Po(x,y) = —(21 + 2n)(21 +4n) + 6(21 + 4n)z + 2422 — 2(33 4 4n)y = 0.

We observe that systems (101) is a subfamily of (42) defined by the condition g = 2. The family
(42) was investigated earlier and considering (45) and (47) for g = 2 (i.e. for systems (101)) we have

Zy=—(33+4n), aq=133+4n, B4 =861+ 100n, 0= —32+#0,
D = —3(21 4+ 4n)2Z40363 /4, (=24 >0, &4 = 35100000 ayfy,
By = 105(21 + 2n)(33 + 4n) (37 + 4n) (49 + 4n)(69 + 4n) /2.

We observe that due to (sR4 # 0 we have Z4(21 4+ 4n) # 0 and in the case D # 0 we obtain
sign (D) = —sign (Z4), sign (£14) = sign (a484).

Moreover the direction of the invariant parabola ®o(x,y) = 0 depends on sign (33 + 4n).

According to Lemma 1 for the existence of an invariant line of systems (102) the condition B; = 0
is necessary. So we consider two cases: By # 0 and B; = 0.

3.2.2.1.1 The case By # 0. Then we could not have any invariant line. In this case for
the parameter n we detect only three possible bifurcation values: n € {—133/4,—861/100, —33/4}.
Moreover we point out that due to the condition R4 # 0 we have Z; # 0 (i.e. n # —33/4).

So considering these possible bifurcation values of the parameter n in the case By # 0 for systems
(101) we determine the following configurations (depending on the parameter n):

D <0, &4 <0 (ie. —133/4 <n < —861/100) = Config. P.60;
D <0,&4>0,84<0 (ie. n<—133/4) = Config. P.61;
D <0,64>0, >0 (ie. —861/100 <n < —33/4) = Config. P.61;
D >0 (i.e. n > —33/4) = Config. P.63,
D=0, 84#0 (i.e. n=—133/4) = Config. P.66;
D=0, 84, =0 (i.e. n=-861/100) = Config. P.66.

We observe that we could join the above conditions as follows:

D <0,&4<0 = Config.P.60;

D<0,&4>0 = Config.P.61;
D>0 = Config. P.635,
D=0 = Config. P.66.
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3.2.2.2 The case B; =0. Considering (102) and the condition y4(sR4 # 0 we observe that the
condition By = 0 is equivalent to 49+44n = 0. This implies n = —49/4 and the corresponding system
(101) possesses the invariant line y = 49/4 and we obtain the configuration which is equivalent to

Config. P.71.

3.2.2.3 The possibility (s = 0. Considering (102) this condition gives us n = —21/4 and we
arrive at the system
@ =(147 — 422 — 12y + 162° + 8zy)/8,

g =(147x — 42y + 4day + 8y?) /4.
On the other hand for n = —21/4 we obtain

(103)

Py(z,y) =2 —y =0, By(x,y)=24(z>—y) =0,

i.e. the above system has a double invariant parabola. Moreover in this case we have one real
singular point Mi(x1,y1) and two complex Ms 3(x23,y2,3), where

7 49 3. 3 ,

TI="5 N= 4 I23=g +iV3, g3 = ~1 + 3iV/3.

We point out that M; is a double singularity of systems (103) being located on the double invariant
parabola ®(x,y) = 22 — y = 0. Therefore we arrive at the configuration Config. P.78.

3.2.2.4 The possibility R4 = 0. Considering (102) this condition implies n = —33/4 and we
obtain the system

i =(2x — 3)(—21 + 8z + 4y)/8, = (63x — 66y + 4oy + Sy*) /4.

We observe that for n = —33/4 the second invariant parabola becomes the reducible conic: ®o(z,y) =
6(2x — 3)% = 0.
So the above system possesses the invariant line = 3/2 and the invariant parabola ®;(x,y) =

22 —y = 0 and it is not too difficult to determine that we have a configuration which is equivalent

to Config. P.81.

3.2.3 The statement (Bs)

According to Proposition 3 we must have the condition y4 = 0 and (59 # 0. So for systems (89) we

calculate:
X4 = 61875(1 + 4m + 2n)V, Eoq = 14062(4m — 14n — 147)V,
(s = 25(196m — 46n — 3)(4m — 147 — 14n) /16,
Co = —2970000(4m — 14n — 147)(10m 4 196m? — 88mn + 15n2),
where

YV = 18m + 1372m? — 84mn + 27n? + 144n>.

We consider two possibilities: £a4 # 0 and &4 = 0.
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3.2.3.1 The possibility &4 # 0. Then V # 0 and the condition 1 + 4m + 2n = 0 implies
m = —(1 + 2n)/4. This leads to the 1-parameter family of systems

i =— %(271 +1) +nz — %y + 222 fay, 9= —%(271 + 1)z + 2ny + zy + 242, (104)
which possess the invariant line y = x — 1/4 and two invariant parabolas:
Oy(z,y) =22 —y =0, Po(x,y)=—1—-2n+2(1+4n)z —2(—1+4n)y — 8y* = 0.
For these systems we have

(s = 25(37 +4n)(13 + 36n), Loy = —140625(5 + 4n)?(37 + 4n)(13 + 36n)/16,
Co=11-30%1 +4n)(37 +4n)(13+36n), By =0, 6= —32#0, (105)
By = —81(1 + 2n)(1 + 4n)(17 + 4n)(x — y)*, D = 3(1 +4n)(5 + 4n)5 /4.

Therefore following Lemma 1 we discuss two subcases: By # 0 and By = 0.

1: The subcase By # 0. Then by Lemmas 1 and 2 (since 6 # 0) we conclude that systems (104)
could possess only one invariant line (which is y =z — 1/4).

We determine that systems (104) possess four finite singularities M;(x;,y;) (i = 1,2, 3,4) with the

coordinates
1 1 _1—d4n 1+ 2n
131—2, y1—47 Tro = 12 y Y2 = 6 )
1 1
m374:—§(1i\/—17—4n), y374:§(—2n:|:\/—1—4n).

We observe that the invariant parabolas have three points of intersection: My, M3 and M4 and the
singularities M3 and M, could be real or complex depending on the value of 1+ 4n # 0 (due to
Co # 0). Moreover the direction of the invariant parabola ®5(z,y) = 0 also depends on the value of
1+ 4n.

It is easy to determine that the invariant line y = 2 —1/4 is tangent to the both invariant parabola
at the point M. The singularity Ms is located on the invariant line and we calculate

i —%8(5+4n)27£0

due to &3 # 0. Considering (105) that D # 0 due to (924 # 0 and sign (D) = sign (5 + 4n).

On the other hand we need to know the position of the singularity My with respect to M; and we

1
Dy (22,2) = —(54+4n)* #0, Do(za,y2) =

lculate:
cafetate  l-4n 1 544n
T T T T T T

So all finite singularities (except M) are fixed as the intersection points of invariant curves and

= sign (zy — x1) = —sign (5 + 4n).

their positions are determined by the values of the parameter n. More exactly in the case By # 0
for the parameter n we have the following bifurcation values: n € {—5/4, —1/4}.

So considering these possible bifurcation values of the parameter n in the case By # 0 for systems
(101) we determine the following configurations:

D<0andn< —-5/4 = Config. P.101,
D<Oandn>—-5/4 = =~ Config. P.101;
D >0 (ie. n>—1/4) = Config. P.102.
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Thus we obtain the configuration Config. P.101 if D < 0 and Config. P.102 if D > 0.

2: The subcase By = 0. Considering the condition (g9 # 0 we get (1 + 2n)(17 + 4n) = 0.
If 1+2n =0 we get n = —1/2 and we arrive at the system

b= (—z+42® — 3y +2xy)/2, §=y(—1+z+2y),
possessing the following four invariant curves (two parabolas and two invariant lines):
di(z,y) =22 —y=0, Oo(z,y)=2—3y+4>=0, y=ax—1/4, y=0.

