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Abstract: The population dynamics of early replicators has revealed numerous puzzles, highlighting
the difficulty of transitioning from simple template-directed replicating molecules to complex biologi-
cal systems. The resolution of these puzzles has set the research agenda on prebiotic evolution since
the seminal works of Manfred Eigen in the 1970s. Here, we study the effects of demographic noise on
the population dynamics of template-directed (non-enzymatic) and protein-mediated (enzymatic)
replicators. We borrow stochastic algorithms from evolutionary game theory to simulate finite popu-
lations of two types of replicators. These algorithms recover the replicator equation framework in
the infinite population limit. For large but finite populations, we use finite-size scaling to determine
the probability of fixation and the mean time to fixation near a threshold that delimits the regions of
dominance of each replicator type. Since enzyme-producing replicators cannot evolve in a well-mixed
population containing replicators that benefit from the enzyme but do not encode it, we study the
evolution of enzyme-producing replicators in a finite population structured in temporarily formed
random groups of fixed size n. We argue that this problem is identical to the weak-altruism version
of the n-player prisoner’s dilemma, and show that the threshold is given by the condition that the
reward for altruistic behavior is equal to its cost.

Keywords: prebiotic evolution; replicator equation; stochastic simulations; enzyme production;
public goods

1. Introduction

The issue of the evolution of cooperation [1] officially entered the field of prebiotic
or chemical evolution when Maynard Smith [2] noted that providing catalytic support
in a molecular catalytic feedback network, such as the hypercycle [3,4], can be seen as
altruistic behavior. Since the usual framework for studying the evolution of cooperation is
evolutionary game theory [5], there has been a fruitful intersection between game theory
and prebiotic evolution [6-8], which has spilled over into viral evolution [9,10], as viruses
are currently the best natural realization of a replicator. A replicator refers to a hypothetical
entity that has the ability to make copies of itself through some form of replication process.

The study of the population dynamics of error-prone replicators has revealed (or
created) a number of puzzles that make it difficult to explain the transition from simple
template-directed replicating molecules to more complex biological systems [11]. For
example, an enzymatic molecular replicator must be long enough to store information that
codes for an enzyme (replicase), but a long replicator cannot be accurately copied without
the assistance of a replicase, leading to a “chicken-and-egg” puzzle [3,12]. Splitting the
information for encoding the enzyme into different short replicators does not work because
different replicators cannot coexist in a purely competitive scenario [13]. Even in a scenario
of perfect template-directed replication accuracy, difficulties abound, as the production of a
non-specific enzyme would favor short free-riding replicators that benefit from the enzyme
without encoding it [14].
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The search for solutions to these puzzles has set the agenda for theoretical research
on prebiotic evolution since Eigen’s seminal work on the evolution of self-replicating
molecules [3]. The coexistence of replicators can be ensured by assuming a cyclic reaction
scheme, called hypercycle, in which each replicator would help the next one to replicate,
in a regulatory cycle closing on itself [4,15,16]. However, this scheme is not resistant to
the presence of free-riders [17]. An alternative scheme temporarily confines the templates
into packages or prebiotic vesicles that are considered viable provided they contain a set
of distinct functional templates [17-20]. This scenario has been tested experimentally in
in vitro molecular systems [21], which confirmed that transient compartmentalization is
capable of maintaining functional replicators despite the presence of free-riders (see [22-24]
for a theoretical analysis).

The population biology of replicators, which captures their interactions and dynamics
and, most importantly, determines what types of mutant replicators can arise and evolve
in a resident population, is essential to the study of the complexification of life. Here, we
revisit a classic study on the population biology of early replicators [14] from an evolution-
ary game-theoretic perspective. In particular, we focus on the effects of demographic noise
that arises when the population of replicators is finite. Following the usual population
genetics approach to finite populations [25], we concentrate on the probability that one of
the replicator types fixates and on the unconditional mean time to fixation. Crucially, we
borrow from evolutionary game theory the stochastic algorithms that simulate the trajec-
tories of finite populations and recover the replicator equations in the infinite population
limit [26,27].

In all the competition scenarios studied, involving template-directed (non-enzymatic)
replicators and protein-mediated (enzymatic) replicators, we find a threshold at which the
replicators are neutral: away from the threshold, one of the replicator types dominates.
Near the threshold (i.e., in the quasi-neutral regime), we use finite-size scaling [28] to
obtain explicit expressions of the fixation probability and mean fixation time in terms of the
model parameters. Since the emergence of enzyme-producing replicators is impossible in a
well-mixed population of free-riding replicators, we consider a population structured in
temporarily formed random groups of fixed size n. We argue that this problem is identical
to the weak-altruism version of the n-player prisoner’s dilemma [29] and offer a thorough
study of the model near the threshold, which in this case is given by the weak-altruism
condition: the reward for altruistic behavior equals the cost of performing it [30].

Following the seminal works on the population dynamics of early replicators [3,14],
in this study we consider only the competition between two different types of replicators.
The reason for this is that in a well-mixed unstructured population, two different types of
replicators cannot coexist [13], so the equilibrium scenario will always be a homogeneous
population composed of a single type of replicator, and competition arises with the appear-
ance of a mutant or migrant of a different type. The probability of two or more distinct
mutants, or two or more migrants from different populations, resulting in a competitive
scenario with more than two replicator types is negligible. This is also the reason why the
non-invadability conditions of the resident population are so important to characterize the
possible equilibrium scenarios [5].

The remaining sections are organized as follows. In Section 2, we study the competition
between different types of replicators in well-mixed populations, which we call non-
structured populations. Replicators are considered of different types not only because of
their mode of replication (i.e., template-directed or protein-mediated), but also if they have
the same mode of replication but different growth parameters. We present the results for
both the replicator equation framework [31], which is valid for infinitely large populations,
and the stochastic algorithms used to simulate finite populations. In Section 3, we consider
the problem of the evolution of enzymatic replication in the worst-case scenario of a non-
specific enzyme that can promote the replication of producers and free-riders with equal
efficiency. This problem is considered in a structured population scenario where replicators
are confined to small compartments or protocellular structures, so that a replicator can
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only benefit from the enzyme if there are enzyme producers in the same compartment.
Our original contribution to the population dynamics of replicators in both non-structured
and structured populations is the use of evolutionary game theory stochastic algorithms to
study the dynamics for finite populations. In Section 4, we summarize our main findings
and present some concluding observations.

