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Abstract: The population dynamics of early replicators has revealed numerous puzzles, highlighting
the difculty of transitioning from simple template-directed replicating molecules to complex biologi-
cal systems. The resolution of these puzzles has set the research agenda on prebiotic evolution since
the seminal works of Manfred Eigen in the 1970s. Here, we study the effects of demographic noise on
the population dynamics of template-directed (non-enzymatic) and protein-mediated (enzymatic)
replicators. We borrow stochastic algorithms from evolutionary game theory to simulate nite popu-
lations of two types of replicators. These algorithms recover the replicator equation framework in
the innite population limit. For large but nite populations, we use nite-size scaling to determine
the probability of xation and the mean time to xation near a threshold that delimits the regions of
dominance of each replicator type. Since enzyme-producing replicators cannot evolve in a well-mixed
population containing replicators that benet from the enzyme but do not encode it, we study the
evolution of enzyme-producing replicators in a nite population structured in temporarily formed
random groups of xed size n. We argue that this problem is identical to the weak-altruism version
of the n-player prisoner’s dilemma, and show that the threshold is given by the condition that the
reward for altruistic behavior is equal to its cost.

Keywords: prebiotic evolution; replicator equation; stochastic simulations; enzyme production;
public goods

1. Introduction

The issue of the evolution of cooperation [1] ofcially entered the eld of prebiotic
or chemical evolution when Maynard Smith [2] noted that providing catalytic support
in a molecular catalytic feedback network, such as the hypercycle [3,4], can be seen as
altruistic behavior. Since the usual framework for studying the evolution of cooperation is
evolutionary game theory [5], there has been a fruitful intersection between game theory
and prebiotic evolution [6–8], which has spilled over into viral evolution [9,10], as viruses
are currently the best natural realization of a replicator. A replicator refers to a hypothetical
entity that has the ability to make copies of itself through some form of replication process.

The study of the population dynamics of error-prone replicators has revealed (or
created) a number of puzzles that make it difcult to explain the transition from simple
template-directed replicating molecules to more complex biological systems [11]. For
example, an enzymatic molecular replicator must be long enough to store information that
codes for an enzyme (replicase), but a long replicator cannot be accurately copied without
the assistance of a replicase, leading to a “chicken-and-egg” puzzle [3,12]. Splitting the
information for encoding the enzyme into different short replicators does not work because
different replicators cannot coexist in a purely competitive scenario [13]. Even in a scenario
of perfect template-directed replication accuracy, difculties abound, as the production of a
non-specic enzyme would favor short free-riding replicators that benet from the enzyme
without encoding it [14].
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The search for solutions to these puzzles has set the agenda for theoretical research
on prebiotic evolution since Eigen’s seminal work on the evolution of self-replicating
molecules [3]. The coexistence of replicators can be ensured by assuming a cyclic reaction
scheme, called hypercycle, in which each replicator would help the next one to replicate,
in a regulatory cycle closing on itself [4,15,16]. However, this scheme is not resistant to
the presence of free-riders [17]. An alternative scheme temporarily connes the templates
into packages or prebiotic vesicles that are considered viable provided they contain a set
of distinct functional templates [17–20]. This scenario has been tested experimentally in
in vitro molecular systems [21], which conrmed that transient compartmentalization is
capable of maintaining functional replicators despite the presence of free-riders (see [22–24]
for a theoretical analysis).

The population biology of replicators, which captures their interactions and dynamics
and, most importantly, determines what types of mutant replicators can arise and evolve
in a resident population, is essential to the study of the complexication of life. Here, we
revisit a classic study on the population biology of early replicators [14] from an evolution-
ary game-theoretic perspective. In particular, we focus on the effects of demographic noise
that arises when the population of replicators is nite. Following the usual population
genetics approach to nite populations [25], we concentrate on the probability that one of
the replicator types xates and on the unconditional mean time to xation. Crucially, we
borrow from evolutionary game theory the stochastic algorithms that simulate the trajec-
tories of nite populations and recover the replicator equations in the innite population
limit [26,27].

In all the competition scenarios studied, involving template-directed (non-enzymatic)
replicators and protein-mediated (enzymatic) replicators, we nd a threshold at which the
replicators are neutral: away from the threshold, one of the replicator types dominates.
Near the threshold (i.e., in the quasi-neutral regime), we use nite-size scaling [28] to
obtain explicit expressions of the xation probability and mean xation time in terms of the
model parameters. Since the emergence of enzyme-producing replicators is impossible in a
well-mixed population of free-riding replicators, we consider a population structured in
temporarily formed random groups of xed size n. We argue that this problem is identical
to the weak-altruism version of the n-player prisoner’s dilemma [29] and offer a thorough
study of the model near the threshold, which in this case is given by the weak-altruism
condition: the reward for altruistic behavior equals the cost of performing it [30].

Following the seminal works on the population dynamics of early replicators [3,14],
in this study we consider only the competition between two different types of replicators.
The reason for this is that in a well-mixed unstructured population, two different types of
replicators cannot coexist [13], so the equilibrium scenario will always be a homogeneous
population composed of a single type of replicator, and competition arises with the appear-
ance of a mutant or migrant of a different type. The probability of two or more distinct
mutants, or two or more migrants from different populations, resulting in a competitive
scenario with more than two replicator types is negligible. This is also the reason why the
non-invadability conditions of the resident population are so important to characterize the
possible equilibrium scenarios [5].

The remaining sections are organized as follows. In Section 2, we study the competition
between different types of replicators in well-mixed populations, which we call non-
structured populations. Replicators are considered of different types not only because of
their mode of replication (i.e., template-directed or protein-mediated), but also if they have
the same mode of replication but different growth parameters. We present the results for
both the replicator equation framework [31], which is valid for innitely large populations,
and the stochastic algorithms used to simulate nite populations. In Section 3, we consider
the problem of the evolution of enzymatic replication in the worst-case scenario of a non-
specic enzyme that can promote the replication of producers and free-riders with equal
efciency. This problem is considered in a structured population scenario where replicators
are conned to small compartments or protocellular structures, so that a replicator can
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only benet from the enzyme if there are enzyme producers in the same compartment.
Our original contribution to the population dynamics of replicators in both non-structured
and structured populations is the use of evolutionary game theory stochastic algorithms to
study the dynamics for nite populations. In Section 4, we summarize our main ndings
and present some concluding observations.

