LVl B P SIMPOSIO BRASILEIRO DE
PESQUISA OPERACIONAL

]

l[qrdl & 2 negal

"I_,‘.F.‘!.AII.'F;.|-’,'I':!\\‘:,;\
Heuristicas construtivas e busca local para o problema job shop flexivel com
flexibilidade de sequéncia e efeito de aprendizado

Kennedy A. G. Araiijo
Departamento de Matematica Aplicada, IME-USP, Universidade de Sao Paulo
Rua do Matdo, 1010, Cidade Universitaria, 05508-090 - Sao Paulo - Brasil
kennedy94@ime.usp.br

Ernesto G. Birgin
Departamento de Ciéncia da Computagdao, IME-USP, Universidade de Sdo Paulo
Rua do Matio, 1010, Cidade Universitaria, 05508-090 - Sao Paulo - Brasil
egbirgin@ime.usp.br

Débora P. Ronconi
Departamento de Engenharia de Produ¢do, EPUSP, Universidade de Sao Paulo

Av. Prof. Almeida Prado, 128, Cidade Universitaria, 05508-900, Sao Paulo SP, Brasil
dronconi@usp.br

RESUMO
Este artigo explora o problema job shop flexivel com flexibilidade de sequéncia e efeito
de aprendizado (FJSSFLE). Apresentamos duas heuristicas construtivas baseadas em regras de des-
pacho juntamente com uma busca local que usa uma vizinhanca reduzida para resolver o problema.
Apresentamos experimentos computacionais que mostram sua eficicia para achar boas solugdes
para instancias de pequeno e grande porte do FISSFLE, e também evidencia vantagens e desvanta-
gens de cada método.

PALAVRAS CHAVE. Job shop flexivel, Heuristicas Construtivas, Regras de despacho, Busca
Local.

Otimizacdo Combinatdria

ABSTRACT
This article explores the flexible job shop problem with sequence flexibility and learning
effect (FISSFLE). We present two constructive heuristics based on dispatching rules along with a
local search that uses a reduced neighborhood to solve the problem. We present computational ex-
periments that demonstrate their effectiveness in finding good solutions for small and large instances
of the FJSSFLE, and also highlight the advantages and disadvantages of each method.

KEYWORDS. Job shop scheduling problem, Constructive Heuristics, Dispaching rules, Lo-
cal Search.

Combinatorial Optimization

DOI: 10.59254/sbpo-2024-193581
https://proceedings.science/p/193581?lang=pt-br


https://proceedings.science/p/193581?lang=pt-br
http://dx.doi.org/10.59254/sbpo-2024-193581

LVl B P SIMPOSIO BRASILEIRO DE
PESQUISA OPERACIONAL

e

!‘b‘al AP -.Gsal

FORTALEZA |CEARA

1. Introducio

O job shop flexivel (FJS) com flexibilidade de sequenciamento € um ambiente de producio
com uma ampla gama de aplicacdes praticas relevantes, especialmente na industria de impressao
sob demanda atualmente [Lunardi et al., 2020, 2021]. Hoje, empresas no ramo de impressdao sob
demanda devem lidar com producio personalizada e priorizar a entrega pontual em um esforco para
atender as necessidades de seus clientes. Nesse contexto, as atividades de produgdo sdo organizadas
em maquinas flexiveis para gerenciar melhor a execucdo da ampla gama de tarefas demandadas.
Outros ramos que se encaixam nesse ambiente de producdo incluem a industria de vidro [Alvarez-
Valdes et al., 2005], a indudstria de moldes [Gan e Lee, 2002], o agendamento de operacdes de
suporte de aeronaves em decks de voo [Yu et al., 2017], o agendamento de pedidos de reparo em
oficinas de reparo de colisdo automotiva [Andrade-Pineda et al., 2020] e a constru¢@o de programas
de produgdo para a produgdo de ago [De Moerloose e Maenhout, 2023]. Portanto, é importante
que os métodos de resolucdo estejam preparados para lidar com as mais diversas caracteristicas
dos problemas reais encontrados neste ambiente de producdo. Um desses fatores é o efeito de
aprendizado, ou seja, como o tempo de processamento de uma operagdo varia com o nimero de
vezes que ¢ executada. Naturalmente, o uso de tempos de processamento que nao sdo totalmente
consistentes com a realidade pode levar a cronogramas imprecisos e resultar em perdas econdmicas
significativas.

O problema FJS é uma extensao do problema cldssico job shop (JS), no qual cada opera-
¢do pode ser processada por uma entre um conjunto de maquinas, em vez de uma tnica maquina.
Essa caracteristica é conhecida como flexibilidade de roteamento. Duas caracteristicas adicionais
sdo consideradas no presente trabalho: flexibilidade de sequenciamento e efeito de aprendizado.
No FJS sem flexibilidade de sequenciamento, existe o conceito de uma tarefa, que consiste em um
conjunto de operagdes que devem respeitar uma ordem sequencial de execucao (primeiro a primeira
operacdo, depois a segunda, depois a terceira, etc). A flexibilidade de sequenciamento consiste em
considerar que as precedéncias entre as operagdes de uma mesma tarefa sdo dadas por um grafo aci-
clico direcionado (DAG) arbitrario. Em um problema de agendamento cldssico, dada uma operacéo
e uma maquina que pode processar essa operagdo, ¢ dado um tempo de processamento fixo que cor-
responde ao tempo demandado pela maquina para processar a operagdo. O efeito de aprendizado
corresponde ao adicional da vida real que consiste no fato de que uma pessoa aprende através da
execucdo de uma tarefa repetitiva e, quanto mais vezes a executam, mais rapido o fazem. Neste
trabalho, consideramos uma funcdo de aprendizado que depende da posi¢cdo que uma operacio
ocupa dentro da lista de operagdes executadas por uma maquina, ou seja, uma fungdo de efeito de
aprendizado baseada na posicao com o objetivo de minimizar o maior tempo de completacdo, i.e. o
makespan.