As a result we arrive at the configuration Config. P.103.

Assuming n = —17/4 we get the system
b= (=3+22)(=5+8x+4y)/8, §= (16x — 34y + 4dzy + 8y?)/4
possessing the invariant lines y = 2 — 1/4 and x = 3/2 and the invariant parabolas
Oi(z,y) =22 —y =0, Oo(x,y)=15— 64z + 72y — 163>

We observe that the line z = 3/2 is tangent to ®o(x,y) = 0 at the singular point M4(3/2,9/4). As
a result we get the configuration equivalent to Config. P.103.

3.2.3.2 The possibility &4 = 0. This implies V = 0 and we calculate
Discrim [V, m] = 36(1 — 28n)(3 4 28n)% = v(n)

and since the parameters m and n are real the condition v(n) > 0 is necessary.

We claim that the condition (5 # 0 implies that 3 + 28n # 0. Indeed setting n = —3/28 we
calculate (2744m 1 27)? o7
Ve 0 T T T
and this implies (5 = 0. So our claim is proved.
Therefore and the condition 1—28n > 0 is necessary for the existence of real roots of the polynomial
V. Then we can set a new parameter u as follows: 1 — 28n = u? > 0. Then n = (1 — u?)/28 and we
obtain

1
VZ5&%H5+ZMMM+Mu+&ﬂ—6ﬁﬂb+2M®n—Mu+&ﬂ+6ﬁ):Q

Due to the change u — —u we may assume that the second factor vanishes and we get
m = —3(u— 1)%(5 + 2u)/2744.

This leads to the 1-parameter family of systems

—1)2 2 21
j;:_?)(u )*(5+2u)  wu x—3—y+2x2—|—xy,
2744 28 2 (106)
) 3(u—1)%(5 + 2u) u? —1 4y 4 202
—_— — xr — X
Y 1372 1y
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which possess two invariant parabolas:
Oy (z,y) =2 —y =0, ®o(z,y) =3(u—1)"+112(u — 1)3z + 1176(u — 1)?y — 38416y* = 0.
For these systems we have

¢ = 25(u — 50)(u — 22)(u* — 4)(3u — 10)(3u + 46) /38416,
Co = 2227500(u — 50) (u — 22)(u? — 4)(u — 1)*(3u — 10)(3u + 46) /823543,
Cro = —15(354160 + 48u — 1336u? + 64u® + 27u* — 194° + 3u®) /38416,
D= —-3"7"%w—1)%6 4 u)®(34 + u)*(2 + 5u)?

(107)

On the other hand for systems (106) we have
By = —33279 71514 — 22)(u — 8)3(u — 1)3(6 + u)3 (13 + u) (20 + ) (5 + 2u) (3u — 10)(4 + 3u) (108)
and following Lemma 1 we discuss two subcases: By # 0 and B; = 0.

1: The case By # 0. Then by Lemma 1 systems (106) could not possess any invariant line.
We determine that systems (106) possess four finite singularities M;(x;,y;) (i = 1,2,3,4) with the

coordinates
5+ 2u (5 + 2u)? (u—1)(22 + 26u + u?) (u—1)2(5 + 2u)
Ty = — s Y1 = — 5 T2 = s Y2 = — 5
1—u (1 —u)? 3(u—1) 9(u —1)2
xr = = -2 xr = = ———--_
3T T 0 B 196 ™ 4 N 196

We observe that the invariant parabolas have two points of intersection: M3 and M4. Moreover the
finite singularity M (respectively, My) is located on the invariant parabola ®;(x,y) = 0 (respectively
®y(z,y) = 0) and the direction of the invariant parabola ®9(x,y) = 0 depends on the value of
u—1%0 (due to (g # 0).

Since the condition D = 0 implies the existence of a multiple singularity we examine two subcases:
D#0and D=0.

1.1: The subcase D # 0. Then all the singularities of systems (106) are different and in order
to determine the positions of the singularities M; and Ms with respect to the common points of
intersection M3 and M, of the parabolas we calculate:

64w o (u=1)(6+u)(204w)

€r3 — &1 = 14 ° €T3 — T2 = 1372 )

2+ 5u o (u—=8)(u—1)(34 4 u)
B VI 1372

Moreover the singular point M, which lies on the parabola ®4(z,y) = 0 could be located above
or below its axis y = ¥, where y, is the ordinate of the vertex of this parabola. For the parabola
®o(x,y) = 0 we obtain y, = 3(u — 1)2/196 and then we calculate

Yo — Yy = —(u — 1)2(13 +u)/686 = sign(y2 — yy) = —sign (13 + u).
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On the other hand we have

(v —1)%(6 + u)°(34 + u)
1882384 ’

Oy (z2,y2) = ®o(z1,91) = —(6 + u)*(2 + 5u)

and we observe that for the parameter u we distinguish the following possible bifurcation values:
u € {-34,-20,-13,—6,—2/5,1,8}. We point out that due to the condition (5(9B1D # 0 we have

(u—8)(u—1)(u+20)(u+ 13)(u+6)(34 4+ u)(2 + bu) # 0.

So considering the possible bifurcation values of the parameter u in the case B; # 0 and D # 0 for
systems (106) we determine the following configurations:

u < —34 = X3 > T4, T] > X3, To < T4, Y2 > Yy = Config. P.104;
=3 <u< =20 = z3>T4, 1> 23, T4 < T2 <2T3, Y2 > Yy = Config. P.105;
—20<u<—13 =x3>x4, 1> T3, T4 <x3<T2, Y2 > Yy = Config. P.105;
—B<u<—6 =x3>m4, T] >3, T4 <x3< T2, Yo <Yy = Config. P.105;
—6<u<-2/5 =wx3>x4, 14 <x1<T3, Tg<T2<x3, Y2 <Yy = =~ Config.P.105;
—2/b<u<l =x3>xy, 11 <T3 T4<T2<I3 Y2 <Yy = ~ Config. P.10/;

l<u<8 = T3> Ty, T1 < X3, T4 < Ty < T3, Yo <Yy = Config. P.106;

u > 8 = r3 >y, 1 < T3, T4 < T2 < T3, Yo < Yy = Config. P.106.

So considering the above obtained configurations and the corresponding conditions we deduce the
following common conditions:

Config. P.105 < (u+34)(bu+2) <

Config. P.104 < (u+ 34)(bu+ 2) >Oandu71 < 0;

Config. P.106 < (u+34)(bu+2)>0and u—1>0.
1

On the other hand for systems (106) we have

o5 = 2737795913 (u — 1)3(6 + u) (34 + u) (2 + 5u),
CsCo = 272771315511 (u — 1)3(=50 + u)? (=22 + u)? (=2 + u)3(2 + u)? (=10 + 3u)?(46 + 3u)?,

and due to D(5(9 # 0 we have

€25 # 0, sign (€5) = sign ((u— 1)(34 +w)(2 + 5u)),  sign (G:Go) = sign (u — 1).

This leads to the following invariant conditions:

§25 <0 & Config. P.104;
€5 >0,CC <0 <  Config. P.105;
£95 >0, (50 >0 <« Config. P.106.

1.2: The subcase D = 0. Considering the condition By # 0 this implies (34 4+ u)(2 + 5u) = 0.
Taking into consideration the position of the invariant parabolas and the coordinates (109) of systems
(106) we obtain:

u=-—34 = x3>x4, T1>T3, T2=2T4, Y2 > Yo = Config. P.107,
u=—-2/5 = x3>T4, T1 =124, T4 < Ty < T3, Yo <y, = =~ Config.P.107.
So we deduce that in the case By # 0 and D = 0 we get the unique configuration Config. P.107.
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2: The case By = 0. Considering (108) and (107) we conclude that due to (9 # 0 the condition
B; = 0 is equivalent to

(u—8)(6+ u)(13 4+ u)(20 + u)(5 + 2u)(4 + 3u) = 0.