2. Non-Structured Populations

We consider a well-mixed nite population of size M consisting of replicators of two
different types. The population is well-mixed in the sense that each replicator can interact
with every other replicator in the population. More importantly, in the case of enzymatic
replicators, we assume that the enzymes benet all replicators in the population that have
an afnity for them.

2.1. Malthusian vs. Malthusian Replicators

AMalthusian or template-directed replicator is a replicator that follows Malthusian
dynamics, i.e., in the absence of density regulation, its abundance grows exponentially with
time, with growth rates determined by the balance between birth and death processes [14].
The competitive setup arises when we impose the constraint that the total number of
replicators is kept at some constant number [3], so that the interaction between different
types of replicators can be seen as a zero-sum game. In particular, this constraint allows
us to completely describe the population in terms of the frequencies xa ∈ [0, 1] with
∑a xa = 1 of the different types of replicators. In the case of two Malthusian competitors
with intrinsic growth rates ra and rb, the dynamics in the limit M → ∞ is governed by the
replicator equations

dxa
dt

= xa(ra − ), (1)

dxb
dt

= xb(rb − ), (2)

where  = raxa + rbxb is the mean tness of the population that ensures the constraint
xb + xa = 1 is satised for all t. Here, the parameter  determines the time scale and is
important for connecting the deterministic formulation of the replicator equation with the
stochastic dynamics, as we will see next. Writing xb in terms of xa yields

dxa
dt

= (ra − rb)xa(1− xa), (3)

from where we can immediately see that xa = 0 and xa = 1 are the only equilibrium
solutions of the replicator dynamics. In particular, the xed point xa = 1 is stable if
ra > rb and unstable if ra < rb, in which case the xed point xa = 0 is stable. If ra = rb,
the dynamics freezes at the initial condition, i.e., xa(t) = xa(0) for all times. Thus, for
an innite population, the replicator type with the higher intrinsic growth rate wins the
competition. This conclusion can also be reached by explicitly solving Equation (3),

xa(t) =
xa(0)

xa(0) + [1− xa(0)] exp[−(ra − rb)t]
. (4)

The deterministic dynamics involving the competition between two (or more) Malthu-
sian replicators is well known [3,14], so our focus is on the nite population effects, i.e., the
effects of demographic noise on the competition between replicators. The above results
for the deterministic limit are essential to validate the nite population simulations, which
should recover the deterministic results as the population size M increases. One difculty
here is that the Gillespie algorithm [32], which is the standard numerical method for sim-
ulating the stochastic time evolution of coupled chemical reactions, is not well suited for
simulating systems with hard constraints, since to satisfy the constraint of a xed total
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number of replicators, two different reactions must occur simultaneously. Here we borrow
the stochastic dynamics used in evolutionary game theory, which recovers the replicator
equation in the limit of innite population size [26,27].

We note that the replicator equation is always nonlinear by construction due to the
constant total density constraint, but it is possible to nd explicit analytical solutions in
many competition scenarios [31], as done above. There are also fractional versions of the
replicator equation (see, e.g., [33,34]) for which even nding their numerical solutions is
challenging [35]. Rather than solving the replicator equation numerically, we focus on
stochastic simulations of nite populations of replicators, which recover the results of the
(non-fractional) replicator equation for innite population sizes.

The stochastic dynamics for the competition between two types of Malthusian replica-
tors in a population of nite and xed size M is as follows. Randomly select two different
replicators i and j, with i, j = 1, . . . ,M. We will refer to replicator i as the challenged
replicator and to replicator j as the challenger. The challenger replaces the challenged
replicator with probability rj/(rj + ri), where ri and rj take values ra or rb, depending on
the type of replicators i and j. Regardless of whether the challenger succeeds in replacing
the challenged replicator or not, the time t is increased by the time step t. Then a new pair
of replicators is selected and the process is repeated until all replicators in the population
are either of type a or type b. In case of replacement, the challenger makes a copy of itself,
which replaces the challenged replicator. In the Appendix A, we prove that this stochastic
dynamics leads to the replicator Equation (3) in the limit M → ∞ if we set t = 1/M and
 = 1/(ra + rb).

Since only the ratio between the intrinsic growth parameters ra and rb appears in
both the deterministic and the stochastic formulations, it is convenient to introduce the
reduced variable

ρ =
ra

ra + rb
, (5)

which is restricted to the interval [0, 1]. In terms of this variable, the replicator Equation (3)
is rewritten as

dxa
dt

= (2ρ− 1)xa(1− xa). (6)

Figure 1 compares the trajectories of the stochastic dynamics for populations of size
M = 1000 with the deterministic results. The agreement is excellent, as expected, except
at the threshold ρc = 0.5, since the stochastic trajectories will eventually reach one of the
absorbing states xa = 1 or xa = 0, while the deterministic dynamics is frozen at the initial
condition xa(0) = 0.5. For not too large M, the demographic noise can push the dynamics
into the opposite absorbing state predicted by the deterministic equation. Moreover, even
when starting from the same initial state, the noise can lead the stochastic trajectories to
different absorbing states. Note that the closer ρ is to 0.5, the longer it takes to converge to
the absorbing state.

To quantify the effect of demographic noise, we consider the probability of xation of
replicators of type a, denoted by Πa, which is estimated as the fraction of 104 independent
trajectories of the stochastic dynamics that are attracted to the absorbing state consisting
only of replicators of type a. The results in Figure 2 show that the magnitude of the effect
of demographic noise depends on the population size M and on the proximity of ρ to the
threshold ρc = 0.5. In fact, the scaling assumption Πa ≈ f [(ρ− ρc)M] perfectly describes
this dependence in the threshold region for large M, as shown by the collapse of the curves
for different M when ρ is properly shifted and scaled [28]. For other applications of the
curve collapse method, see [36,37]. Here, f (u) is a scaling function such that f (u) → 1
when u → ∞ and f (u) → 0 when u → −∞ (see Equation (7) for the explicit form of this
scaling function). The steepness of the threshold transition for functions such as those
shown in Figure 2 is estimated by their derivatives at the threshold. Recall that these
derivatives are the slopes of the tangent line to the graph of Πa versus ρ at the threshold: a
large derivative indicates a sharp threshold transition and a small derivative indicates a
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smooth threshold transition. Since Π′
a(ρc) ≈ Mf ′(0), we conclude that the steepness of the

threshold transition increases linearly with the population size M.
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Figure 1. Frequency of Malthusian replicators of type a as a function of time for ρ = 0.6 (red curves),
ρ = 0.5 (blue curves), and ρ = 0.45 (green curves). The jagged thin curves are trajectories of the
stochastic dynamics for M = 1000, and the smooth thick curves are the deterministic results. The
initial condition is xa(0) = 0.5.
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Figure 2. (Left) Probability of xation Πa of Malthusian replicators of type a as a function of
ρ = ra/(ra + rb) for M = 2000 (red curve), M = 1000 (green curve), and M = 500 (blue curve).
The vertical dashed line indicates the threshold ρc = 0.5 beyond which the xed point xa = 1 is
stable for M → ∞. (Right) Πa as a function of the scaled variable (ρ− ρc)M. The initial condition is
xa(0) = 0.5.