O restante deste artigo estd organizado da seguinte forma. Na Se¢@o 2, construimos solu-
coes vidveis para o problema, que podem ser representadas por DAG, através de heuristicas cons-
trutivas. Na Secdo 3, introduzimos o conceito de vizinhanga, analisamos diferentes estratégias para
a busca local. A Sec¢do 4 é dedicada a experimentos numéricos com os métodos propostos. Conclu-
soes e direcdes futuras de trabalho sdo apresentadas na secao final.

2. Heuristicas Construtivas

Os dados de uma instancia do FISSFLE baseado na posicdo consistem em (a) um conjunto
de operagoes O e um conjunto de maquinas F; (b) para cada operagdo 7 € (O, um subconjunto
Fi C F contendo as maquinas que podem processar i; (c) para cada par operagdo-mdquina (i, k)
comi € Oek € Fi, um tempo de processamento padrdo p;x; € (d) um conjunto de arcos A -
O x O representando as relacdes de precedéncia entre as operacgdes. O efeito de aprendizado € dado
por uma fungdo 1, (p, ) que, dado um tempo de processamento padrido p e uma posigdo r, retorna

DOI: 10.59254/sbpo-2024-193581
https://proceedings.science/p/193581?lang=pt-br


https://proceedings.science/p/193581?lang=pt-br
http://dx.doi.org/10.59254/sbpo-2024-193581

LVl B P SIMPOSIO BRASILEIRO DE
PESQUISA OPERACIONAL

ot 505 DE 04 ATE 07

B < N o]

i ﬂb““ & s nesal e

o tempo de processamento real de uma operacdo com tempo de processamento padrdo p quando
processada na r-ésima posicao de uma mdquina. O pardmetro o > 0 representa a taxa de efeito de
aprendizado. No trabalho atual, consideramos ¢, (p, ) = [100-p/r®+1/2|. Um exemplo simples
de uma instincia é mostrado na Figura 1.

Uma solugdo vidvel para uma instincia do FJS com flexibilidade de sequenciamento e
efeito de aprendizado baseado na posi¢do pode ser representada por um DAG G = (V, A) con-
forme mostrado na Figura 2a. Esse grafo ¢ as vezes referido como grafo de solucdo na literatura.
Os vértices de G, representados pelo conjunto V, correspondem as operagdes mais os vértices fic-
ticios s e t, ou seja, V.= O U {s,t}. Os arcos, representados pelo conjunto A, correspondem aos
arcos em A representando as relacdes de precedéncia entre operagdes (em preto na figura), arcos
que saem de s para operacdes que ndo tém predecessores e arcos que vao para ¢t de operagdes que
nao precedem nenhuma outra operagdo (em roxo na figura). Arcos que partem de s e arcos que che-
gam em ¢ sdo chamados de arcos ficticios. Além disso, os arcos tracejados representam a atribuicao
de operagdes a mdquinas e a ordem em que as operagdes sdo processadas por cada maquina. Esses
arcos sdo chamados de arcos de maquina. Cadané i € V' \ {s,t} = O, ou seja, cada operagéo, tem
um valor w; associado a ele que representa seu tempo de processamento real, que é calculado com a
funcdo de aprendizado usando o tempo de processamento padrao da operagao e a posi¢ao que a ope-
racdo ocupa na miquina a qual foi atribuida. Os nés s e ¢ estdo associados ao valor zero. O caminho
mais longo entre os nés s e ¢ é chamado de caminho critico (destacado em amarelo na figura), e seu
comprimento corresponde ao tempo de conclusdo (makespan) da solugdo representada.

~ Machines
O—O—0 "
e 11 1

é 201 1

2 301 1

2 410 10
© 501 1

Figura 1: A esquerda, representacio das restricdes de precedéncia das operacdes por um DAG D = (0, g)
onde O = 1,2,...,5 representa o conjunto de operagdes e A = (1,2),(2,3),(4,5) é o conjunto de arcos
que representa as restri¢des de precedéncia. Neste exemplo simples, as restri¢des de precedéncia sdo dadas
por uma ordem linear, ou seja, ndo hd flexibilidade de sequenciamento. Esta instncia tem duas maquinas e
cada uma das cinco operacdes pode ser processada em qualquer uma das duas maquinas, ou seja, F = 1,2
e F; = F paratodos i € O. Isso significa que ha flexibilidade de roteamento completa. A tabela a direita
mostra os tempos de processamento padrdo p;x das cinco opera¢des em cada uma das duas maquinas.

Nesta se¢do, propomos duas heuristicas construtivas para o FISSFLE. Heuristicas cons-
trutivas sdo algoritmos que constroem uma solugdo vidvel do zero, selecionando e sequenciando
iterativamente uma operagdo de cada vez. As duas heuristicas construtivas propostas sdo baseadas
na regra de tempo de inicio mais cedo (EST) [Birgin et al., 2014] e na regra de tempo de conclusio
mais cedo (ECT) [Leung et al., 2005]. O objetivo € utiliza-las para fornecer uma solugdo vidvel
inicial para uma busca local que serd usada para resolver um conjunto de instancias de teste. A
solugdo final € representada por um grafo direcionado aciclico (DAG), adaptado de Mastrolilli e
Gambardella [2000].

