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Abstract In spite of the fact that photons do not inter-
act with an external magnetic field unless nonlinearity of
QED is taken into account, the latter field may indirectly
affect photons in the presence of a charged environment. This
opens up an interesting possibility to continuously control the
entanglement of photon beams without using any crystalline
devices. We study this possibility in the framework of an
adequate QED model. In an approximation it was discov-
ered that such entanglement has a resonant nature, namely, a
peak behavior at certain magnetic field strengths, depending
on characteristics of photon beams direction of the magnetic
field and parameters of the charged medium. Numerical cal-
culations illustrating the above-mentioned resonant behavior
of the entanglement measure and some concluding remarks
are presented.

1 Introduction

Entanglement phenomenon is associated with a quantum
non-separability of parts of a composite system. Entangled
states appear in studying principal questions of quantum the-
ory, they are considered as key elements in quantum informa-
tion theory in quantum computations and quantum cryptog-
raphy technologies; see e.g. Refs. [1,2]. In laboratory con-
ditions the entanglement of photon beams is usually created
and studied using some kind of crystalline devices. In spite
of the fact that photons do not interact with an external mag-
netic field, the latter field may indirectly affect photons in the
presence of a charged environment. This opens up an inter-
esting possibility to continuously control the entanglement
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of photon beams. Studying this possibility in the framework
of an adequate QED model, we have discovered that such
entanglement has a resonant nature, namely, a peak behavior
at certain magnetic field strengths depending on characteris-
tics of photon beams and parameters of the charged medium.
This is the study presented in this article. The article is orga-
nized as follows: In Sect. 2, we outline details of the above-
mentioned QED model. This model describes a photon beam
that consists of photons with two different frequencies, mov-
ing in the same direction and interacting with a quantized
charged scalar field (KG field) placed in a constant magnetic
field. Particles of the KG field we call electrons in what fol-
lows and the totality of the electrons is called the electron
medium. Photons with each frequency may have two pos-
sible linear polarizations. In the beginning, we consider the
electron subsystem consisting of only one charged particle.
Both quantized fields (electromagnetic and the KG one) are
placed in a box of the volume V = L3 and periodic con-
ditions are supposed. We believe that in this case the model
already describes the photons interacting with many identical
electrons, and the quantity ρ = V−1 may be interpreted as
the density of the electron medium. In this article, we essen-
tially correct exact solutions used in our previous considera-
tion of similar models; see Ref. [3] and references there. In a
certain approximation, solutions of the model correspond to
two independent subsystems, one of which is a quasi-electron
medium and another one is a set of some quasi-photons. In
the new solutions the orders of smallness of contributions
to quasi-photon states used in calculating the entanglement
measures are accurately determined and an adequate expres-
sion for the spectrum of quasi-electrons derived. Namely,
the latter made it possible to detect the resonant behavior
of the entanglement measure at some resonant values of the
external magnetic field. Finally, in Sect. 4, numerical calcu-
lations illustrating the above-mentioned resonant behavior of
the entanglement measure and some concluding remarks are
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presented. Technical details related to Hamiltonian diagonal-
ization are placed in the Appendix A.

2 QED model and its solutions

Consider photons with two different momenta ks = κsn,

s = 1, 2 (frequencies), moving in the same direction
n = (0, 0, 1) and interacting with quantized charged scalar
particles-electrons placed in a constant magnetic field B =
Bn, B > 0, potentials of which in the Landau gauge are:
Aext(r) = (−Bx (2), 0, 0

)
. In what follows, we use the sys-

tem of units where h̄ = c = 1. The operator potentials
Âμ (r) , μ = 0, . . . , 3; r = (

x (1), x (2), x (3) = z
)

of the

photon beam are chosen in the Coulomb gauge, Âμ(r) =
(0, Â(r)), divÂ(r) = 0, in fact, they depend only on z,

Â (r) =
∑

s=1,2

∑

λ=1,2

√
1

2κsV

[
âs,λ exp (iκs z)

+â†
s,λ exp (−iκs z)

]
eλ,

[
âs,λ, âs′,λ′

] = 0,
[
âs,λ, â

†
s′,λ′

]
= δs,s′δλ,λ′ . (1)

Here âs,λ and â†
s,λ are creation and annihilation operators of

the free photons from the beam, eλ are real polarization vec-
tors, (eλeλ′) = δλ,λ′ , (neλ) = 0, λ, λ′ = 1, 2, s, s′ = 1, 2.

We choose the polarization vector in the form e1 = (1, 0, 0),

e2 = (0, 1, 0). The photon Fock space Hγ is constructed by
the creation and annihilation operators and by the vacuum
vector |0〉γ , âs,λ |0〉γ = 0, ∀s, λ. Photon vectors are denoted
as |�〉γ , |�〉γ ∈ Hγ . The Hamiltonian of free photon beam
reads:

Ĥγ =
∑

s=1,2

∑

λ=1,2

κs â
†
s,λâs,λ

κs = κ0ds, κ0 = 2πL−1, ds ∈ N. (2)

Electrons are described by a scalar field ϕ (r) interact-
ing with the external constant magnetic field Aμ

ext(r). The
magnetic field does not violate the vacuum stability. After
the canonical quantization, the scalar field and its canonical
momentum π(r) become operators ϕ̂(r) and π̂ (r). The corre-
sponding Heisenberg operators ϕ̂(x) and π̂(x), x = (xμ) =
(t, r), satisfy the equal-time nonzero commutation relations
[ϕ̂(x), π̂(x ′)]t=t ′ = iδ(r − r′). These operators act in the
electron Fock space He constructed by a set of creation and
annihilation operators of the scalar particles and by a corre-
sponding vacuum vector |0〉e . Electron vectors are denoted
as |�〉e , |�〉e ⊂ He.