Another important quantity to characterize the stochastic dynamics is the uncondi-
tional mean xation time Tf , i.e., the mean time for the dynamics to reach any absorbing
state, which is shown in Figure 3. The results indicate that Tf diverges linearly with M
at the threshold ρc in the limit M → ∞. Away from the threshold region, we nd that Tf
diverges with lnM in this limit.
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Figure 3. (Left) Mean time for xation Tf of either type of Malthusian replicators as a function of
ρ = ra/(ra + rb) for M = 2000 (red curve), M = 1000 (green curve), and M = 500 (blue curve). The
vertical dashed line indicates the threshold ρc = 0.5. (Right) Scaled mean xation time Tf /M as a
function of the scaled variable (ρ− ρc)M. The initial condition is xa(0) = 0.5.

The reason why the xation probability is invariant to the change ρ → 1− ρ andΠa →
1−Πa, and Tf is symmetric around the threshold ρc, is that xa(0) = 0.5 in Figures 2 and 3,
i.e., at t = 0 the replicators are assigned to types a or b with equal probability. Figure 4
shows the results for xa(0) = 0.2. Recall that for the competition between two Malthusian
replicators, the threshold occurs at ρc = 0.5, regardless of the initial condition xa(0). The
symmetry about the vertical line at ρ = ρc is lost, since for nite M and xed ρ, replicators
of type a are less likely to be xated due to their initial disadvantage. In addition, replicators
of type a take longer to reach xation than replicators of type b, as expected. Note that
for nite M, the maximum of Tf does not occur at ρ = ρc, but it moves in the direction of
the threshold ρc as M increases. The dependence of Πa and Tf on M in the vicinity of the
threshold is the same as that discussed above for xa(0) = 0.5.
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Figure 4. (Left) Probability of xation Πa of Malthusian replicators of type a as a function of
ρ = ra/(ra + rb) for M = 2000 (red curve), M = 1000 (green curve), and M = 500 (blue curve).
(Right) Mean time for xation Tf of either type of replicators as a function of ρ. The vertical dashed
lines indicate the threshold ρc = 0.5. The initial condition is xa(0) = 0.2.
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Note that at the threshold, or equivalently for ra = rb, the curves for different M
intersect at Πa = xa(0) (see the left panels of Figures 2 and 4), which gives the xation
probability of replicators of type a in the limit M → ∞. Thus, the scaling function at the
threshold is f (0) = xa(0). This is the classical result for the probability of xation of a
neutral mutant [25]. Even better, if we set the selective advantage s of type a replicators to
s = 2ρ− 1, then Kimura’s probability of xation [25]

Πa =
1− exp[−2Msxa(0)]

1− exp[−2Ms]

=
1− exp[−4M(ρ− 1/2)xa(0)]

1− exp[−4M(ρ− 1/2)]
(7)

ts the simulation results perfectly. It is interesting to note that this equation is valid in the
limit of large M and small s, which are exactly the conditions used in our nite-size scaling
analysis. The connection between the stochastic dynamics for the competition between
Malthusian replicators and Kimura’s diffusion equation approach to population genetics,
which led to Equation (7), can be made explicit by considering the 1/M corrections in the
analytical treatment of the stochastic dynamics [26]. Kimura’s diffusion theory predicts
that the mean xation time of an allele with a small selective advantage scales with lnM,
but for neutral alleles (i.e., s = 0 or ρ = 1/2), Tf scales with M [25], which is consistent
with the results in Figure 3.

2.2. Hypercyclic vs. Hypercyclic Replicators

Hypercyclic or enzymatic replicators follow a nonlinear growth equation, evenwithout
the constant density constraint, due to the presence of a protein catalyst (enzyme) that
promotes their replication [4]. The nonlinearity occurs because the catalysts are produced
by the hypercyclic replicators themselves. These replicators exhibit characteristics that
differ from Malthusian replicators, such as explosive growth and the potential for “once-
forever” decisions, where once a replicator type becomes xed in a population, it cannot be
replaced by another more efcient hypercyclic replicator.

In the deterministic regime, a simplied scenario for the competition between hyper-
cyclic replicators of types a and b is described by the replicator equations [14]

dxa
dt

= xa(caxa − ), (8)

dxb
dt

= xb(cbxb − ), (9)

where xa and xb are the frequencies of the two replicator types in an innite population.
Here, ca and cb represent the benecial effect of protein-mediated replication. In addition,
these parameters include the production of specic enzymes from each replicator type. As
before,  = cax2a + cbx2b guarantees that the constraint xa + xb = 1 is met for all times, and
 is the time scale. Eliminating xb we get

dxa
dt

= (ca + cb)xa(1− xa)(xa − 1+ ), (10)

with
 =

ca
ca + cb

. (11)

This equation has three xed points: the xed points xa = 0 and xa = 1 are always
stable, while the unstable xed point xa = 1 −  gives the boundary of the domains
of attraction of the two stable xed points. Therefore, a resident population of hyper-
cyclic replicators of type a cannot be invaded by rare invaders of type b, even if cb ≫ ca.
In this sense, the xation of a hypercyclic replicator in a population is a “once-forever”
decision [3,4].
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Explicit integration of Equation (10) yields (see Appendix B).