O Algoritmo 1 apresenta a heurfstica construtiva baseada na regra de tempo de inicio mais
cedo (EST). Em que, a cada iteracdo, a operacdo que pode ser executada mais cedo serd alocada. No

DOI: 10.59254/sbpo-2024-193581
https://proceedings.science/p/193581?lang=pt-br


https://proceedings.science/p/193581?lang=pt-br
http://dx.doi.org/10.59254/sbpo-2024-193581

LVl B P SIMPOSIO BRASILEIRO DE

PESQUISA OPERACIONAL
T r 1Ut04mtw
B OO R

| /\
2/ 3

(a) (b)

Figura 2: Nesta figura, consideramos a instancia na Figura 1 com taxa de aprendizado o = 1. O digrafo a
esquerda (Figura 2a) representa uma solucdo vidvel na qual a maquina 1 (associada a cor ciano) processa
apenas a operacdo 2, enquanto a maquina 2 (associada a cor laranja) processa as operacdes 1, 4, 5 e 3 nessa
ordem. Os nimeros coloridos representam o tempo de processamento real das opera¢des, com a influéncia
do efeito de aprendizado. O caminho critico, cujo comprimento corresponde ao makespan, ¢ dado pelo
caminho s, 1,4, 5, 3, ¢ (destacado em amarelo na imagem). O digrafo a direita (Figura 2b) representa a
solugdo vidvel obtida realocando a operacdo 2, que ndo estava no caminho critico, da miquina 1 para a
mdquina 2 entre as operacdes 1 e 4. A solugdo vidvel construida, com caminho critico dado por
s,1,2,4,5,3,t, tem um makespan menor que o original (528 contra 658).

algoritmo, temos como entrada o conjunto de operagdes, O, o conjunto de maquinas, F, matriz dos
tempos de processamento p e conjunto de arcos de precedéncia A. O valor 5P se refere ao tempo
que a operacdo v estd pronta para ser processada, w, se refere ao seu tempo de processamento
atual e ¢, ao seu tempo de conclusdo. Do lado das médquinas, r}}'*° representa o instante em que
a maquina k € liberada e g representa sua primeira posicao livre, que € aquela que seria ocupada
se uma operacdo fosse atribuida a ela (ambas as quantidades se referem ao sequenciamento parcial
sendo construido). f, indicard a qual maquina a operacéo v foi atribuida e cada maquina & terd uma
lista ordenada (0} com a sequéncia de operacdes a serem processadas. Apoés as inicializagdes (linhas
2 a 5), vem o loop principal, que é executado enquanto ainda houver operacdes ndo sequenciadas.
Entre as ndo sequenciadas, o tempo em que elas estdo disponiveis é calculado para todas aquelas
que ja tém todas as operagdes precedentes agendadas (linhas 7 a 9). Na linha 10, observando os
tempos em que as operagdes € das maquinas estariam disponiveis, € calculado o instante mais cedo
rmin €M que uma operacio poderia ser sequenciada e o conjunto E de pares operagdo/maquina
que poderiam comecar naquele instante ry,;, é construido. Como observado em [Birgin et al.,
2014], |E| pode ser bastante grande e uma regra de desempate pode melhorar significativamente o
desempenho do método. Assim, na linha 11, entre todos os pares operacdo/maquina em F, levando
em consideragéo o efeito de aprendizado, o par (9, l;:) com o tempo de processamento mais curto
€ par escolhido. Na linha 12, wg, f; e ¢; sdo definidos e o tempo rm“ e a posigdo livre g; da

maquina k sdo atualizados. Nas linhas 13 e 14, o arco da maquina correspondente ¢ inserido no
grafo GG (o arco ndo deve ser inserido se a operacio © for a primeira da maquina k). Por fim, a lista
de operagdes atribuidas a maquina k ¢ atualizada e a operacdo agendada é removida do conjunto
de operacdes ainda ndo agendadas. Depois que todas as operacdes foram agendadas, o caminho
critico em G € calculado (linha 16) para determinar o valor de makespan Chyax. Isso é feito com
uma adaptacdo do algoritmo de Bellman-Ford para caminho maximo em O(|O|). As inicializa¢oes
nas linhas de 2 a 5 do Algoritmo 1 tém complexidade O(|O| + | A| + | F]). Dentro do loop principal
(linhas de 6 a 15), as linhas de 7 a 9 tém complexidade O(|A|) = O(|A| + |O| + | F]), as linhas
de 10 a 11 tém complexidade O(|O| + >, |Fi|), e a linha 12 tem complexidade O(]O]). Como

o loop principal é executado |O| vezes, sua complexidade total é O(|O|(|A| + |F| + Yico | Fil))-

DOI: 10.59254/sbpo-2024-193581
https://proceedings.science/p/193581?lang=pt-br


https://proceedings.science/p/193581?lang=pt-br
http://dx.doi.org/10.59254/sbpo-2024-193581

LVl B P SIMPOSIO BRASILEIRO DE
PESQUISA OPERACIONAL

. 0% DE 04 ATE 07

{ { [dh1|ﬁ RS r 1 NOVEMBRO 2024

X ﬂb““ & CX nesal '

FORTALEZA | CEARA

Como a complexidade do loop principal € maior que a complexidade da inicializacdo e da linha 16,
entdo a complexidade do Algoritmo 1 é dada pela complexidade de seu loop principal. E importante
notar que v = Y .. |Fi| estd entre |O| e |O||F|, mas preferimos manter a complexidade expressa
como uma funcao de -y porque v € uma medida do tamanho da entrada que depende da flexibilidade
de sequenciamento da instancia em consideracdo. Também € importante notar que a complexidade
do algoritmo depende da flexibilidade de roteamento das operagdes, ou seja, depende do nimero de
relacdes de dependéncia em A. Portanto, & importante representar uma instincia de forma que A
corresponda a uma reducio transitiva do digrafo de precedéncias.

Algorithm 1: Computa um grafo de solu¢io G = (V, A), f, @, e w usando a
heuristica EST. Entéo, em (G, computa o maior caminho P de s a ¢t e seu compri-
mento Cryax-

~

Input: O, F, p, A
Output: f, w, Q, G = (Y, A), u,p, CmaXa T
1 function EST(O, F, p, A, f, w, Q, G,U, P, Crnax, T)

2 | Atribua A < AU{(s,5) | (-,5) & Ay U{(i,t) | (i,-) & A} e defina
V:i=0U{stleG=(V,A).
3 Atribua 7" < 400 para todo v € V e defina rg® := 0, ws := w; := 0, e ¢5 := 0.
4 Atribua r%¢ <— O e g < 1 paratodo k € F.
5 Inicie IT < V' \ {s,t} como o conjunto de operag¢des ndo sequenciadas, e Q
como uma lista vazia para todo k € F.
6 while IT £ () do
7 for v € Il do
8 if TN {i | (i,v) € A} = () then
9 | r? < max{c; | i € V \Ital que (i,v) € A}
10 Atribua rpin, = min{max(ry", r%¢) | v € I, k € F,} e seja E o conjunto
dos pares (v, k) comv € Il e k € F, tal que max(ry", ri"¢) = ryin.
1 (@v k) — a“rglnin{'rmin + ¢a(pv,k,gk) | (’U, k) € E}
12 Defina wp := Ya(p; 45 93)> fo = kecy = max(rgp, rlr;nac) + ws, e atribua
e cegp g+ 1
13 if |Q;| # 0 then
14 L Seja Qj, = i1, ..., |q,|- Atribua A+ AU{(iq,},0)}-
15 | Insira ¢ no final de @, e atribua IT < IT'\ {}.
16 | CaminhoCritico(F, f, w, Q, G, U, P, Crax, 7).