The Fock space H of the complete system is a tensor prod-
uct of the photon Fock space and the electron Fock space,
H = Hγ ⊗ He. Vectors from the Fock space H are denoted
by |�〉 , |�〉 ∈ H.

The Hamiltonian of the complete system (composed of
the photon and the electron subsystems) has the following
form:

Ĥ =
∫ {

π̂+(r)π̂(r)

+ϕ̂+ (r)
[
P̂2(r) + m2

]
ϕ̂ (r)

}
dr + Ĥγ ,

P̂(r) = p̂ + e
[
Â(z) + Aext(r)

]
,

p̂ = −i∇, e > 0. (3)

Consider the amplitude-vector (AV) ϕ(x) = e 〈0| ϕ̂(r)
|� (t)〉 , which is on the one hand a function on x (the pro-
jection of a vector |� (t)〉 onto a one-electron state), on the
other side AV is a vector in the photon Fock space. In the sim-
ilar manner, one could introduce many-electron or positron
amplitudes and interpreted them as AVs of photons interact-
ing with many charged particles. However, we neglect the
existence of such amplitudes in the accepted further approx-
imation, they are related to processes of pair creation. In such
an approximation, one can demonstrate that AV ϕ(x) satisfies
the following equation:

[
(i∂t − Ĥγ )2 − P̂2(r) − m2

]
ϕ(x) = 0. (4)

It is convenient to pass from the AV ϕ(x) to a AV �(x) =
Uγ (t) ϕ(x), Uγ (t) = exp(i Ĥγ t), which satisfies a KG like
equation (KGE):

[
P̂μ P̂

μ − m2
]
�(x) = 0,

P̂μ = P̂μ (x) = i∂μ + e
[
Âμ(u) + Aμ

ext(r)
]
,

Âμ(u) =
(

0, Â(u)
)

, u = t − z,

Â(u) = Uγ (t) Â(z)U−1
γ (t)

= 1

e

∑

s=1,2

∑

λ=1,2

√
ε

2κs

[
âs,λ exp (−iκsu)

+â†
s,λ exp (iκsu)

]
eλ, (5)

where ε = αρ, α = e2/h̄c = 1/137, and ρ is the den-
sity of the electron media. The quantity ε characterizes the
strength of the interaction between the charged particles and
the photon beam. We suppose that both ε and α are small,
this supposition defines the above mentioned approximation.

One can see that in the model under consideration, we have
three commuting integrals of motion Ĝμ = i∂μ + nμ Ĥγ ,

μ = 0, 1, 3; nμ = (1,n); Ĝ0 can be interpreted as the
operator of the total energy and Ĝμ, μ = 1, 3 as momenta
operators in the directions x1 and z.
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Recall that Î is an integral of motion if its mean value

(
ϕ, Îϕ

)
=
∫

ϕ∗ (x)
(
i
←→
∂0 − 2eA0

)
Îϕ (x) dr,

←→
∂0 = −→

∂0 − ←−
∂0 ,

with respect to any ϕ satisfying the KGE does not depend on

time. If Î is an integral of motion, then
[
Î , P̂μ P̂μ

]
= 0.

If Î is an integral of motion, then, apart from satisfying the
KGE, the wave function could be choose as an eigenfunction
of Î . Then we look for AV �(x) that are also eigenvectors
for the integrals of motion Ĝμ,

[
P̂μ P̂

μ − m2
]
�(x) = 0,

Ĝμ�(x) = gμ�(x), μ = 0, 1, 3, (6)

where g0 is the total energy and g1,3 are momenta in x1 and
z directions. From Eq. (6) it follows
[
P̂μ P̂

μ − m2
]
�(x)

= 1

2(ng)
[Ĥχ (u) − (g0 − g3)/2]�(x),

Ĥχ (u) = Ĥγ + 1

2(ng)

{[
eBx (2) − g1 − e Â1 (u)

]2

+
[
i∂2 − eA2 (u)

]2 + m2
}

, (7)

where (ng) = g0 + g3. Consequently, the operator Ĥχ (u)

commutes with the operator P̂μ P̂μ on solutions �(x), and
therefore is an integral of motion.

A solution to Eq. (6) has form

�(x) = exp
[
−i(g0t + g1x

(1) + g3z)
]

×Ûγ (u) χ(x (2)), (8)

where the function χ(x (2)) must satisfy the following equa-
tion:

Ĥχ (0)χ(x (2)) = g0 − g3

2
χ(x (2)). (9)

In order to solve the latter equation, we pass to a descrip-
tion of the electron motion in the magnetic field in an ade-
quate Fock space, see Ref. [4]. We introduce new creation â†

0

and annihilation â0 Bose operators, [â0, â
†
0] = 1,

â0 = (2)−1/2 (η + ∂η

)
,

â†
0 = (2)−1/2 (η − ∂η

)
, (eB)1/2η =

(
eBx (2) − g1

)
,

x (2) =
√

1

2eB

(
â0 − â†

0

)
+ g1,

∂2 =
√
eB

2

(
â0 + â†

0

)
, â0 |0〉e = 0. (10)