However we could decrease the number of the factors.

First of all we give the following remark.

Remark 6. We remark that in the case u— 1 # 0 (i.e. when the second parabola exists) applying
the transformation

343 21 343 N 147 . (u—1)3 .
xr1 = — = x = —
Y T -y T w3 T a2 YT 343
we arrive at the family of systems of the same form (106):
. 3(ug — 12(5+2u;)  ud—1 3y1 9
=— — ~ 24
o 2744 o8 1T g THmTmon
. 3(U1 - 1)2(5 + 2u1) u% -1 9
=— — 2
Y1 1372 z1 1Y +xy +2y)
48 48
with the parameter u; = tu (then u = i ul).
u—1 Uy — 1
48
Considering Remark 6 and the relation u = o we calculate
Uy —
7(5 4 2uq) 7(3u1 +4)
13) = ——; 20) = ———.
(w+13) = = —7 (u+20) = =

So to determine the configurations given by the condition By = 0 it is sufficient to consider the
conditions provided by the equality

(u—8)(6 4+ u)(5+ 2u)(4 + 3u) = 0.

2.1: The possibility w = —4/3. This leads to the system
i = (=1 — 2z + 14422 — 108y + 72zy)/72, o = (z + 2y)(—1 + 36y)/36
possessing the invariant line y = 1/36 and two invariant parabolas:
Oi(z,y) =22 —y=0, Oo(x,y)=1— 16z + 72y — 432¢>
We determine that te configuration of the above system correspond to Config. P.108.
2.2: The possibility w = 8. This leads to the system
t=(-3+2z)3+8x+4y)/8, y=(r+2y)(—9+4y)/4
possessing three invariant lines y = 9/4, y =  + 3/4 and x = 3/2 and two invariant parabolas:

Oi(z,y) =22 —y =0, Oo(z,y) =3+ 16z + 24y — 163>
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We observe that all five invariant curves intersect at the singular point M4(3/2,9/4). So we get the
configuration Config. P.109.

2.3: The possibility w = —5/2. In this case arrive at the system
&= (=3z + 3227 — 24y + 162y) /16, 3§ = y(—3 + 8= + 16y)/4
possessing the invariant line y = 0 and two invariant parabolas:
y(z,y) =22 —y=0, ®o(x,y) =3 — 32z + 96y — 256y

We observe that the invariant line y = 0 is tangent to the parabola ®;(z,y) = 0 at the point M;(0,0)
and intersect the second parabola at M2(3/32,0). It is not too difficult to determine that in this
case we have the configuration Config. P.110.

2.4: The possibility w = —6. In this case we get the system
@ = (3— 10z + 162% — 12y + 8zy)/8, o = (3z — 10y + 4xy + 8y*)/4
possessing the invariant line y = 2 — 1/4 and the invariant parabolas
Oi(z,y) =22 —y=0, ®o(x,y) =3 — 16z + 24y — 16y° = 0.

Considering the coordinates (109) of systems (106) we observe that for u = —6 the singular points
My, Ms and M coalesced producing a triple singular point. Moreover this triple singularities is a
point of tangency of the invariant line y = 2 — 1/4 with both parabolas. As a result we get the
configuration Config. P.111.

On the other hand for systems (106) we have

2227500

G = “gomm gz (4~ 50)(u = 22)(u” = 4)(u = 1)*(3u — 10)(3u + 46),
3
gﬁ = —ﬁ(G + U)(292 —d2u + 511/2)7 Discrim [292 — 52+ 511,2] — 3136 < 07
3 2
€26 = G173 (4~ 90)(u” = 4)(u = 1)(3u + 46)(6 + u) (13 + u)(5 + 2u),
1
€7 = 5o (u = 8)(380 + 52u + 9u®),  Discrim [380 + 52u + 9u”] = ~10976 < 0.

We observe that due do {9 # 0 the condition &z # 0 is equivalent to (6 4+ u)(13 + u)(5 + 2u) # 0.
Moreover considering Remark 6 we conclude that for &6 = 0 we may assume (6 + u)(5 + 2u) = 0
because the condition 13 + u = 0 could be brought to 5 4 2u = 0 via an affine transformation and
time rescalling.

Thus in the case By = 0 systems (106) possess the following configurations if and only if the
corresponding conditions are satisfied:

o6 £ 0, &7 £ 0 (then u = —4/3) < Config. P.108,
&6 # 0, a7 = 0 (then u = 8) & Config. P.109;
€26 =0, (¢ # 0 (then u=—-5/2) < Config. P.110;
€26 =10, (¢ =0 (then u = —6) & Config. P.111.
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3.2.4 The statement (Bg)

In this case the condition x4 = (9 = 0 must be fulfilled. Due to the condition (5 # 0 we obtain that
(9 = 0 is equivalent to WW = 0. Straightforward calculations gives us that the systems of equations
x4 = 0 and W = 0 could have only the following solutions S; = (m;,n;) (i = 1,2,3,4):
1 1 5 13 27 3
S =(0,0), S = (—7,—7), Sy = (—7,—7), Si= (—7,—7).
1=0.0 S={~5-3) S={"7735%) 9=~ 5

However we have

X4($’i) = CQ(SZ) = 07 1= 17 27 3747
G5(S1) #0, (5(S2) #0, (5(S3) = (5(Ss) = 0,

and hence only the solutions S; and Sy satisfy the conditions of statement (Bg). Therefore we
examine only these two solutions.

We observe that each one of them gives us a concrete system (without parameters) and it remains
to construct the corresponding system having a single fixed configuration of the invariant parabolas
and lines.

For systems (89) we calculate:

€9 =3°17252510[65536m* — 32m>(6131 + 3252n) — 16m?(—32110 — 7953n + 484n?)
+ 6m(10221 — 53292n + 5540n” + 4336n%) — 9(—2304 — 7857n — 12140n + 836n° + 240n")].

We observe that under the conditions of statement (Bg) the condition {9 = 0 leads to the solution
S, because 9(S2) = 0 and &y(S1) # 0. Then we examine two possibilities: & # 0 and £ = 0.

3.2.4.1 The possibility & # 0. Then the conditions provided by statement (Bg) lead to the
solution & and therefore we have m = n = (. In this case we arrive at the system

3 .
j::—?y+2x2+xy, v =y(z+2y), (110)

possessing the invariant line y = 0 and the invariant parabola ®(x,y) = 22 —y = 0.

We determine that the above system possesses the following two singular points: M;(0,0) and
M5(—1/2,1/4). We observe that the point M is the point of tangency of the invariant line with the
parabola. Moreover this point is a triple singularity of system (110), because we have

pa=p3 =p2 =0, pu =-3(x+2y) #0,

and by [1, Lemma 5.2, statement (ii)] the point M; is of multiplicity exactly 3. As a result we get
the configuration Config. P.42.

3.2.4.2 The possibility & = 0. In this case we get the solution Sy, i.e. m = —1/8 and
n = —1/4. So we arrive at the system
. 1 z 3y 9 . 1
= - — — — —_— 2 - - 4 - ]. 2
t=—g - T T2y, g= 1y -1+ 2y),

possessing the invariant lines y = 1/4 and y = x—1/4 and the invariant parabola ®(z,y) = 2>~y = 0.
As a result we get the configuration Config. P.112.
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3.2.5 The statement (B7)

In this case the condition y4 = (5 = 0 and (g # 0 must be fulfilled. Straightforward calculations
gives us that the systems of equations y4 = 0 and (5 = 0 could have only the following solutions
SZ' = (mz,nl) (’L = 1,...,6):

§_<_ 27 _i) ~_<_2205 _ﬂ) ~_<@ _@>

=\ 7 o744 28) 2 8 ' 4 ) \727 36 /)
~ /35 37\ ~ 5 13\ ~ 189 69
§i=(5-7) &=(m35) %=(% 1)

We split these solutions into two sets:
G1 = 1{51,82. S5}, Go = {54, 85, Ss}-

Lemma 14. Assume that the conditions of statement (By) are satisfied and then the system of
equations x4 = (5 = 0 generates siz solutions S; = (my,n;) (i =1,...,6) given above. In this case
the invariant polynomial & distinguishes the set G1 from the set Go.

