


IDEMPOTENTS IN GROUP ALGEBRAS AND MINIMAL
ABELIAN CODES
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ABSTRACT. We compute the number of simple components of a semisim-
ple finite abelian group algebra and determine all cases where this num-
ber is minimal. This result is used to compute idempotent generators of
minimal abelian codes, extending results of Arora and Pruthi [1], [11].
We also show how to compute the dimension and minimum distance of
these codes in a simple way.

1. INTRODUCTION

Let F = GF(q) be a field of prime power order ¢ and let m be a positive
integer which is relatively prime to ¢. The cyclic codes of length m over F'
can be viewed as idesls in either F[X]/(X™~1) or in the group algebra FC,,,
where Cy, denotes a cyclic group of order m. Taking the first viewpoint,
Arora and Pruthi [11] computed the idempotent generators of minimal cyelic
codes of length p™ in the case when either p™ = 2 or 4 or p is odd and the
multiplicative order of ¢, modulo p™, is ¢(p™). In a subsequent paper [1]
they studied the case when the length is 2p™.

By considering codes as ideals in the group algebra FC,m we are able
to obtain these result in a much shorter way and to show that these are
actually the only cases where the computation is possible along these lines
(i.e., directly from the lattice of subgroups, without the need of roots of
unity or even cyclotomic classes as in [1]).

In the next section, we give similar constructions for minimal abelian
codes under the same conditions. In this way, we also extend the results of
Berman |2, p.22], as far as possible.

In order to do this, in the first section of the paper we compute the
number of simple components of a finite abelian group algebra FA and de-
termine conditions for this number to be minimal. Such a computation can
be obtained from the Theorem of Berman-Witt (see {4, Theorems 21.5 and
21.25} or [5, Theorem 47.2]) and from a result of Khiilshammer [8], using
character theory. Simplifying the methods of Ferraz [6] to the abelian case,
we are able to evaluate this number in an elementary manner, using only
the structure of FA.
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2. THE NUMBER OF SIMPLE COMPONENTS

Let F be a finite field, with |F| = g elements, and let A be a finite abelian
group such that (g,|A|) = 1. Then FA is semisimple and, if {e,...,e.} is
the set of primitive idempotents of FA, we have that

FA = ®¥=l (FA)el' = @E:lFiu
where F; ~ (FA)e;, 1<t < r are fields which are finite extensions of F.

In [6], Ferraz gave a general method to compute the number r of simple
components of a semisimple group algebra. In our present case of finite
group algebras of abelian groups, we can give a simpler way to determine
such a number. Set

A = ®€=1 Fe;.

Notice that Fe; ~ F as fields in a natural way and that the number r of

simple components is also the dimension of .4 as a vector space over F.

Lemma 2.1. Let o be an element of FA. Thena € A ifand only if of = &

PROOF. Given o € FA, we write @ = }[_, o, with a; = ae; € F, 1 <
t < r. Now o is an element of A if and only if each element o is in Fe;
for every index i. As Fe; ~ F, this happens if and only if af = o; for all j;
hence, if and only if o? = a. 0

Let g be an element of the finite abelian group A. We recall that the
g-cyclotomic class of g is the set

Sy ={g"10<j <t -1},
where t, is the smallest positive integer, such that
¢* = 1( mod ofg)),
and o(g) denotes the order of g. Since (g, 0(g)) = 1, there will always exist
such a number ¢;. It follows easily that if S, # Sy, then S; N S, = 0.

Let T = {g1,93-..,9:} denote a set of representatives of the g-cyclotomic
classes.

Theorem 2.2. Let F be a finite field, with |F| = ¢, and let A be a finite
abelian group. such that (q,|Al) = 1. Then, the number of simple compo-
nents of FA is equal to the number of g-cyclotomic classes of A.

PROOF. As noted above, the number of simple components of FA is equal
to the dimension of A over F. We shall exhibit a basis of this subalgebra
with s elements.

