
Heurísticas construtivas e busca local para o problema job shop flexível com
flexibilidade de sequência e efeito de aprendizado

Kennedy A. G. Araújo
Departamento de Matemática Aplicada, IME-USP, Universidade de São Paulo

Rua do Matão, 1010, Cidade Universitária, 05508-090 - São Paulo - Brasil
kennedy94@ime.usp.br

Ernesto G. Birgin
Departamento de Ciência da Computação, IME-USP, Universidade de São Paulo

Rua do Matão, 1010, Cidade Universitária, 05508-090 - São Paulo - Brasil
egbirgin@ime.usp.br

Débora P. Ronconi
Departamento de Engenharia de Produção, EPUSP, Universidade de São Paulo

Av. Prof. Almeida Prado, 128, Cidade Universitária, 05508-900, São Paulo SP, Brasil
dronconi@usp.br

RESUMO
Este artigo explora o problema job shop flexível com flexibilidade de sequência e efeito

de aprendizado (FJSSFLE). Apresentamos duas heurísticas construtivas baseadas em regras de des-
pacho juntamente com uma busca local que usa uma vizinhança reduzida para resolver o problema.
Apresentamos experimentos computacionais que mostram sua eficácia para achar boas soluções
para instâncias de pequeno e grande porte do FJSSFLE, e também evidencia vantagens e desvanta-
gens de cada método.

PALAVRAS CHAVE. Job shop flexível, Heurísticas Construtivas, Regras de despacho, Busca
Local.

Otimização Combinatória

ABSTRACT
This article explores the flexible job shop problem with sequence flexibility and learning

effect (FJSSFLE). We present two constructive heuristics based on dispatching rules along with a
local search that uses a reduced neighborhood to solve the problem. We present computational ex-
periments that demonstrate their effectiveness in finding good solutions for small and large instances
of the FJSSFLE, and also highlight the advantages and disadvantages of each method.

KEYWORDS. Job shop scheduling problem, Constructive Heuristics, Dispaching rules, Lo-
cal Search.

Combinatorial Optimization

https://proceedings.science/p/193581?lang=pt-br

DOI: 10.59254/sbpo-2024-193581

https://proceedings.science/p/193581?lang=pt-br
http://dx.doi.org/10.59254/sbpo-2024-193581

1. Introdução
O job shop flexível (FJS) com flexibilidade de sequenciamento é um ambiente de produção

com uma ampla gama de aplicações práticas relevantes, especialmente na indústria de impressão
sob demanda atualmente [Lunardi et al., 2020, 2021]. Hoje, empresas no ramo de impressão sob
demanda devem lidar com produção personalizada e priorizar a entrega pontual em um esforço para
atender às necessidades de seus clientes. Nesse contexto, as atividades de produção são organizadas
em máquinas flexíveis para gerenciar melhor a execução da ampla gama de tarefas demandadas.
Outros ramos que se encaixam nesse ambiente de produção incluem a indústria de vidro [Alvarez-
Valdes et al., 2005], a indústria de moldes [Gan e Lee, 2002], o agendamento de operações de
suporte de aeronaves em decks de voo [Yu et al., 2017], o agendamento de pedidos de reparo em
oficinas de reparo de colisão automotiva [Andrade-Pineda et al., 2020] e a construção de programas
de produção para a produção de aço [De Moerloose e Maenhout, 2023]. Portanto, é importante
que os métodos de resolução estejam preparados para lidar com as mais diversas características
dos problemas reais encontrados neste ambiente de produção. Um desses fatores é o efeito de
aprendizado, ou seja, como o tempo de processamento de uma operação varia com o número de
vezes que é executada. Naturalmente, o uso de tempos de processamento que não são totalmente
consistentes com a realidade pode levar a cronogramas imprecisos e resultar em perdas econômicas
significativas.

O problema FJS é uma extensão do problema clássico job shop (JS), no qual cada opera-
ção pode ser processada por uma entre um conjunto de máquinas, em vez de uma única máquina.
Essa característica é conhecida como flexibilidade de roteamento. Duas características adicionais
são consideradas no presente trabalho: flexibilidade de sequenciamento e efeito de aprendizado.
No FJS sem flexibilidade de sequenciamento, existe o conceito de uma tarefa, que consiste em um
conjunto de operações que devem respeitar uma ordem sequencial de execução (primeiro a primeira
operação, depois a segunda, depois a terceira, etc). A flexibilidade de sequenciamento consiste em
considerar que as precedências entre as operações de uma mesma tarefa são dadas por um grafo ací-
clico direcionado (DAG) arbitrário. Em um problema de agendamento clássico, dada uma operação
e uma máquina que pode processar essa operação, é dado um tempo de processamento fixo que cor-
responde ao tempo demandado pela máquina para processar a operação. O efeito de aprendizado
corresponde ao adicional da vida real que consiste no fato de que uma pessoa aprende através da
execução de uma tarefa repetitiva e, quanto mais vezes a executam, mais rápido o fazem. Neste
trabalho, consideramos uma função de aprendizado que depende da posição que uma operação
ocupa dentro da lista de operações executadas por uma máquina, ou seja, uma função de efeito de
aprendizado baseada na posição com o objetivo de minimizar o maior tempo de completação, i.e. o
makespan.

O restante deste artigo está organizado da seguinte forma. Na Seção 2, construímos solu-
ções viáveis para o problema, que podem ser representadas por DAG, através de heurísticas cons-
trutivas. Na Seção 3, introduzimos o conceito de vizinhança, analisamos diferentes estratégias para
a busca local. A Seção 4 é dedicada a experimentos numéricos com os métodos propostos. Conclu-
sões e direções futuras de trabalho são apresentadas na seção final.