O caminho critico no grafo direcionado G' = (V, A) pode ser calculado com uma adapta-
¢do [Cormen et al., 2022, §22.2] do algoritmo de Bellman-Ford em O(|V'|+|A]). Além do caminho
critico P, o algoritmo deve retornar uma ordenagéo topolégica U/ dos vértices de GG e um vetor 7 de
dimensio |F|. O vetor T armazena, no elemento 73, a maior posi¢éo na lista Qj, (lista de operagdes
atribuidas a maquina k) que contém uma operac¢io no caminho critico.

O algoritmo para a heuristica construtiva baseada na regra ECT é muito semelhante ao
Algoritmo 1, exceto por um detalhe. Na heuristica construtiva baseada no EST, primeiro calcula-
mos o instante 7y, que € o instante mais cedo em que uma operacio nio agendada poderia ser

DOI: 10.59254/sbpo-2024-193581
https://proceedings.science/p/193581?lang=pt-br


https://proceedings.science/p/193581?lang=pt-br
http://dx.doi.org/10.59254/sbpo-2024-193581

LVl B P SIMPOSIO BRASILEIRO DE

PESQUISA OPERACIONAL
e
!‘b‘al AP -:.Gs

Al FORTALEIA |CEARA

iniciada. Todos os pares operagdo/maquina que poderiam comecar nesse instante sao considerados,
e o par com o menor tempo de processamento é selecionado. Mas, como todos comegariam no
instante 7y, dizer que o par com o menor tempo de processamento é escolhido € o mesmo que
dizer que o par que termina mais cedo € selecionado. Essa ¢ a ideia que ¢ levada ao extremo na
heuristica construtiva baseada na regra ECT: sem limitar a escolha aos pares operacdo/maquina que
poderiam comecar o mais cedo possivel, escolhemos o par operacdo/maquina que terminard mais
cedo, mesmo que o processamento da operagdo ndao comece o mais cedo possivel. A complexidade
de tempo no pior caso do algoritmo para a heuristica ECT € a mesma que a do Algoritmo 1.

A heuristica baseada em EST d4 prioridade aos pares operagdo/maquina que podem co-
mecar mais cedo. No inicio da construgdo, isso corresponde, aproximadamente, a dar prioridade
a todas as primeiras operacdes de cada tarefa, que sdo operacdes que nao t&€m precedentes (ope-
racoes 1 e 4 no exemplo da Figura 1). Ainda assim, devido a intencdo de agendar operagdes o
mais cedo possivel, é possivel que a preferéncia seja dada a maquinas vazias, construindo solucdes
que usam vdarias miquinas. Ao agendar rapidamente as primeiras operagdes de cada trabalho, mais
operacdes t€m seus precedentes agendados, aumentando o nimero de possibilidades (espaco de
busca) nas iteracdes futuras do método. Por outro lado, a heuristica baseada na regra ECT escolhe
0s pares operacao/maquina que terminam mais cedo, independentemente de serem aqueles que po-
dem comecar mais cedo ou nao. Essa estratégia pode limitar o nimero de pares operagdo/maquina
disponiveis em iteracdes futuras, reduzindo o espago de busca do método. Além disso, a escolha
pelo par operacdo/maquina que pode terminar mais cedo, combinada com o efeito de aprendizado,
leva o método a agendar operacdes em mdquinas que ji t€m vdrias operagdes atribuidas a elas, ji
que quanto maior a posi¢do na maquina, menor o tempo de processamento (reduzido pelo efeito
de aprendizado baseado em posicao). Isso leva a construgdo de solucdes em que nem todas as mé-
quinas sdo usadas. Dependendo da taxa de aprendizado « considerada e da densidade do DAG de
precedéncias da instincia em questdo, uma heuristica pode ser melhor que a outra.

3. Vizinhanca Reduzida e Busca Local

Dada uma solugdo vidvel e um DAG G = (V, A) que a representa, uma nova solugio via-
vel pode ser construida removendo uma operagdo da maquina a qual foi atribuida e reinserindo-a na
mesma maquina, mas em outra posi¢cao ou em outra maquina. Quando uma operagdo € removida, os
arcos de maquina adjacentes a ela devem ser removidos € um novo arco indo da operagdo anterior
para a seguinte a removida (se ambas existirem) deve ser criado. Quando a operagdo € reinserida,
uma operagdo reversa similar também deve ser feita. Ao reinserir a operagdo, ¢ importante verifi-
car se um ciclo nao € produzido no digrafo. Somente reinser¢des que nao criam ciclos constroem
um digrafo que corresponde a uma solug@o vidvel. Quando nao hd efeito de aprendizado, é co-
nhecido [Mastrolilli e Gambardella, 2000] que hé chances de construir uma solug¢do vidvel melhor
removendo e realocando operacdes que fazem parte do caminho critico apenas. Se uma operacgao
ndo faz parte do caminho critico, sua remocgao e reinsercao nao pode diminuir o comprimento do ca-
minho critico. Pode aumentd-lo ou criar outro caminho ainda mais longo. Isso € falso ao considerar
o efeito de aprendizado. Um exemplo € mostrado na Figura 2b.