2. Non-Structured Populations

We consider a well-mixed finite population of size M consisting of replicators of two
different types. The population is well-mixed in the sense that each replicator can interact
with every other replicator in the population. More importantly, in the case of enzymatic
replicators, we assume that the enzymes benefit all replicators in the population that have
an affinity for them.

2.1. Malthusian vs. Malthusian Replicators

A Malthusian or template-directed replicator is a replicator that follows Malthusian
dynamics, i.e., in the absence of density regulation, its abundance grows exponentially with
time, with growth rates determined by the balance between birth and death processes [14].
The competitive setup arises when we impose the constraint that the total number of
replicators is kept at some constant number [3], so that the interaction between different
types of replicators can be seen as a zero-sum game. In particular, this constraint allows
us to completely describe the population in terms of the frequencies x, € [0,1] with
Y. xa = 1 of the different types of replicators. In the case of two Malthusian competitors
with intrinsic growth rates r, and rj, the dynamics in the limit M — oo is governed by the
replicator equations

dx,

il axg(re — 1), (1)
d

=L o= —y), @

where ¢ = r,x; + 13X} is the mean fitness of the population that ensures the constraint
xp + x, = 1is satisfied for all t. Here, the parameter « determines the time scale and is
important for connecting the deterministic formulation of the replicator equation with the
stochastic dynamics, as we will see next. Writing x;, in terms of x, yields

dx,

T a(rg —rp)xa(1 — x4), 3)

from where we can immediately see that x, = 0 and x, = 1 are the only equilibrium
solutions of the replicator dynamics. In particular, the fixed point x, = 1 is stable if
ra > rp and unstable if #, < 1}, in which case the fixed point x, = 0 is stable. If 7, = 1y,
the dynamics freezes at the initial condition, i.e., x,(t) = x,(0) for all times. Thus, for
an infinite population, the replicator type with the higher intrinsic growth rate wins the
competition. This conclusion can also be reached by explicitly solving Equation (3),

x4(0)

Yalt) = %4(0) + [1 = xa(0)] exp[—a(ra — rp)t]

(4)

The deterministic dynamics involving the competition between two (or more) Malthu-
sian replicators is well known [3,14], so our focus is on the finite population effects, i.e., the
effects of demographic noise on the competition between replicators. The above results
for the deterministic limit are essential to validate the finite population simulations, which
should recover the deterministic results as the population size M increases. One difficulty
here is that the Gillespie algorithm [32], which is the standard numerical method for sim-
ulating the stochastic time evolution of coupled chemical reactions, is not well suited for
simulating systems with hard constraints, since to satisfy the constraint of a fixed total
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number of replicators, two different reactions must occur simultaneously. Here we borrow
the stochastic dynamics used in evolutionary game theory, which recovers the replicator
equation in the limit of infinite population size [26,27].

We note that the replicator equation is always nonlinear by construction due to the
constant total density constraint, but it is possible to find explicit analytical solutions in
many competition scenarios [31], as done above. There are also fractional versions of the
replicator equation (see, e.g., [33,34]) for which even finding their numerical solutions is
challenging [35]. Rather than solving the replicator equation numerically, we focus on
stochastic simulations of finite populations of replicators, which recover the results of the
(non-fractional) replicator equation for infinite population sizes.

The stochastic dynamics for the competition between two types of Malthusian replica-
tors in a population of finite and fixed size M is as follows. Randomly select two different
replicators i and j, with i,j = 1,..., M. We will refer to replicator i as the challenged
replicator and to replicator j as the challenger. The challenger replaces the challenged
replicator with probability r;/(r; + r;), where r; and r; take values r, or r;, depending on
the type of replicators i and j. Regardless of whether the challenger succeeds in replacing
the challenged replicator or not, the time ¢ is increased by the time step Jt. Then a new pair
of replicators is selected and the process is repeated until all replicators in the population
are either of type a or type b. In case of replacement, the challenger makes a copy of itself,
which replaces the challenged replicator. In the Appendix A, we prove that this stochastic
dynamics leads to the replicator Equation (3) in the limit M — oo if we set 6t = 1/M and
a=1/(ra+ ).

Since only the ratio between the intrinsic growth parameters r, and r;, appears in
both the deterministic and the stochastic formulations, it is convenient to introduce the
reduced variable o

p= )

rat+1p’

which is restricted to the interval [0, 1]. In terms of this variable, the replicator Equation (3)

is rewritten as

o (20— 1mal1 — x0). (6)

Figure 1 compares the trajectories of the stochastic dynamics for populations of size
M = 1000 with the deterministic results. The agreement is excellent, as expected, except
at the threshold p. = 0.5, since the stochastic trajectories will eventually reach one of the
absorbing states x, = 1 or x; = 0, while the deterministic dynamics is frozen at the initial
condition x,(0) = 0.5. For not too large M, the demographic noise can push the dynamics
into the opposite absorbing state predicted by the deterministic equation. Moreover, even
when starting from the same initial state, the noise can lead the stochastic trajectories to
different absorbing states. Note that the closer p is to 0.5, the longer it takes to converge to
the absorbing state.

To quantify the effect of demographic noise, we consider the probability of fixation of
replicators of type a, denoted by I1,, which is estimated as the fraction of 10* independent
trajectories of the stochastic dynamics that are attracted to the absorbing state consisting
only of replicators of type a. The results in Figure 2 show that the magnitude of the effect
of demographic noise depends on the population size M and on the proximity of p to the
threshold p, = 0.5. In fact, the scaling assumption I'l;, = f[(p — p.) M] perfectly describes
this dependence in the threshold region for large M, as shown by the collapse of the curves
for different M when p is properly shifted and scaled [28]. For other applications of the
curve collapse method, see [36,37]. Here, f(u) is a scaling function such that f(u) — 1
when u — oo and f(u) — 0 when u — —oo (see Equation (7) for the explicit form of this
scaling function). The steepness of the threshold transition for functions such as those
shown in Figure 2 is estimated by their derivatives at the threshold. Recall that these
derivatives are the slopes of the tangent line to the graph of I1; versus p at the threshold: a
large derivative indicates a sharp threshold transition and a small derivative indicates a
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smooth threshold transition. Since IT,(p.) &~ Mf’(0), we conclude that the steepness of the
threshold transition increases linearly with the population size M.
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Figure 1. Frequency of Malthusian replicators of type a as a function of time for p = 0.6 (red curves),
p = 0.5 (blue curves), and p = 0.45 (green curves). The jagged thin curves are trajectories of the
stochastic dynamics for M = 1000, and the smooth thick curves are the deterministic results. The
initial condition is x,(0) = 0.5.
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Figure 2. (Left) Probability of fixation II, of Malthusian replicators of type a as a function of
p = ra/(ra +1p) for M = 2000 (red curve), M = 1000 (green curve), and M = 500 (blue curve).
The vertical dashed line indicates the threshold p. = 0.5 beyond which the fixed point x, = 11is
stable for M — oo. (Right) I, as a function of the scaled variable (p — p.) M. The initial condition is
xa(0) = 0.5.