2. Heurísticas Construtivas
Os dados de uma instância do FJSSFLE baseado na posição consistem em (a) um conjunto

de operações O e um conjunto de máquinas F ; (b) para cada operação i ∈ O, um subconjunto
Fi ⊆ F contendo as máquinas que podem processar i; (c) para cada par operação-máquina (i, k)
com i ∈ O e k ∈ Fi, um tempo de processamento padrão pik; e (d) um conjunto de arcos Â ⊆
O×O representando as relações de precedência entre as operações. O efeito de aprendizado é dado
por uma função ψα(p, r) que, dado um tempo de processamento padrão p e uma posição r, retorna

https://proceedings.science/p/193581?lang=pt-br

DOI: 10.59254/sbpo-2024-193581

https://proceedings.science/p/193581?lang=pt-br
http://dx.doi.org/10.59254/sbpo-2024-193581

o tempo de processamento real de uma operação com tempo de processamento padrão p quando
processada na r-ésima posição de uma máquina. O parâmetro α > 0 representa a taxa de efeito de
aprendizado. No trabalho atual, consideramos ψα(p, r) = ⌊100 ·p/rα+1/2⌋. Um exemplo simples
de uma instância é mostrado na Figura 1.

Uma solução viável para uma instância do FJS com flexibilidade de sequenciamento e
efeito de aprendizado baseado na posição pode ser representada por um DAG G = (V,A) con-
forme mostrado na Figura 2a. Esse grafo é às vezes referido como grafo de solução na literatura.
Os vértices de G, representados pelo conjunto V , correspondem às operações mais os vértices fic-
tícios s e t, ou seja, V = O ∪ {s, t}. Os arcos, representados pelo conjunto A, correspondem aos
arcos em Â representando as relações de precedência entre operações (em preto na figura), arcos
que saem de s para operações que não têm predecessores e arcos que vão para t de operações que
não precedem nenhuma outra operação (em roxo na figura). Arcos que partem de s e arcos que che-
gam em t são chamados de arcos fictícios. Além disso, os arcos tracejados representam a atribuição
de operações a máquinas e a ordem em que as operações são processadas por cada máquina. Esses
arcos são chamados de arcos de máquina. Cada nó i ∈ V \ {s, t} = O, ou seja, cada operação, tem
um valor wi associado a ele que representa seu tempo de processamento real, que é calculado com a
função de aprendizado usando o tempo de processamento padrão da operação e a posição que a ope-
ração ocupa na máquina à qual foi atribuída. Os nós s e t estão associados ao valor zero. O caminho
mais longo entre os nós s e t é chamado de caminho crítico (destacado em amarelo na figura), e seu
comprimento corresponde ao tempo de conclusão (makespan) da solução representada.

1 2 3

4 5

Machines
1 2

O
pe

ra
tio

ns

1 1 1
2 1 1
3 1 1
4 10 10
5 1 1

Figura 1: À esquerda, representação das restrições de precedência das operações por um DAG D = (O, Â),
onde O = 1, 2, . . . , 5 representa o conjunto de operações e Â = (1, 2), (2, 3), (4, 5) é o conjunto de arcos
que representa as restrições de precedência. Neste exemplo simples, as restrições de precedência são dadas
por uma ordem linear, ou seja, não há flexibilidade de sequenciamento. Esta instância tem duas máquinas e
cada uma das cinco operações pode ser processada em qualquer uma das duas máquinas, ou seja, F = 1, 2

e Fi = F para todos i ∈ O. Isso significa que há flexibilidade de roteamento completa. A tabela à direita
mostra os tempos de processamento padrão pik das cinco operações em cada uma das duas máquinas.

Nesta seção, propomos duas heurísticas construtivas para o FJSSFLE. Heurísticas cons-
trutivas são algoritmos que constroem uma solução viável do zero, selecionando e sequenciando
iterativamente uma operação de cada vez. As duas heurísticas construtivas propostas são baseadas
na regra de tempo de início mais cedo (EST) [Birgin et al., 2014] e na regra de tempo de conclusão
mais cedo (ECT) [Leung et al., 2005]. O objetivo é utilizá-las para fornecer uma solução viável
inicial para uma busca local que será usada para resolver um conjunto de instâncias de teste. A
solução final é representada por um grafo direcionado acíclico (DAG), adaptado de Mastrolilli e
Gambardella [2000].

O Algoritmo 1 apresenta a heurística construtiva baseada na regra de tempo de início mais
cedo (EST). Em que, a cada iteração, a operação que pode ser executada mais cedo será alocada. No

https://proceedings.science/p/193581?lang=pt-br

DOI: 10.59254/sbpo-2024-193581

https://proceedings.science/p/193581?lang=pt-br
http://dx.doi.org/10.59254/sbpo-2024-193581

1

w1 = 100

2

w2 = 100

3

w3 = 25

s 4

w4 = 500

5

w5 = 33

t

1

w1 = 100

2

w2 = 50

3

w3 = 20

s 4

w4 = 333

5

w5 = 25

t

(a) (b)

