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IDEMPOTENTS IN GROUP ALGEBRAS AND MINIMAL 
ABELIAN CODES 

RAUL ANTONIO FERRAZ AND CESAR POLCINO MILIES 

ABSTRACT. We compute the number of simple components of a semisim­
ple finite abelian group algebra and determine all cases where this mun­
her ia minimal. This result is used to compute idempotent generatoni of 
minimal abelian codes, extending results of Arora and Pruthi (l], [11] . 
We also show how to compute the dimension and minimum distance of 
these codes in a simple way. 

1. INTRODUCTION 

Let F = GF(q) be a field of prime power order q and let m be a positive 
integer which is relatively prime to q. The cyclic codes of length mover F 
can be viewed as ideals in either F[X]/(Xm-1) or in the group algebra FCm, 
where Cm denotes a cyclic group of order m. Ta.king the first viewpoint, 
Arora and Pruthi [11) computed the idempotent generators of minimal cyclic 
codes of length pm in the case when either pm = 2 or 4 or p is odd and the 
multiplicative order of q, modulo pm, is !f'(Pm). In a subsequent paper (1) 
they studied the case when the length is 2pm. 

By considering codes as ideals in the group algebra PC.pm we are able 
to obtain these result in a much shorter way and to show that these are 
actually the only cases where the computation is possible along these lines 
(i.e., directly from the lattice of subgroups, without the need of roots of 
unity or even cyclotomic classes as in [1]). 

In the next section, we give similar constructions for minimal abelian 
codes under the same conditions. In this way, we also extend the results of 
Berman [2, p.22], as far as possible. 

1n order to do this, in the first section of the paper we compute the 
number of simple components of a finite abelian group algebra FA and de­
termine conditions for this number to be minimal. Such a computation can 
be obtained from the Theorem of Berman-Witt (see [4, Theorems 21.5 and 
21.25] or [5, Theorem 47.2]) and from a result of Khiilshammer [8], using 
character theory. Simplifying the methods of Ferraz [6] to the abelian case, 
we are able to evaluate this number in an elementary manner, using only 
the structure of FA. 

Research supported by FAPESP, Procs. 02/02933-0 and 00/07291-0 and CNPq Proc. 
300243/79-0 (RN). 
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2. THE NUMBER OF SIMPLE COMPONENTS 

Let F be a finite field, with IFI = q elements, and let A be a finite abelian 
group such that (q, IAI) = 1. Then FA is semisimple and, if {e1, ... , er} is 
the set of primitive idempotents of FA, we have that 

FA = EBi=i(FA)e; ::::: EBi=lF;, 
where F; ~ (FA)e,, 1 $ i $ rare fields which are finite extensions of F. 

In [6], Ferraz gave a general method to compute the number r of simple 
components of a semisimple group algebra. In our present case of finite 
group algebras of abelian groups, we can give a simpler way to determine 
such a number. Set 

.A = El)i=lFe,. 
Notice that Fe,~ Fas fields in a natural way and that the number r of 

simple components is also the dimension of .A as a vector space over F. 

Lemma 2.1. Let a be an element of FA. Then a E .A if and only if exq = ex 

PROOF. Given ex E FA, we write ex = Er=l ex;, with a; = o:e, E F,, 1 $ 
i $ r. Now ex is an element of .A if and only if each. element o; is in Fe; 
for every index i. As Fe;~ F, this happens if and only if af = o:; for all i; 
hence, if and only if aq = a. □ 

Let g be an element of the finite abelian group A. We recall that the 
q-cyclotomic class of g is the set 

SIi ={gqjl0$j $ tg-1}, 
where t11 is the smallest positive integer, such that 

l• = 1( mod o(g)), 

and o(g) denotes the order of g. Since ( q, o(g)) = 1, there will always exist 
such a number t11 • It follows easily that if S11 -1- S11, then S11 n S11 = 0. 
Let T = {gi, 92, ... , g,} denote a set of representatives of the q-cyclotomic 
classes. 

Theorem 2.2. Let F be a finite field, with IFI = q, and let A be a finite 
abelian group. such that (q, jAI) = 1. Then, the number of simple compo­
nents of FA is equal to the number of q-cyclotomic classes of A. 