Another important quantity to characterize the stochastic dynamics is the uncondi-
tional mean fixation time T¥, i.e., the mean time for the dynamics to reach any absorbing
state, which is shown in Figure 3. The results indicate that Ty diverges linearly with M
at the threshold p in the limit M — oo. Away from the threshold region, we find that T
diverges with In M in this limit.
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Figure 3. (Left) Mean time for fixation T of either type of Malthusian replicators as a function of
o =ra/(rqa + 1) for M = 2000 (red curve), M = 1000 (green curve), and M = 500 (blue curve). The
vertical dashed line indicates the threshold p. = 0.5. (Right) Scaled mean fixation time Ty/M as a
function of the scaled variable (p — p) M. The initial condition is x,(0) = 0.5.

The reason why the fixation probability is invariant to the change p — 1 —pand I, —
1—-11,, and Tf is symmetric around the threshold p,, is that x,(0) = 0.5 in Figures 2 and 3,
i.e., att = 0 the replicators are assigned to types a or b with equal probability. Figure 4
shows the results for x,(0) = 0.2. Recall that for the competition between two Malthusian
replicators, the threshold occurs at p. = 0.5, regardless of the initial condition x,(0). The
symmetry about the vertical line at p = p. is lost, since for finite M and fixed p, replicators
of type a are less likely to be fixated due to their initial disadvantage. In addition, replicators
of type a take longer to reach fixation than replicators of type b, as expected. Note that
for finite M, the maximum of Ty does not occur at p = p., but it moves in the direction of
the threshold p. as M increases. The dependence of I, and Tf on M in the vicinity of the
threshold is the same as that discussed above for x,(0) = 0.5.

1 2500 T T
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Figure 4. (Left) Probability of fixation II, of Malthusian replicators of type a as a function of
0 = tra/(ra+ 1) for M = 2000 (red curve), M = 1000 (green curve), and M = 500 (blue curve).
(Right) Mean time for fixation Ty of either type of replicators as a function of p. The vertical dashed
lines indicate the threshold p. = 0.5. The initial condition is x,(0) = 0.2.
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Note that at the threshold, or equivalently for r, = 1}, the curves for different M
intersect at IT, = x,(0) (see the left panels of Figures 2 and 4), which gives the fixation
probability of replicators of type a in the limit M — co. Thus, the scaling function at the
threshold is f(0) = x,(0). This is the classical result for the probability of fixation of a
neutral mutant [25]. Even better, if we set the selective advantage s of type a replicators to
s = 20 — 1, then Kimura’s probability of fixation [25]

1 — exp[—2Msx,(0)]
1 — exp[—2Ms]

1 —exp[—4M(p —1/2)x,(0)]
1 —exp[—4M(p — 1/2)]

I, =

7)

fits the simulation results perfectly. It is interesting to note that this equation is valid in the
limit of large M and small s, which are exactly the conditions used in our finite-size scaling
analysis. The connection between the stochastic dynamics for the competition between
Malthusian replicators and Kimura'’s diffusion equation approach to population genetics,
which led to Equation (7), can be made explicit by considering the 1/ M corrections in the
analytical treatment of the stochastic dynamics [26]. Kimura’s diffusion theory predicts
that the mean fixation time of an allele with a small selective advantage scales with In M,
but for neutral alleles (i.e., s = 0or p = 1/2), Tr scales with M [25], which is consistent
with the results in Figure 3.

2.2. Hypercyclic vs. Hypercyclic Replicators

Hypercyclic or enzymatic replicators follow a nonlinear growth equation, even without
the constant density constraint, due to the presence of a protein catalyst (enzyme) that
promotes their replication [4]. The nonlinearity occurs because the catalysts are produced
by the hypercyclic replicators themselves. These replicators exhibit characteristics that
differ from Malthusian replicators, such as explosive growth and the potential for “once-
forever” decisions, where once a replicator type becomes fixed in a population, it cannot be
replaced by another more efficient hypercyclic replicator.

In the deterministic regime, a simplified scenario for the competition between hyper-
cyclic replicators of types a and b is described by the replicator equations [14]

dx,

- = axg(CaXa — ), (8)
d
% = axp(cpxp — 1), )

where x, and x; are the frequencies of the two replicator types in an infinite population.
Here, c,; and ¢, represent the beneficial effect of protein-mediated replication. In addition,
these parameters include the production of specific enzymes from each replicator type. As
before, ) = ¢, x% + Cbxi guarantees that the constraint x, + x;, = 1 is met for all times, and
« is the time scale. Eliminating x;, we get

dx
8 — (o ) all — xa) (50 — 1+ ), (10)
with

Ca

= Catoep

(11)

This equation has three fixed points: the fixed points x, = 0 and x, = 1 are always
stable, while the unstable fixed point x, = 1 — x gives the boundary of the domains
of attraction of the two stable fixed points. Therefore, a resident population of hyper-
cyclic replicators of type a cannot be invaded by rare invaders of type b, even if ¢, >> c,.
In this sense, the fixation of a hypercyclic replicator in a population is a “once-forever”
decision [3,4].
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Explicit integration of Equation (10) yields (see Appendix B).

X(ll—X) n{x:(a())_—l ;—j—cx} 1 ixln{x;(i))] B %ln {%} (12)

which allows us to plot x, as a function of t without solving Equation (10) numerically. Note
that since x, € [0,1] in the competitive scenario, Equation (12) does not exhibit explosive
growth (i.e., divergence at finite t). For fixed x,(0), the transition between the different
equilibrium regimes occurs at the threshold x. = 1 — x,(0).