Figura 2: Nesta figura, consideramos a instância na Figura 1 com taxa de aprendizado α = 1. O digrafo à
esquerda (Figura 2a) representa uma solução viável na qual a máquina 1 (associada à cor ciano) processa

apenas a operação 2, enquanto a máquina 2 (associada à cor laranja) processa as operações 1, 4, 5 e 3 nessa
ordem. Os números coloridos representam o tempo de processamento real das operações, com a influência

do efeito de aprendizado. O caminho crítico, cujo comprimento corresponde ao makespan, é dado pelo
caminho s, 1, 4, 5, 3, t (destacado em amarelo na imagem). O digrafo à direita (Figura 2b) representa a
solução viável obtida realocando a operação 2, que não estava no caminho crítico, da máquina 1 para a

máquina 2 entre as operações 1 e 4. A solução viável construída, com caminho crítico dado por
s, 1, 2, 4, 5, 3, t, tem um makespan menor que o original (528 contra 658).

algoritmo, temos como entrada o conjunto de operações, O, o conjunto de máquinas, F , matriz dos
tempos de processamento p e conjunto de arcos de precedência Â. O valor ropv se refere ao tempo
que a operação v está pronta para ser processada, wv se refere ao seu tempo de processamento
atual e cv ao seu tempo de conclusão. Do lado das máquinas, rmac

k representa o instante em que
a máquina k é liberada e gk representa sua primeira posição livre, que é aquela que seria ocupada
se uma operação fosse atribuída a ela (ambas as quantidades se referem ao sequenciamento parcial
sendo construído). fv indicará a qual máquina a operação v foi atribuída e cada máquina k terá uma
lista ordenadaQk com a sequência de operações a serem processadas. Após as inicializações (linhas
2 a 5), vem o loop principal, que é executado enquanto ainda houver operações não sequenciadas.
Entre as não sequenciadas, o tempo em que elas estão disponíveis é calculado para todas aquelas
que já têm todas as operações precedentes agendadas (linhas 7 a 9). Na linha 10, observando os
tempos em que as operações e das máquinas estariam disponíveis, é calculado o instante mais cedo
rmin em que uma operação poderia ser sequenciada e o conjunto E de pares operação/máquina
que poderiam começar naquele instante rmin é construído. Como observado em [Birgin et al.,
2014], |E| pode ser bastante grande e uma regra de desempate pode melhorar significativamente o
desempenho do método. Assim, na linha 11, entre todos os pares operação/máquina em E, levando
em consideração o efeito de aprendizado, o par (v̂, k̂) com o tempo de processamento mais curto
é par escolhido. Na linha 12, wv̂, fv̂ e cv̂ são definidos e o tempo rmac

k̂
e a posição livre gk̂ da

máquina k̂ são atualizados. Nas linhas 13 e 14, o arco da máquina correspondente é inserido no
grafo G (o arco não deve ser inserido se a operação v̂ for a primeira da máquina k̂). Por fim, a lista
de operações atribuídas à máquina k̂ é atualizada e a operação agendada é removida do conjunto
de operações ainda não agendadas. Depois que todas as operações foram agendadas, o caminho
crítico em G é calculado (linha 16) para determinar o valor de makespan Cmax. Isso é feito com
uma adaptação do algoritmo de Bellman-Ford para caminho máximo em O(|O|). As inicializações
nas linhas de 2 a 5 do Algoritmo 1 têm complexidade O(|O|+ |Â|+ |F|). Dentro do loop principal
(linhas de 6 a 15), as linhas de 7 a 9 têm complexidade O(|A|) = O(|Â| + |O| + |F|), as linhas
de 10 a 11 têm complexidade O(|O|+

∑
i∈O |Fi|), e a linha 12 tem complexidade O(|O|). Como

o loop principal é executado |O| vezes, sua complexidade total é O(|O|(|Â|+ |F|+
∑

i∈O |Fi|)).

https://proceedings.science/p/193581?lang=pt-br

DOI: 10.59254/sbpo-2024-193581

https://proceedings.science/p/193581?lang=pt-br
http://dx.doi.org/10.59254/sbpo-2024-193581

Como a complexidade do loop principal é maior que a complexidade da inicialização e da linha 16,
então a complexidade do Algoritmo 1 é dada pela complexidade de seu loop principal. É importante
notar que γ =

∑
i∈O |Fi| está entre |O| e |O||F|, mas preferimos manter a complexidade expressa

como uma função de γ porque γ é uma medida do tamanho da entrada que depende da flexibilidade
de sequenciamento da instância em consideração. Também é importante notar que a complexidade
do algoritmo depende da flexibilidade de roteamento das operações, ou seja, depende do número de
relações de dependência em Â. Portanto, é importante representar uma instância de forma que Â
corresponda a uma redução transitiva do digrafo de precedências.

Algorithm 1: Computa um grafo de solução G = (V,A), f , Q, e w usando a
heurística EST. Então, em G, computa o maior caminho P de s a t e seu compri-
mento Cmax.

Input: O, F , p, Â
Output: f , w, Q, G = (V,A), U , P , Cmax, τ

1 function EST(O, F , p, Â, f , w, Q, G, U , P , Cmax, τ)
2 Atribua A← Â ∪ {(s, j) | (·, j) ̸∈ Â} ∪ {(i, t) | (i, ·) ̸∈ Â} e defina

V := O ∪ {s, t} e G = (V,A).
3 Atribua ropv ← +∞ para todo v ∈ V e defina rops := 0, ws := wt := 0, e cs := 0.

4 Atribua rmac
k ← 0 e gk ← 1 para todo k ∈ F .

5 Inicie Π← V \ {s, t} como o conjunto de operações não sequenciadas, e Qk

como uma lista vazia para todo k ∈ F .
6 while Π ̸= ∅ do
7 for v ∈ Π do
8 if Π ∩ {i | (i, v) ∈ A} = ∅ then
9 ropv ← max{ci | i ∈ V \Π tal que (i, v) ∈ A}

10 Atribua rmin = min{max(ropv , rmac
k) | v ∈ Π, k ∈ Fv} e seja E o conjunto

dos pares (v, k) com v ∈ Π e k ∈ Fv tal que max(ropv , rmac
k) = rmin.