(ca + cb)t =
1

(1− )
ln


xa − 1+ 

xa(0)− 1+ 


− 1

1− 
ln


xa
xa(0)


− 1


ln


1− xa
1− xa(0)


, (12)

which allows us to plot xa as a function of twithout solving Equation (10) numerically. Note
that since xa ∈ [0, 1] in the competitive scenario, Equation (12) does not exhibit explosive
growth (i.e., divergence at nite t). For xed xa(0), the transition between the different
equilibrium regimes occurs at the threshold c = 1− xa(0).

As before, the results for the deterministic regime are well known, and we have pre-
sented them here because they are necessary for validating the nite population simulations
that are the focus of this paper. The stochastic dynamics that reproduces the replicator
Equation (10) in the innite population limit is as follows. First, we randomly select the
challenged replicator i and compute its instantaneous payoff fi. This is done by randomly
selecting another replicator and checking if it is of the same type as the challenged replicator.
If so, we set fi = ca if replicator i is of type a, and fi = cb if replicator i is of type b. If not,
we set fi = 0. (Note that the instantaneous payoff is determined by a coordination game [5],
where a player gets a higher payoff by choosing the same action as its opponent.) Then we
select the challenger replicator j ̸= i and compute its instantaneous payoff f j in the same
way. The challenger replaces the challenged replicator with probability

f j − fi
max(ca, cb)

(13)

if f j > fi, otherwise the challenged replicator keeps its type. The denominator in this
equation is chosen to ensure that the probability of replacement is less than or equal to 1.
Time is updated using the time step t = 1/M, and another pair of challenged-challenger
replicators is selected. The process is repeated until the population becomes homogeneous.
In the limit M → ∞, this stochastic dynamics is described by the replicator Equation (10) if
we set the time scale as  = 1/max(ca, cb) [27]. With this setting, this equation depends
only on the variable .

Figure 5 shows the excellent agreement between the stochastic and deterministic
trajectories when  is far from the threshold c = 1− xa(0). A comparison with Figure 1,
which shows the time evolution of two competing Malthusian replicators, indicates that
the dynamics reach equilibrium much faster for competing hypercyclic replicators, even at
the threshold. This implies that for xed M the effect of demographic noise leading to the
xation of one of the replicator types is more pronounced for hypercyclic replicators.
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Figure 5. Frequency of hypercyclic replicators of type a as a function of time for  = 0.8 (red curves),
 = 0.5 (blue curves), and  = 0.2 (green curves). The jagged thin curves are trajectories of the
stochastic dynamics for M = 1000, and the smooth thick curves are the deterministic results. The
initial condition is xa(0) = 0.5.
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In fact, Figure 6 shows that the xation probability of the hypercyclic replicators
of type a is given by the scaling relation Πa ≈ g[( − c)M1/2] near the threshold and
for large M, where g(u) is a scaling function such that g(u) → 1 when u → ∞ and
g(u) → 0 when u → −∞. This means that the steepness of the threshold transition
increases as M1/2 as M increases, indicating that much larger populations are needed to
suppress demographic noise for hypercyclic replicators compared to Malthusian replicators.
Another difference from the previous analysis is that, by varying the initial condition xa(0),
we nd Πa = 1/2 at the threshold c = 1− xa(0). Therefore, the scaling function must be
such that g(0) = 1/2.
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Figure 6. (Left) Probability of xation Πa of hypercyclic replicators of type a as a function of
 = ca/(ca + cb) for M = 4000 (red curve), M = 2000 (green curve), and M = 1000 (blue curve). The
vertical dashed line indicates the threshold c = 1− xa(0) = 0.5. (Right) Πa as a function of the
scaled variable (− c)M1/2.

Figure 7 shows the mean xation time for the competition between hypercyclic repli-
cators near the threshold for two initial conditions. As hinted at in Figure 5, the dynamics
reach the absorbing states very quickly, perhaps a reminiscence of the explosive growth
characteristic of unrestrained hypercyclic replicators [3,4]. Note that doubling the value of
M only increases Tf by an amount of about 2. In fact, Figure 8 shows that Tf increases with
the logarithm of M, viz., Tf ∼ 1

1− lnM for large M.
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Figure 7. Mean time for xation Tf of either type of hypercyclic replicators as a function of
 = ca/(ca + cb) for M = 4000 (red curve), M = 2000 (green curve), and M = 1000 (blue curve). The
vertical dashed line indicates the threshold c = 1− xa(0). (Left) xa(0) = 0.5. (Right) xa(0) = 0.2.
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Figure 8. Mean xation time Tf of either type of hypercyclic replicators at the threshold c = 1− xa(0)
as a function of the population size M for (from bottom to top) xa(0) = 0.5, 0.6, 0.7, 0.8, and 0.9. The
lines are the t Tf = a + lnM1/(1−) where a is a t parameter.

2.3. Hypercyclic vs. Malthusian Replicators

We consider hypercyclic replicators to have frequency xa and protein-mediated growth
rate ca, while Malthusian replicators have frequency xb and intrinsic growth rate rb. Thus,
here the subscript a refers to hypercyclic replicators and the subscript b to Malthusian
replicators. It is interesting to nd out how Πa and Tf scale with M in this case, given the
stark differences in scaling in the two previous competition scenarios. In the deterministic
limit, the competition between these two types of replicators is described by the replicator
equations [14]

dxa
dt

= xa(caxa − ), (14)

dxb
dt

= xb(rb − ), (15)

where  = cax2a + rbxb ensures that xa + xb = 1 for all times, and  is the time scale as
before. Eliminating xb, we get

dxa
dt

= caxa(1− xa)(xa − η), (16)

with
η =

rb
ca
. (17)

The xed points xa = 0 and xa = 1 are stable provided that η < 1, in which case the
unstable xed point xa = η separates the domains of attraction of the stable xed points.
This is the same bistability scenario found in the competition between two hypercyclic
replicators. If η > 1, the only stable xed point is xa = 0, which means that rare Malthusian
replicators can invade a resident population of hypercyclic replicators. In this sense, the
xation of hypercyclic replicators is not a “once-forever” decision. However, the idea
of introducing protein-mediated replication is that it is much more efcient than direct
template replication, so we should have ca ≫ rb or η ≪ 1, instead.