As before, the results for the deterministic regime are well known, and we have pre-
sented them here because they are necessary for validating the finite population simulations
that are the focus of this paper. The stochastic dynamics that reproduces the replicator
Equation (10) in the infinite population limit is as follows. First, we randomly select the
challenged replicator i and compute its instantaneous payoff f;. This is done by randomly
selecting another replicator and checking if it is of the same type as the challenged replicator.
If so, we set f; = ¢, if replicator i is of type a, and f; = ¢}, if replicator i is of type b. If not,
we set f; = 0. (Note that the instantaneous payoff is determined by a coordination game [5],
where a player gets a higher payoff by choosing the same action as its opponent.) Then we
select the challenger replicator j # i and compute its instantaneous payoff f; in the same
way. The challenger replaces the challenged replicator with probability

fi—fi

max(cg, Cp) (13

a(cq + cp)t =

if f; > fi, otherwise the challenged replicator keeps its type. The denominator in this
equation is chosen to ensure that the probability of replacement is less than or equal to 1.
Time is updated using the time step 6t = 1/M, and another pair of challenged-challenger
replicators is selected. The process is repeated until the population becomes homogeneous.
In the limit M — oo, this stochastic dynamics is described by the replicator Equation (10) if
we set the time scale as « = 1/ max(cg, ¢p) [27]. With this setting, this equation depends
only on the variable yx.

Figure 5 shows the excellent agreement between the stochastic and deterministic
trajectories when y is far from the threshold x. = 1 — x,4(0). A comparison with Figure 1,
which shows the time evolution of two competing Malthusian replicators, indicates that
the dynamics reach equilibrium much faster for competing hypercyclic replicators, even at
the threshold. This implies that for fixed M the effect of demographic noise leading to the
fixation of one of the replicator types is more pronounced for hypercyclic replicators.

1
09 r
08 r
0.7
0.6

<3 0.5 &=
04 r

03 r

02 r

0.1

0

0 2 4 6 8 10 12 14

Figure 5. Frequency of hypercyclic replicators of type a as a function of time for y = 0.8 (red curves),
x = 0.5 (blue curves), and y = 0.2 (green curves). The jagged thin curves are trajectories of the
stochastic dynamics for M = 1000, and the smooth thick curves are the deterministic results. The
initial condition is x,(0) = 0.5.
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In fact, Figure 6 shows that the fixation probability of the hypercyclic replicators
of type a is given by the scaling relation TT, ~ g[(x — xc)M'/?] near the threshold and
for large M, where g(u) is a scaling function such that g(z) — 1 when u — oo and
g(u) — 0 when u — —oco. This means that the steepness of the threshold transition
increases as M'/? as M increases, indicating that much larger populations are needed to
suppress demographic noise for hypercyclic replicators compared to Malthusian replicators.
Another difference from the previous analysis is that, by varying the initial condition x,(0),
we find I, = 1/2 at the threshold x. = 1 — x,4(0). Therefore, the scaling function must be
such that g(0) = 1/2.

0.8 : . 0.8 | : .

06 I E . 0.6 I : 1
= =) /

04} : : 04 | : 1

02 : . 0.2 : .

0

-1 05 0 0.5 1
12

0 A
046 048 05 0.52 054
X x-05M

Figure 6. (Left) Probability of fixation I, of hypercyclic replicators of type a as a function of
X = ¢ca/ (ca + cp) for M = 4000 (red curve), M = 2000 (green curve), and M = 1000 (blue curve). The
vertical dashed line indicates the threshold x. = 1 — x,(0) = 0.5. (Right) I'l; as a function of the
scaled variable (x — y.)M'/2.

Figure 7 shows the mean fixation time for the competition between hypercyclic repli-
cators near the threshold for two initial conditions. As hinted at in Figure 5, the dynamics
reach the absorbing states very quickly, perhaps a reminiscence of the explosive growth
characteristic of unrestrained hypercyclic replicators [3,4]. Note that doubling the value of
M only increases Ty by an amount of about 2. In fact, Figure 8 shows that Ty increases with

the logarithm of M, viz., Ty ~ ﬁ In M for large M.

45 T T T
40
35
=30
25

P S 15 N .
046 048 05 052 054 076 078 08 082 084
x

Figure 7. Mean time for fixation Ty of either type of hypercyclic replicators as a function of
X = Ca/(ca + ¢p) for M = 4000 (red curve), M = 2000 (green curve), and M = 1000 (blue curve). The
vertical dashed line indicates the threshold x, = 1 — x,(0). (Left) x,(0) = 0.5. (Right) x,(0) = 0.2.
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2

4

10 10

Figure 8. Mean fixation time Tf of either type of hypercyclic replicators at the threshold x, = 1 — x,(0)
as a function of the population size M for (from bottom to top) x,(0) = 0.5,0.6,0.7,0.8, and 0.9. The
lines are the fit Ty = ay +In MY (1=x) where ay is a fit parameter.

2.3. Hypercyclic vs. Malthusian Replicators

We consider hypercyclic replicators to have frequency x, and protein-mediated growth
rate c¢;, while Malthusian replicators have frequency x;, and intrinsic growth rate r,. Thus,
here the subscript a refers to hypercyclic replicators and the subscript b to Malthusian
replicators. It is interesting to find out how I, and T scale with M in this case, given the
stark differences in scaling in the two previous competition scenarios. In the deterministic
limit, the competition between these two types of replicators is described by the replicator
equations [14]

dx,

i axq(Caxg — ), (14)
d
=L = - y), (15)

where ¢ = c,x2 + r,x, ensures that x, + x, = 1 for all times, and «a is the time scale as
before. Eliminating x;, we get

dx,

T8 = weaxa(1 = xa) (0 — 1), (16)

with ”

The fixed points x, = 0 and x, = 1 are stable provided that # < 1, in which case the
unstable fixed point x, = 17 separates the domains of attraction of the stable fixed points.
This is the same bistability scenario found in the competition between two hypercyclic
replicators. If # > 1, the only stable fixed point is x, = 0, which means that rare Malthusian
replicators can invade a resident population of hypercyclic replicators. In this sense, the
fixation of hypercyclic replicators is not a “once-forever” decision. However, the idea
of introducing protein-mediated replication is that it is much more efficient than direct
template replication, so we should have ¢, > r;, or § < 1, instead.

