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Abstract In spite of the fact that photons do not inter-
act with an external magnetic field unless nonlinearity of
QED is taken into account, the latter field may indirectly
affect photons in the presence of a charged environment. This
opens up an interesting possibility to continuously control the
entanglement of photon beams without using any crystalline
devices. We study this possibility in the framework of an
adequate QED model. In an approximation it was discov-
ered that such entanglement has a resonant nature, namely, a
peak behavior at certain magnetic field strengths, depending
on characteristics of photon beams direction of the magnetic
field and parameters of the charged medium. Numerical cal-
culations illustrating the above-mentioned resonant behavior
of the entanglement measure and some concluding remarks
are presented.

1 Introduction

Entanglement phenomenon is associated with a quantum
non-separability of parts of a composite system. Entangled
states appear in studying principal questions of quantum the-
ory, they are considered as key elements in quantum informa-
tion theory in quantum computations and quantum cryptog-
raphy technologies; see e.g. Refs. [1,2]. In laboratory con-
ditions the entanglement of photon beams is usually created
and studied using some kind of crystalline devices. In spite
of the fact that photons do not interact with an external mag-
netic field, the latter field may indirectly affect photons in the
presence of a charged environment. This opens up an inter-
esting possibility to continuously control the entanglement
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of photon beams. Studying this possibility in the framework
of an adequate QED model, we have discovered that such
entanglement has a resonant nature, namely, a peak behavior
at certain magnetic field strengths depending on characteris-
tics of photon beams and parameters of the charged medium.
This is the study presented in this article. The article is orga-
nized as follows: In Sect. 2, we outline details of the above-
mentioned QED model. This model describes a photon beam
that consists of photons with two different frequencies, mov-
ing in the same direction and interacting with a quantized
charged scalar field (KG field) placed in a constant magnetic
field. Particles of the KG field we call electrons in what fol-
lows and the totality of the electrons is called the electron
medium. Photons with each frequency may have two pos-
sible linear polarizations. In the beginning, we consider the
electron subsystem consisting of only one charged particle.
Both quantized fields (electromagnetic and the KG one) are
placed in a box of the volume V = L3 and periodic con-
ditions are supposed. We believe that in this case the model
already describes the photons interacting with many identical
electrons, and the quantity p = V~! may be interpreted as
the density of the electron medium. In this article, we essen-
tially correct exact solutions used in our previous considera-
tion of similar models; see Ref. [3] and references there. In a
certain approximation, solutions of the model correspond to
two independent subsystems, one of which is a quasi-electron
medium and another one is a set of some quasi-photons. In
the new solutions the orders of smallness of contributions
to quasi-photon states used in calculating the entanglement
measures are accurately determined and an adequate expres-
sion for the spectrum of quasi-electrons derived. Namely,
the latter made it possible to detect the resonant behavior
of the entanglement measure at some resonant values of the
external magnetic field. Finally, in Sect. 4, numerical calcu-
lations illustrating the above-mentioned resonant behavior of
the entanglement measure and some concluding remarks are
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presented. Technical details related to Hamiltonian diagonal-
ization are placed in the Appendix A.

2 QED model and its solutions

Consider photons with two different momenta k; = «;n,
s = 1,2 (frequencies), moving in the same direction
n = (0,0, 1) and interacting with quantized charged scalar
particles-electrons placed in a constant magnetic field B =
Bn, B > 0, potentials of which in the Landau gauge are:
Aexi(r) = (—Bx(z), 0, 0) . In what follows, we use the sys-
tem of units where i = ¢ = 1. The operator potentials
AM(r)y, u = 0,...,3; 1 = (x®, x@ x&) =z) of the
photon beam are chosen in the Coulomb gauge, Al (r) =
(0, A(r)), divA(r) = 0, in fact, they depend only on z,

1

fo-> 3z

s=1,2=1,2

v [ds.5 exp (iks2)

+&:’)L exXp (_IKYZ)] €5,
G50, g 3] =0, |asa,al, | =8548 1
g, g ) | =V, [dgsa, as’,)J = Og,s'O)\, A - (1)

Here a5 and &;r ,, are creation and annihilation operators of
the free photons from the beam, e, are real polarization vec-
tors, (eye;/) = 5A,A’v (ney) =0, X, ) o= 1,2, s, s’ = 1, 2.
We choose the polarization vector in the form e; = (1, 0, 0),
e; = (0, 1, 0). The photon Fock space $),, is constructed by
the creation and annihilation operators and by the vacuum
vector |0)y , ds ) IO)V = 0, Vs, A. Photon vectors are denoted
as |\IJ)V , |\Il)y € 9, . The Hamiltonian of free photon beam
reads:

A At A
= Y Y sl

s=1,21=1,2
Ks = Kkody, Ko = 27'[L7], dy € N, 2)

Electrons are described by a scalar field ¢ (r) interact-
ing with the external constant magnetic field Aleth (r). The
magnetic field does not violate the vacuum stability. After
the canonical quantization, the scalar field and its canonical
momentum 7 (r) become operators ¢(r) and 77 (r). The corre-
sponding Heisenberg operators ¢(x) and 77 (x), x = (x*) =
(t, r), satisfy the equal-time nonzero commutation relations
[@(x), 7 (x")];= = i8(r — r’). These operators act in the
electron Fock space ). constructed by a set of creation and
annihilation operators of the scalar particles and by a corre-
sponding vacuum vector |0). . Electron vectors are denoted
as W), , [W), C He.