PROOF. AB noted above, the number of simple components of FA is equal 
to the dimension of .A over P. We shall exhibit a basis of this subalgebra 
with s elements. 

Given a q-cyclotomic class S11 we define 1711 = L h E FA. We claim that 
h€Sg 

B = {179Jl $ i $ s} is a F-basis .A. Clearly B is a linearly independent 
set so we only need to show that it also generates .A. We remark first that, 
since 11Z, = 179,, l $ i $ s, it is clear that B C .A. 
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Let a E .A= EBi=l Fe;. It follows from Lemma 2.1 that a= a9. Hence 
if a= :E <Xg9, we have 

gEA 

a= L Cig9 = (L Cigg)q = L a;gq. 
gEA gEA gEA 

Since a9 E F, we have that a-i = a9 and thus 

Eagg = Eaggq. 
gEA gEA 

So, for each g E A, we have that a 9 = a 9 q = • · • = a g.'r1 and, conse­
quently, 

as claimed. D 

A well-known theorem, due to Perlis and Walker [9], (see [10, Corollary 
3.5.5]) shows that the nwnber of simple components of the rational group 
algebra of a finite abelian group A is equal to both the number of cyclic 
subgroups of A and the number of its cyclic factors. 

Notice that, if h E S9, then h = g9' for some j. As (q, o(g)) = 1, it follows 
that (g) = (h). So each q-cyclotomic class S9 is a subset of the set g9 of 
all generators of the cyclic group (g). So, it is clear that the number cyclic 
subgroups of A is a lower bound for the number of simple components and 
th.at this bound is attained if and only if S9 = 99 , for all g E A. 

For positive integers r and m, we shall denote by r E Zm the image of r 
in the ring of integer modulo m. Then, 

99 = {gr I (r, o(g)) = l} = {gr I f E U(Zo(g)} 

and we have the following. 

Theorem 2.3. Let F be a finite field with IFI = q, and let A be a finite 
abelian group, of exponent e, such that (q, IAI) = 1. Then S9 = 99 , for all 
g EA if and only if U(Z,) is a cyclic group generated by ij E z .. 
PROOF. Assume first that U(Z,) is cyclic generated by q. For an element 
g E G, we have that o(g)le and thus (q) E Zo(g) is a generator of U(Zo(g)). 

For every element h of Yg we have that h = gr for some positive integer r 
such that f E U(Z1), soi' = qi for some positive integer j and h = g'' E S9 • 

This shows that 09 = S9 • 

Conversely, suppose that Yg = Sg for all g E G. We recall that if A is a 
finite abelian group of exponent e then, there exists an element go E A of 
order e and, in particular, 990 = Sg0 • Hence, for each integer r such that 
r E U(Z 0 ), we have that g0 E S90 and there exists some integer j such that 
r =qi. Thus, ij generates U(Z,), as claimed. D 
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It is well-known that U(Ze) is cyclic if and only if e = 2,4,pn, or 2pn, 
where p is a odd prime integer, and n is a positive integer. Notice that, 
if q is odd then q is a generator of U(Z2); it is a generator for e = 4 if 
q = 3 (mod ,4) and is a generator of U(Ze) fore = p", or 2p", if and only if 
o(q) = iP(p") in U(Z,,n) or U(Z2,,n). 

Hence we have the following. 

Corollary 2.4. Let F be a finite field with !Fl = q, and let A be a finite 
abelian group, of exponent e. Then Yg = Sg for all g E G if and only if one 
of the following holds: 

(i) e = 2 and q is odd. 
(ii) e = 4 and q = 3 (mod 4 ). 
(iii) e = p" and o(q) = it>(p") in U(Z,,n). 
(iv) e = 2p" and o(q) = ct>(p") in U(Z1,,n). 

3. MINIMAL CYCLIC CODES 

Let H be a finite subgroup of a group G. We set 

~ l "" 
H= IHI L,9· 

gEH 

Since IHI divides IA! and (q, !Al) = 1, it follows that ii is well defined 
and it clearly is an idempotent of FG. 