The stochastic dynamics in this case is as follows. First, we randomly select the
challenged replicator i. The instantaneous payoff f; depends on the nature of the replicator
i. If it is a hypercyclic replicator, we randomly choose another replicator and check its
nature: if it is also a hypercyclic replicator, we set f; = c,, and if it is a Malthusian replicator,
we set f; = 0. If the challenged replicator i is a Malthusian replicator we set f; = r;,. Then
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we select the challenger replicator j # i and compute its instantaneous payoff f; in the

same way. As before, the challenger replaces the challenged replicator with probability
—f] S (18)
max(cq, p)

if f; > fi, otherwise the challenged replicator maintains its type. Time is updated as before,

and the process is repeated until the population becomes homogeneous. If we set the time

scale to &« = 1/ max(cg, 1), this stochastic dynamics leads to the replicator Equation (16) in

the limit M — oo [27].

Figure 9 shows that the competition between hypercyclic and Malthusian replicators is
qualitatively similar to the competition between two hypercyclic replicators. In particular,
the steepness of the transition at the threshold 7, = x,(0) increases as M2 and the
fixation time increases as In M as M increases. Thus, the hypercyclic replicator determines
the strength of the demographic noise.

1 55 :
50
08 1
45
06 1 40
= &
04 1 3
30
02 1
25
0 20 i
“15-1-05 0 05 1 15 0.16 02 0.24
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Figure 9. (Left) Probability of fixation I'l; of hypercyclic replicators competing against Malthusian
replicators as a function of the scaled variable (17 — m)Ml/ 2 where n=rtp/caand e = x,(0) = 0.2,
for M = 4000 (red curve), M = 2000 (green curve), and M = 1000 (blue curve). (Right) Mean fixation
time Ty as a function of 7. The vertical dashed line indicates the threshold 7.

The important lesson from the competition between hypercyclic and Malthusian
replicators is that a few hypercyclic replicators cannot invade a resident population of
Malthusian replicators. In addition, replicators that do not produce the enzyme are likely
to benefit from it as well. Since Malthusian (non-enzymatic, template-directed) replication
is likely to have arisen first in the evolution of life, these are major hurdles to the evolution
of more efficient enzymatic replication. In the following, we discuss how compartmental-
ization of the replicators can address these problems.

3. Structured Populations

A possible solution to the evolution of enzymatic replication is to assume that the
replicators are temporarily confined in groups, e.g., rock crevices, suspended clay particles,
or suspended water droplets [38], so that the enzyme producers experience the benefits of
the enzyme more strongly [14]. Thus, group confinement produces the positive assortment
among enzyme producers (cooperators) necessary for their maintenance [39]. Another way
to produce this positive assortment is through the spatial localization of replicators, since
the aggregation of cooperators into clusters may protect those in the bulk from exploitation
by free-riders, i.e., replicators that benefit from the enzyme but do not encode it (see,
e.g., [40-42]). Here, we will consider the positive assortment resulting from temporarily



Life 2024, 14, 1064

12 of 22

formed random groups, which has a long tradition in theoretical prebiotic evolution
studies [14,17,18,23,43]. In fact, this approach combines the first studies of the origin of life,
which focused on the emergence of protocellular structures (e.g., Oparin’s coacervates [44]),
with the more modern approach, which focuses on the replication process [3], a key
component of any system, living or not, that evolves under natural selection. In this sense,
we say that the population is structured, i.e., the replicators are confined in protocellular
structures, which we call groups.

In particular, we use Wilson’s trait group formulation [45] to model the dynamics
of compartmentalized replicators. In this formulation, the fitness of the replicators are
determined locally within their groups of fixed size n, but there is no intragroup competition
and the mean fitness of the group plays no role in the evolutionary process. Competition
takes place in the population at large, with individuals from all groups randomly selected
to form the next generation with probability proportional to their fitness, i.e., competition
happens when all groups merge into a common pool of replicators [45]. This contrasts with a
more recent model of transient compartmentalization [22-24], which includes a maturation
phase with intragroup competition that leads to the disappearance of cooperators from
any group containing free-riders: only groups formed only by cooperators can maintain
cooperation. In addition, the size of each group grows at a rate given by the group fitness,
so that the all-cooperators groups eventually contribute more offspring to the common
pool. As in Wilson’s formulation, groups are formed by randomly selecting replicators
from a common pool. A remarkable aspect of Wilson’s formulation is that it is closely
related to the evolutionary game theory approach to n-player public goods games [46],
as will become clear when we formulate the enzyme production problem as an n-player
evolutionary game.

3.1. Enzyme-Production as a Public Goods Game

As in the previous analyses, we consider a scenario with two types of replicators. Type
a replicators, which produce an enzyme that increases the replication rate of all replicators
(including themselves) in the group, but at the cost of decreasing their template-directed
replication rates, and type b replicators (free-riders), which do not produce the enzyme
but benefit from it. This differs from the hypercyclic vs. Malthusian replicator scenario
discussed earlier, as the Malthusian replicators do not benefit from the enzyme, i.e., the
enzyme is specific to hypercyclic replicators. Although this is a best-case scenario for the
emergence of enzyme-producing replicators, these replicators cannot invade a resident
population of Malthusian replicators in an unstructured population, as shown before. Since
the amount of enzyme is proportional to the number of producers, the instantaneous payoff
of a replicator of type a in a group of size n that contains k -+ 1 replicators of type a is [14]

k+1
fa =Tr1.+¢q v (19)

with k = 0,...,n — 1. The instantaneous payoff of a replicator of type b in a group with k
replicators of type a is [14]

k
fb =T1p+ CbEl (20)

with k =0,...,n — 1, since at least one member of the group must be a replicator of type
b. We have r, < r;, to account for the cost of producing the enzyme. The parameters c,
and c;, represent the beneficial effect of enzyme-mediated replication. In particular, ¢, = 0
implies that the enzyme is specific to the replicator that produced it, as in the competition
between hypercyclic and Malthusian replicators discussed earlier. However, it seems more
plausible to assume that the ancestral enzymes were some kind of general catalysts that
would facilitate the replication of a wide range of replicators, so in the following we will
assume the worst-case scenario of a non-specific enzyme and set ¢, = ¢;. Thus, the enzyme
is considered a public good that is shared equally among the members of the group. Note
that the instantaneous payoffs (19) and (20) are the growth rates of replicators of type a2 and
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b, respectively, having a term proportional to the concentration of enzymes in the group,
which in turn is proportional to the concentration of enzyme-producing replicators in the
group [14].