Proof: To prove this lemma it is sufficient to evaluate & for the elements of each one of the sets.
For systems (89) we calculate

6 = 293%2877985m(1 + 4m + 2n)(—147 + 50m + 61n + 8n?),

and we obtain

(S)#0, i=1,2,3, &(8;) =0, j=4,5,6,
and we complete the proof of the lemma. B

According to the above lemma we discuss two cases: & # 0 and & = 0.

3.2.5.1 The case £ # 0. Then we have to examine the elements of the first set Gj.

1: The subcase S;. Then we have m = —27/2744 and n = —3/28 and we get the system

3z 3y 27 27x 2 3y

W T A Y ey 22 —
T =2+ ay V= 3 T T 1

28 2 2744’ (111)

possessing three invariant parabolas ®1(z,y) = 22 —y = 0 and
Do(z,y) = 3+ 1122 + 1176y — 38416y> = 0, ®3(x,y) = —243 + 3024z — 10584y + 3841632 = 0.

We observe that the singular point M;(3/14,9/196) is the point of intersection of all three invariant
parabolas. So we get the configuration Config. P.1185.

Next we prove that the systems generated by Sy and S5 could be brought to system (111) via an
affine transformation and a time rescaling.

Consider first the solution Sy, i.e. m = —2205/8 and n = —357/4. This leads to the system

, 2205z
tay - —— - - Y=yt 2y

) 357y
2 )



which via the transformation
x1 = —3/28+y/343, y1 =3/196 + x/343, t; = 343t,

could be brought to the system (111).
Analogously, taking the solution Sy, ie. m = 539/72 and n = —301/36, we arrive at the system

1 1
0lc 3y 539 580, 301y

.:22 . 09J
TEEAIY S e Ty T 36 TV T 18

which via the transformation
x1 =9/28 —2Ty/343, y; = 27/196 — 27x/343, t; = —343t/27,

could be brought to the system (111).

3.2.5.2 The case £ = 0. Then we have to examine the elements of the first set Gs.

1: The subcase Sy. Then we have m = 35/8 and n = —37/4 and we get the system

2 37y

. 35z
y=zy+—+2y 5

112
4 2 8’ 4 (112)

possessing the invariant line y = 2 — 1/4 and three invariant parabolas ®1(z,y) = 22 —y = 0 and
Oo(z,y) =5 — 120+ 322 +y =0, P3(z,y) = —35+ 144z — 152y + 163> = 0.

We observe that the singular point M;(1/2,1/4) is the point of intersection of all four invariant
curves. So we get the configuration Config. P.114.

Next we prove that the systems generated by 55 and 56 could be brought to system (112) via an
affine transformation and a time rescaling.

Consider first the solution Sy, i.e. m = —5/72 and n = —13/36. This leads to the system

) 132 3y ) .
&= 22”4 xy — 36 2 7y YT —((5x)/36) — (13y) /18 + zy + 2y,

which via the transformation
x1=11/4 -9y, y1 =19/4 -9z, t, = —t/9,

could be brought to the system (112).
Analogously, taking the solution 56, i.e. m = —189/8 and n = —69/4, we arrive at the system

69 3 189 189
:'U:Q:EQ—I—xy——m——y—— Y=y — v

69y
202 — —2
4 2 87 +y b}

4 2

which via the transformation
r1=2-—x/3, y1="T7—y/3, t1 = —3t,

could be brought to the system (112).
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3.3 Configurations of systems in QSP,

In what follows we examine the configurations of the systems in QSP, () in each one of the cases
provided by Proposition 4. According to this proposition we consider the canonical form (6), i.e.
the systems

F=m+ (2n — Da/2+ ga? — gy/2 —xy, = 2mz — 2> + 2ny + gry — 207, (113)

with Oy = z(2? + y?), possessing the invariant parabola ®(z,y) = 22 —y = 0.
In what follows we examine the configurations of the systems in QSP , o) in each one of the cases
provided by Proposition 4.

3.3.1 The statement (&;)
For systems (113) we calculate

1 =(25 + ¢%)(3g + 99° — 4m — 6gn) /16,

; , ; (114)
Ri =15(1+¢7)(25+ g°)(3g + 99° — 4m — 6gn) /2.

3.3.1.1 The case B; # 0. Then according to Lemma 1 systems (113) could not possess any

invariant line.

Let us examine the finite singularities of these systems. Following [1, Proposition 5.1] we calculate
the invariant polynomial D = 12} Fj, where

F| = —2gm — 2¢°m + 4m? — n — ¢*n — 4gmn + ¢*n’,

115
Fy =8 —g* — T2gm + 8¢>m + 432m? — 48n + 4¢’n + 144gmn + 96n* — 4¢°n* — 64n3, (115)

and we discuss two subcases: D # 0 and D = 0.

3.3.1.1.1 The subcase D # 0. We determine that systems (113) possess four finite singular-
ities M;(z;,y;) (i = 1,2,3,4) with the coordinates

e gZQ_Jrle’ ne %L; e 6;)?11/3 (V2134 Y1 3g — 39" +22],
7 (\‘”/W (22 — 3g21) + AgW2/3 4 W) 33752+ WP (3 + 10gn = 59 + 12m)
+ W32 (22 — 3¢%) + 3 (g (9" + 22¢°n — 11¢° + 84n* — 84n + 21) + 36mZ) + gW*/?];
3 :12;1/3[ (—1 + Né) P23 4 9gYl/3 (1 v Z\/§) (22 - 3¢%) ],
YT 489125 1 6 (11 i/3) yl/i (22 —3¢%) +6 (1—iv/3) Y [ = 672 (9° + 1097 = 5 + 12m)

+ (1+V3) ¥ + (1+iV3) Y12 (22 - 36°)
+(1-iv3) vz + (1-iv3) g (22 - 3¢%)");
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1 , :
gl (1M (1-405) 123
Yy = 1 [~ 6Y%3 (g° + 10gn — 59 + 12m)
—48¢gY2/3 46 (1 — iv/3) Y3 (22 — 3¢2) + 6 (1 +iV/3) Y
+ (1= v3) ¥+ (1-iv3) Y12 (22 - 36%)
+ <1+z\/§) VZ + (1+ix/§) 9 (22 —3¢%)%],
where

X =24 — 3¢ — 216gm + 24¢°m + 1296m? — 144n + 12¢°n + 432gmn + 288n? — 12¢°n> — 192n3,
Y =g*+18gn — 99+ 108m + 3V X, W = —9g+ ¢+ 108m + 18gn + 3/3F},
Z = -3+2¢*+6n.
Calculations yield:
71
(1+g%)

and therefore we deduce that three singularities Ma, M3 and My of systems (113) are located at the

O(z2,y2) = P(23,y3) = P(24,y4) =0, P(x1,11) =

invariant parabola. Moreover M is located outside the parabola and could belong to it if and only
if the condition F} = 0 holds, where F] is given in (115). However we have D = 12F'; Fj # 0 and
hence on the parabola we always have three distinct singularities.

On the other hand according to [1, Proposition 5.1] if D > 0 systems (113) possess two real and two
complex finite singularities. For D < 0 we could have either 4 real or 4 complex finite singularities.
However since M is a real singular point for these systems we conclude that in the case D < 0 we
have 4 real finite distinct singularities.

Thus since the real singularity M is outside the invariant parabola and all three finite singularities
on the parabola (real or complex) are distinct and furthermore we could not have any invariant line
we arrive at the configuration Config. P.115 if D < 0 and Config. P.116 if D > 0.