These operators commute with all the photon operators a†
s,λ

and âs,λ, s = 1, 2, λ = 1, 2. We denote the totality of the free
photon and the introduced electron creation and annihilation
operators as a†

s,λ and âs,λ, s = 0, 1, 2, where â†
0,λ = â†

0δλ,1

and â0,λ = â0δλ,1. The corresponding vacuum vector |0〉
reads:

|0〉 = |0〉γ ⊗ |0〉e , âs,λ |0〉 = 0, s = 0, 1, 2. (11)

The operator Ĥχ (0) can be represented as a quadratic
form in terms this totality of the creation and annihilation
operators,

Ĥχ (0) =
∑

s,s′=0,1,2

∑

λ,λ′=1,2

As,λ;s′,λ′a†
s,λâs′,λ′

+1

2

(
Bs,λ;s′,λ′ â†

s,λâ
†
s′,λ′ + B∗

s,λ;s′,λ′ âs,λâs′,λ′
)

+ m2

2ng
+ ω

2
+ ε

2

∑

s=1,2

κ−1
s , ω = eB

ng
, ε = ε

ng
,

As,λ;s′,λ′ = [
ω(2 − λ)δ0,s + κs

(
1 − δ0,s

)]
δs,s′δλ,λ′

+ ε

2
√

κsκs′

(
1 − δ0,s

) (
1 − δ0,s′

)
δλ,λ′

− |ng|
ng

√
εω

2

[
(+i)λ−1

√
κs

(
1 − δ0,s

)
δ0,s′δλ′,1

+ (−i)λ
′−1

√
κs′

(
1 − δ0,s′

)
δ0,sδλ,1

]

,

Bs,λ;s′,λ′ = ε

2
√

κsκs′

(
1 − δ0,s

) (
1 − δ0,s′

)
δλ,λ′

− |ng|
ng

√
εω

2

[
(−i)λ−1

√
κs

(
1 − δ0,s

)
δ0,s′δλ′,1

+ (−i)λ
′−1

√
κs′

(
1 − δ0,s′

)
δ0,sδλ,1

]

. (12)

As it is demonstrated in Appendix A, there exists a lin-
ear canonical transformation of the operators a†

s,λ and âs,λ,
s = 0, 1, 2, given by Eqs. (A1) which diagonalizes the
Hamiltonian Ĥχ (0) ,

Ĥχ (0) = Ĥe(0) + Ĥq−ph(0),

Ĥe(0) = τ0c
†
0c0 + m2

2(ng)
+ ω

2
,

Ĥq−ph(0) =
∑

s=1,2

∑

λ=1,2

τs,λc
†
s,λcs,λ

−
∑

s,k=0,1,2

∑

λ,λ′=1,2

τk,λ′
∣∣vs,λ;k,λ′

∣∣2 + ε

2

∑

s=1,2

κ−1
s ,

(13)
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where the quantities τk,λ satisfy the conditions τ0(ε = 0) =
ω, τk,λ(ε = 0) = κk being positive roots of the equation

∑

s=1,2

ε

τ 2
k,λ − κ2

s

= 1 + (−1)λ ω

τk,λ
,

τ0,λ = τ0δλ,1, k = 0, 1, 2. (14)

It is possible to demonstrate that after an unitary trans-
formation, the integral of motion Ĥχ (u) can be separated in
two parts Ĥq−ph(u) and Ĥe(u):

Ĥχ (u) = Ûγ (u) Ĥχ (0) Ûγ (u)−1

= Ĥq−ph(u) + Ĥe(u),

Ĥq−ph(u) = Ûγ (u) Ĥq−ph(0)Ûγ (u)−1 ,

Ĥe(u) = Ûγ (u) Ĥe(0)Ûγ (u)−1 ,
[
Ĥe(u), Ĥχ (u)

]
= 0

[
Ĥq−ph(u), Ĥχ (u)

]
= 0. (15)

Each of these parts are also integrals of motion due to rela-
tions Eqs. (7), (9) and (15). The operator Ĥe corresponds to
the quasi-electron subsystem, while the operator Ĥq−ph to
the subsystem of quasi-photons.

It is useful to consider operators P̂μ,

P̂μ = Ĝμ − nμ Ĥq−ph (u)

= i∂μ − nμ

[
Ĥq−ph (u) − Ĥγ

]
,

[
P̂μ, P̂ν

]
= 0, μ, ν = 0, 1, 2, (16)

witch are also integrals of motion. If we assume that at
ε → 0 the photons do not interact with the electronic
medium, then in such a limit the operators P̂μ are the energy–
momentum operators of a the free electrons i∂μ, and the oper-
ator nμ Ĥq−ph (u) is the energy–momentum operator of the
free photons Ĥγ . It is therefore appropriate to refer to P̂μ as
the quasi-electron energy–momentum, and to nμ Ĥq−ph (u)

as the energy–momentum of the quasi-photons.
Then we can choose AV �(x) to be eigenvectors for the

integrals of motion Ĥe (u) , Ĥq−ph(u) and P̂μ,

Ĥe(u)�(x) = Ee�(x),

Ĥq−ph(u)�(x) = Eq−ph�(x),

P̂μ �(x) = pμ�(x). (17)