With this parameterization, the problem reduces to the n-player prisoner’s dilemma [29,47].
In the terminology of this game, if we set the baseline payoff to r;, then the cooperator
(i.e., the type a replicator) contributes an amount r, — r, to the public goods, which is then
multiplied by a factor ¢,/ (r, — rz) > 1, and the resulting amount ¢, is divided among the
n players. The free-rider (i.e., the type b replicator) contributes nothing (1, — r, = 0) to the
public goods, but gets its share of these goods.

Note that the payoff of type b replicators is always greater than the payoff of type a
replicators in the same group, but when comparing the payoffs of replicators in different
groups, it is possible for type a replicators to get an advantage over type b replicators. For
this reason, cooperation can develop in the temporary group scenario, where competition
takes place in the population at large [45]. However, if groups are formed randomly from
a pool of dispersers (i.e., there is no positive assortment among replicators of type a),
then cooperation can progress only in the so-called weak altruism scenario, where the
return to altruistic behavior (c,/n) exceeds the cost (r, — ;) of performing it [30]. For the
payoffs (19) and (20), this condition corresponds to

c
f > 1y — Tg. (21)

This inequality will be explicitly derived in Section 3.3 as a condition for the stability
of the all-cooperators equilibrium solution of the replicator equation. However, in the
strong altruism scenario, where a cooperator does not benefit from its contribution to public
goods, the evolution of cooperation requires positive assortment among cooperators [39,48],
punishment of free-riders [49], or biparental sexual reproduction [50].

3.2. Stochastic Dynamics

The relation between the imitation dynamics and Wilson’s trait group formulation [45]
is better appreciated for finite populations. As done before, the first step is to randomly
select the challenged replicator i. To compute its instantaneous payoff f;, we first need
to create its play group, so we randomly select other n — 1 replicators in the population
without replacement. Next, we just have to determine the type of the challenged replicator
and count the number of replicators of type a in its play group: its instantaneous payoff
fi is given by Equation (19) or (20), depending on its type. Then we randomly select the
challenger replicator j # i and calculate its instantaneous payoff f; following the same
procedure. Since n < M, it is unlikely that challenger and challenged replicators will be
in the same play group, but this is inconsequential. The probability that the challenger
replicator replaces the challenged replicator is

fi— fi
Afmaxl

if f; > f;, and 0 otherwise. Here, A fmax is chosen so as to guarantee that this probability is
not greater than 1. To compute this quantity, we need to know what are the group configura-
tions that maximize and minimize a replicator instantaneous payoff. These configurations
depend on whether the weak altruism condition (21) is satisfied or not. If this condition is
satisfied, then the maximum individual payoff is r,; + c,, obtained by a replicator of type a
in a group with n — 1 other replicators of type 4, and the minimum individual payoff is
ry,, obtained by a replicator of type b in a group with n — 1 other replicators of type b. So
Afmax = ¢q — (rp — 14). If condition (21) is violated, then the maximum individual payoff
is 1, + c4(n — 1) /n obtained by a replicator of type b in a group with n — 1 replicators
of type 4, and the minimum individual payoff is r; + ¢, /n obtained by a replicator of
type a in a group with n — 1 replicators of type b. S0 A fmax = 1, — t4 + ca(n — 2) /n. Once

(22)
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the replicator i is probed, time is updated with the time step 6t = 1/M and the whole
procedure is repeated until fixation occurs.

Thus, the imitation dynamics exhibits the two main features of Wilson’s trait group
formulation: the two competing replicators are randomly selected in the population at
large, so there is no intragroup competition, and their fitness are obtained by playing a
single round of the n-player prisoner’s dilemma in different play groups.

3.3. Deterministic Limit

In the deterministic regime, we assume an infinite population consisting of both types
of replicators with frequencies x, and x;, = 1 — x,. Consider a particular replicator of
type a. Its payoff depends on the types of the n — 1 other members of its group. Since
groups are formed by randomly sampling from the population at large, the probability that
there are exactly k = 0,1, ...,n — 1 other replicators of type a in its group is given by the

binomial distribution .
<n ; )x’;lek. (23)

Thus, the expected payoff 71, of a replicator of type a is given by adding its payoff for
all possible choices of the other members of its group, properly weighted by the probability
of each choice, resulting in

n—1
n—1 i k+1
T, = Z( ' )x’;xZ 1k[1’a+ca . }

k=0

= ru—o—cuxu—b—(l—xu)%”. (24)

The expected payoff 77, of a replicator of type b is obtained in the same way and is
given by

n—1

n—1 _1_ k

T, = Z( ' )x’;xg 1 k[rﬁ—ca—}

k=0 n
Ca

= 1p+CaXy — xg;. (25)

The replicator equations that govern the time evolution of the frequencies x, and x;
are [31]

dx,

T axq (s — ), (26)
d
=L= an(m - ), @7)

where « is the time scale and ¢ = x, 71, + x5 7} is the population mean fitness. Eliminating
X}, we obtain

ddita =u [%ﬂ — (rp — ra)}xa(l —Xg), (28)
from which we can see that the fixed point x, = 1 is stable only if the weak altruism
condition (21) is satisfied. The limit of infinitely large groups n — co describes the situation
of a non-structured population, for which this condition is always violated and so x, = 0
is the only stable fixed point, as expected. We can easily write the explicit solution of
Equation (28) as done for Equation (3), viz.,

x2(0)
x%a(0) + [1— x,(0)] exp[—a(ca/n — (rp —7a))t]

xq(t) = (29)
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In the limit M — oo, the stochastic dynamics recovers the replicator Equation (28) if
we set the time scale to & = 1/A fimax [27]. With this time scale, both the deterministic and
the stochastic dynamics depend only on the reduced variable

Ca

= 30
v Ty —ra (30)

so the threshold is 7. = n in the deterministic limit. At the threshold, we have 7r, = 7,
so the two types of replicators are on equal footing in the population at large. In the
terminology of the n-person prisoner’s dilemma, the parameter <y is the amplification factor
of the cooperator’s contribution to the public goods [47].