The Fock space ) of the complete system is a tensor prod-
uct of the photon Fock space and the electron Fock space,
5 = 9Ny @ He. Vectors from the Fock space §) are denoted
by W), [¥) € 9.

@ Springer

The Hamiltonian of the complete system (composed of
the photon and the electron subsystems) has the following
form:

ﬁ:f{ﬁ+(r)ﬁ(r)

+* @ [P +m?] g )} ar + A,

>

(1) = p+e[AQ) +Acul®)]
p=-iV, e>0. 3)

Consider the amplitude-vector (AV) ¢(x) = (0] @(r)
|W (r)) , which is on the one hand a function on x (the pro-
jection of a vector |W (¢)) onto a one-electron state), on the
other side AV is a vector in the photon Fock space. In the sim-
ilar manner, one could introduce many-electron or positron
amplitudes and interpreted them as AVs of photons interact-
ing with many charged particles. However, we neglect the
existence of such amplitudes in the accepted further approx-
imation, they are related to processes of pair creation. In such
an approximation, one can demonstrate that AV ¢ (x) satisfies
the following equation:

|8 = A, =P2@) = m* [ () = 0. )

It is convenient to pass from the AV ¢(x) toa AV ®(x) =
U, t) p(x), Uy, (t) = exp(i Hyt), which satisfies a KG like
equation (KGE):

[ Bt —m?| @00 =0,

PP o= PE(x) =id" +e [Aﬂ(u) 4 Al (r)] ,

ext
AR (u) = (0, A(u)> Cu=t-—z,
Aw) =U, AU, (1)

1 e . .
= - Z Z o I:as,A exp (—iksu)
¢ s=1,2A=1,2 Ks

+al, exp (ilcsu)] e, )

where ¢ = ap, a = e2/hc = 1/137, and p is the den-
sity of the electron media. The quantity & characterizes the
strength of the interaction between the charged particles and
the photon beam. We suppose that both ¢ and « are small,
this supposition defines the above mentioned approximation.

One can see that in the model under consideration, we have
three commuting integrals of rPotion G p = i0, +ny I:Iy,
w = 0,1, 3; n* = (1,n); Go can be interpreted as the
operator of the total energy and G w» © =1, 3 as momenta
operators in the directions x! and z.



Eur. Phys. J. C (2024) 84:162

Page30of 10 162

Recall that / is an integral of motion if its mean value

~ <> ~
(070) = [ 970 (1% —260) g oy
> >«
do = do — o,
with respect to any ¢ satisfying the KGE does not depend on
time. If 7 is an integral of motion, then i , ﬁﬂ 13“] =0.
If [ isan integral of motion, then, apart from satisfying the
KGE, the wave function could be choose as an eigenfunction

of 1. Then we look for AV @ (x) that are also eigenvectors
for the integrals of motion G,

[ﬁltﬁ“ — mz] ®(x) =0,
Gu®(x) =g, ®(x), n=0,1,3, (6)

1

where g is the total energy and g; 3 are momenta in x" and

z directions. From Eq. (6) it follows
[ Bt = m?| o)
1 N
= —[Hy (u) — (g0 — 83)/2]P(x),

2(ng)
~ ~ ~ 2
H, (u) = H, + {[eBx(z) — g1 —eA! (u)]

2(ng)

+ [iaz — eA? (u)]2 + mz} , @)

where (ng) = go + g3. Consequently, the operator I-AIX (u)
commutes with the operator [A’Mf’“ on solutions ®(x), and
therefore is an integral of motion.