3.3.1.1.2 The subcase D = 0. This implies F]F} = 0 and we calculate:
€1 = —6CF,.

Therefore we deduce that due to (4 # 0 the condition F] = 0 is equivalent to £&; = 0. So we examine
two possibilities: & # 0 and & = 0.

1: The possibility & # 0. In this case the condition D = 0 implies F5 = 0. Since this polynomial is
quadratic with respect to the parameter m we calculate

Discrim [Fy, m] = 64(g* + 12n — 6)3.

Therefore since the parameters m, n and g of systems (113) must be real we conclude that the
condition g2 + 12n — 6 > 0 has to be fulfilled. So setting a new parameter v: g?> 4+ 12n — 6 =02 >0
we get n = (6 — g% + v?)/12 and then we calculate

Fy = ﬁ [216m = (g4 v)*(g = 20)] [216m — (9 — v)*(9 + 20)] =0

88



and due to the change v — —v we could force the first factor to vanish. Then we obtain
m = (g —2v)(g +v)?/216

and considering the expression for the parameters m and n we arrive at the 2-parameter family of

systems
. (g=20)(g+v)?® F#-v* g
e 216 ~ T gyter -,
116
(g —2v)(g+v)?*  6-—g*+0 > (o)
= 108 x 5 Y+ gzy — 2y°,

possessing the invariant parabola ®(z,y) = 22 — y = 0. We observe that for the above systems we
have the following conditions on the parameters g and v:

§#0 & (8g—v)°(4g+v) (20° —8gv —v” +18) (¢° + 29v + v* +9) #0;
Bi#0 < (29 —v)(4g +v)(36 + 4¢% — dgv + v?) (g% + 2gv + v> + 9) (117)
x (g% — 4gv 4 40% +9) # 0.

We determine that systems (116) possess three finite singularities M;(z;,v;) (i = 1,2,3) with the

coordinates
—27g + 5¢° — 6gv? — 3 54 — 9g% + g* + 9% — 3g%0? — 2903
€T = = M
L 54(1 + ¢2) e 108(1 + ¢2) ’
. L g—2 _(g—21})2. . g+t _(g—|—v)2
2—76 ,92—736 ; 3—76 ’y3_736 .

We calculate

(292 — 8gv —v? + 18) (92 + 2gv +v? + 9)2
2916 (g2 + 1)

O(w2,12) = ®(23,93) =0, P(x1,y1) = —

and we conclude that the singular points Ms and Ms are located on the invariant parabola, whereas
M, is outside the invariant parabola due to the conditions (117).

We claim that Ms is a multiple singularity of systems (116). Indeed, applying the corresponding
translation, we could place M3 at the origin of coordinates and we arrive at the systems

1 1
& =—(g+v)(4g +v)x — Z(dg +v)y + ga* — xy,

18 6
1 1
y:a(g—kv) (292—1—91)—1)2—18):(:4—1—8(112—2g2—gv+18)y+g$y—x2—2y2,

where My(0,0) is a singularity of the above systems corresponding to the singularity Ms.

Considering [1], we calculate the following invariant polynomials: pg = pg = 0 and

po = 3%1) [(g+v)>+9] [(v—29)z +6y] [(3—g° — gv)x + (4g + v)y] .

and by [1, Lemma 5.2, statement (ii)] the point My is of multiplicity at least 2. We observe that due
to the condition By # 0 we have pus = 0 if and only if v = 0. In this case we calculate
1

—5 (59" +27)x — 32¢%y] # 0.

/1’2207 H1 =
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According to [1, Lemma 5.2, statement (ii)] we have a double point if v # 0 and a triple one if v = 0.

On the other hand for systems (116) we calculate

& v?(18 4 29° — 8gv — v*)*(9 + g% + 2gv + v*)?,

~ 209952

and due to (117) we obtain that the condition v = 0 is equivalent to £ = 0.
Thus for systems (116) we obtain the configuration Config. P.117 if &, # 0 and Config. P.118 if
& = 0.

2: The possibility & = 0. We obtain F; = 0 and since this polynomial is quadratic with respect to
the parameter m, we calculate

Discrim [F],m] = 4(1 + ¢*)*(¢* + 4n).

It is clear that for the existence of real solutions of the equation F| = 0, the condition ¢>+4n >0
must hold. So we set a new parameter u as follows: g? 4+ 4n = u? > 0 and we get n = (u? — g°)/4.
Then calculation yields

Fi =~k [sm = (g~ 02+ ¢~ gu)] B — (g + )2+ 8+ gu)] =0

and due to the change u — —u we could force the first factor to vanish. In this case we obtain

m=(g—u)(2+g> - gu)/8

and considering the expression for the parameters m and n we arrive at the 2-parameter family of

systems
s WCre gy WP’ =2 g o
y=7"" 49 I 2“ y+ gry — 297,

possessing the invariant parabola ®(x,y) = 22 —y = 0. We determine that systems (118) possess
three finite singularities M;(z;,y;) (i = 1,2, 3) with the coordinates

g-u  _lg-u)’
9 1 4 )
1

y273:§[ 24 29u—2¢° —4+u\V/Y1], Yi=u’+4gu—4g> - 8.

(u:l: Yl),

AN

To3 =

We calculate
O(x1,y1) = ©(22,12) = P(23,3) =0

and therefore all three singularities are located on the invariant parabola. Moreover, we point
out that M; is a singularity of systems (118) having multiplicity at least 2. Indeed, applying the
corresponding translation, we could place M; at the origin of coordinates and we arrive at the
systems

1 1
=5(g" = gu— Do + 5 (u—29)y + g2* — 2y,

1 1
=59 u)(g® — gu— 1)z + 59 =) (29 —u)y - 2? + gy — 293,
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where M (0,0) is a singularity of the above systems corresponding to the singularity Mj.
Considering [1], we calculate the following invariant polynomials: gy = pus = 0 and

A@=%@2+UK9—M2+HKf—yu+Uf+%u—%Mw+2f]

We observe that s # 0 and by [1, Lemma 5.2, statement (ii)] the point My is of multiplicity
exactly 2.

On the other hand, the singularities My and M3 could be either real or complex depending on the
value of Y7. In order to determine the position of the double singularity M; with respect to Ms and
M3 in the case they are real (i.e., Y7 > 0), we calculate:

(22 — z1)(z3 — 1) = ((g —w)* +1)/2 > 0.

Therefore we deduce that in the case Y7 > 0 both singularities Mo and M3 are located on the same
side of the double point Mj. It is clear that for Y7 = 0 the points My and M3 coalesce and we obtain
two double points located on the invariant parabola.

For systems (118) calculations yield
1 2
&=L+ [1+ (9 —w?M,

and hence we obtain that sign (§2) = sign (Y1) if {3 # 0.

Thus we obtain that systems (118) possess the configuration Config. P.119if &, < 0; Config. P.120
if & > 0 and Config. P.121 if & = 0.

3.3.1.2 The case B; =0. For systems (113) we calculate

1
B =—c1lo+9” +4m —2gn] [(g — 8m)® + (1 — 4n)*| ¥ (g, m, n),

where
(g, m,n) = 16m> + 8gm(3 + 2n) + (4 + ¢*)(1 + ¢* + 4n + 4n?).

On the other hand we calculate

13125
€= 525+ ¢")(3g + 99" — dm — 6gn) (g — 8m)* + (1 — 4n)?],

C1= (254 ¢°)(3g + 9g° — 4m — 6gn) /16
and due to ¢4 # 0 we obtain that & = 0 is equivalent to (g — 8m)? + (1 — 4n)? = 0. So we examine

two subcases: &4 # 0 and & = 0.

3.3.1.2.1 The subcase & # 0. Then the condition By = 0 implies either g+ ¢>+4m—2gn = 0
or U(g,m,n) = 0. We have the next lemma.