Lemma 3.1. Let p be a rational prime and let A= (a) be a cyclic group of 
order pn, n $ l. Let 

A = Ao::> Ai ::, ···::,A,. = {1} 
be the descending chain of all subgroups of A. Then the elements 

eo = A and e; = A; - £, 1 $ i $ n, 

form a set of orthogonal idempotents such that e0 + e1 + • • • + e,. = 1. 

The proof is straightforward as in [7, Lemma VII.1.2]. It is noted in 
[7, Remark VII.1.3] that this method yields the set of primitive idempotents 
of QA but that this is not so, in general, over finite fields. However, since 
these idempotents are n + 1 in number it will be the set of primitive idem­
potents whenever FA has precisely n + 1 components. Since the exponent 
of A is pn, in view of the results of the previous section, we have that this 
happens if a.nd only if q and n are related as described in Corollary 2.4. 
Hence, we have the following. 

Corollary 3.2. Let F be a finite field with IFI = q, and let A be a cyclic 
group of order pn. Then, the set of idempotentes given in Lemma 9.1 is the 
set of primitive idempotents of A if and only if one of the following holds: 

(i) p = 2, and either n = 1 and q is odd or n == 2 an·d q = 3 (mod 4 ). 
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(ii) pis an odd prime and o(q) = il>(p") in U(Zpn). 

As an immediate consequence, we obtain the following result of Pruthi 
and Arora. 

Theorem 3.3. ([11, Theorem 3.5]) Let F be a field with q elements and A 
a cyclic group of order p" such that o(q) = il>(p") in U(Zpn). Let 

A = Ao::, Ai::,···::, A,.= {1} 

be the descending chain of all subgroups of A. Then, the set of primitive 
idempotents of FA is given by 

and 

A straightforward computation shows that these are the same idempo­
tents given in [11, Theorem 3.5], though there they are expressed in terms 
of cyclotomic classes. 

The idempotent generators of minimal idea.ls in the case of cyclic groups 
of order 2p" now follow easily from the previous results. 

Theorem 3.4. (Arora and Pruthi [1, Theorem 2.6)) Let F be a field with 
q elements and G a cyclic group of order 2p" , p an odd prime, such that 
o(q) = il>(p") in U(Z2p" ). Write G = C x A where A is the p- Sylow subgroup 
A of G and C = {1, t} is its 2-Sylow subgroup. If e;, 0 $ i $ n denote the 
primitive idempotents of FA then, the primitive idempotents of FG are 

(1 +t) 
- 2- •e; 

PROOF. Notice that 

and 
(1- t) 
-

2
- • e; 0 $ i $ n. 

FG ~ F(C x A) ~ (FC)A ~ (F$ F)A. 

Since the idempotents of FC are (1 + t)/2 and (1 - t)/2 and the idempo­
tents of FA were computed in Theorem 3.3 above, the claim follows imme­
~~ □ 

The dimension and mm1mwn length of the minimal ideals /; = 
(F A)(A; - ;f;:;) can be computed directly in a simple way, which will be 
given in the last section in the more general context of abelian codes. 

The generating polynomials are not really necessary in this approach but 
will be given for the sake of completeness. They can be easily computed as 
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follows. If e;(X) E F[X] is any polynomial such that e;(a) = e;, then it is 
well-known that the generating polynomial of I; is given by: 

g;(X) = gcd(e;(X), XP" - 1), 0 ~ i ~ n. 

We compute: 

e;(X) 

Also: 

pn-t_1 

XP" - l = (XP' - 1) E Xi'P' 
j=O 

= (X.,,,-1 - 1) ((p-f•-• X;,,,•-•) (p"i= 1 XiP') 

,=o ,=o 
Since every root of (XP'-

1 
- 1) in an algebraic closure of Fis also a root 

of p - E~~~l)p•-• XiP;-i, it follows that 

(

'Pn-i_l ) 

g;(X) = (x.,,•-1 
- 1) E x;.,,• . 

,=o 
Since deg(g;(X)) = p" - pi+ pi-t we obtain (as we shall also see, in a 

different way, in section §5) that: 

4. MINIMAL ABELIAN CODES 

We wish to extend this result to finite abelian groups. We shall first con­
sider the case of p-groups. 
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Let A be an abelian p-group. For each subgroup H of A such that A/ H -/­
{ 1} is cyclic we shall construct an idempotent of FA. We remark that, since 
A/ H is a cyclic group of pth-power order, there exists only one subgroup 
H• of A containing H, such that IH• / HI = p. We define ey = ii - ff.. 
Clearly eH -/- 0 and we have the following. 