3.4. Finite Population Simulations

Figure 10 shows the excellent agreement between the stochastic and deterministic
trajectories for parameters far from the threshold . = n, as expected. Even for balanced
initial frequencies of the two replicator types, i.e., x,(0) = 0.5, the results indicate that the
fixation of type a replicators takes slightly longer than the fixation of type b replicators.
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Figure 10. Frequency of replicators of type a (cooperators) as a function of time for groups of size
n = 4 and v = 5 (red curves), v = 4 (blue curves), and v = 3 (green curves). The jagged thin
curves are trajectories of the stochastic dynamics for M = 1000, and the smooth thick curves are the
deterministic trajectories. The initial condition is x,(0) = 0.5.

Figure 11 shows that the fixation probability of type a replicators is well approximated
by IT, =~ hy[(y — 7.)M] near the threshold for large M, where h, (1) is a scaling function.
Considering different initial conditions gives h,(0) = x,(0), i.e., at the threshold, the
probability that replicators of type a will fixate is equal to their proportion in the initial
population, as in the competition between two types of Malthusian replicators. In fact,
apart from a difference in time scales, the replicator Equations (3) and (28) describing these
two scenarios in the deterministic limit are the same, which may explain the similarity
between the finite population results.

The influence of the group size n on the fixation probability I'l, is shown in Figure 12
for a population size M = 1000. The threshold is smoothed as n increases, and the results
show that the steepness of the threshold transition decreases with n=2. Thus, for M > n,
we can write a general scaling form for I1; near the threshold 7.,

I, = h{(v—%)n—]\ﬂ, (31)
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where the scaling function /(1) is such that 1(0) = x,(0). This is an empirical equation
that summarizes the data of Figures 11 and 12. This way of summarizing information from
data by finding properly scaled variables is the basis of the finite-size scaling technique
of statistical physics [28]. Therefore, the effect of demographic noise is greatly magnified
by increasing the group size n. This is somewhat counterintuitive, as we would normally
expect to see a reduction in noise as group size increases. However, since groups are
distinguished by the number of replicators of type a, increasing n actually increases the
variability among group compositions, which may help demographic noise to nudge the
stochastic trajectories away from the deterministic prediction.
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Figure 11. (Left) Probability of fixation I, of replicators of type a (cooperators) as a function of *y
for groups of size n = 4 and M = 1000 (red curve), M = 500 (green curve), and M = 250 (blue
curve). The vertical dashed line indicates the threshold . = n beyond which the fixed point x, =1
is stable for M — oo. (Right) I, as a function of the scaled variable (y — 7.) M. The initial condition
is x,(0) = 0.5.

1 ; ; . 1 ;
0.8 | ; . 0.8 | ; .
06 | : 1 06 b : 1
:E :B
04 e 04 i
02 1 02 1
0 : . :
-0.02 -001 0 0.01 0.02 -0.001 0 0.001
Y= % (Y- yc)n_2

Figure 12. (Left) Probability of fixation I, of replicators of type a (cooperators) as a function of the
shifted variable v — <y, for M = 1000 and groups of size n = 3 (red curve), n = 4 (green curve), and
n =5 (blue curve). (Right) I'l, as a function of the scaled variable (y — %)n*z. The initial condition
is x,(0) = 0.5 and 7. = n.

Figure 13 shows how the mean fixation time T is affected by the magnification factor
7, the population size M and the group size n. As indicated in Figure 10, fixation takes
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longer in the regime where type a replicators are dominant. This observation is confirmed
by the results shown in the left panel of Figure 13, where we have used the logarithmic
scale on the y-axis to emphasize the small differences in fixation time for the two types
of replicators, which are only noticeable away from threshold. In fact, the right panel of
this figure shows that the fixation time at the threshold increases linearly with M, but

sublinearly with n, viz, Tf ~ 1925,
4
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Figure 13. (Left) Mean fixation time Ty as a function of -y for groups of size n = 4 and M = 1000
(red curve), M = 500 (green curve), and M = 250 (blue curve). The vertical dashed line indicates
the threshold . = n. (Right) Ty /1923 as a function of M at the threshold 7, for n = 3 (red symbols),
n = 4 (green symbols), and n = 5 (blue symbols). The line is the fit Ty / 192 = _298.14 4 7.25M. The
initial condition is x,(0) = 0.5.

4. Discussion

The replicator equation, which has been aptly called the “equation of life” [51], is
a central component of evolutionary game theory since it governs the evolution of the
frequencies of competing strategies in the limit of infinitely many players [5,31]. However,
the replicator equation was used to describe chemical or prebiotic evolution, i.e., the chemi-
cal kinetics of template-directed and protein-mediated self-replicating molecules, called
replicators, long before the idea of viewing the competition for building blocks or resources
in general as a game [3,4]. At some point, the evolutionary game theory community and the
prebiotic evolution community parted ways, and some interesting connections were lost,
especially those between the dynamics of replicators temporarily confined in compartments
and the public goods games. In particular, we emphasized here that the n-player prisoner’s
dilemma, where part of the contribution to the public good is returned to the contributors
themselves, representing the weak-altruism situation [30], is identical to the problem of
non-specific enzyme production in the early replicator competition scenario [14]. The
disconnect between these lines of research is illustrated by the parallelism of the works.
For example, the effect of synergism (i.e., division of labor) in enzyme production, where
the production of the enzyme requires the presence of a minimum number of enzymatic
replicators in the group [52,53], is identical to a variant of the n-player prisoner’s dilemma
where a minimum number of cooperators is needed to produce the public goods [54].

Here, we use tools developed in evolutionary game theory to revisit the population
biology of the early replicators [14]. In particular, we use the stochastic algorithms that
simulate the imitation (or copy) dynamics in finite population evolutionary games [26,27]
to study the effect of demographic noise on the competition between replicators with two
distinct characteristics. As expected, we find that demographic noise smooths out the sharp
transition in the parameter space between regimes where one or the other replicator type
dominates. We have not found stable coexistence between different replicator types in
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the competition scenarios considered here. The use of finite-size scaling allows a concise
description of the fixation probability and mean fixation time near the threshold for large
but finite population sizes M. We show that in the case of well-mixed populations of
non-enzymatic (i.e., Malthusian) replicators, this probability is described by Kimura’s
formula for the probability of fixation of an allele with a small selective advantage or
disadvantage [25]: the sharpness of the threshold increases linearly with increasing M. At
the threshold, where the intrinsic growth rate of the two types of replicators is equal, the
mean fixation time increases linearly with M, consistent with Kimura’s diffusion theory. In
the case of the competition between two enzymatic (i.e., hypercyclic) replicators, we find
that the threshold region shrinks with 1/ M!/2 and the mean fixation time at the threshold
increases with In M as M increases. Thus, although evolution is much faster in the case
of protein-mediated replication, demographic noise is more likely to steer the stochastic
dynamics toward the fixation of the replicator type that would lose the competition in the
deterministic limit. We find similar results for the competition between enzymatic and
non-enzymatic replicators in well-mixed populations.