Further, we interpret the eigenvalues pμ as momenta of quasi-
electrons. It follows from Eq. (17) that �(x) is an eigenvector
for the operator Ĥχ (u),

Ĥχ (u)�(x) = E�(x), E = Ee + Eq−ph. (18)

Substituting (8) into Eq. (18), we obtain an equation for
the function χ(x2),

Ĥχ (0)χ(x (2)) = Eχ(x (2)), (19)

which has the following solutions:

χ(x (2)) = |φe〉 ⊗ ∣
∣�q−ph

〉
,

∣∣�q−ph
〉 =

∏

λ=1,2

(
ĉ†

1,λ

)N1,λ

√
N1,λ!

|0〉c1

∏

λ′=1,2

(
ĉ†

2,λ′
)N2,λ′

√
N2,λ′ ! |0〉c2 ,

|φe〉 =
(
ĉ†

0

)N0

√
N0!

|0〉c0 , ĉ0 |0〉c0 = 0, cs,λ |0〉cs = 0,

Ee = τ0N0 + m2

2(ng)
+ ω

2
, N0 ∈ N,

Eq−ph =
∑

s=1,2

∑

λ=1,2

τs,λNs,λ

−
∑

s,k=0,1,2

∑

λ,λ′=1,2

τk,λ′
∣∣vs,λ;k,λ′

∣∣2

+ ε

2

∑

s=1,2

κ−1
s , Ns,λ ∈ N. (20)

Equations (17), (9) and (19) are consistent if

g0 = p0 + Eq−ph, g1 = p1, g3 = p3 − Eq−ph,

E = g0 − g3

2
,

which implies:

Ee + Eq−ph = g0 − g3

2
= p0 − p3

2
+ Eq−ph,

(ng) = (np) , (21)

and

Ee = p0 − p3

2
. (22)

Taking into account Eq. (20) from (22) we obtain the spec-
trum of quasi-electrons in the constant magnetic field:

p2
0 = 2eB

(
τ0

ω
N0 + 1

2

)
+ p2

3 + m2,

ω = eB

(np)
. (23)

Since τ0(ε = 0) = ω, the well-known spectrum of a rela-
tivistic spinless particle in the constant magnetic field, fol-
lows from Eq. (23),

p̄2
0 = 2eB

(
N0 + 1

2

)
+ p2

3 + m2. (24)
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For small ε the roots τk,λ are:

τk,λ = κk + ω0

2eB
(
κk + (−1)λω0

)ε + O(ε2)

k, λ = 1, 2, (25)

τ0 = ω0

⎧
⎨

⎩
1 − ε

ω0

eB

(
ω0N0

p̄0
− 1

)

×
∑

s′=1,2

(
ω2

0 − κ2
s′
)−1

⎫
⎬

⎭
+ O(ε2),

ω0 = eB

p̄0 + p3
. (26)

In this approximation, the spectrum of the quasi-electrons in
the constant magnetic field has form:

p0 = p̄0 + ε
ω0N0

p̄0

(
ω0N0

p̄0
− 1

) ∑

s′=1,2

(
ω2

0 − κ2
s′
)−1

+ O(ε2). (27)

Using Eqs. (25) and (26) we obtain for small ε expressions for
matrices (A11) defining the canonical transformation (A1):

us,λ;k,σ = −
{

δλ,1δs,0δλ,σ δs,k

+ sgn
[
ω0 + (−1)λκs

]

√
2

[
δλ,1 + i(−1)σ δλ,2

]

× (
1 − δs,0

)
δs,k

+ ω0
√

ε√
2eBκk |ω0 − κk |δs,0

(
1 − δk,0

)
δσ,1

}
+ O(ε),

vs,λ;s′,λ′ =
{

(−i)λ−1ω0
√

ε√
2eBκs (ω0 + κs)

(
1 − δs,0

)
δs,k

−δs,0
(
1 − δk,0

)
δλ,1δσ,2

ω0
√

ε√
2eBκk (ω0 + κk)

+
√

κk

κs

ω0
[
δλ,1 + i(−1)σ δλ,2

]
ε

2eB
√

2 (κs + κk) |ω0 + (−1)σ κk |
× (

1 − δs,0
) (

1 − δk,0
)
}

+ O(ε). (28)

Substituting χ(x2) given by Eq. (20) in Eq. (8) for �(x),
for small ε we obtain:

�(x) = |�e〉 ⊗ ∣∣�q−ph
〉+ O(ε),

|�e〉 = exp
{
−i
(
p0t + p1x

(1) + p3z
)}

×
(
ĉ†

0

)N0

√
N0!

|0〉c0 . (29)

3 Photon entanglement problem

3.1 General

We recall that a qubit is a two-level quantum-mechanical
system with state vectors (two columns) |ψ〉 = (ψ1, ψ2)

T ∈
H = C

2, 〈ψ ′ |ψ〉 = ψ ′∗
1 ψ1 + ψ ′∗

2 ψ2. An orthogonal basis
|a〉 , a = 0, 1 in H is: |0〉 = (1, 0)T , |1〉 = (0, 1)T ,

〈a ∣∣a′〉 = δaa′,
∑

a=0,1 |a〉〈a| = I, where I = diag (1, 1) .