The stochastic dynamics in this case is as follows. First, we randomly select the
challenged replicator i. The instantaneous payoff fi depends on the nature of the replicator
i. If it is a hypercyclic replicator, we randomly choose another replicator and check its
nature: if it is also a hypercyclic replicator, we set fi = ca, and if it is a Malthusian replicator,
we set fi = 0. If the challenged replicator i is a Malthusian replicator we set fi = rb. Then
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we select the challenger replicator j ̸= i and compute its instantaneous payoff f j in the
same way. As before, the challenger replaces the challenged replicator with probability

f j − fi
max(ca, rb)

(18)

if f j > fi, otherwise the challenged replicator maintains its type. Time is updated as before,
and the process is repeated until the population becomes homogeneous. If we set the time
scale to  = 1/max(ca, rb), this stochastic dynamics leads to the replicator Equation (16) in
the limit M → ∞ [27].

Figure 9 shows that the competition between hypercyclic and Malthusian replicators is
qualitatively similar to the competition between two hypercyclic replicators. In particular,
the steepness of the transition at the threshold ηc = xa(0) increases as M1/2, and the
xation time increases as lnM as M increases. Thus, the hypercyclic replicator determines
the strength of the demographic noise.
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Figure 9. (Left) Probability of xation Πa of hypercyclic replicators competing against Malthusian
replicators as a function of the scaled variable (η − ηc)M1/2, where η = rb/ca and ηc = xa(0) = 0.2,
for M = 4000 (red curve), M = 2000 (green curve), and M = 1000 (blue curve). (Right) Mean xation
time Tf as a function of η. The vertical dashed line indicates the threshold ηc.

The important lesson from the competition between hypercyclic and Malthusian
replicators is that a few hypercyclic replicators cannot invade a resident population of
Malthusian replicators. In addition, replicators that do not produce the enzyme are likely
to benet from it as well. Since Malthusian (non-enzymatic, template-directed) replication
is likely to have arisen rst in the evolution of life, these are major hurdles to the evolution
of more efcient enzymatic replication. In the following, we discuss how compartmental-
ization of the replicators can address these problems.

3. Structured Populations

A possible solution to the evolution of enzymatic replication is to assume that the
replicators are temporarily conned in groups, e.g., rock crevices, suspended clay particles,
or suspended water droplets [38], so that the enzyme producers experience the benets of
the enzyme more strongly [14]. Thus, group connement produces the positive assortment
among enzyme producers (cooperators) necessary for their maintenance [39]. Another way
to produce this positive assortment is through the spatial localization of replicators, since
the aggregation of cooperators into clusters may protect those in the bulk from exploitation
by free-riders, i.e., replicators that benet from the enzyme but do not encode it (see,
e.g., [40–42]). Here, we will consider the positive assortment resulting from temporarily



Life 2024, 14, 1064 12 of 22

formed random groups, which has a long tradition in theoretical prebiotic evolution
studies [14,17,18,23,43]. In fact, this approach combines the rst studies of the origin of life,
which focused on the emergence of protocellular structures (e.g., Oparin’s coacervates [44]),
with the more modern approach, which focuses on the replication process [3], a key
component of any system, living or not, that evolves under natural selection. In this sense,
we say that the population is structured, i.e., the replicators are conned in protocellular
structures, which we call groups.

In particular, we use Wilson’s trait group formulation [45] to model the dynamics
of compartmentalized replicators. In this formulation, the tness of the replicators are
determined locally within their groups of xed size n, but there is no intragroup competition
and the mean tness of the group plays no role in the evolutionary process. Competition
takes place in the population at large, with individuals from all groups randomly selected
to form the next generation with probability proportional to their tness, i.e., competition
happenswhen all groupsmerge into a common pool of replicators [45]. This contrasts with a
more recent model of transient compartmentalization [22–24], which includes a maturation
phase with intragroup competition that leads to the disappearance of cooperators from
any group containing free-riders: only groups formed only by cooperators can maintain
cooperation. In addition, the size of each group grows at a rate given by the group tness,
so that the all-cooperators groups eventually contribute more offspring to the common
pool. As in Wilson’s formulation, groups are formed by randomly selecting replicators
from a common pool. A remarkable aspect of Wilson’s formulation is that it is closely
related to the evolutionary game theory approach to n-player public goods games [46],
as will become clear when we formulate the enzyme production problem as an n-player
evolutionary game.

3.1. Enzyme-Production as a Public Goods Game

As in the previous analyses, we consider a scenario with two types of replicators. Type
a replicators, which produce an enzyme that increases the replication rate of all replicators
(including themselves) in the group, but at the cost of decreasing their template-directed
replication rates, and type b replicators (free-riders), which do not produce the enzyme
but benet from it. This differs from the hypercyclic vs. Malthusian replicator scenario
discussed earlier, as the Malthusian replicators do not benet from the enzyme, i.e., the
enzyme is specic to hypercyclic replicators. Although this is a best-case scenario for the
emergence of enzyme-producing replicators, these replicators cannot invade a resident
population of Malthusian replicators in an unstructured population, as shown before. Since
the amount of enzyme is proportional to the number of producers, the instantaneous payoff
of a replicator of type a in a group of size n that contains k+ 1 replicators of type a is [14]

fa = ra + ca
k+ 1
n

, (19)

with k = 0, . . . , n− 1. The instantaneous payoff of a replicator of type b in a group with k
replicators of type a is [14]

fb = rb + cb
k
n
, (20)

with k = 0, . . . , n− 1, since at least one member of the group must be a replicator of type
b. We have ra < rb to account for the cost of producing the enzyme. The parameters ca
and cb represent the benecial effect of enzyme-mediated replication. In particular, cb = 0
implies that the enzyme is specic to the replicator that produced it, as in the competition
between hypercyclic and Malthusian replicators discussed earlier. However, it seems more
plausible to assume that the ancestral enzymes were some kind of general catalysts that
would facilitate the replication of a wide range of replicators, so in the following we will
assume the worst-case scenario of a non-specic enzyme and set ca = cb. Thus, the enzyme
is considered a public good that is shared equally among the members of the group. Note
that the instantaneous payoffs (19) and (20) are the growth rates of replicators of type a and
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b, respectively, having a term proportional to the concentration of enzymes in the group,
which in turn is proportional to the concentration of enzyme-producing replicators in the
group [14].