Lemma 4.1. The elements ey, defined as above together with eA = A form 
a set of pairwise orthogonal idempotents of FA whose sum is equal to 1. 

PROOF. The fact that these elements are idempotents is straightforward. 
Let H and K be different subgroups of A such that both A/ H and A/ K are 
cyclic, not equal to {l}, and let n• and K* be subgroups containing Hand 
K respectivelly, such that H• / H and K• / K are cyclic of order p. We shall 
consider first the case when H c K. In this case, clearly H• ~ K and thus 

ehek = (ii - if-)(K - K*) = K - K* - K + K* = 0. 

If neither of these subgroups is contained in the other then both H and 
K are properly contained in HK so also H• and K* are contained in HK 
hence H* K* c HK and clearly HK C H* K* therefore HK = H• K•. Now, 
since HK c HK* c H* K* it follows that also HK* = HK and, in a similar 
way, we have H* K = HK. Thus: 

ehek = (ii - if-)(K - K*) = 0. 

Also, if one of the idempotents is equal to e A a similar result follows easily. 

Finally, we wish to show that the sum of these idempotents is equal to 1. 
For ea.ch cyclic subgroup C of A we denote by Q(C) the set of all elements 
of C that generate this subgroup; i.e. 

Q(C) = {c EC I (o(c), ICI) = l}. 

If C denotes the family of all cyclic subgroups of A then, clearly, 
IAI = 1:cEC l9(C)I and, since A is a p-group, l9(C)I = ICI - ICl/p. 

Let S denote the set of all subgroups H of A such that the quotient A/ H 
is cyclic and denote e = 'I:HESeh, We claim that e = 1. To prove this 
fact, it is enough to show that (F A)e = FA. As we have shown that these 
idempotents are pairwise orthogonal, we have that 

so 

(F A)e = ffiHEs(F A)ey 

dimF((FA)e) = L dimF((FA)eH)­
HES 

Notice that H = H* - eH and that H*eH = 0 thus 

(FA)ii = (FA)H* © (FA)eH, 

Hence 
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It follows from [10, Proposition 2.3.6] that 

(1) dimF((F A)eH) = dimFF[A/ HJ - dimFF[A/ H*] 
and, clearly, 

dimFF[A/HI = IA/HI and dimFF[A/W] = IA/H*\. 
It is well-known that there exists a bijection 4> : C -+ S such that \XI = 

\A/4>(X)! for all XE C. This is a consequence of character.theory for finite 
abelian groups (see [12, Chapter 10]). If we denote by CE C the subgroup 
such that 4>(C) = H we have 

dimFF[A/ HJ = \CJ 
dimFF[A/H*J = \A/H*\ = \A/H\/\H*/HI = ICI/P 

so 

dimF((F A)eH) = \Cl - ICI/P = IO(C)I 
and thus 

E dimF((FA)eH) = E j{i(C)I = IAI, 
Hes cec 

The result follows. D 
The following is an immediate consequence of the lemma above and Corol­

lary 2.4. 

Theorem 4.2. Let p be an odd prime and let A be an abelian p-group of 
exponent y. Then, the set of idempotents above is the set of primitive 
idempotents of FA if and only if one of the following holds: 

(i) p' = 2, and q is odd. 
(ii) y = 4 and q = 3 (mod ,I ). 

(iii) p is an odd prime and o(q) = 4>(pn) in U(Zpn). 

Also, we have the following. 

Theorem 4.3. Let p be an odd prime and let A be an abelian p-group of 
exponent 2y. Write A = E x B, where E is an elementary abelian 2-group 
and B a p-group. Then the primitive idempotents of FA are products of 
the form e.f, where e is a primitive idempotent of FE and f a primitive 
idempotent of F B. 