E.g. two levels can be taken as spin up and spin down
of an electron; or two polarizations of a single photon. A
system, composed of two qubit subsystems A and B with
the Hilbert space HAB = HA ⊗ HB where HA/B = C

2

is a four level system. If |a〉A and |b〉B , a, b = 0, 1,

are orthonormal bases in HA and HB respectively, then
|αb〉 = |a〉 ⊗ |b〉 is a complete and orthonormalized basis in
HAB, |αb〉 = |a〉 ⊗ |b〉 = (a1b1, a1b2, a2b1, a2b2)

T . The
so-called computational basis |�〉s , s = 1, 2, 3, 4, reads:

|�〉1 = |00〉 = (
1 0 0 0

)T
,

|�〉2 = |01〉 = (
0 1 0 0

)T
,

|�〉3 = |10〉 = (
0 0 1 0

)T
,

|�〉4 = |11〉 = (
0 0 0 1

)T
. (30)

A pure state |�〉AB ∈ HAB is called separable iff it can
be represented as: |�〉AB = |�〉A ⊗ |�〉B , |�〉A ∈ HA,

|�〉B ∈ HB . Otherwise, it is entangled. An entanglement
measure M (|�〉AB) of the state |�〉AB is real and positive.
This measure is zero for separable states, and is 1 for maxi-
mally entangled states. In what follows, we use the informa-
tion measure

M (|�〉AB) = S
(
ρ̂A
) = S

(
ρ̂B
)
,

S
(
ρ̂A/B

) = −tr
(
ρ̂A/B log ρ̂A/B

)
,

ρ̂A = trB ρ̂AB =
∑

b

〈b|ρ̂AB |b〉,

ρ̂B = trAρ̂AB =
∑

a

〈a|ρ̂AB |a〉, (31)

where S
(
ρ̂
) = −tr

(
ρ̂ log ρ̂

)
is von Neumann entropy of

ρ̂. One can see that S (ρA) = S (ρB) . Although the entan-
glement measure of a pure state is always zero, its reduced
statistical operators have nonzero entanglement measures.

For a the pure state |�〉AB = ∑4
s=1 υs |�〉s , we obtain:

ρ̂AB = AB |�〉〈�| AB

= [υ1 |00〉 + υ2 |01〉 + υ3 |10〉 + υ4 |11〉]
× [

υ∗
1 〈00| + υ∗

2 〈01| + υ∗
3 〈10| + υ∗

4 〈11|] .
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Then

ρ̂A = B〈0|ρ̂AB |0〉B + B〈1|ρ̂AB |1〉B
= |υ1|2 |0〉 〈0| + υ1υ

∗
3 |0〉 〈1| + |υ2|2 |0〉 〈0|

+ υ2υ
∗
4 |0〉 〈1| + υ3υ

∗
1 |1〉 〈0| + |υ3|2 |1〉 〈1|

+ υ4υ
∗
2 |1〉 〈0| + |υ4|2 |1〉 〈1|

=
(

ρ
(A)
1 1 ρ

(A)
1 2

ρ
(A)
2 1 ρ

(A)
2 2

)

,

ρ
(A)
11 = |υ1|2 + |υ2|2, ρ

(A)
12 = υ1υ

∗
3 + υ2υ

∗
4 ,

ρ
(A)
21 = υ3υ

∗
1 + υ4υ

∗
2 , ρ

(A)
22 = |υ3|2 + |υ4|2. (32)

Calculating the entanglement measure, we may use eigen-
values of the matrix ρ̂A,

ρ̂(A)Pa = λa Pa,

λa = 1

2

(
|υ1|2 + |υ2|2 + |υ3|2 + |υ4|2 + (−1)a y

)
,

Pa =
( |υ1|2+|υ2|2−|υ4|2−|υ3|2+(−1)a y

2(υ3υ
∗
1 +υ4υ

∗
2 )

1

)

,

M (|�〉AB) = −
∑

a=1,2

λa log2 λa = H(z),

H(z) = − [
z log2 z + (1 − z) log2(1 − z)

]
,

z = (1 + y) /2,

y =
[(

|υ1|2 + |υ2|2 − |υ4|2 − |υ3|2
)2

+4|υ1υ
∗
3 + υ2υ

∗
4 |2
]1/2

,
(
0 log2 0 ≡ 0

)
. (33)

Function H(z) is the so-called binary entropy function; see
e.g. Refs. [5,6].

3.2 Entanglement of photons with anti-parallel
polarizations in the model under consideration

Here using solutions of the model under consideration con-
structed in Sect. 2, we study the entanglement of photons
with anti-parallel polarizations by the electron medium and
by the external magnetic field.

Consider the state
∣∣�q−ph

〉
describing quasi-photons, with

different frequencies and with anti-parallel polarizations, λ1

and λ2 �= λ1, i.e., N1,3−λ1 = N2,3−λ2 = 0, N1,λ1 = N2,λ2 =
1:

∣∣�q−ph(λ1, λ2)
〉 = ĉ†

1,λ1
ĉ†

2,λ2
|0〉c ,

|0〉c = |0〉c1 ⊗ |0〉c2 , ĉs,λ |0〉c = 0, (34)

where s = 1, 2.

With account taken of Eqs. (A1) and (28) we can see that
the last equation (34) implies for small ε:

|0〉c = |0〉 − ω0
√

ε

2eB

⎡

⎣
∑

s=1,2

i â†
s,1 + â†

s,2√
κs (ω0 + κs)

⎤

⎦ â†
0 |0〉

+ O(ε). (35)

Then, it follows from Eq. (35) that |0〉c = |0〉 + O(
√

ε).