Dada uma solucdo vidvel, podemos definir sua vizinhanga como o conjunto de todas as
solugdes vidveis que podem ser obtidas removendo e reinserindo uma tnica operagdo. Quando nio
ha efeito de aprendizado, apenas a remocao e reinsercao de operacdes do caminho critico podem
levar a vizinhos melhores, ou seja, vizinhos com menor makespan. Este fato é amplamente utili-
zado para gerar apenas vizinhos promissores. A observacao no pardgrafo anterior mostra que essa
reducdo ndo pode ser usada no problema que estamos considerando no presente trabalho. Isso nos
leva a analisar se toda remocgao e reinsercao que nio gera ciclos tem o potencial de gerar um vizinho
com makespan menor ou se qualquer reducao de vizinhanga € possivel. O ponto principal € obser-

DOI: 10.59254/sbpo-2024-193581
https://proceedings.science/p/193581?lang=pt-br


https://proceedings.science/p/193581?lang=pt-br
http://dx.doi.org/10.59254/sbpo-2024-193581

LVl B P SIMPOSIO BRASILEIRO DE
PESQUISA OPERACIONAL

LJi: 04 AH: Dx"

var que quando uma operacdo € removida de uma maquina, as operagdes que estavam sequenciadas
para serem processadas posteriormente nessa maquina tém sua posi¢do diminuida em uma unidade
e, consequentemente seu tempo de processamento real aumentado. Da mesma forma, na maquina
onde a operagdo € inserida, as operagdes programadas para serem processadas apds a operagio
inserida tém sua posi¢do aumentada em uma unidade e, portanto, seu tempo de processamento €
diminuido. Essas modificacdes podem mudar o makespan, seja melhorando ou piorando.

Considere uma solugdo vidvel representada por um DAG G = (V, A). Seja P um caminho
critico em G, com comprimento Chyax. Seja ¢ € O uma operagdo arbitraria. Chamamos de f; a
méquina a qual 7 estd atribuida. Seja k € F uma mdquina arbitraria. Chamamos Q = i1, ..., %Q,|
a lista ordenada de operacdes atribuidas a maquina k. Se uma operagdo ¢ estd atribuida a maquina
[i e estd na posigdo vy de Q) 4,, entdo seu tempo de processamento real é dado por w; = V(s f;,7)-
Pretendemos calcular todos os vizinhos da solugdo representada por GG, f, @ e w. Os vizinhos
serdo construidos, para todo v € O, removendo v e reinserindo v em todos os lugares possiveis que
ndo gerem um ciclo. Queremos determinar se existem inser¢des que podem ser ignoradas porque
sabemos a priori que ndo levardo a uma redu¢@o no makespan.

Sejav € O uma operagdo arbitraria. O cdlculo dos vizinhos da solucéo atual (associados a
remogao e reinsercdo de v) comega calculando um digrafo G, = (V~, A™) no qual a operacdo v é
removida. Esse grafo é as vezes referido como um grafo reduzido na literatura. As quantidades f—,
()~ e w™ associadas a (G, também sio calculadas. Esse digrafo com suas informacdes associadas
¢ uma estrutura intermedidria necessdria para o cdlculo dos vizinhos e, como a operacdo v ndo esta
atribuida a nenhuma maquina, ndo representa uma solucio vidvel. Essa tarefa ¢ implementada no
Algoritmo RemoveOp. Além disso o conjunto R{~ de vértices que alcancam v e o conjunto de
vértices R, que sdo alcangados a partir de v em G, sdo calculados, o que serd ttil para detectar
ciclos em futuras reinsercdes de v. O caminho mais longo P~ no digrafo GG € calculado, o que
serd util para determinar se uma reinsercao tem chances de reduzir o makespan ou ndo. Chamamos
¢ de comprimento de P~. (Ndo o chamamos de C,, porque como (G, ndo representa uma solugéo
vidvel, entdo o comprimento do caminho P~ nao representa um makespan.) Junto com o célculo
de P~, o algoritmo também calcula, para cada maquina &, a menor posicdo 7 tal que, para todo
v > T3, a y-ésima operacgdo processada pela maquina k ndo estd em P~. (Se a mdquina k£ ndo
processa nenhuma operacdo em P, entdo 7, = 0.)

Seja G o digrafo, com as quantidades associadas f, ) e w, representando a solucéo vidvel
atual. Seja P o caminho critico em (&, com comprimento C,.x. Seja v a operacdo que removemos e
desejamos reinserir. Seja GG, o digrafo com v removido e deixe f~, )~ e w™ serem as quantidades
associadas a G;;. Seja P~ o caminho critico em G, com comprimento &, e, para cada maquina
k, deixe 73 ser a menor posicdo em () tal que cada operagdo em uma posicdo apds 7 ndo esteja
em P~. Deixe x ser uma mdquina e -y ser uma posi¢do na lista (),; tal que inserir v na posi¢ao 7y
de (), ndo gere um ciclo. Tal inser¢@o tem chance de gerar um novo digrafo cuja solucio vidvel
associada tenha um makespan menor que Ciax? Se & > Chhax € 7 > Tk, entfo a resposta é ndo.
Isso ocorre porque o caminho P~ com comprimento £ ndo menor que Cp,ax j4 existe e a inser¢do
de v na maquina x, em uma posi¢ao -y posterior a 7, ndo modificard o tempo de processamento real
de nenhuma operacdo em P~. Se £ < Chhax 0u & > Cax, mas v < 7, entdo as chances existem.