Notice that the primitive idempotents of FB are given by Theorem 4.2 
above and, writing E = (a1) x · • · x (On), a product of cyclic groups of 
order 2, then the primitive idempotents of FE are all products of the form 
e = e1e2 ··•en, where 

l+a; 1-a; 
e; = -

2
- or e; = -

2
- , 1 $ i $ n. 
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It should be noted that, in view of Corollary 2.4, these are the only cases 
where primitive idempotents of finite abelian group algebras can be com­
puted in this way. 

5. DIMENSION AND MINIMt:M DISTANCE 

Assume that IAI = 2mpn, where p denotes an odd prime and m?: 0. As 
before, we write A = E x B, where E is an elementary abelian 2-group of 
order 2m (eventually trivial) and Ba p-group. 

Nl noticed right after Theorem 4..3, the primitive idempotents of FE are 
all products of the form eE = e1e2 ···en, where 

l+a· 1-a· 
e, = --' or e, = --', 1 < i < n. 2 2 - -

and the primitive idempotents of FA are products of the form eE,eB, where 
eE is a primitive idempotent of FE and eB a primitive idempotent of FB. 

Notice that for fixed idempotent eE of FE and an element y E E, we can 
write y =a?•• •a~ where c, = 0 or 1, 1 :$ i :$ m. Hence 

(2) yeE = a11 (1 ~ ai) · · •a;,.m (1 ±/m) = ±eE = (-IY•eg. 

where cy = 0 or 1. 

Consider first primitive idempotents of the form eEB. An element of 
(FA) • egB is of the form 'Y • eEB where we can write 'Y = I:,es x 11b yb, so 

bEB 
we have that 

"I· eEB = LX11b yeE.bB = (LX 11b(-1Y•) eEB. 

l€~ l€~ 
This computation shows both that the dimension of the ideal 

I= (FA)• eEB is 1 and that its minimum length is l(I) = IAI. 

Now, we consider idempotents of the form e = eE,eH with witheE E FE, 
as above and eH = H - H*, where H is a subgroup of B such that B / H 
is cyclic of order p;, say, and H* is the unique subgroup of B containing H 
such that [H* : HJ = p. Set le = (F A)e. 

Let b E B be an element such that B = (b, H). Then we also have that 
H* = (b1r', H). Notice that 

(1 - bPi-• )eEH = (1 - l,Pi-i )eE(H* + eH) = (1 - l,Pi-i )eEeH E le• 

Since bP,_, ¢ H it is clear that supp((l - bP'-')H) is the disjoint union 
Hu bPH Hand the weight of this element is w((l - l,P'-')eEH) = 2IE!IHI, 
so that if we denote by /(le) the minimum distance of le, we have that 
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Since Bis the disjoint union B = HubHU .. -ub!''-1 H we also have that 
A= Ex Bis the disjoint union A= Ex H Ub(E x H) U · · ·Ub1''-1 (E x H) 
so an arbitrary element of FA ca.n be written in the form 0t = Ei~~1 

a;bi, 
with 0t; E F[E x H]. 

Notice that, taking into account formula 2 and the fact that hii = ii 
for all h E H, we have that each product a;eEeH is of the form a;eEeH = 
k;eEeH, where k; E F, 0 ~ j ~ p' - 1. 

Since (FA)· eEeH C (FA) · eEfi, an element O-/:- 1 E (FA)· eEeH = le 
ca.n be written in the form 

"f = 0teEH 

( • 1) -= ko+k1b+···+kp•-ib1'- eEH, 

Since 'YI- O, we have that at least one coefficient k; -/ 0. If 'Y = k;bieEii 
we would have that eEii E (FA)• eEeH, a contradiction. So. at least 
two different coefficients k;, k;, must be nonzero for every 'Y E I. a.n.d thus 
l(Ie) ~ 2m+IIHI, Hence 

l(/0 ) = 2m+llHI, 
Finally, we shall compute the dimension of minimal ideals. Let e = eEeH 

be a primitive idempotent. We have that: 

FA· eEeH = F[E X B) · eEeH = ((FE)B) · eEeB =(FE · eE)B • eH. 

As (FE)· eE ~ F for all primitive idempotents of FE, we see that 

so formula 1 gives that 

dim[F A· eEeH] = cp(p;). 

A similar argument shows that 

dim[FA · eEB] = dim[FB • B] = 1. 
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