11 (v̂, k̂)← argmin{rmin + ψα(pv,k, gk) | (v, k) ∈ E}.
12 Defina wv̂ := ψα(pv̂,k̂, gk̂), fv̂ := k̂ e cv̂ := max(ropv̂ , r

mac
k̂

) + wv̂, e atribua
rmac
k̂
← cv̂ e gk̂ ← gk̂ + 1.

13 if |Qk̂| ≠ 0 then
14 Seja Qk̂ = i1, . . . , i|Qk̂|. Atribua A← A ∪ {(i|Qk̂|, v̂)}.

15 Insira v̂ no final de Qk̂ e atribua Π← Π \ {v̂}.
16 CaminhoCritico(F , f , w, Q, G, U , P , Cmax, τ).

O caminho crítico no grafo direcionado G = (V,A) pode ser calculado com uma adapta-
ção [Cormen et al., 2022, §22.2] do algoritmo de Bellman-Ford emO(|V |+ |A|). Além do caminho
crítico P , o algoritmo deve retornar uma ordenação topológica U dos vértices de G e um vetor τ de
dimensão |F|. O vetor τ armazena, no elemento τk, a maior posição na lista Qk (lista de operações
atribuídas à máquina k) que contém uma operação no caminho crítico.

O algoritmo para a heurística construtiva baseada na regra ECT é muito semelhante ao
Algoritmo 1, exceto por um detalhe. Na heurística construtiva baseada no EST, primeiro calcula-
mos o instante rmin, que é o instante mais cedo em que uma operação não agendada poderia ser

https://proceedings.science/p/193581?lang=pt-br

DOI: 10.59254/sbpo-2024-193581

https://proceedings.science/p/193581?lang=pt-br
http://dx.doi.org/10.59254/sbpo-2024-193581

iniciada. Todos os pares operação/máquina que poderiam começar nesse instante são considerados,
e o par com o menor tempo de processamento é selecionado. Mas, como todos começariam no
instante rmin, dizer que o par com o menor tempo de processamento é escolhido é o mesmo que
dizer que o par que termina mais cedo é selecionado. Essa é a ideia que é levada ao extremo na
heurística construtiva baseada na regra ECT: sem limitar a escolha aos pares operação/máquina que
poderiam começar o mais cedo possível, escolhemos o par operação/máquina que terminará mais
cedo, mesmo que o processamento da operação não comece o mais cedo possível. A complexidade
de tempo no pior caso do algoritmo para a heurística ECT é a mesma que a do Algoritmo 1.

A heurística baseada em EST dá prioridade aos pares operação/máquina que podem co-
meçar mais cedo. No início da construção, isso corresponde, aproximadamente, a dar prioridade
a todas as primeiras operações de cada tarefa, que são operações que não têm precedentes (ope-
rações 1 e 4 no exemplo da Figura 1). Ainda assim, devido à intenção de agendar operações o
mais cedo possível, é possível que a preferência seja dada a máquinas vazias, construindo soluções
que usam várias máquinas. Ao agendar rapidamente as primeiras operações de cada trabalho, mais
operações têm seus precedentes agendados, aumentando o número de possibilidades (espaço de
busca) nas iterações futuras do método. Por outro lado, a heurística baseada na regra ECT escolhe
os pares operação/máquina que terminam mais cedo, independentemente de serem aqueles que po-
dem começar mais cedo ou não. Essa estratégia pode limitar o número de pares operação/máquina
disponíveis em iterações futuras, reduzindo o espaço de busca do método. Além disso, a escolha
pelo par operação/máquina que pode terminar mais cedo, combinada com o efeito de aprendizado,
leva o método a agendar operações em máquinas que já têm várias operações atribuídas a elas, já
que quanto maior a posição na máquina, menor o tempo de processamento (reduzido pelo efeito
de aprendizado baseado em posição). Isso leva à construção de soluções em que nem todas as má-
quinas são usadas. Dependendo da taxa de aprendizado α considerada e da densidade do DAG de
precedências da instância em questão, uma heurística pode ser melhor que a outra.

3. Vizinhança Reduzida e Busca Local
Dada uma solução viável e um DAG G = (V,A) que a representa, uma nova solução viá-

vel pode ser construída removendo uma operação da máquina à qual foi atribuída e reinserindo-a na
mesma máquina, mas em outra posição ou em outra máquina. Quando uma operação é removida, os
arcos de máquina adjacentes a ela devem ser removidos e um novo arco indo da operação anterior
para a seguinte à removida (se ambas existirem) deve ser criado. Quando a operação é reinserida,
uma operação reversa similar também deve ser feita. Ao reinserir a operação, é importante verifi-
car se um ciclo não é produzido no digrafo. Somente reinserções que não criam ciclos constroem
um digrafo que corresponde a uma solução viável. Quando não há efeito de aprendizado, é co-
nhecido [Mastrolilli e Gambardella, 2000] que há chances de construir uma solução viável melhor
removendo e realocando operações que fazem parte do caminho crítico apenas. Se uma operação
não faz parte do caminho crítico, sua remoção e reinserção não pode diminuir o comprimento do ca-
minho crítico. Pode aumentá-lo ou criar outro caminho ainda mais longo. Isso é falso ao considerar
o efeito de aprendizado. Um exemplo é mostrado na Figura 2b.