Deve-se notar que, estritamente falando, o fato de v estar em P ou ndo ndo esta relacio-
nado a resposta a pergunta acima. Mas antecipando algo que vird mais tarde, como a reducio de
vizinhanga orientada pela resposta a pergunta pode ser bastante pequena, consideraremos nos expe-
rimentos, de forma heuristica, v € P como equivalente ou fortemente correlacionado a § < Chyax.
Ou seja, consideraremos que remover uma operagdo do caminho critico provavelmente implicard
em & < Cax. Isso é muito plausivel para valores moderados do fator de aprendizado «, nos quais

DOI: 10.59254/sbpo-2024-193581
https://proceedings.science/p/193581?lang=pt-br


https://proceedings.science/p/193581?lang=pt-br
http://dx.doi.org/10.59254/sbpo-2024-193581

LVl B P SIMPOSIO BRASILEIRO DE

PESQUISA OPERACIONAL
4 25 DE 04 ATE 07
{ H [dh1|ﬁ r 1 NOVEMBRO 2024
A qrﬂl & S nesal FORTALEZA | CEARA

uma possivel reducdo de uma unidade na posicdo da maquina de algumas operagdes do caminho
critico ndo anula o beneficio de remover uma operag@o do caminho critico.

A tarefa de reinserir v em GG, na posicdo v da maquina s gera um DAG que chamamos
de GF. Essa tarefa € semelhante a tarefa de remogdo. A construgdo de G, suas quantidades
associadas fT, Q1 e wt, e seu caminho critico P com comprimento C,f, . é implementada no
InsereOp. O Algoritmo 2 implementa uma busca local pelo melhor vizinho com a redugdo de
vizinhanga ja discutida. Ele corresponde a uma busca local cldssica com uma estratégia de melhor
vizinho (best improvement). O Unico detalhe relevante que resta a ser explicado é como determinar
se uma inser¢do gera um ciclo ou ndo. Um ciclo seré criado em G} apenas se v for inserido em
uma posi¢ao que deixe algum u € R para ser processado apds v na maquina x ou algum u € R’
para ser processado antes de v na maquina . Os limites «y e 7 tais que v+ 1 < v < 7 evitam ciclos,
sdo calculados nas linhas 7 e 8. Uma possivel reducio desse intervalo ¢ calculada nas linhas 9 e 10,
eliminando a possibilidade de fazer inser¢des apds 7, se £ > Chax, como ja discutido.

Algorithm 2: Busca local com vizinhancga reduzida e estratégia de best improve-
ment.

Input: O, F, p, G = (V, A), f,w, Q, P, Cpax

Output: G* = (V*, A*), f*, w*, Q*, P*, Cf .«

1 function BuscaLocal(O, F, p, G, f, w, Q, P, Crax, G*, f*, w*, Q*, P*, C%..)

2 do
3 Chn 40
4 for v € O do
5 RemoveOp(O, p, v, f,Q, w, G, f~,Q ,w ,G,, P, &, R, R, T)
6 for k € F, do
7 Assuma 7 a posi¢do da dltima operagdo em Q. = i1, .. ., i|QE| tal
que iy € Ry eassumay = 0 se iy € R, para todo
C=1,...,|Q|
8 Assuma 7 a posi¢do da primeira operagdo em Q, = i1, ..., i| Q| tal
que iy € R,” eassuma”y = |Q, | + 1se iy ¢ R, para todo
C=1,...,1Q;|
9 if £ > Clax then
10 ~ < min{#, 7% }, onde 7, é tal qual ndo existe operacao critica
ap6s 7 em @, (7, = 0 se ndo hd operagio critica em Q).
11 fory=~v+1,...,7do
12 InsereOp(O, p, v, v, k, =, Q™ , w™, Gy, [H,Q ,wh, G, P,
Crtax)
13 if Ct.. < CPu_then
14 Gbn,fbn,wbn,an,'an,Cglgx —
L G;r: f+7 era QJra P+7 Cxax
15 § ¢ Crax — CPB
16 if 6 > 0 then
17 L G, f,w, Q, P, Crax + GP1, fP1 b2 QP pbn cbn
18 while § > 0
19 G*, 5w, Q" , P, Cr . — G, f,w,Q, P, Crax

DOI: 10.59254/sbpo-2024-193581
https://proceedings.science/p/193581?lang=pt-br


https://proceedings.science/p/193581?lang=pt-br
http://dx.doi.org/10.59254/sbpo-2024-193581

LVl B P SIMPOSIO BRASILEIRO DE
PESQUISA OPERACIONAL

e

[ﬂb““ & 2 negal

FORTALEZA | CEARA

4. Experimentos Computacionais

Nesta secdo, apresentamos experimentos numéricos. Primeiro, desejamos avaliar as duas
heuristicas construtivas apresentadas. Segundo, desejamos avaliar diferentes estratégias para a
busca local proposta e tentar inferir qual € mais eficaz na busca por solu¢des de melhor qualidade.
Em todos os casos, consideramos as 50 instancias introduzidas por Birgin et al. [2014] com a taxa
de aprendizado « € {0, 1;0, 2;0, 3} para um total de 150 insténcias.

Os experimentos foram realizados em uma maquina com processador Intel 19-12900K
(12* geragdo) operando a 5,200GHz e 128 GB de RAM. As heuristicas construtivas e busca local
foram implementadas na linguagem de programacdo C++. O cédigo foi compilado usando g++
10.2.1.

Na Tabela 1 o resumo dos resultados da avaliacao duas heuristicas construtivas é apresen-
tado. Para cada grupo instancia e taxa de aprendizado, a média do makespan e nimero de vitdrias,
entre as solugdes encontradas pelas duas heuristicas construtivas, sdo apresentados. Em todas as
instancias, as heuristicas construtivas levam menos de 0.001 segundos de tempo de CPU para cons-
truir uma solugdo. Para as instancias testadas ha uma clara vantagem da heuristica construtiva EST
nas instancias do tipo DA, enquanto, por outro lado, hd uma clara vantagem da heuristica constru-
tiva ECT nas instancias do tipo Y. A estratégia gulosa de ECT de escolher o par operagdo/maquina
que termina primeiro parece compensar em situacdes onde, porque jid hd pouca flexibilidade de
sequenciamento, a escolha gulosa nao causa uma grande diminuicao do espaco de busca.