Taking into account expansion (A1) for state (34), we obtain:

∣∣�q−ph(λ1, λ2)
〉 = ĉ†

1,λ1
ĉ†

2,λ2
|0〉 + O(

√
ε)

=
∑

s,s′=1,2

∑

λ,λ′=1,2

us,λ;2,λ2us,λ;1,λ1 â
†
s′,λ′ â

†
s,λ |0〉

+u0,1;2,λ2

∑

s=1,2

∑

λ=1,2

us,λ;1,λ1 â
†
s,λâ

†
0 |0〉

+
⎛

⎝
∑

s=0,1,2

∑

λ=1,2

us,λ;2,λ2v
∗
s,λ,1,λ1

⎞

⎠ |0〉

+O(
√

ε),
∥
∥�q−ph(λ1, λ2)

∥
∥2 = 1 + O(

√
ε). (36)

We believe that the corresponding free photon nonentan-
gled beam after passing through the macro region, which
consists of the electron media in the presence of the mag-
netic field, is deformed to this form, and there exists an ana-
lyzer detecting a two photon state for measuring the entan-
glement of the initial free photons. The two photon state
|�̃q−ph(λ1, λ2)〉 is represented by the first term in Eq. (36),

∣∣∣�̃q−ph(λ1, λ2)
〉
= D

×
∑

s,s′=1,2

∑

λ,λ′=1,2

us,λ;2,λ2us′,λ′;1,λ1 â
†
s′,λ′ â

†
s,λ |0〉 ,

∥∥∥�̃q−ph

∥∥∥
2 = 1, (37)

where D is a normalization factor. It follows from Eq. (28)
that us,λ;2,λ2us,λ′;1,λ1 = O(ε (�κ)−1). Then at �κ =
|κ2 − κ1| � 1, the two photon state (37) can be reduced
to the following form:

∣∣∣�̃q−ph(λ1, λ2)
〉

= D
∑

λ,λ′

[
u1,λũ2,λ′ + u2,λ′ ũ1,λ

]
â+

1,λâ
+
2,λ′ |0〉

+O
(
(�κ)−1

)
,

us,λ = us,λ;1,λ2 , ũs,λ = us,λ;2,λ1 . (38)
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In terms of the computational basis,

|ϑ1〉 = a+
1,1a

+
2,1 |0〉 , |ϑ2〉 = a+

1,1a
+
2,2 |0〉 ,

|ϑ3〉 = a+
1,2a

+
2,1 |0〉 , |ϑ4〉 = a+

1,1a
+
2,1 |0〉 ,

the state (38) can be rewritten as follows:

∣∣
∣�̃q−ph(λ1, λ2)

〉
= D

4∑

j=1

υ j
∣∣ϑ j
〉
,

D =
(

4∑

i=1

|υi |2
)−1/2

,

υ1 = u1,1ũ2,1 + u2,1ũ1,1, υ4 = υ1,

υ2 = u1,1ũ2,2 + u2,2ũ1,1, υ3 = −υ2. (39)

Let us calculate the entanglement measure M(λ1, λ2) =
M(|�̃q−ph(λ1, λ2)〉) of the state |�̃q−ph(λ1, λ2)〉 as the von
Neumann entropy of the reduced density operator ρ̂(1) of the
subsystem of the first photon,

M(λ1, λ2) = −tr
(
ρ̂(1) log2 ρ̂(1)

)

= −
∑

a=1,2

μa log2 μa

= − [
z log2 z + (1 − z) log2(1 − z)

]
, (40)

where μa, a = 1, 2, are eigenvalues of the operator ρ̂(1).

In fact, we have to calculate the quantity y to obtain the
entanglement measure M(λ1, λ2). At small ε they read:

y = 1 − βε4 + O(ε5),

β = ( p̄0/�κ)4

8(ω0 + (−1)λ1κ1)2(ω0 + (−1)λ2κ2)2 ,

M(λ1, λ2) = −2βε4 log2 ε

+ β

2 ln 2

(
1 − ln

β

2

)
ε4 + O(ε5). (41)

Further, it is convenient for us to choose a reference
frame relative to which the momentum p3 of electrons in
the charged medium is zero, p3 = 0. Then the quantity ω0

is related to the magnetic field B as:

ω0 = eB
√

2eB (N0 + 1/2) + m2
. (42)

We note that the quantity y given by Eq. (41) is singular,
if

ω0 =
{

κ1, if λ1 = 1, λ2 = 2
κ2, if λ1 = 2, λ2 = 1.

(43)

The corresponding to such ω0 strengths of the magnetic field
B, will be called resonant ones. There exist two such resonant
values, B = B1 at ω0 = κ1 for λ1 = 1 and B = B2 at

ω0 = κ2 for λ1 = 2:

B1 = κ1

e

√
(N0 + 1/2)2κ2

1 + m2

+ (N0 + 1/2) κ2
1 ,

B2 = κ2

e

√
(N0 + 1/2)2κ2

2 + m2

+ (N0 + 1/2) κ2
2 . (44)

When B = B1, the expansions

τ1,2 = κ1 + κ1ε

2(κ1 + κ2)eB1
+ O(ε2),

τ2,1 = κ2 −
√

κ1ε

2eB1
+ O(ε) (45)

take place. Similarly, when B = B2, the expansions

τ1,2 = κ1 + κ2ε

2(κ1 + κ2)eB2
+ O(ε2),

τ2,1 = κ2 −
√

κ2ε

2eB2
+ O(ε) (46)

hold. They have a different character than the one given by
Eqs. (25) for similar roots. We suppose that at B = B1 or B =
B2 analytical properties of roots (25) change as functions of
the parameter ε.