Dada uma solução viável, podemos definir sua vizinhança como o conjunto de todas as
soluções viáveis que podem ser obtidas removendo e reinserindo uma única operação. Quando não
há efeito de aprendizado, apenas a remoção e reinserção de operações do caminho crítico podem
levar a vizinhos melhores, ou seja, vizinhos com menor makespan. Este fato é amplamente utili-
zado para gerar apenas vizinhos promissores. A observação no parágrafo anterior mostra que essa
redução não pode ser usada no problema que estamos considerando no presente trabalho. Isso nos
leva a analisar se toda remoção e reinserção que não gera ciclos tem o potencial de gerar um vizinho
com makespan menor ou se qualquer redução de vizinhança é possível. O ponto principal é obser-

https://proceedings.science/p/193581?lang=pt-br

DOI: 10.59254/sbpo-2024-193581

https://proceedings.science/p/193581?lang=pt-br
http://dx.doi.org/10.59254/sbpo-2024-193581

var que quando uma operação é removida de uma máquina, as operações que estavam sequenciadas
para serem processadas posteriormente nessa máquina têm sua posição diminuída em uma unidade
e, consequentemente, seu tempo de processamento real aumentado. Da mesma forma, na máquina
onde a operação é inserida, as operações programadas para serem processadas após a operação
inserida têm sua posição aumentada em uma unidade e, portanto, seu tempo de processamento é
diminuído. Essas modificações podem mudar o makespan, seja melhorando ou piorando.

Considere uma solução viável representada por um DAGG = (V,A). SejaP um caminho
crítico em G, com comprimento Cmax. Seja i ∈ O uma operação arbitrária. Chamamos de fi a
máquina à qual i está atribuída. Seja k ∈ F uma máquina arbitrária. Chamamos Qk = i1, . . . , i|Qk|
a lista ordenada de operações atribuídas à máquina k. Se uma operação i está atribuída à máquina
fi e está na posição γ de Qfi , então seu tempo de processamento real é dado por wi = ψα(pi,fi , γ).
Pretendemos calcular todos os vizinhos da solução representada por G, f , Q e w. Os vizinhos
serão construídos, para todo v ∈ O, removendo v e reinserindo v em todos os lugares possíveis que
não gerem um ciclo. Queremos determinar se existem inserções que podem ser ignoradas porque
sabemos a priori que não levarão a uma redução no makespan.

Seja v ∈ O uma operação arbitrária. O cálculo dos vizinhos da solução atual (associados à
remoção e reinserção de v) começa calculando um digrafo G−v = (V −, A−) no qual a operação v é
removida. Esse grafo é às vezes referido como um grafo reduzido na literatura. As quantidades f−,
Q− e w− associadas a G−v também são calculadas. Esse digrafo com suas informações associadas
é uma estrutura intermediária necessária para o cálculo dos vizinhos e, como a operação v não está
atribuída a nenhuma máquina, não representa uma solução viável. Essa tarefa é implementada no
Algoritmo RemoveOp. Além disso o conjunto R←v de vértices que alcançam v e o conjunto de
vértices R→v que são alcançados a partir de v em G−v são calculados, o que será útil para detectar
ciclos em futuras reinserções de v. O caminho mais longo P− no digrafo G−v é calculado, o que
será útil para determinar se uma reinserção tem chances de reduzir o makespan ou não. Chamamos
ξ de comprimento de P−. (Não o chamamos deC−max porque comoG−v não representa uma solução
viável, então o comprimento do caminho P− não representa um makespan.) Junto com o cálculo
de P−, o algoritmo também calcula, para cada máquina k, a menor posição τk tal que, para todo
γ > τk, a γ-ésima operação processada pela máquina k não está em P−. (Se a máquina k não
processa nenhuma operação em P−, então τk = 0.)

SejaG o digrafo, com as quantidades associadas f , Q e w, representando a solução viável
atual. Seja P o caminho crítico emG, com comprimentoCmax. Seja v a operação que removemos e
desejamos reinserir. SejaG−v o digrafo com v removido e deixe f−, Q− e w− serem as quantidades
associadas a G−v . Seja P− o caminho crítico em G−v , com comprimento ξ, e, para cada máquina
k, deixe τk ser a menor posição em Qk tal que cada operação em uma posição após τk não esteja
em P−. Deixe κ ser uma máquina e γ ser uma posição na lista Q−κ tal que inserir v na posição γ
de Q−κ não gere um ciclo. Tal inserção tem chance de gerar um novo digrafo cuja solução viável
associada tenha um makespan menor que Cmax? Se ξ ≥ Cmax e γ > τk, então a resposta é não.
Isso ocorre porque o caminho P− com comprimento ξ não menor que Cmax já existe e a inserção
de v na máquina κ, em uma posição γ posterior a τk, não modificará o tempo de processamento real
de nenhuma operação em P−. Se ξ < Cmax ou ξ ≥ Cmax, mas γ ≤ τk, então as chances existem.

Deve-se notar que, estritamente falando, o fato de v estar em P ou não não está relacio-
nado à resposta à pergunta acima. Mas antecipando algo que virá mais tarde, como a redução de
vizinhança orientada pela resposta à pergunta pode ser bastante pequena, consideraremos nos expe-
rimentos, de forma heurística, v ∈ P como equivalente ou fortemente correlacionado a ξ < Cmax.
Ou seja, consideraremos que remover uma operação do caminho crítico provavelmente implicará
em ξ < Cmax. Isso é muito plausível para valores moderados do fator de aprendizado α, nos quais

https://proceedings.science/p/193581?lang=pt-br

DOI: 10.59254/sbpo-2024-193581

https://proceedings.science/p/193581?lang=pt-br
http://dx.doi.org/10.59254/sbpo-2024-193581

uma possível redução de uma unidade na posição da máquina de algumas operações do caminho
crítico não anula o benefício de remover uma operação do caminho crítico.