Given a g-cyclotomic class S; we define g, = Y h € FA. We claim that
h€S,

B = {ny|1 < i < s} is a F-basis A. Clearly B is a linearly independent
set so we only need to show that it also generates .A. We remark first that,
since ng; = n,,, 1 << s, it is clear that B C A.
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Let o € A = @], Fei. It follows from Lemma 2.1 that & = o?. Hence
ifa= Y, a9, we have

gEA
a=) ag=() a9) =) alg.

geA gEA g€EA
Since oy € F, we have that o = oy and thus

Z agg = Zaggq.

gEA g€A
So, for each g € A, we have that oy = age = -+- = @, tomt and, conse-
quently,
o= Zagr]g.
geT
as claimed. a

A well-known theorem, due to Perlis and Walker [9], (see [10, Corollary
3.5.5]) shows that the number of simple components of the rational group
algebra of & finite abelian group A is equal to both the number of cyclic
subgroups of A and the number of its cyclic factors.

Notice that, if b € Sy, then h = g%’ for some j. As (g,0(g)) = 1, it follows
that (g} = (k). So each g-cyclotomic class Sy is a subset of the set G, of
all generators of the cyclic group (g). So, it is clear that the number cyclic
subgroups of A is a lower bound for the number of simple components and
that this bound is attained if and only if 5, = G, for all g € A.

For positive integers r and m, we shall denote by ¥ € Z,,, the image of r
in the ring of integer modulo m. Then,

g =197 | (r,0(g)) =1} = {g" | T € U(Zo(y)}
and we have the following.

Theorem 2.3. Let F be a finite field with |F| = q, and let A be a finite
abelian group, of exponent e, such that (q,|A|) = 1. Then S; = G,, for all
g € A if and only if U(Z,) is a cyclic group generated by g € Z..

PROOF. Assume first that U(Z,.) is cyclic generated by §. For an element
g € G, we have that o(g)|e and thus (g) € Z,(,) is a generator of U(Z,(y)).

For every element h of G, we have that h = ¢g" for some positive integer r
such that 7 € U(Z,), so ¥ = ¢ for some positive integer j and h = g¥ € S,.
This shows that G, = S,.

Conversely, suppose that G, = S; for all g € G. We recall that if Aisa
finite abelian group of exponent e then, there exists an element go € A of
order e and, in particular, G, = S;,. Hence, for each integer r such that
7 € U(Z.), we have that gf € S,, and there exists some integer j such that
7 = g/. Thus, § generates U(Z,), as claimed. O
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It is well-known that U(Z.) is cyclic if and only if ¢ = 2,4, p™, or 2p,
where p is a odd prime integer, and # is a positive integer. Notice that,
if ¢ is odd then g is a generator of U(Zy); it is a generator for e = 4 if
g =3 (mod 4) and is a generator of U(Z,) for e = p™, or 2p™, if and only if
o(q) = ®(p") in U(Zp») or U(Zzp).

Hence we have the following.

Corollary 2.4. Let F be a finite field with |F| = g, and let A be a finite
abelian group, of exponent e. Then G, = S, for all g € G if and only if one
of the following holds:
(i) e=2 and g is odd.
(ii) e=4 and g=3 (mod 4).
(iii) e = p™ and o(g) = ®(p") in U(Zyn).
(iv) e = 2p" and o(q) = ®(p") in U(Zgpm).

3. MINIMAL CYCLIC CODES
Let H be a finite subgroup of a group G. We set

P !
H = — Z 9.
] 9€H
Since [H| divides |A| and (g, |A]) = 1, it follows that H is well defined
and it clearly is an idempotent of F'G.

Lemma 8.1. Let p be a rational prime and let A = (a) be a cyclic group of
order p", n < 1. Let

A= AyDA D DA ={1}
be the descending chain of all subgroups of A. Then the elements
e0=;f and e,-=:4\,-—2:1, 1<t<n,
form a set of orthogonal idempotents such that eg4-€y + - +eq = 1.