Lemma 15. For systems (113), if & # 0 then the condition By = By = 0 is equivalent to
U(g,m,n) = 0.

91



Proof: Assume first that the condition ¥(g,m,n) = 0 holds and we calculate Discrim [V, m] =
—64(g? —4n —2)? < 0. So in order to have a real solution with respect to m it is necessary that the
condition g — 4n — 2 = 0 holds. This yields n = (g? — 2)/4 and we obtain

1
U(g,m) = 1(49 +g*+8m)?, By = (49 + ¢° +8m)*p(g,m,z,y),

where ¢(g,m,x,y) is a polynomial of degree four in x and y. Therefore clearly the condition
U(g,m) =0 implies By = 0.

Assume now that for systems (113) the conditions By = By = 0 and &4 # 0 are fulfilled and
suppose the contrary that the condition (g, m,n) # 0 holds. Then the condition B; = 0 yields
g+ g +4m —2gn = 0. This gives us m = —g(g? — 2n + 1)/4 and we calculate

U(g,n) = (1+¢*)(¢* — 4n — 2),
1
By — _%(92 +1)%(g* — 4n — 2)*[4g* + ¢*(8 — 16n) + (1 — 4n)?]a?,

Discrim [4g* + ¢%(8 — 16n) + (1 — 4n)?,n] = —2564°% < 0,
due to {4 # 0. Therefore the condition By = 0 implies W(g,n) = 0 and the contradiction we obtained
completes the proof of Lemma 15. B

So in what follows we discuss two possibilities: Bs # 0 and By = 0.

1: The possibility Bs # 0. Then by Lemma 15 we have ¥(g, m,n) # 0 and the condition By = 0
implies g+ g® +4m —2gn = 0. This gives us m = —g(g> —2n+1)/4 and we arrive at the 2-parameter
family of systems:

1 1
g'v:—Zg(gQ—2n+1)+5(2n—1)x—%y+gm2—xy,

h (119)
y:—ig(QQ—2n+1)x+2ny—m2+gxy—2y2,

possessing the invariant line Ly (z,y) = 2z-+g = 0 besides the invariant parabola ®(x,y) = 22—y = 0.

For the above systems we calculate
Ca=g(g* +25)(5g” —dn +2)/8, 6 =—8(g° +9).

Since 0 # 0, according to Lemma 2 systems (119) could not have an invariant line parallel with
2z + g = 0. On the other hand, according to Lemma 1 we could not have invariant line in another
direction because Bs # 0.

Next we determine that systems (119) possess four finite singularities M;(z;,v;) (i = 1,2, 3,4) with
the coordinates

x:—gyzi' :E:_gy:2n—gz‘
1 27 1 4, 2 27 2 9 5

1 1
x374:§(g:|:\/Y2), y3,4:§(2n—1:|:g\/Y2), Yo =4n — ¢* — 2.

We calculate
O(x1,y1) = P(23,y3) = ®(24,y4) = L1(21, 1) = Li(x2,92) =0, ®(x2,92) = (39> — 4n)/4,
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and we deduce that the singularity M; is the point of intersection of the invariant line with the
invariant parabola. Moreover the point M is located on the invariant line and it could belong to the
invariant parabola if and only if 3g? — 4n = 0. Finally, we observe that M3 and My could be either
real or complex or coinciding (depending on the value of Y3) and they lie on the invariant parabola.

In order to detect the reciprocal positions of the finite singularities we calculate

(23— 21)(24 — 1) = (59> —An+2)/A =y /4, yoa —y1 = (4n — 3¢%) /4 = 61 /4.

Therefore we deduce that in the case Y5 > 0 the singularities My and M3 are located on the same side
(respectively opposite sides) with respect to the singular point M if 3 > 0 (respectively 7 < 0).
We observe that «; # 0 due to the condition (4 # 0.

On the other hand we note that yo > y1 if 61 > 0 and y2 < y1 if §1 < 0. Moreover yo = y; if 61 =0
and in this case the point of intersection of the invariant line with the parabola is a double singular
point of systems (119).

We determine that the invariant polynomial D which is responsible for the existence of multiple
finite singularities for systems (119) has the form

3
D = —2(¢" + D¥or{ol, Ca=g(25+9")m/8,
&7 = 46985100009%(1 4 ¢2)2Yay162, &8 = —2472900009%(1 + g2)2Y501~2.

So due to (4 # 0 in the case D # 0 we obtain
sign (D) = —sign (Y2), sign (&7) = sign (Yoy1), sign (€g) = —sign (Y201),
and we examine two cases: D # 0 and D = 0.
1.1: The case D # 0. Then Y3 # 0 and systems (119) have four distinct finite singularities.

Remark 7. We observe that v1 + 61 = 2(g*> + 1) > 0. Therefore the conditions v, < 0 and §; < 0
are incompatible.

Considering this remark in the case D # 0 we determine that systems (119) have the following

configurations:
D <0,6 <0 = (v3—x1)(r4 —21) <0, 92 >11 = Config. P.122;
D<0,&>0,6<0 = (z3—21)(xg —21) >0,9 >y1 = Config. P.125,
D<0,6&>0,>0 = (zs—x1)(zga—21)>0,92<1y1 = Config. P.124;
D>0,8<0 = 2<Uy = Config. P.125;
D>0,8>0 = Y2 >y = Config. P.126.

1.2: The case D = 0. Since 71 # 0 due to {4 # 0 this condition implies Y20; = 0 and we calculate
&1 = —39(1+¢*)*(25 + g°)101/16

and since v; # 0 we conclude that the condition §; = 0 is equivalent to & = 0. So we discuss two
subcases: &1 # 0 and & = 0.
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1.2.1: The subcase & # 0. Then Yo = 0 (i.e. n = (g% + 2)/4) and we obtain that M3
coalesces with M, producing a double singular point on the parabola. Moreover the position of Mo
is determined by the value of §;. For systems (119) with n = (g2 + 2)/4 we calculate:

&G = =3g"(1+¢*)(25+ ¢°)01/2, =g (25+¢%)/2.

So due to {4 # 0 we obtain that sign (£;{s) = —sign (1) and therefore in the case D = 0 and & # 0
we arrive at the configuration Config. P.127 if £:(s < 0 and Config. P.128 if £1(s > 0.

1.2.2: The subcase &, = 0. This condition implies n = 3g?/4 and then the singular point Mo
coalesces with M; and we observe that in this case 1 = 2(g? + 1) > 0.

On the other hand for n = 3¢g?/4 we have
Yo=2(4"-1), &=(¢"-1)(1+g)*

and clearly the condition & = 0 is equivalent to Yo = 0. This implies the coalescence of M3 with
M, obtaining two double singularities located on the invariant parabola.

Thus in the case D = & = 0 we get the configuration Config. P.129 if &5 # 0 and Config. P.130 if
&H=0.

2: The possibility B = 0. So we have By = By = 0 and by Lemma 15 the condition ¥(g,m,n) =0
holds. Considering the proof of Lemma 15 we arrive at the following conditions:

G —4n—-2=0 = n=("-2)/4; 49+4°+8m=0 = m=—g(4+4°)/8.

This leads to the 1-parameter family of systems

. 1 1 g
#=—29(’ + )+ (9" — Yz~ Jy+g2” —ay,

s . (120)
g =900+ Dz + 59" =2y — 2"+ gry - 2%,

possessing three invariant lines
Li(z,y) =2z 4+9=0, Lag(z,y)=4(y+izx)—g(gF2i) =0,

besides the invariant parabola. We determine that systems (120) possess four finite singularities
M;(zi, ;) (i =1,2,3,4) with the coordinates

=9, Y y Pt

1 2a 1 4, 2 27 2 4 )
1 ) 1 N2
!E3,4:§(9i22), y374:1(gj:22),

We calculate
®(x1,y1) = O(x3,93) = P(24,91) = 0, D(x2,92) = (¢* +1)/2,
Li(z1,y1) = Li(z2,y2) = La(z1,y1) = La(x3,y3) = L3(x4,y4) = 0.

and we deduce that the singularity M; is the point of intersection of all three invariant lines with the
invariant parabola. Moreover the point M5 is located on the invariant line and it could not belong
to the invariant parabola because g2+ 1 # 0. In addition, since yo —y; = — (g% +1)/2 < 0 we deduce
that the point My on the vertical invariant line L; = 0 is located below Mj.