With this parameterization, the problem reduces to the n-player prisoner’s dilemma [29,47].
In the terminology of this game, if we set the baseline payoff to rb, then the cooperator
(i.e., the type a replicator) contributes an amount rb − ra to the public goods, which is then
multiplied by a factor ca/(rb − ra) > 1, and the resulting amount ca is divided among the
n players. The free-rider (i.e., the type b replicator) contributes nothing (rb − rb = 0) to the
public goods, but gets its share of these goods.

Note that the payoff of type b replicators is always greater than the payoff of type a
replicators in the same group, but when comparing the payoffs of replicators in different
groups, it is possible for type a replicators to get an advantage over type b replicators. For
this reason, cooperation can develop in the temporary group scenario, where competition
takes place in the population at large [45]. However, if groups are formed randomly from
a pool of dispersers (i.e., there is no positive assortment among replicators of type a),
then cooperation can progress only in the so-called weak altruism scenario, where the
return to altruistic behavior (ca/n) exceeds the cost (rb − ra) of performing it [30]. For the
payoffs (19) and (20), this condition corresponds to

ca
n

> rb − ra. (21)

This inequality will be explicitly derived in Section 3.3 as a condition for the stability
of the all-cooperators equilibrium solution of the replicator equation. However, in the
strong altruism scenario, where a cooperator does not benet from its contribution to public
goods, the evolution of cooperation requires positive assortment among cooperators [39,48],
punishment of free-riders [49], or biparental sexual reproduction [50].

3.2. Stochastic Dynamics

The relation between the imitation dynamics and Wilson’s trait group formulation [45]
is better appreciated for nite populations. As done before, the rst step is to randomly
select the challenged replicator i. To compute its instantaneous payoff fi, we rst need
to create its play group, so we randomly select other n− 1 replicators in the population
without replacement. Next, we just have to determine the type of the challenged replicator
and count the number of replicators of type a in its play group: its instantaneous payoff
fi is given by Equation (19) or (20), depending on its type. Then we randomly select the
challenger replicator j ̸= i and calculate its instantaneous payoff f j following the same
procedure. Since n ≪ M, it is unlikely that challenger and challenged replicators will be
in the same play group, but this is inconsequential. The probability that the challenger
replicator replaces the challenged replicator is

f j − fi
∆ fmax

, (22)

if f j > fi, and 0 otherwise. Here, ∆ fmax is chosen so as to guarantee that this probability is
not greater than 1. To compute this quantity, we need to knowwhat are the group congura-
tions that maximize and minimize a replicator instantaneous payoff. These congurations
depend on whether the weak altruism condition (21) is satised or not. If this condition is
satised, then the maximum individual payoff is ra + ca, obtained by a replicator of type a
in a group with n− 1 other replicators of type a, and the minimum individual payoff is
rb, obtained by a replicator of type b in a group with n− 1 other replicators of type b. So
∆ fmax = ca − (rb − ra). If condition (21) is violated, then the maximum individual payoff
is rb + ca(n − 1)/n obtained by a replicator of type b in a group with n − 1 replicators
of type a, and the minimum individual payoff is ra + ca/n obtained by a replicator of
type a in a group with n− 1 replicators of type b. So ∆ fmax = rb − ra + ca(n− 2)/n. Once
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the replicator i is probed, time is updated with the time step t = 1/M and the whole
procedure is repeated until xation occurs.

Thus, the imitation dynamics exhibits the two main features of Wilson’s trait group
formulation: the two competing replicators are randomly selected in the population at
large, so there is no intragroup competition, and their tness are obtained by playing a
single round of the n-player prisoner’s dilemma in different play groups.

3.3. Deterministic Limit

In the deterministic regime, we assume an innite population consisting of both types
of replicators with frequencies xa and xb = 1− xa. Consider a particular replicator of
type a. Its payoff depends on the types of the n − 1 other members of its group. Since
groups are formed by randomly sampling from the population at large, the probability that
there are exactly k = 0, 1, . . . , n− 1 other replicators of type a in its group is given by the
binomial distribution 

n− 1
k


xkax

n−1−k
b . (23)

Thus, the expected payoff πa of a replicator of type a is given by adding its payoff for
all possible choices of the other members of its group, properly weighted by the probability
of each choice, resulting in

πa =
n−1

∑
k=0


n− 1
k


xkax

n−1−k
b


ra + ca

k+ 1
n



= ra + caxa + (1− xa)
ca
n
. (24)

The expected payoff πb of a replicator of type b is obtained in the same way and is
given by

πb =
n−1

∑
k=0


n− 1
k


xkax

n−1−k
b


rb + ca

k
n



= rb + caxa − xa
ca
n
. (25)

The replicator equations that govern the time evolution of the frequencies xa and xb
are [31]

dxa
dt

= xa(πa − ), (26)

dxb
dt

= xb(πb − ), (27)

where  is the time scale and  = xaπa + xbπb is the population mean tness. Eliminating
xb, we obtain

dxa
dt

= 
 ca
n
− (rb − ra)


xa(1− xa), (28)

from which we can see that the xed point xa = 1 is stable only if the weak altruism
condition (21) is satised. The limit of innitely large groups n → ∞ describes the situation
of a non-structured population, for which this condition is always violated and so xa = 0
is the only stable xed point, as expected. We can easily write the explicit solution of
Equation (28) as done for Equation (3), viz.,

xa(t) =
xa(0)

xa(0) + [1− xa(0)] exp[−(ca/n− (rb − ra))t]
. (29)
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In the limit M → ∞, the stochastic dynamics recovers the replicator Equation (28) if
we set the time scale to  = 1/∆ fmax [27]. With this time scale, both the deterministic and
the stochastic dynamics depend only on the reduced variable

 =
ca

rb − ra
, (30)

so the threshold is c = n in the deterministic limit. At the threshold, we have πa = πb,
so the two types of replicators are on equal footing in the population at large. In the
terminology of the n-person prisoner’s dilemma, the parameter  is the amplication factor
of the cooperator’s contribution to the public goods [47].

3.4. Finite Population Simulations

Figure 10 shows the excellent agreement between the stochastic and deterministic
trajectories for parameters far from the threshold c = n, as expected. Even for balanced
initial frequencies of the two replicator types, i.e., xa(0) = 0.5, the results indicate that the
xation of type a replicators takes slightly longer than the xation of type b replicators.
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Figure 10. Frequency of replicators of type a (cooperators) as a function of time for groups of size
n = 4 and  = 5 (red curves),  = 4 (blue curves), and  = 3 (green curves). The jagged thin
curves are trajectories of the stochastic dynamics for M = 1000, and the smooth thick curves are the
deterministic trajectories. The initial condition is xa(0) = 0.5.