A tarefa de reinserir v em G−v na posição γ da máquina κ gera um DAG que chamamos
de G+

v . Essa tarefa é semelhante à tarefa de remoção. A construção de G+
v , suas quantidades

associadas f+, Q+ e w+, e seu caminho crítico P+ com comprimento C+
max é implementada no

InsereOp. O Algoritmo 2 implementa uma busca local pelo melhor vizinho com a redução de
vizinhança já discutida. Ele corresponde a uma busca local clássica com uma estratégia de melhor
vizinho (best improvement). O único detalhe relevante que resta a ser explicado é como determinar
se uma inserção gera um ciclo ou não. Um ciclo será criado em G+

v apenas se v for inserido em
uma posição que deixe algum u ∈ R←v para ser processado após v na máquina κ ou algum u ∈ R→v
para ser processado antes de v na máquina κ. Os limites γ e γ̄ tais que γ+1 ≤ γ ≤ γ̄ evitam ciclos,
são calculados nas linhas 7 e 8. Uma possível redução desse intervalo é calculada nas linhas 9 e 10,
eliminando a possibilidade de fazer inserções após τκ se ξ ≥ Cmax, como já discutido.

Algorithm 2: Busca local com vizinhança reduzida e estratégia de best improve-
ment.

Input: O, F , p, G = (V,A), f , w, Q, P , Cmax

Output: G⋆ = (V ⋆, A⋆), f⋆, w⋆, Q⋆, P⋆, C⋆
max

1 function BuscaLocal(O, F , p, G, f , w, Q, P , Cmax, G⋆, f⋆, w⋆, Q⋆, P⋆, C⋆
max)

2 do
3 Cbn

max ← +∞
4 for v ∈ O do
5 RemoveOp(O, p, v, f , Q, w, G, f−, Q−, w−, G−v , P−, ξ,R←v ,R→v , τ)
6 for k ∈ Fv do
7 Assuma γ a posição da última operação em Q−k = i1, . . . , i|Q−

k |
tal

que iγ ∈ R←v e assuma γ = 0 se iℓ ̸∈ R←v para todo
ℓ = 1, . . . , |Q−k |.

8 Assuma γ̄ a posição da primeira operação em Q−k = i1, . . . , i|Q−
k |

tal

que iγ̄ ∈ R→v e assuma γ̄ = |Q−k |+ 1 se iℓ ̸∈ R→v para todo
ℓ = 1, . . . , |Q−k |.

9 if ξ ≥ Cmax then
10 γ̄ ← min{γ̄, τk}, onde τk é tal qual não existe operação crítica

após τk em Q−k (τk = 0 se não há operação crítica em Q−k).

11 for γ = γ + 1, . . . , γ̄ do
12 InsereOp(O, p, v, γ, k, f−, Q−, w−, G−v , f

+, Q+, w+, G+
v , P+,

C+
max)

13 if C+
max < Cbn

max then
14 Gbn, fbn, wbn, Qbn,Pbn, Cbn

max ←
G+

v , f
+, w+, Q+,P+, C+

max

15 δ ← Cmax − Cbn
max

16 if δ > 0 then
17 G, f,w,Q,P, Cmax ← Gbn, fbn, wbn, Qbn,Pbn, Cbn

max

18 while δ > 0
19 G⋆, f⋆, w⋆, Q⋆,P⋆, C⋆

max ← G, f,w,Q,P, Cmax

https://proceedings.science/p/193581?lang=pt-br

DOI: 10.59254/sbpo-2024-193581

https://proceedings.science/p/193581?lang=pt-br
http://dx.doi.org/10.59254/sbpo-2024-193581

4. Experimentos Computacionais
Nesta seção, apresentamos experimentos numéricos. Primeiro, desejamos avaliar as duas

heurísticas construtivas apresentadas. Segundo, desejamos avaliar diferentes estratégias para a
busca local proposta e tentar inferir qual é mais eficaz na busca por soluções de melhor qualidade.
Em todos os casos, consideramos as 50 instâncias introduzidas por Birgin et al. [2014] com a taxa
de aprendizado α ∈ {0, 1; 0, 2; 0, 3} para um total de 150 instâncias.

Os experimentos foram realizados em uma máquina com processador Intel i9-12900K
(12ª geração) operando a 5,200GHz e 128 GB de RAM. As heurísticas construtivas e busca local
foram implementadas na linguagem de programação C++. O código foi compilado usando g++
10.2.1.

Na Tabela 1 o resumo dos resultados da avaliação duas heurísticas construtivas é apresen-
tado. Para cada grupo instância e taxa de aprendizado, a média do makespan e número de vitórias,
entre as soluções encontradas pelas duas heurísticas construtivas, são apresentados. Em todas as
instâncias, as heurísticas construtivas levam menos de 0.001 segundos de tempo de CPU para cons-
truir uma solução. Para as instâncias testadas há uma clara vantagem da heurística construtiva EST
nas instâncias do tipo DA, enquanto, por outro lado, há uma clara vantagem da heurística constru-
tiva ECT nas instâncias do tipo Y. A estratégia gulosa de ECT de escolher o par operação/máquina
que termina primeiro parece compensar em situações onde, porque já há pouca flexibilidade de
sequenciamento, a escolha gulosa não causa uma grande diminuição do espaço de busca.