The proof is straightforward as in [7, Lemma VIL.1.2]. It is noted in
[7, Remark VII.1.3] that this method yields the set of primitive idempotents
of QA but that this is not so, in general, over finite fields. However, since
these idempotents are n + 1 in number it will be the set of primitive idem-
potents whenever F'A has precisely n + 1 components. Since the exponent
of A is p®, in view of the results of the previous section, we have that this

happens if and only if ¢ and n are related as described in Corollary 2.4.
Hence, we have the following.

Corollary 8.2. Let F be a finite field with |F| = q, and let A be a cyclic
group of order p®. Then, the set of idempotenies given in Lemma 3.1 is the
set of primitive idempotents of A if and only if one of the following holds:

_ () p=2, and eithern =1 and ¢ is odd or n = 2 and ¢ =3 (mod { ).
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(ii) p is an odd prime and o(q) = ®(p") in U(Z,~).

As an immediate consequence, we obtain the following result of Pruthi
and Arora.

Theorem 3.3. ({11, Theorem 3.5]) Let F be a field with q elements and A
a cyclic group of order p™ such that o(q) = ®(p") in U(Zyn). Let

A= ADA D DA, ={1}

be the descending chain of all subgroups of A. Then, the set of primitive
idempotents of FA is given by

€y = —1;: (Za)
p acA
and

ei=Ai— Ay, 1<i<n.

A straightforward computation shows that these are the same idempo-
tents given in {11, Theorem 3.5], though there they are expressed in terms
of cyclotomic classes.

The idempotent generators of minimal ideals in the case of cyclic groups
of order 2p™ now follow easily from the previous results.

Theorem 3.4. (Arora and Pruthi {1, Theorem 2.6]) Let F be a field with
g elements and G a cyclic group of order 2p™ |, p an odd prime, such that
o(q) = ®(p™) in U(Z2pn). Write G = Cx A where A is the p- Sylow subgroup
A of G and C = {1,t} is its 2-Sylow subgroup. If e;, 0 < i < n denote the
primitive idempotents of F'A then, the primitive idempotents of FG are

(1+18) (1-1¢)
— e; and T

PROOF. Notice that
FG = F(Cx A) = (FC)A = (F@ F)A.

Since the idempotents of FC are (1+1¢)/2 and (1 —t)/2 and the idempo-
tents of FA were computed in Theorem 3.3 above, the claim follows imme-
diately. O

ce; 0<i<n.

The dimension and minimum length of the minimal idesls I; =
(FA)(A; — A;—1) can be computed directly in & simple way, which will be
given in the last section in the more general context of abelian codes.

The generating polynomials are not really necessary in this approach but
will be given for the sake of completeness. They can be easily computed as
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follows. If ¢;(X) € F[X] is any polynomial such that e;(a) = e;, then it is
well-known that the generating polynomial of I; is given by:

gi(X) = ged(ei(X), X" - 1), 0<i<n.

We compute:
| premct 1 ! i1
Bi(X) = 17‘: Xxr —Im Z XF
j=0 1=0
1 r p""'l—l y 1 pn—i+1_1 -t
= p Z X® - pri-1 Z X7
j=0 =0
1 n—-! -1 vl—l -1
=F:;(p1)ZX”’-ZX”’
i=0
1 (p_l)pi—l i n—l_l
= —=lr- Z bl Z x i
p i=0 §=0
Also:
"-'—1
X" -1 = -1) Z X
§=0
(p—l)p'-l n—l -1
. ( l—l Z XJps-l Z XJP
j=0
Since every root of (X7~ = 1) in an algebraic closure of F is also & root

of p— PP x5! it follows that

G(X) = (x*7 - 1) ( 5 X"’)

7=0

Since deg(gi(X)) = p™ — p' + p*~! we obtain (as we shall also see, in a
different way, in section §5) that:

dim(L) = p* - deg(gi(X)) =7' - P! = o(p).