From (45) and (46), we find that when a resonant value
B is reached, the entanglement manifests itself already in a
lower order in ε compared to expression (41). For B = B1,

we have:

y = 1 − δ1ε
3 + O(ε4),

δ1 = 1

4(�κ)4(κ1 + κ2)2

(
κ1

eB1

)3

,

M(λ1, λ2) = −3

2
δ1ε

3 log2 ε

+ δ1

2 ln 2

(
1 − ln

δ1

2

)
ε3 + O(ε4), (47)

whereas for B = B2, we obtain:

y = 1 − δ2ε
3 + O(ε4),

δ2 = 1

4(�κ)4(κ1 + κ2)2

(
κ2

eB2

)3

,

M(λ1, λ2) = −3

2
δ2ε

3 log2 ε

+ δ2

2 ln 2

(
1 − ln

δ2

2

)
ε3 + O(ε4). (48)

It can be seen that if the photon polarizations are the same,
λ1 = λ2 then the entanglement measure is equal to zero,
M(1, 1) = M(2, 2) = 0.
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Fig. 1 The entanglement measure as a function of the magnetic field

Fig. 2 The entanglement
measure M(2, 1) as a function
of the electron medium density

4 Illustrative numerical calculations and some final
remarks

In our numerical calculations, we consider all the electrons
in the charge medium located on zero Landau level N0 = 0
and the beam of two photons with polarization λ1 = 2 and
λ2 = 1. It follows from Eq. (41) that the resonant entan-
glement is related to the frequency of that photon whose
polarization vector is directed along the Ox axis at B > 0. If
you change the direction of the magnetic field, B < 0, then
the resonant entanglement will be related to the frequency
of that photon whose polarization vector is directed along
the Oy axis. Therefore in the case under consideration we
have the resonant value of the magnetic field is B = B2, see
Eq. (44).

On the first plot the entanglement measure M (2, 1) is cal-
culated as a function of the magnetic field B for the fixed first
photon frequency ν1 = 103 nm, and different second photon
frequency ν2 = 2πκ−1

2 . The electron density is chosen to be
ρ = 1014el m−3 (Fig. 1).

We see that the entanglement measure increases with
increasing the magnetic field strength B < B2. When the
magnetic field reaches its resonant value B = B2, the entan-

glement measure experiences a jump. A further increase in
the magnetic field B > B2 leads to a smooth decrease in the
entanglement. We also see that the entanglement measure
decreases as the difference in photon frequencies increases.
In the work [3] the entanglement of two photons in the
absence of a magnetic field was considered and it was shown
that the measure of the entanglement is the same for λ1 = 1,

λ2 = 2 and λ1 = 2, λ2 = 1. Here it is demonstrated that
the presence of the magnetic field removes the degeneracy in
photon polarizations and the entanglement measure depends
on the direction of photon polarizations in the beam. Increas-
ing the magnetic field strength increases entanglement, as
long as the magnetic field value is below a certain resonant
value, which is determined by the frequency of the photon
having polarization λ = 1, see Eq. (44). The resonant value
of B increases with decreasing of photon frequencies. But
these values are not large, for example, for photons with fre-
quencies ν2 corresponding to the ultraviolet range 380 nm–
10 nm, the resonant values range from 6 to 225 A/m.

On the second plot the entanglement measure M (2, 1) is
calculated as a function of the electron medium density for
the fixed first photon frequency ν1 = 103 nm, and different
second photon frequencies ν2. The magnetic field B is chosen
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to be B = 2 A/m which is less the corresponding resonant
values (Fig. 2).

Note that the measure of entanglement increases with
increasing density of the electronic medium and with increas-
ing of pre-resonance values of the magnetic field. In our cal-
culations the entanglement measure does not exceed 0.1.
However, such a magnitude of the entanglement is usual
in laboratory experiments, for example, similar magnitudes
appear when an entangled biphoton Fock state of photons is
scattered inside an optical cavity; see Refs. [7,8].

We stress that performed numerical calculations are
intended to illustrate the existence of a possible resonant
entanglement within the framework of the chosen model and
the approximations made. On the other hand, if our consid-
eration motivates possible experiments to detect the effect
of resonant entanglement then there may be an incentive to
refine the corresponding model, in particular, the analytical
formulas (41), (47) and (48) under weaker restrictions on
the density of the electron medium and frequencies of the
photons.
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Appendix A: Diagonalization of the operator Ĥχ (0)

Here we are going to construct a linear canonical transfor-
mation from the operators a†

s,λ and âs,λ, s = 0, 1, 2, to some

new Bose operators ĉ†
s,λ and ĉs,λ, s = 0, 1, 2,

ĉs,λ =
∑

s′=0,1,2;

∑

λ′=1,2

u∗
s′,λ′;s,λâs′,λ′

+vs′,λ′;s,λâ†
s′,λ′ , ĉ0,λ = ĉ0δλ,1,

ĉ†
s,λ =

∑

s=0,1,2;

∑

λ=1,2

us′,λ′;s,λâ†
s′,λ′

+v∗
s′,λ′;s,λâs′,λ′ , ĉ†

0,λ = ĉ†
0δλ,1, (A1)