Thus we arrive at the unique configuration Config. P.131 which the systems (120) could possess.
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3.3.1.2.2 The subcase & = 0. This implies (g — 8m)? + (1 — 4n)? = 0 and we get m = g/8
and n = 1/4. Then we obtain the following 1-parameter family of systems
g xr gy

. 2 . gz Yy 2 2
== — — — — — _ e —92
T s 1 5 +gx° —zy, ¥ 1 + 5 x° + gry Y, (121)

which besides the invariant parabola ®(z,y) = 2
Lis(x,y) =4(y £iz) —1=0.
For these systems we calculate
G =9(25+g°)(1+9¢°)/16, Bz = =3g(1 + ¢°)(2* +y*)*/4,

and since (4 # 0 (g # 0) we obtain Bsg # 0. So according to Lemma 1, these systems could not have

—y = 0 possess two complex invariant lines

invariant line in the third (real) direction.

We determine that systems (121) possess four finite singularities M;(z;,y;) (1 = 1,2, 3,4) with the
coordinates

0 1 g g* ii 1

x = = — €T = -, = —; €T = -, = ——.

1 » N1 1 275 Y2 1 3.4 9 Y3,4 1

We calculate

(2, y2) = P(x3,y3) = P(4,94) =0, (w1, 31) = —1/4,
and we observe that the real singular point M; is a point of intersection of the complex invariant
lines and it is located outside of the invariant parabola. The second real singular point M5 is located
on the parabola and its position is governed by the real parameter g # 0. As a result we arrive at
the unique configuration Config. P.132.

3.3.2 The statement (&3)

According to Proposition 4 in this case the conditions {4 = 0 and R7(s # 0 must be fulfilled.
Considering (114), the condition ¢4 = 0 implies

3g+9g° —4m —6gn =0 = m =3g(3g°> —2n+1)/4,
and we arrive at the following family of systems

3 1
y’czzg (3> —2n+1) +§(2n—1)x— %—}-9332—;1:@/,

(122)
.3 2 2 2
yzig(3g —2n—|—1) T+ 2ny — z° + gy — 2y°,
possessing two invariant parabolas ®1(z,y) = 22 — y = 0 and
Oo(z,y) = (3g° — 4n)(1 + 3¢% — 2n) + 29(3¢* — 4n)z — 4(1 + ¢*)x® +2(2 + 59° — 4n)y = 0.
For systems (122) we calculate
Cs =19(g% 4+ 25)(3¢g% — 4n)?/4, Ry = 16120(3¢> + 1)(5¢* — 4n + 2), (129
0=—8(4>+9), By =—g(g>+1)(9g° +1)(5g°> — 4n + 2) U, V3 /32,

where
Wy(g,n) = 81g* + g%(28 — 72n) + 4(1 +2n)%, W3(g,n) = 369" + ¢*(16 — 48n) + (1 — 4n)2.

According to Lemma 1 systems (122) could have at least one invariant line only if By = 0. So we
discuss two possibilities: B # 0 and By = 0.
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3.3.2.1 The possibility B; # 0. We determine that systems (121) possess four finite singulari-
ties M;(x;,y;) (i = 1,2,3,4) with the coordinates

o =39, %7 _gB+97-8n) 99+ g’(3—6nm)+ 2
’ ’ 2(1+¢2%) 21+ ¢2) ’ (124

2 4
1 1
30 =5(—9EVYa), wsa=5(2n—1-20°F9V/Y3), Ys=4dn—55" -2

We calculate

Oy (x1,y1) = Pi(x3,y3) = P12, y4) =0,  Po(x2,92) = Po(w3,y3) = Po(24,94) = 0,

and we deduce that the singularities M3 and M, are the points of intersection of both invariant
parabolas. Moreover the point M (respectively Ms) is located on the invariant parabola ®; = 0
(respectively @y = 0).

In order to detect the positions of the singularities M; and My with respect to M3 and My (in the
case Y3 > 0) we calculate:

(3 — m1) (24 —21) = (2+ 21¢g° — 4n) /4 = /4,

B
4(g? +1)°

Y3

21g* +2¢%(5 - 8n) +1] = ——>—
[ ] 4(92+1)2

(2133 — 3?2)(%4 — .%‘2) = — (52.

We observe that
sign ((z3 — @1)(z4 — x1)) =sign (y2),  sign ((z3 — 22)(v4 — x2)) = —sign (Y3d2).

So we deduce that the point M; (respectively M) is located on the invariant parabola ®; = 0
(respectively @9 = 0) between M3 and My if and only if 79 < 0 (respectively Y302 < 0).

On the other hand for systems (121) we calculate
D = —3(3¢° — 4n)*Y37305 /4, &1a = 12357202/2, &30 = 1235(Y302 — (14 ¢°)*y2) /2. (125)
We observe that in the case D # 0 we have
sign (D) = —sign (Y3), sign ({14) = sign (7202).
Moreover in the case £14 < 0 (i.e. 7202 < 0) and D < 0 (i.e. Y3 > 0) we obtain
sign (€30) = sign (Y302 — (1 4 g?)%v2) = sign (52).

So we discuss two cases: D #£ 0 and D = 0.

3.3.2.1.1 The case D # 0. We observe that in the case D > 0 the singular points M3 and My
are complex and clearly in this case it is not necessary to distinguish the signs of the polynomials
and 0s.

Thus taking into account the information we mentioned above we detect that in the case D # 0
we arrive at the following configurations:
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D<0,7%<0,00>0 = (r3—x1)(xs—21) <0, (23 —22)(x4 —22) <0 = Config.P.134;
D<0,7%>0,00<0 = (z3—x1)(xa—2x1) >0, (3 —22)(24 —2x2) >0 = Config. P.135,
D<0,7%2<0,00<0 = (r3—x1)(xs—21) <0, (23 —22)(xg —22) >0 = Config. P.135;
D<0,v%>0,0>0 = (r3—2x1)(xgs—2x1) >0, (x3 —22)(24 —22) <0 = ~Config. P.135;
D>0 = = Config. P.136.

We observe that in the case v2d2 > 0 we obtain two equivalent configurations given by Config. P.135
and we deduce that in the case D # 0 systems (122) possess the following configuration if and only
if the corresponding invariant conditions are satisfied:

D <0, &4 <0,83 <0 = Config. P.133,
D <0,84<0,80>0 = Config. P.134;
D <0, &4 >0 = Config. P.135;
D>0 = Config. P.136.

3.3.2.1.2 The case D = 0. Considering the value of the invariant polynomials given above
and the conditions (5 # 0 (i.e. 3g> —4n # 0) and R7 # 0 (i.e. Y2 # 0) we obtain that D = 0 implies
202 = 0. Taking into account (125) we deduce that this condition is equivalent to {14 = 0.

We claim that in the case {14 = 0 systems (122) possess the configuration Config. P.137 if £39 < 0;
Config. P.138 if €39 > 0 and Config. P.139 if £39 = 0.

Indeed assume £14 = 0, i.e. 722 = 0. In order to prove our claim we examine each one of these
two possibilities.

1: The subcase 6o = 0. This condition implies

(7g2 — 1) (9g2 + 1)

n=(1+10¢%+21¢%)/(16¢%), 72 = 1

and we determine that the singular point My coalesces with My. If in addition v = 0 then M;
coalesces with M3 and we obtain two double singularities on the parabola.