4. MINIMAL ABELIAN CODES

We wish to extend this result to finite abelian groups. We shall first con-
sider the case of p-groups.
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Let A be an abelian p-group. For each subgroup H of A such that A/H #
{1} is cyclic we shall construct an idempotent of FA. We remark that, since
A/H is a cyclic group of pth-power order, there exists only one subgroup
H* of A containing H, such that |H*/H| = p. We define ey = H — H*.
Clearly ey # 0 and we have the following.

Lemma 4.1. The elements ey, defined as above together with ey = A form
a set of pairwise orthogonal idempotents of FA whose sum is equal to 1.

PROOF. The fact that these elements are idempotents is straightforward.
Let H and K be different subgroups of A such that both A/H and A/K are
cyclic, not equal to {1}, and let H* and K* be subgroups containing H and
K respectivelly, such that H*/H and K*/K are cyclic of order p. We shall
consider first the case when H C K. In this case, clearly H* C K and thus

ener = (H-HY)K-E)=K-K-R+Kk- =0
If neither of these subgroups is contained in the other then both H and
K are properly contained in H K so also H* and K* are contained in HK
hence H*K* C HK and clearly HK C H*K* therefore HK = H*K*. Now,
since HK ¢ HK* C H*K* it follows that also H K* = HK and, in a similar
way, we have H*K = HK. Thus:

eper = (FI—I/{\")(I?—I?) = 0.

Also, if one of the idempotents is equal to e 4 a similar result follows easily.

Finally, we wish to show that the sum of these idempotents is equal to 1.
For each cyclic subgroup C of A we denote by G(C) the set of all elements
of C that generate this subgroup; i.e.

G(C) = {ceC|(o(c),[C)=1}.

If C denotes the family of all cyclic subgroups of A then, clearly,
Al = Y ee 16(C)] and, since 4 is s p-group, [G(C)| = IC] - IC|/»p.

Let S denote the set of all subgroups H of 4 such that the quotient A/H
is cyclic and denote e = 3 g sen. We claim that e = 1. To prove this
fact, it is enough to show that (FA)e = FA. As we have shown that these
idempotents are pairwise orthogonal, we have that

(FA)e = @nes(FA)en

dimp((FA)e) = Y dimp((FA)en).
HeSs

Notice that H = H* — ey and that H*ey = 0 thus
(FA)H = (FA)H* @ (FA)eg.

Hence . .
dimp((FA)eg) = dimp(FA)H — dimp(FA)H*.
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It follows from (10, Proposition 2.3.6] that

1) dimp((F A)ey) = dimp F[A/H] - dimpF[A/H"|
and, clearly,
dimpF[A/H] = |A/H| and dimpF[A/H*|=]A/H"|.

It is well-known that there exists a bijection ® : C — S such that X} =
[A/®(X)| for all X € C. This is a consequence of character theory for finite
abelian groups (see [12, Chapter 10]). If we denote by C € C the subgroup
such that ®(C) = H we have

dimpF[A/H] = |C]
dimpF[A/HY| = |A/H*|=|A/H|/|H*/H|=|C|/p

S0

dimp((FA)eg) = |C| - |C|/p = |6(C)|
and thus

Z dimp((FA)ey) = E 1G(C)l = | Al

Hes cec
The result follows. O

The following is an immediate consequence of the lemma above and Corol-
lary 2.4.

Theorem 4.2. Let p be an odd prime and let A be an abelian p-group of
ezponent p". Then, the sel of idempotents above is the set of primitive
idempotents of FA if and only if one of the following holds:
(i) " =2, and ¢ is odd.
(i) p" =4 and ¢ = 3 (mod 4 ).
(iti) p is an odd prime and o(g) = ®(p") in U(Zgn).

Also, we have the following.