[
ĉs,λ, ĉs′,λ′

] =
[
ĉ†
s,λ, ĉ

†
s′,λ′

]
= 0,

[
ĉs,λ, ĉ

†
s′,λ′

]
= δs,s′δλ,λ′ , (A2)

in terms of which operator (12) takes the following diagonal
form:

Ĥχ (0) =
∑

s=0,1,2

∑

λ=1,2

τs,λĉ
†
s,λĉs,λ + H̃0,

τ0,λ = τ0δλ,1, τs,λ > 0, H̃0 = const. (A3)

It is known that for the linear transformation (A1) to be
canonical (namely, Eqs. (A2) hold true) it is required that the
matrices u = (

us,λ;s′,λ′
)

and v = (
vs,λ;s′,λ′

)
must satisfy the

set of equations

uu† − vv† = 1, vuT = uvT ; (A4)

(see Ref. [9]). We note that we are looking for the those
canonical transformations that diagonalizes the Hamiltonian
Ĥχ (0) transforming it to form (A3). In this case with account
taken of Eqs. (A2) and (A3) we obtain:
[
Ĥχ (0), ĉs,λ

]
= −τs,λĉs,λ. (A5)

Substituting Eqs. (12) and (A1) into Eq. (A5), we obtain the
following system of equations

(A − τ) u+ − BvT = 0, τ = (
τs,λ

)
,

(A + τ) vT − B+u+ = 0,

A = (
As,λ;s′,λ′

)
, B = (

Bs,λ;s′,λ′
)
. (A6)

In contrast to Eqs. (A4), it is linear in the matrices u and v

which allows one relatively easy its analysis. One can see that
system (A6) is joint if positive numbers τ = (τs,λ) for each
possible set s = 0, 1, 2 and λ = 1, 2 satisfy the equations:
⎛

⎝
∑

s=1,2

ε

τ 2 − κ2
s

− 1 + ω

τ

⎞

⎠

×
⎛

⎝
∑

s′=1,2

ε

τ 2 − κ2
s′

− 1 − ω

τ

⎞

⎠ = 0,

if ε �= 0, (A7)

(τ − κ1)
2 (τ − κ2)

2

×
[(ω

τ

)2 − 1

]
= 0, if ε = 0. (A8)

We now suppose that roots τ of Eq. (A7) are at the same time,
solutions of the equation

∑

s′=1,2

ε

τ 2
s,λ − κ2

s′
= 1 + (−1)λω

τs,λ
(A9)
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with the initial conditions:

τ0,1
∣
∣
ε→0 = ω, τs,1

∣
∣
ε→0 = κs,

τs,2
∣∣
ε→0 = κs . (A10)

Thus, we define three positive roots τ0,1, τ1,1, and τ2,1 for
λ = 1 and two different positive roots τ1,1 and τ1,2 for λ = 2.

Due to condition (A10), these five roots must be reduced to
roots of Eq. (A8) as ε → 0.

Solving now Eqs. (A6), we obtain the set:

us,λ;k,σ =
[(√

τk,σ

κs
+
√

κs

τk,σ

)

×δλ,1 − i (−1)σ δλ,2

2
(
τ 2
k,σ − κ2

s

)
(
1 − δs,0

)

−δs,0δ1,λδ1,σ

√
ω

εr3
k,σ

⎤

⎦
(
1 − δσ,2δk,0

)
qk,σ ,

vs,λ;k,σ =
[(√

τk,σ

κs
−
√

κs

τk,σ

)

×δλ,1 + i (−1)σ δλ,2

2
(
τ 2
k,σ − κ2

s

)
(
1 − δs,0

)

−δs,0δ1,λδ1,σ

√
ω

εr3
k,σ

⎤

⎦(1 − δσ,2δk,0
)
qk,σ . (A11)

Substituting it into Eqs. (A4) and taking into account
Eq. (A9), we derive the following expressions for the quan-
tities qk,σ :

qk,σ =
⎡

⎣ (−1)σ−1 ω

ετ 3
k,σ

+ 2
∑

s=1,2

(
τ 2
k,σ − κ2

s

)−2

⎤

⎦

−1/2

.

We can verify that the Eqs. det u �= 0 and det v �= 0 hold
true such that transformation (A1) is an reversible.

Let us return to Eq. (A3) and finally determine the form of
the constant H̃0. To this end, we consider the vacuum mean
(with respect to vacuum (11)) of the operator Ĥχ (0) in its
initial form (12),

〈
0
∣∣
∣Ĥχ (0)

∣∣
∣ 0
〉
= m2

2ng
+ ω

2
+ ε

2

∑

s=1,2

κ−1
s . (A12)

With account taken of Eqs. (A1) and (A3), we obtain:

〈
0
∣∣
∣Ĥχ (0)

∣∣
∣ 0
〉
= H̃0

+
∑

s,k=0,1,2

∑

λ,λ′=1,2

τk,λ′
∣∣vs,λ;k,λ′

∣∣2 . (A13)

Comparing RHS of Eqs. (A12) and (A13), we obtain the
constant H̃0,

H̃0 = m2

2ng
+ ω

2

−
∑

s,k=0,1,2

∑

λ,λ′=1,2

τk,λ′
∣∣vs,λ;k,λ′

∣∣2

+ε

2

∑

s=1,2

κ−1
s . (A14)
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