So we detect that systems (121) possess the configuration which is equivalent to Config. P.137 if
Yo > 0; to Config. P.138 if v < 0 and to Config. P.139 if v = 0.

Considering (125) we observe that for do = 0 we have sign ({30) = —sign (72) and our claim is
proved in this case.

2: The subcase o = 0. This implies n = (2 + 21¢?)/4 and we observe that in this case the singular
point M; coalesces with M3 and we calculate

82 = (1= 7¢°)(1+ 9¢%).

It is not too difficult to detect that in the case 72 = 0 systems (121) possess the configuration
Config. P.137 if 69 < 0; to Config. P.138 if 62 > 0 and to Config. P.139 if j2 = 0.

It remains to observe that considering (125) for 72 = 0 we obtain Y3 = 16¢% > 0 and therefore we
have sign (£30) = sign (d2) and this completes the proof of our claim.
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3.3.2.2 The possibility B; = 0. Considering (123) this condition implies g(5¢g% —4n+2)Ws W3 =
0. We claim that due to the condition R; # 0 the condition By = 0 is equivalent to ¢ = 0. Indeed,
assuming g # 0 we obtain

Discrim [Wy, n] = —4096¢g? < 0,  Discrim [W3,n] = —256¢> < 0,

and hence the equation Ws = 0 as well as U3 = 0 could not have real solution with respect to the
parameter n. This completes the proof of our claim.

Thus we have g = 0 and we arrive at the 1-parameter family of systems
@ :%x(2n —2y—1), §=—a®+2ny— 2> (126)
possessing the invariant line x = 0 and the invariant parabolas
O(z,y)=a?—y=0, Oo(x,y)=2>+02n—1)y—n@2n—1)=0.
For these systems we calculate
(s = 1900n%, Ry = —32240(2n — 1), By = —162(2n + 1)*(4n — 1)%z*.

We discuss two cases: By # 0 and By = 0.

3.3.2.2.1 The case By # 0. Then by Lemma 1 we could not have invariant lines in another
direction. Considering (124) we obtain for ¢ = 0 that systems (126) possess four finite singularities
M;(zi, ;) (i = 1,2,3,4) with the coordinates
1 =0, y1=0; 22=0, yo =n;
1 1
T34 = §(i Y3), Y34 = 5(2n —1), Y3=2(2n—1).

We observe that the invariant line x = 0 intersects the invariant parabola ®; = 0 at the point M;
and the invariant parabola ®5 = 0 at the point M.

For systems (126) we have
D = —12nY3 = sign (D) = —sign (¥3).

Since all the singular points are fixed as points of intersection of invariant curves and D # 0 due
to the condition (sR7 # 0 we arrive at the configuration Config. P.140 if D < 0 and Config. P.1/1
if D > 0.

3.3.2.2.2 The case By = 0. This implies (2n +1)(4n —1) = 0.

Assume 4n — 1 = 0. This implies n = 1/4 and we arrive at the system

1 1
P=—qrly+1), §=3 (—22% —4y* +y), (127)

possessing three invariant lines Ly (z,y) = = 0 and Lo 3(x,y) = y £ix —1/4 = 0 and the invariant
parabolas ®1(z,y) = 22 —y = 0 and ®a(x,y) = —42? +2y — 1/2 = 0.
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We observe that the point Ms(0,1/4) is the point of intersection of the above complex lines. As
a result we obtain that the above system possesses the configuration Config. P.142.

Now if 2n + 1 =0 (i.e. n = —1/2) we arrive at the system
i=—z(l+y), §=-2"—-y—2,
which can be brought to system (127) via the affine transformation and time rescaling
x1=x/2, y1 =y/2+1/4, t; = 2t,

possessing the configuration Config. P.142.

3.3.3 The statement (&3)

According to Proposition 4 in this case the conditions (4 = (5 = 0 and R7 # 0 hold. Considering
(123), the condition (5 = 0 implies
3¢ —4n =0 = n = 3g%/4,
and we get the following 1-parameter family of systems
.3 1
i=2g(302+2)+ 5 (357 —2)z— 2+ g2 —ay,
8 4 2
y:Z (39> +2) gz + 792?1 — 2 + gxy — 2%,
possessing according to Proposition 4 the double invariant parabola ®(z,y) = 2> —y = 0.
For the above systems we compute
(4=0(=0, Ry=232240(1+g°)(1+3¢g%) #0, 0=—8(g°+9),
By = —g(1+ ¢*)*(1 +9¢%)3/4.
According to Lemma 1 systems (128) could have at least one invariant line only if B; = 0. So we
discuss two possibilities: By # 0 and By = 0.

1: The possibility By # 0. We determine that systems (128) possess the following three finite
singularities M;(z;,y;) (i = 1,2,3) with the coordinates:

3 9¢°2 1 .
r = ?g, Y1 = %; $2,3=—§[9i1\/2(1+92)]7
1
Yo3 =~ — 2 — g° £ 2gi\/2(1 + ¢?)].

4

It is clear that the real singular point M; is double as it is located on the double invariant parabola

(129)

and this could be proved directly.

It could be checked that the complex singular points Ms and Mj are also situated on the invariant
parabola. However this is not relevant according to the Definition 1 of a configuration.

Then we deduce that in the case By # 0 systems (128) have the unique configuration Config. P.143.

2: The possibility By = 0. Then g = 0 and system (128) with g = 0 possesses the additional invariant
line z = 0. So considering the singularities (129) for ¢ = 0 we arrive at the unique configuration

Config. P.144.
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3.3.4 The statement (&4)

According to Proposition 4 in this case the conditions (4 = R7 = 0 and (5 # 0 hold. Considering
(123), the condition R7 = 0 implies

59° —4n+2=0 = n=(2+5¢%)/4,

and we arrive at the following 1-parameter family of systems

1
T :g(g + 2x) (3g2 + 4gx — 4y) ,
(130)
.00 1 2 2 92
Y= 1 +2(5g +2)y x° + gxy — 2y°,

possessing the invariant parabola ®(z,y) = 22 — y = 0 and the invariant line 2z + g = 0. For these
systems we have By = —648(1 + ¢%)°(1 4 9¢%)2* # 0 and by Lemma 1 we could not have other
invariant lines.

On the other hand we determine that systems (130) possess three finite singularities M;(x;, y;)
(i =1,2,3) with the coordinates:

3g 9g?

TL=—05, =" T2 = (392+2); T3 =5, Y3 = — -

9 9 Yo =
2 ) 2

N Q
e

We claim that the singular point M is a multiple singularity of systems (130). Indeed, applying
the corresponding translation, we could place M; at the origin of coordinates and we arrive at the
systems

i =x(gr —y),
§=g(1+g%)x —a® + (1 +¢*)y + gay — 29°,
where M (0,0) is a singularity of the above systems corresponding to the singularity Mj.

Considering [1], we calculate the following invariant polynomials:

e =p3 =0, p2=29(1+g¢*)*x(gz —y),
p1 = —(1+ ¢*)(z + 5g°x — 4gy),

and by [1, Lemma 5.2, statement (ii)] the point My is of multiplicity at least 2. We observe that
p2 = 0 if and only if ¢ = 0. But in this case u; # 0. Therefore according to [1, Lemma 5.2, statement
(ii)] we have a double point if g # 0 and a triple one if g = 0. We observe that this condition is
governed by the invariant polynomial (3 = 32¢°.

We determine that the multiple singular point M; is the point of intersection of the line 2x+g =0
with the invariant parabola and the point M3 is also located on the invariant parabola. Moreover the
singular point M3 coalesces with M; for g = 0 producing a triple finite singularity of systems (130).

On the other hand the singularity M> is located on the invariant line above the point M; because
yo —y1 = (¢ +1)/2 > 0. Therefore we arrive at the configuration Config. P.145 if (3 # 0 and
Config. P.146 if (3 = 0.
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