DAFIJS YFIJS
EST ECT EST ECT

0—01 makespan 65.249,50 67.439,80 | 87.865,80 80.338,80

’ #vitorias 20 10 5 15
0—02 makespan 54.310,83 57.746,00 | 74.373,85 68.682,05

’ #vitdrias 24 6 7 13
0 —0.3 makespan 45.578,87 48.181,97 | 65.850,25 59.452,35

’ #vitdrias 28 2 7 13

Tabela 1: Tabela resumo dos experimentos computacionais para os valores de makespan para as instancias

de teste resolvidas com as heuristicas construtivas.

Avaliamos agora variagdes da busca local descrita no Algoritmo 2. No algoritmo, a busca
local usa a estratégia de best improvement e faz uso da redugdo do vizinhanga. Portanto, chama-
mos essa versdo de “busca local com a estratégia de best improvement e vizinhanga reduzida”. A
reducdo de vizinhanca é implementada nas linhas 9 e 10. Se removermos essas duas linhas, ob-
temos uma versao que chamamos de “busca local com best improvement e vizinhanca completa”.
A versdo com vizinhancga reduzida nio considera vizinhos que sdo garantidamente piores do que
a solugdo atual. Portanto, a solugdo obtida com vizinhanca reduzida deve ser idéntica a solucdo
obtida com o vizinhanca completa. (Na verdade, todos as iteragdes das duas versdes devem ser
idénticos e ndo apenas a solucgdo final). Apenas uma redugdo do tempo de CPU € esperada. Deci-
dimos considerar ainda outra versio que apresentaria uma redug¢do mais dristica no tempo de CPU,
embora com possivel perda de qualidade na solucdo. Chamamos essa versdo de “busca local com
best improvement e vizinhanca cortada”. Esta versdo consiste em alterar v € O para v € P na
linha 4 do Algoritmo 2. Ou seja, apenas as operacdes no caminho critico sdo realocadas, uma vez
que ha uma maior tend€ncia para essas realocagdes gerarem vizinhos de melhor qualidade. Temos
entdo trés versdes diferentes da busca local com a estratégia de best improvement que sio distingui-
veis pela vizinhanga usada: completa, reduzida e cortada. Cada uma delas corresponde a variacdes

DOI: 10.59254/sbpo-2024-193581
https://proceedings.science/p/193581?lang=pt-br


https://proceedings.science/p/193581?lang=pt-br
http://dx.doi.org/10.59254/sbpo-2024-193581

SIMPOSIO BRASILEIRO DE
PESQUISA OPERACIONAL
DE 04 ATE 07

MNOVEMBRO 2024

LVI SBPO
N el

minimas do Algoritmo 2 conforme ji descrito. Além disso, consideramos as mesmas trés versoes,
mas usando a estratégia de interromper a busca da vizinhanga ao encontrar o primeiro vizinho que
melhora a solugdo atual, ou seja, a estratégia de first improvement. Essa mudancga corresponde, no
Algoritmo 2, a interromper o laco da linha 4 na primeira vez que a linha 16 € executada.

Os resultados das seis variagdes da busca local aplicadas as 150 instincias consideradas
sdo mostrados na Tabela 2. Nas tabelas, mostramos o makespan médio das solu¢des obtidas, o nu-
mero de iteracdes médio que a busca local fez até encontrar uma solucio que é melhor do que todos
os seus vizinhos (este € o critério de parada conforme descrito no Algoritmo 2), e o tempo médio
de CPU em segundos. A tabela também nao mostra nada relacionado a vizinhanga completa. O
que deve ser dito sobre o uso da vizinhanca completa € que, em todas as instancias, como esperado,
a solugd@o obtida foi idéntica a solug@o obtida com a vizinhanca reduzida, o ndmero de iteracdes
também foi o mesmo, e a vizinhanca reduzida promoveu uma redugdo de 52,51% no tempo de
CPU.

FORTALEZA | CEARA

Quando comparamos as estratégias de first e best improvement, os resultados sdo bas-
tante semelhantes, mas a estratégia do melhor aprimoramento sempre encontra solugdes de melhor
qualidade usando menos tempo de CPU. Especificamente, a estratégia de best improvement retorna
solucdes que sdo, em média, 1,02% e 0,70% melhores do que as solucdes retornadas pela estratégia
de primeira melhoria, quando consideramos as vizinhangas reduzida e cortada, respectivamente.
Portanto, daqui em diante, focamos em avaliar a vizinhanga reduzida e a vizinhanga cortada a es-
tratégia do melhor aprimoramento.

A vizinhanga cortada elimina, em média, 90,34% das soluc¢des da vizinhanca reduzida,
promovendo uma reducio proporcional no tempo de CPU. No entanto, adotar a vizinhanga cortada
pode levar a uma perda de qualidade na solucio final obtida pelo método de busca local. Em média,
quando comparado com a busca local com vizinhanca reduzida, a busca local com a vizinhancga
cortada encontra solu¢cdes com um makespan 0,69% pior. Quando comparamos a solugdo final com
a solucdo inicial, a busca local usando a vizinhanga reduzida melhora a solugéo inicial em, em
média, 6,88%, enquanto a busca local usando a vizinhanca cortada melhora a solu¢do inicial em
6,11%. Em conclusao, a busca local com a vizinhanca cortada é significativamente mais rapida do
que a busca local com a vizinhanga reduzida e encontra solucdes apenas ligeiramente piores do que
as solucdes encontradas por esta tltima.