Theorem 4.3. Let p be an odd prime and let A be an abelian p-group of
ezponent 2p". Write A= E x B, where F is an elementary abelian 2-group
and B a p-group. Then the primitive idempotents of FA are products of
the form e.f, where e is a primitive idempotent of FE and f a primitive
idempotent of FB,

Notice that the primitive idempotents of FB are given by Theorem 4.2
above and, writing E = (a;) X -+ x (a,), & product of cyclic groups of
order 2, then the primitive idempotents of FE are all products of the form
€ =ejez---e,, where

e._1+a.' R '__l—a.-
t 2 e'—. 2

y 1<i<n.
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It should be noted that, in view of Corollary 2.4, these are the only cases
where primitive idempotents of finite abelian group algebras can be com-
puted in this way.

5. DIMENSION AND MINIMUM DISTANCE

Assume that |A| = 2™p", where p denotes an odd prime and m > 0. As
before, we write A = E' x B, where E is an elementary abelian 2-group of
order 2™ (eventuslly trivial) and B a p-group.

As noticed right after Theorem 4.3, the primitive idempotents of FE are
all products of the form eg = eje; - -€,, where

e,~=lJ;a‘ or e = 2”’, 1<i<n
and the primitive idempotents of F'A are products of the form eg.eg, where
eg is a primitive idempotent of FE and eg & primitive idempotent of FB.

Notice that for fixed idempotent eg of FE and an element y € E, we can
write y = a]'++-afm whereg; =0 or 1, 1 <t < m. Hence

(2) yeg=a?' (1 :t2a1> cag (1 i;"') =deg =(-1)Veg.

where e, =0 or 1.

Consxder first primitive 1dempotents of the form eEB An element of
(FA)- eg B is of the form v eg B where we can write vy = Zyeg Ty yb, SO

we have that

v egﬁ = sz(, yeE.bE = Ezvb(—l)‘” eE§.

45 5B

This computation shows both that the dimension of the ideal
I =(FA)-egB is 1 and that its minimum length is /() = | 4].

Now, we consider 1dempotents of the form e = eg.ey with witheg € FE,
as above and ey = H — H*, where H is a subgroup of B such that B/H
is cyclic of order p', say, and H* is the unique subgroup of B containing H
such that [H* : H] = p. Set I, = (FA)e.

Let b € B be an element such that B = (b, H). Then we also have that
H* = (v*'"', H). Notice that

(1- bP"“)eEITI = (1= 6" ep(H* +eq) = (1 - b*' Jegen € L.

Since bp ' ¢ H it is clear that supp((1 — 5" "")H) is the disjoint union
HuUb* ™ H and the weight of this element is w((1 — ¥ e H) = 2|E||H|,
so that if we denote by {(J.) the minimum distance of I., we have that
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I(I.) < 2" H|.

Since B is the disjoint union B = HUbHU---Ub'~' H we also have that
A = E x B is the disjoint union A = E x HUb(E x H)U---Ub" ~(E x H)
50 an arbitrary element of FA can be written in the form o = ;-":_01 a;b,
with a; € F[E x H]. o

Notice that, taking into account formula 2 and the fact that AH = H
for all h € H, we have that each product ajegey is of the form ajegey =
kjeger, where k; € F,0< j<p' — 1.

Since (FA) - egepy C (FA)-egH, an element 0 # v € (FA) -egey =1,
can be written in the form

vy = aeEfI
(ko +kib+ -+ kg 7~1) e .

Since 7y # 0, we have that at least one coefficient k; # 0. If y = k,-bjeEI?

we would have that egH € (FA) - egeq, a contradiction. So. at least
two different coefficients k;, k;» must be nonzero for every ¥ € I. and thus
I(I,) > 2™+ H|. Hence

(1) = 2™ H|.
Finally, we shall compute the dimension of minimal ideals. Let ¢ = egey
be a primitive idempotent. We have that:

FA-epeyy = F[E x B} -egeg = ((FE)B)-egep = (FE - eg)B -ey.
As (FE)-eg & F for all primitive idempotents of FE, we see that

FA-egey 2 FB -eg,
so formula 1 gives that
dim|[FA - egen) = @(p').
A similar argument shows that
dim[FA - egB] = dim{FB - B] = 1.
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