DAFJS YFJS
EST ECT EST ECT

α = 0, 1
makespan 65.249,50 67.439,80 87.865,80 80.338,80
#vitórias 20 10 5 15

α = 0, 2
makespan 54.310,83 57.746,00 74.373,85 68.682,05
#vitórias 24 6 7 13

α = 0, 3
makespan 45.578,87 48.181,97 65.850,25 59.452,35
#vitórias 28 2 7 13

Tabela 1: Tabela resumo dos experimentos computacionais para os valores de makespan para as instâncias
de teste resolvidas com as heurísticas construtivas.

Avaliamos agora variações da busca local descrita no Algoritmo 2. No algoritmo, a busca
local usa a estratégia de best improvement e faz uso da redução do vizinhança. Portanto, chama-
mos essa versão de “busca local com a estratégia de best improvement e vizinhança reduzida”. A
redução de vizinhança é implementada nas linhas 9 e 10. Se removermos essas duas linhas, ob-
temos uma versão que chamamos de “busca local com best improvement e vizinhança completa”.
A versão com vizinhança reduzida não considera vizinhos que são garantidamente piores do que
a solução atual. Portanto, a solução obtida com vizinhança reduzida deve ser idêntica à solução
obtida com o vizinhança completa. (Na verdade, todos as iterações das duas versões devem ser
idênticos e não apenas a solução final). Apenas uma redução do tempo de CPU é esperada. Deci-
dimos considerar ainda outra versão que apresentaria uma redução mais drástica no tempo de CPU,
embora com possível perda de qualidade na solução. Chamamos essa versão de “busca local com
best improvement e vizinhança cortada”. Esta versão consiste em alterar v ∈ O para v ∈ P na
linha 4 do Algoritmo 2. Ou seja, apenas as operações no caminho crítico são realocadas, uma vez
que há uma maior tendência para essas realocações gerarem vizinhos de melhor qualidade. Temos
então três versões diferentes da busca local com a estratégia de best improvement que são distinguí-
veis pela vizinhança usada: completa, reduzida e cortada. Cada uma delas corresponde a variações

https://proceedings.science/p/193581?lang=pt-br

DOI: 10.59254/sbpo-2024-193581

https://proceedings.science/p/193581?lang=pt-br
http://dx.doi.org/10.59254/sbpo-2024-193581

mínimas do Algoritmo 2 conforme já descrito. Além disso, consideramos as mesmas três versões,
mas usando a estratégia de interromper a busca da vizinhança ao encontrar o primeiro vizinho que
melhora a solução atual, ou seja, a estratégia de first improvement. Essa mudança corresponde, no
Algoritmo 2, a interromper o laço da linha 4 na primeira vez que a linha 16 é executada.

Os resultados das seis variações da busca local aplicadas às 150 instâncias consideradas
são mostrados na Tabela 2. Nas tabelas, mostramos o makespan médio das soluções obtidas, o nú-
mero de iterações médio que a busca local fez até encontrar uma solução que é melhor do que todos
os seus vizinhos (este é o critério de parada conforme descrito no Algoritmo 2), e o tempo médio
de CPU em segundos. A tabela também não mostra nada relacionado à vizinhança completa. O
que deve ser dito sobre o uso da vizinhança completa é que, em todas as instâncias, como esperado,
a solução obtida foi idêntica à solução obtida com a vizinhança reduzida, o número de iterações
também foi o mesmo, e a vizinhança reduzida promoveu uma redução de 52,51% no tempo de
CPU.

Quando comparamos as estratégias de first e best improvement, os resultados são bas-
tante semelhantes, mas a estratégia do melhor aprimoramento sempre encontra soluções de melhor
qualidade usando menos tempo de CPU. Especificamente, a estratégia de best improvement retorna
soluções que são, em média, 1,02% e 0,70% melhores do que as soluções retornadas pela estratégia
de primeira melhoria, quando consideramos as vizinhanças reduzida e cortada, respectivamente.
Portanto, daqui em diante, focamos em avaliar a vizinhança reduzida e a vizinhança cortada à es-
tratégia do melhor aprimoramento.

A vizinhança cortada elimina, em média, 90,34% das soluções da vizinhança reduzida,
promovendo uma redução proporcional no tempo de CPU. No entanto, adotar a vizinhança cortada
pode levar a uma perda de qualidade na solução final obtida pelo método de busca local. Em média,
quando comparado com a busca local com vizinhança reduzida, a busca local com a vizinhança
cortada encontra soluções com um makespan 0,69% pior. Quando comparamos a solução final com
a solução inicial, a busca local usando a vizinhança reduzida melhora a solução inicial em, em
média, 6,88%, enquanto a busca local usando a vizinhança cortada melhora a solução inicial em
6,11%. Em conclusão, a busca local com a vizinhança cortada é significativamente mais rápida do
que a busca local com a vizinhança reduzida e encontra soluções apenas ligeiramente piores do que
as soluções encontradas por esta última.