A key problem in the population biology of early replicators is to explain the evolution
of replicators that, in addition to template-directed replication, produce a non-specific
enzyme that promotes their replication. The cost of producing the enzyme is paid as a
reduction in the rate of template-directed replication. These enzymatic replicators cannot
evolve in well-mixed populations because of the competition with free-riding replicators,
i.e., replicators that benefit from the enzyme without paying the cost of its production. But
they can evolve in the case of structured populations, where groups of n replicators are
constantly assembled and disassembled following Wilson’s trait group formulation [45].
The fitness of replicators is determined locally within their groups, but the competition
involves the entire population. This process is identical to evolutionary n-player games
and is described in the deterministic limit by a replicator equation [46]. In particular, the
evolution of enzymatic replicators requires a scenario of weak altruism, where the benefit
of enzymatic replication exceeds the cost of producing the enzyme. This is a well-studied
model in the deterministic limit [14,47], and we offer here a complete description of the
fixation probability of the enzymatic replicators for large populations near the threshold:
the sharpness of the threshold increases with M and decreases with n~2. In addition, the
mean fixation time at the threshold increases linearly with M but sublinearly with n. As
in the case of well-mixed populations, there is no coexistence between different types
of replicators: coexistence requires differential extinction of groups depending on their
composition [18,19].

It seems appropriate to conclude this contribution to the study of the effects of demo-
graphic noise on the population biology of early replicators in the same way as the original
paper that studied the deterministic, noiseless scenario [14], viz. by quoting Manfred
Eigen in his paper that laid the foundations for a theory of the evolution of biological
macromolecules [3]:

It is beyond the scope of this paper to discuss the details of the reaction mecha-
nisms ... the properties of which resemble, in many ways, social behavior.

Thus, the intersections between prebiotic evolution and public goods games have been
evident from the very beginning of theoretical studies of the origin of life. It is therefore
not surprising that tools developed in one field can be used in the other, as shown here.
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Appendix A

Since the proofs in the literature (see, e.g., [26,27]) do not immediately apply to the
stochastic dynamics used to model the competition between the two types of Malthusian
replicators introduced in Section 2.1, we present here the proof that this dynamics leads to
the replicator Equation (3) in the limit of infinitely large populations.

Assume that, at time ¢, the population is composed of A(t) replicators of type a and
M — A(t) replicators of type b. In addition, let P;(t) be the probability that the replicator i
is of type a (i.e., its intrinsic growth rate is ;) at time t. The probability P;(t + dt) is given
by the sum of the probabilities of the following independent and exclusive events.

(a) Replicator i is of type a at time ¢, and another replicator is selected to be challenged.
The probability of this event is

(A)

(b) Replicator i is of type a at time t and is selected to be challenged. The challenger
also is of type a. The probability of this event is

1 A(t)—1
Pi(t) x M TMoT (A2)
(o) Replicator i is of type a at time t and is selected to be challenged. The challenger

is of type b, but fails to replace the challenged replicator. The probability of this

event is
1 M — A(t)

) B e ) __ " .
i) x o x S A (1- 2, (A3)

(d)  Replicator i is of type b at time t and is selected to be challenged. The challenger is
of type a and succeeds to replace the challenged replicator. The probability of this
event is

» 1 o A(t) o _Ta
M M—-1" r,+r,
Adding up these probabilities and keeping only terms of the order of 1/ M or less yields

[1—Pi(t)]

(A4)

GO ) A

Pi(t+5t)=Pj(f)*Pi(t)M M ratr M M ri+ry

(A5)

Since P;(t + ot) — P;(t) has to be proportional to ét, we have to set 6t = 1/ M. Taking
the limit M — oo yields

dPi o . rb 1 fe
T = ROL = xaO] = 4 [ = PO = (A6)
where
() = Jim A1 7

is the frequency of replicators of type a at time t. The final step in the proof is to assume
that all replicators are identical in the sense that they have the same probability of being of
one type or the other, i.e., P;(t) = P(t) fori = 1,..., M. But then P(t) can be interpreted
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as the probability that a randomly chosen replicator is of type a. Thus, the law of large
numbers [55] allows us to write P(t) = x,(t) so that Equation (A6) becomes

dxg 1
T ”b (ra —rp)xa(1 — x5), (A8)

which is the replicator Equation (3) with the time scale & = 1/ (7, +13).

Appendix B

Here, we show how to integrate Equations (10) and (16) explicitly to get an analytical
expression for the time f as a function of the frequency of replicators of type a, i.e., t = t(x,).
Since the final result is a graph of x, versus t, it does not matter whether we have an explicit
expression x, = x,(t) or t = t(x,). Consider the replicator equation

T prall = x0) (50— 0), (49)

where  and ¢ are parameters that can be set appropriately to recover Equations (10) and (16).

It can be rewritten as
dx,

xa(1 = x4)(xa — §)

The right-hand side of this equation can be broken down into partial fractions, which

= Bdt. (A10)

give us
1 dx, dxﬂ} 1 { dx, dx,
R G = Bdt. All
J o e R e e R e .
The integrations are now easy to perform and result in
1 1
E[ln(xa — g) — lnxa} + ﬁ[ln(xa — g) — 11'1(1 — xtl)] = ‘Bt + C, (A12)

where C is an integration constant determined by the initial frequency x,(0), i.e.,

In(x(0) &) ~ Inxs(0)] + 15 in(xa(0) &) ~In(L - x,(0)).  (A13)

Finally, inserting this value of C in Equation (A12) and rearranging the terms yield

Bt— h{ o = }lln{ Yo ] 1611{ 1= % } (A14)

C:

R =

¢(1-2¢) x(0) = ¢ ¢ [xa(0) 1- 1—x,(0)
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