Figure 11 shows that the xation probability of type a replicators is well approximated
by Πa ≈ hn[(− c)M] near the threshold for large M, where hn(u) is a scaling function.
Considering different initial conditions gives hn(0) = xa(0), i.e., at the threshold, the
probability that replicators of type a will xate is equal to their proportion in the initial
population, as in the competition between two types of Malthusian replicators. In fact,
apart from a difference in time scales, the replicator Equations (3) and (28) describing these
two scenarios in the deterministic limit are the same, which may explain the similarity
between the nite population results.

The inuence of the group size n on the xation probability Πa is shown in Figure 12
for a population size M = 1000. The threshold is smoothed as n increases, and the results
show that the steepness of the threshold transition decreases with n−2. Thus, for M ≫ n,
we can write a general scaling form for Πa near the threshold c,

Πa = h

(− c)

M
n2


, (31)
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where the scaling function h(u) is such that h(0) = xa(0). This is an empirical equation
that summarizes the data of Figures 11 and 12. This way of summarizing information from
data by nding properly scaled variables is the basis of the nite-size scaling technique
of statistical physics [28]. Therefore, the effect of demographic noise is greatly magnied
by increasing the group size n. This is somewhat counterintuitive, as we would normally
expect to see a reduction in noise as group size increases. However, since groups are
distinguished by the number of replicators of type a, increasing n actually increases the
variability among group compositions, which may help demographic noise to nudge the
stochastic trajectories away from the deterministic prediction.

 0

 0.2

 0.4

 0.6

 0.8

 1

 3.96  3.98  4  4.02  4.04

Π
a

 γ

 0

 0.2

 0.4

 0.6

 0.8

 1

−15 −10 −5  0  5  10  15

Π
a

(γ − γ
c
) M

Figure 11. (Left) Probability of xation Πa of replicators of type a (cooperators) as a function of 
for groups of size n = 4 and M = 1000 (red curve), M = 500 (green curve), and M = 250 (blue
curve). The vertical dashed line indicates the threshold c = n beyond which the xed point xa = 1
is stable for M → ∞. (Right) Πa as a function of the scaled variable (− c)M. The initial condition
is xa(0) = 0.5.
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Figure 12. (Left) Probability of xation Πa of replicators of type a (cooperators) as a function of the
shifted variable − c, for M = 1000 and groups of size n = 3 (red curve), n = 4 (green curve), and
n = 5 (blue curve). (Right) Πa as a function of the scaled variable (− c)n−2. The initial condition
is xa(0) = 0.5 and c = n.

Figure 13 shows how the mean xation time Tf is affected by the magnication factor
, the population size M and the group size n. As indicated in Figure 10, xation takes
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longer in the regime where type a replicators are dominant. This observation is conrmed
by the results shown in the left panel of Figure 13, where we have used the logarithmic
scale on the y-axis to emphasize the small differences in xation time for the two types
of replicators, which are only noticeable away from threshold. In fact, the right panel of
this gure shows that the xation time at the threshold increases linearly with M, but
sublinearly with n, viz, Tf ∼ n0.25.
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Figure 13. (Left) Mean xation time Tf as a function of  for groups of size n = 4 and M = 1000
(red curve), M = 500 (green curve), and M = 250 (blue curve). The vertical dashed line indicates
the threshold c = n. (Right) Tf /n0.25 as a function of M at the threshold c for n = 3 (red symbols),
n = 4 (green symbols), and n = 5 (blue symbols). The line is the t Tf /n0.25 = −298.14+ 7.25M. The
initial condition is xa(0) = 0.5.

4. Discussion

The replicator equation, which has been aptly called the “equation of life” [51], is
a central component of evolutionary game theory since it governs the evolution of the
frequencies of competing strategies in the limit of innitely many players [5,31]. However,
the replicator equation was used to describe chemical or prebiotic evolution, i.e., the chemi-
cal kinetics of template-directed and protein-mediated self-replicating molecules, called
replicators, long before the idea of viewing the competition for building blocks or resources
in general as a game [3,4]. At some point, the evolutionary game theory community and the
prebiotic evolution community parted ways, and some interesting connections were lost,
especially those between the dynamics of replicators temporarily conned in compartments
and the public goods games. In particular, we emphasized here that the n-player prisoner’s
dilemma, where part of the contribution to the public good is returned to the contributors
themselves, representing the weak-altruism situation [30], is identical to the problem of
non-specic enzyme production in the early replicator competition scenario [14]. The
disconnect between these lines of research is illustrated by the parallelism of the works.
For example, the effect of synergism (i.e., division of labor) in enzyme production, where
the production of the enzyme requires the presence of a minimum number of enzymatic
replicators in the group [52,53], is identical to a variant of the n-player prisoner’s dilemma
where a minimum number of cooperators is needed to produce the public goods [54].

Here, we use tools developed in evolutionary game theory to revisit the population
biology of the early replicators [14]. In particular, we use the stochastic algorithms that
simulate the imitation (or copy) dynamics in nite population evolutionary games [26,27]
to study the effect of demographic noise on the competition between replicators with two
distinct characteristics. As expected, we nd that demographic noise smooths out the sharp
transition in the parameter space between regimes where one or the other replicator type
dominates. We have not found stable coexistence between different replicator types in
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the competition scenarios considered here. The use of nite-size scaling allows a concise
description of the xation probability and mean xation time near the threshold for large
but nite population sizes M. We show that in the case of well-mixed populations of
non-enzymatic (i.e., Malthusian) replicators, this probability is described by Kimura’s
formula for the probability of xation of an allele with a small selective advantage or
disadvantage [25]: the sharpness of the threshold increases linearly with increasing M. At
the threshold, where the intrinsic growth rate of the two types of replicators is equal, the
mean xation time increases linearly with M, consistent with Kimura’s diffusion theory. In
the case of the competition between two enzymatic (i.e., hypercyclic) replicators, we nd
that the threshold region shrinks with 1/M1/2 and the mean xation time at the threshold
increases with lnM as M increases. Thus, although evolution is much faster in the case
of protein-mediated replication, demographic noise is more likely to steer the stochastic
dynamics toward the xation of the replicator type that would lose the competition in the
deterministic limit. We nd similar results for the competition between enzymatic and
non-enzymatic replicators in well-mixed populations.