DAFJS YFJS
First Improvement Best Improvement First Improvement Best Improvement

Cortada Reduzida Cortada Reduzida Cortada Reduzida Cortada Reduzida

α = 0, 1

makespan 59.008,00 58.925,53 58.305,43 57.974,70 71.528,60 71.895,70 71.227,20 70.704,30
#iterações 27,73 61,37 14,53 20,90 18,15 57,1 8,30 19,60

tempo 0,009 0,070 0,016 0,073 0,011 0,264 0,012 0,243
#vitórias 3 2 7 10 5 7 4 11

α = 0, 2

makespan 50.713,70 50.400,03 49.944,33 49.835,73 62.812,75 62.184,05 62.154,65 61.446,60
#iterações 18,83 39,4 12,03 15,90 14,05 51 7,70 17,20

tempo 0,005 0,051 0,011 0,051 0,009 0,309 0,010 0,225
#vitórias 3 8 7 13 5 8 7 12

α = 0, 3

makespan 42.854,47 42.315,00 42.383,17 42.018,73 55.087,10 54.328,30 54.883,00 53.749,15
#iterações 17,3 36,23 9,33 14,77 10,05 38,9 6,35 16

tempo 0,006 0,048 0,009 0,054 0,007 0,208 0,009 0,201
#vitórias 2 8 9 15 6 10 7 14

Tabela 2: Resumo dos experimentos com as estratégias e vizinhanças usadas para a busca local usando as
instâncias propostas por Birgin et al. [2014] com taxa de aprendizagem α ∈ {0, 1; 0, 2; 0, 3}.

https://proceedings.science/p/193581?lang=pt-br

DOI: 10.59254/sbpo-2024-193581

https://proceedings.science/p/193581?lang=pt-br
http://dx.doi.org/10.59254/sbpo-2024-193581

5. Conclusões
Neste trabalho, abordamos o problema de sequenciamento do job shop flexível com fle-

xibilidade de sequenciamento e efeito de aprendizado baseado na posição. Utilizamos um con-
junto de 50 instâncias que se transformam em 150 instâncias variando a taxa de aprendizado
α ∈ {0, 1; 0, 2; 0, 3}. Propomos duas heurísticas construtivas baseadas em regras de despacho.
Também introduzimos uma busca local com diversas estratégias e vizinhanças para melhorar as
soluções das heurísticas iniciais. Para a busca local, mostramos que, na presença do efeito de apren-
dizado, a abordagem clássica de considerar realocações de operações apenas no caminho crítico
falha em considerar vizinhos potencialmente melhores do que a solução atual. Consequentemente,
propusemos uma nova redução de vizinhança que não elimina vizinhos potencialmente melhores
do que a solução atual e reduz a vizinhança em aproximadamente 50%. Além disso, propusemos
um corte de vizinhança que reduz significativamente o tamanho da mesma (em cerca de uma ordem
de magnitude) e encontra soluções que são no máximo 1% piores. A busca local introduzida e/ou
as vizinhanças podem ser utilizados no desenvolvimento de meta-heurísticas de trajetória. Como
trabalhos futuros, pretendemos considerar diferentes efeitos de aprendizado, que não dependem
apenas da posição da operação na máquina à qual foi atribuída. Também pretendemos considerar
funções objetivo que levem em conta o consumo de energia, e adaptar o problema para diversas
aplicações do mundo real.

Referências
Alvarez-Valdes, R., Fuertes, A., Tamarit, J. M., Giménez, G., e Ramos, R. (2005). A heuristic to

schedule flexible job-shop in a glass factory. European Journal of Operational Research, 165(2):
525–534.

Andrade-Pineda, J. L., Canca, D., Gonzalez-R, P. L., e Calle, M. (2020). Scheduling a dual-resource
flexible job shop with makespan and due date-related criteria. Annals of Operations Research,
291(1):5–35.

Birgin, E. G., Feofiloff, P., Fernandes, C. G., De Melo, E. L., Oshiro, M. T. I., e Ronconi, D. P.
(2014). A MILP model for an extended version of the flexible job shop problem. Optimization
Letters, 8(4):1417–1431.

Cormen, T. H., Leiserson, C. E., Rivest, R. L., e Stein, C. (2022). Introduction to Algorithms. The
MIT Press, Cambridge, MA, USA, 4th edition.

De Moerloose, P. e Maenhout, B. (2023). A two-stage local search heuristic for solving the steelma-
king continuous casting scheduling problem with dual shared-resource and blocking constraints.
Operational Research, 23(1):2.

Gan, P. Y. e Lee, K. S. (2002). Scheduling of flexible-sequenced process plans in a mould manufac-
turing shop. The International Journal of Advanced Manufacturing Technology, 20(3):214–222.

Leung, J. Y.-T., Li, H., e Pinedo, M. (2005). Order scheduling in an environment with dedicated
resources in parallel. Journal of Scheduling, 8(5):355–386.

Lunardi, W. T., Birgin, E. G., Laborie, P., Ronconi, D. P., e Voos, H. (2020). Mixed integer li-
near programming and constraint programming models for the online printing shop scheduling
problem. Computers and Operations Research, 123:105020.

https://proceedings.science/p/193581?lang=pt-br

DOI: 10.59254/sbpo-2024-193581

https://proceedings.science/p/193581?lang=pt-br
http://dx.doi.org/10.59254/sbpo-2024-193581

Lunardi, W. T., Birgin, E. G., Ronconi, D. P., e Voos, H. (2021). Metaheuristics for the online
printing shop scheduling problem. European Journal of Operational Research, 293(2):419–441.

Mastrolilli, M. e Gambardella, L. M. (2000). Effective neighbourhood functions for the flexible job
shop problem. Journal of Scheduling, 3(1):3–20.

Yu, L., Zhu, C., Shi, J., e Zhang, W. (2017). An extended flexible job shop scheduling model
for flight deck scheduling with priority, parallel operations, and sequence flexibility. Scientific
Programming, 2017:1–15.

https://proceedings.science/p/193581?lang=pt-br

DOI: 10.59254/sbpo-2024-193581

Powered by TCPDF (www.tcpdf.org)

https://proceedings.science/p/193581?lang=pt-br
http://dx.doi.org/10.59254/sbpo-2024-193581
http://www.tcpdf.org