DAFIJS YFIS
First Improvement Best Improvement First Improvement Best Improvement
Cortada  Reduzida | Cortada  Reduzida | Cortada  Reduzida | Cortada  Reduzida
makespan | 59.008,00 58.925,53 | 58.305,43 57.974,70 | 71.528,60 71.895,70 | 71.227,20 70.704,30
0=01 #iteragdes 27,73 61,37 14,53 20,90 18,15 57,1 8,30 19,60
’ tempo 0,009 0,070 0,016 0,073 0,011 0,264 0,012 0,243
#vitdrias 3 2 7 10 5 7 4 11
makespan | 50.713,70 50.400,03 | 49.944,33 49.835,73 | 62.812,75 62.184,05 | 62.154,65 61.446,60
0=02 #iteracoes 18,83 39.4 12,03 15,90 14,05 51 7,70 17,20
’ tempo 0,005 0,051 0,011 0,051 0,009 0,309 0,010 0,225
#vitdrias 3 8 7 13 5 8 7 12
makespan | 42.854,47 42.315,00 | 42.383,17 42.018,73 | 55.087,10 54.328,30 | 54.883,00 53.749,15
=03 #iteragdes 17,3 36,23 9,33 14,77 10,05 38,9 6,35 16
’ tempo 0,006 0,048 0,009 0,054 0,007 0,208 0,009 0,201
#vitérias 2 8 9 15 6 10 7 14

Tabela 2: Resumo dos experimentos com as estratégias e vizinhangas usadas para a busca local usando as

instancias propostas por Birgin et al. [2014] com taxa de aprendizagem « € {0, 1;0, 2; 0, 3}.

DOI: 10.59254/sbpo-2024-193581
https://proceedings.science/p/193581?lang=pt-br



https://proceedings.science/p/193581?lang=pt-br
http://dx.doi.org/10.59254/sbpo-2024-193581

LVl B P SIMPOSIO BRASILEIRO DE
PESQUISA OPERACIONAL

]

[ﬂb““ & 2 negal

FORTALEZA | CEARA

5. Conclusoes

Neste trabalho, abordamos o problema de sequenciamento do job shop flexivel com fle-
xibilidade de sequenciamento e efeito de aprendizado baseado na posi¢cdo. Utilizamos um con-
junto de 50 instancias que se transformam em 150 instdncias variando a taxa de aprendizado
a € {0,1;0,2;0,3}. Propomos duas heuristicas construtivas baseadas em regras de despacho.
Também introduzimos uma busca local com diversas estratégias e vizinhangas para melhorar as
solucdes das heuristicas iniciais. Para a busca local, mostramos que, na presenca do efeito de apren-
dizado, a abordagem cldssica de considerar realocagdes de operacdes apenas no caminho critico
falha em considerar vizinhos potencialmente melhores do que a solugado atual. Consequentemente,
propusemos uma nova reduc@o de vizinhanca que ndo elimina vizinhos potencialmente melhores
do que a solucdo atual e reduz a vizinhanca em aproximadamente 50%. Além disso, propusemos
um corte de vizinhanga que reduz significativamente o tamanho da mesma (em cerca de uma ordem
de magnitude) e encontra solucdes que sdo no maximo 1% piores. A busca local introduzida e/ou
as vizinhangas podem ser utilizados no desenvolvimento de meta-heuristicas de trajetéria. Como
trabalhos futuros, pretendemos considerar diferentes efeitos de aprendizado, que ndo dependem
apenas da posicdo da operagdo na maquina a qual foi atribuida. Também pretendemos considerar
fungdes objetivo que levem em conta o consumo de energia, e adaptar o problema para diversas
aplicacdes do mundo real.

Referéncias

Alvarez-Valdes, R., Fuertes, A., Tamarit, J. M., Giménez, G., e Ramos, R. (2005). A heuristic to
schedule flexible job-shop in a glass factory. European Journal of Operational Research, 165(2):
525-534.

Andrade-Pineda, J. L., Canca, D., Gonzalez-R, P. L., e Calle, M. (2020). Scheduling a dual-resource
flexible job shop with makespan and due date-related criteria. Annals of Operations Research,
291(1):5-35.

Birgin, E. G., Feofiloff, P., Fernandes, C. G., De Melo, E. L., Oshiro, M. T. L., e Ronconi, D. P.
(2014). A MILP model for an extended version of the flexible job shop problem. Optimization
Letters, 8(4):1417-1431.

Cormen, T. H., Leiserson, C. E., Rivest, R. L., e Stein, C. (2022). Introduction to Algorithms. The
MIT Press, Cambridge, MA, USA, 4th edition.

De Moerloose, P. e Maenhout, B. (2023). A two-stage local search heuristic for solving the steelma-
king continuous casting scheduling problem with dual shared-resource and blocking constraints.
Operational Research, 23(1):2.

Gan, P. Y. e Lee, K. S. (2002). Scheduling of flexible-sequenced process plans in a mould manufac-
turing shop. The International Journal of Advanced Manufacturing Technology, 20(3):214-222.

Leung, J. Y.-T., Li, H., e Pinedo, M. (2005). Order scheduling in an environment with dedicated
resources in parallel. Journal of Scheduling, 8(5):355-386.

Lunardi, W. T., Birgin, E. G., Laborie, P., Ronconi, D. P., ¢ Voos, H. (2020). Mixed integer li-
near programming and constraint programming models for the online printing shop scheduling
problem. Computers and Operations Research, 123:105020.

DOI: 10.59254/sbpo-2024-193581
https://proceedings.science/p/193581?lang=pt-br


https://proceedings.science/p/193581?lang=pt-br
http://dx.doi.org/10.59254/sbpo-2024-193581

LVl S B P O SIMPOSIO BRASILEIRO DE
PESQUISA OPERACIONAL

r 1 DE 04 ATE 07
e MOVEMBRO 2024

FORTALEZA | CEARA

Lunardi, W. T., Birgin, E. G., Ronconi, D. P., e Voos, H. (2021). Metaheuristics for the online
printing shop scheduling problem. European Journal of Operational Research, 293(2):419-441.

Mastrolilli, M. e Gambardella, L. M. (2000). Effective neighbourhood functions for the flexible job
shop problem. Journal of Scheduling, 3(1):3-20.

Yu, L., Zhu, C., Shi, J., e Zhang, W. (2017). An extended flexible job shop scheduling model
for flight deck scheduling with priority, parallel operations, and sequence flexibility. Scientific
Programming, 2017:1-15.

DOI: 10.59254/sbpo-2024-193581
https://proceedings.science/p/193581?lang=pt-br


https://proceedings.science/p/193581?lang=pt-br
http://dx.doi.org/10.59254/sbpo-2024-193581
http://www.tcpdf.org