A key problem in the population biology of early replicators is to explain the evolution
of replicators that, in addition to template-directed replication, produce a non-specic
enzyme that promotes their replication. The cost of producing the enzyme is paid as a
reduction in the rate of template-directed replication. These enzymatic replicators cannot
evolve in well-mixed populations because of the competition with free-riding replicators,
i.e., replicators that benet from the enzyme without paying the cost of its production. But
they can evolve in the case of structured populations, where groups of n replicators are
constantly assembled and disassembled following Wilson’s trait group formulation [45].
The tness of replicators is determined locally within their groups, but the competition
involves the entire population. This process is identical to evolutionary n-player games
and is described in the deterministic limit by a replicator equation [46]. In particular, the
evolution of enzymatic replicators requires a scenario of weak altruism, where the benet
of enzymatic replication exceeds the cost of producing the enzyme. This is a well-studied
model in the deterministic limit [14,47], and we offer here a complete description of the
xation probability of the enzymatic replicators for large populations near the threshold:
the sharpness of the threshold increases with M and decreases with n−2. In addition, the
mean xation time at the threshold increases linearly with M but sublinearly with n. As
in the case of well-mixed populations, there is no coexistence between different types
of replicators: coexistence requires differential extinction of groups depending on their
composition [18,19].

It seems appropriate to conclude this contribution to the study of the effects of demo-
graphic noise on the population biology of early replicators in the same way as the original
paper that studied the deterministic, noiseless scenario [14], viz. by quoting Manfred
Eigen in his paper that laid the foundations for a theory of the evolution of biological
macromolecules [3]:

It is beyond the scope of this paper to discuss the details of the reaction mecha-
nisms . . . the properties of which resemble, in many ways, social behavior.

Thus, the intersections between prebiotic evolution and public goods games have been
evident from the very beginning of theoretical studies of the origin of life. It is therefore
not surprising that tools developed in one eld can be used in the other, as shown here.
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Appendix A

Since the proofs in the literature (see, e.g., [26,27]) do not immediately apply to the
stochastic dynamics used to model the competition between the two types of Malthusian
replicators introduced in Section 2.1, we present here the proof that this dynamics leads to
the replicator Equation (3) in the limit of innitely large populations.

Assume that, at time t, the population is composed of A(t) replicators of type a and
M− A(t) replicators of type b. In addition, let Pi(t) be the probability that the replicator i
is of type a (i.e., its intrinsic growth rate is ra) at time t. The probability Pi(t+ t) is given
by the sum of the probabilities of the following independent and exclusive events.

(a) Replicator i is of type a at time t, and another replicator is selected to be challenged.
The probability of this event is

Pi(t)×
M− 1
M

; (A1)

(b) Replicator i is of type a at time t and is selected to be challenged. The challenger
also is of type a. The probability of this event is

Pi(t)×
1
M

× A(t)− 1
M− 1

; (A2)

(c) Replicator i is of type a at time t and is selected to be challenged. The challenger
is of type b, but fails to replace the challenged replicator. The probability of this
event is

Pi(t)×
1
M

× M− A(t)
M− 1

×

1− rb

ra + rb


; (A3)

(d) Replicator i is of type b at time t and is selected to be challenged. The challenger is
of type a and succeeds to replace the challenged replicator. The probability of this
event is

[1− Pi(t)]×
1
M

× A(t)
M− 1

× ra
ra + rb

. (A4)

Adding up these probabilities and keeping only terms of the order of 1/M or less yields

Pi(t+ t) = Pi(t)− Pi(t)
1
M

M− A(t)
M

rb
ra + rb

+ [1− Pi(t)]
1
M

A(t)
M

ra
ra + rb

. (A5)

Since Pi(t+ t)− Pi(t) has to be proportional to t, we have to set t = 1/M. Taking
the limit M → ∞ yields

dPi
dt

= −Pi(t)[1− xa(t)]
rb

ra + rb
+ [1− Pi(t)]xa(t)

ra
ra + rb

, (A6)

where

xa(t) = lim
M→∞

A(t)
M

(A7)

is the frequency of replicators of type a at time t. The nal step in the proof is to assume
that all replicators are identical in the sense that they have the same probability of being of
one type or the other, i.e., Pi(t) = P(t) for i = 1, . . . ,M. But then P(t) can be interpreted
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as the probability that a randomly chosen replicator is of type a. Thus, the law of large
numbers [55] allows us to write P(t) = xa(t) so that Equation (A6) becomes

dxa
dt

=
1

ra + rb
(ra − rb)xa(1− xa), (A8)

which is the replicator Equation (3) with the time scale  = 1/(ra + rb).

Appendix B

Here, we show how to integrate Equations (10) and (16) explicitly to get an analytical
expression for the time t as a function of the frequency of replicators of type a, i.e., t = t(xa).
Since the nal result is a graph of xa versus t, it does not matter whether we have an explicit
expression xa = xa(t) or t = t(xa). Consider the replicator equation

dxa
dt

= xa(1− xa)(xa − ξ), (A9)

where  and ξ are parameters that can be set appropriately to recover Equations (10) and (16).
It can be rewritten as

dxa
xa(1− xa)(xa − ξ)

= dt. (A10)

The right-hand side of this equation can be broken down into partial fractions, which
give us

1
ξ


dxa

(xa − ξ)
− dxa

xa


+

1
1− ξ


dxa

(xa − ξ)
+

dxa
1− xa


= dt. (A11)

The integrations are now easy to perform and result in

1
ξ
[ln(xa − ξ)− ln xa] +

1
1− ξ

[ln(xa − ξ)− ln(1− xa)] = t+ C, (A12)

where C is an integration constant determined by the initial frequency xa(0), i.e.,

C =
1
ξ
[ln(xa(0)− ξ)− ln xa(0)] +

1
1− ξ

[ln(xa(0)− ξ)− ln(1− xa(0))]. (A13)

Finally, inserting this value of C in Equation (A12) and rearranging the terms yield

t =
1

ξ(1− ξ)
ln


xa − ξ

xa(0)− ξ


− 1

ξ
ln


xa
xa(0)


− 1

1− ξ
ln


1− xa
1− xa(0)


. (A14)
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