A solution to Eq. (6) has form

() = exp | —igor + 15V + 32|
x U, (u) x (x@), ®)

where the function x (x®) must satisfy the following equa-

tion:
~ 0— &3
A, (0)x (x?) = %x(x@). ©)

In order to solve the latter equation, we pass to a descrip-

tion of the electron motion in the magnetic field in an ade-

quate Fock space, see Ref. [4]. We introduce new creation &g

and annihilation gy Bose operators, [ag, Ezg] =1,

ao =2 (n+0y),

i =@ (n=2,). B)n=(eBx® —g').
1

f At !
2eB (ao —a0> T8

leB /. At o
0 = 7 (ao + ao) ,ag |0>e =0. (10)

@ —

These operators commute with all the photon operators aj 5

andag ;, s = 1,2, 1 = 1, 2. We denote the totality of the free
photon and the introduced electron creation and annihilation
operators as alk and a3, s = 0, 1, 2, where &g’)\ = &561,1
and dg, = aod; 1. The corresponding vacuum vector |0)

reads:
[0) = [0), ®10)¢, @5 10) =0, s=0,1,2. (11)

The operator I:IX (0) can be represented as a quadratic
form in terms this totality of the creation and annihilation
operators,

I:IX 0) = Z Z As,)u;s’,)u’a;r,)\&s’,)n’

s,8'=0,1,2 A,A'=1,2

1 At A A

+§ (BS’)\;S/’)L/CIS’)LLIS/’)\/ + B;‘,A;s/was,;‘axr,l)

n m? n w n € _ eB &
Sototy ) KL o= e=—,
2ng 2 2 & s ng ng

As,k;s’,k’ = [a)(2 - )\)SO,s + K (1 - SO,S)] 8s,s’5A,k’

€
+2 v (1 =80,) (1 =80,5) 8.0
+- a—1
—% e [( jK_ (1= 80.5) So.5/82.1
IS
-i-L (1—30,) 50,;«&,1} ,
Ky
Bonis ' = 3 ;KS/ (1= 80.) (1= 80.7) 83
a1
—% e [( jK_ (1= 80.5) So.5/82.1
-1
DAy 50,s5x,1:| . (12)
Ky

As it is demonstrated in Appendix A, there exists a lin-
ear canonical transformation of the operators asT , and s,
s = 0,1,2, given by Egs. (Al) which diagdnalizes the
Hamiltonian FAIX 0),

Hy (0) = He(0) + Hq—pn(0),

A + m2 w

He(0) = tocheo + 2(ng) + 3

ﬁq—ph(o) = Z Z Ts,)hcjs)\cs,)n
s=1,21=1,2

DD M HSIEED Sy

5.k=0,1,21,2/=1,2 s=1,2
(13)
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where the quantities 7 ; satisfy the conditions to(e = 0) =
w, T2 (€ = 0) = ki being positive roots of the equation

€ (=D w
> o=l :
N

s=1,2 T — K Tk,

0.0 = T00x,1, k=0,1,2. (14)

It is possible to demonstrate that after an unitary trans-
formation, the integral of motion H, () can be separated in
two parts Hgph(u) and He(u):

H,w) = U, (u) Hy 0)U, )~!
= Hyph (1) + He(u),

Hq—pn () = Uy (u) Hq—pn(0)U,, ()",
He(u) = Uy () Ho(0)U, ()",

[ﬁle(u), A, (u)] ~0
[ Ag-pn(w), fy @0 ] =00. (15)

Each of these parts are also integrals of motion due to rela-
tions Egs. (7), (9) and (15). The operator I-AIe corresponds to
the quasi-electron subsystem, while the operator I:Iq,ph to
the subsystem of quasi-photons.

It is useful to consider operators 75,“

73u = éu - ”ul:lq—ph (u)
= 0 =y [ Agpn ) = A, ]
|:73/1.’ 75\)] =O5 Mav=091721 (16)

witch are also integrals of motion. If we assume that at
€ — 0 the photons do not interact with the electronic
medium, then in such a limit the operators 7311 are the energy—
momentum operators of a the free electrons i d,, , and the oper-
ator n qu —ph (u) is the energy—momentum operator of the
free photons H It is therefore appropriate to refer to 79“ as
the quasi-electron energy—momentum, and to n MHq_ph (u)
as the energy—momentum of the quasi-photons.

Then we can choose AV CD(x) to be elgenvectors for the
integrals of motion H. (u), H —ph(u) and P,

He(0)®(x) = Ec®(x),
Hy-pn()® (x) = Eq_pn®(x),
P ®(x) = pu®P(x). (17)

Further, we interpret the eigenvalues p,, as momenta of quasi-
electrons. It follows from Eq. (17) that ® (x) is an eigenvector
for the operator H, (u),

Hy(u)®(x) = E®(x), E = Ee + Eq_ph. (18)

@ Springer

Substituting (8) into Eq. (18), we obtain an equation for
the function x (x?),

Hy0)x(x?) = Ex(x?), (19)

which has the following solutions:

x(x®) = |¢e) ® | g—pn).

st Nix Ny
|qp)= [] QIOM H <C“')

10),
A=1,2 VL \/W ©
N
@
|pe) = Nl [0)¢y, €010)¢, =0, ¢5,110), =0,
2 w
Ee = 1N —, NpeN,
e = ToNo + 2(ng) + > 0
Eqpn= D ) Tl
s=1,21=1,2
Z > e |vscear|”
5, aA=1,2
€ —1
+3 Z k7', Ny e N (20)
s=1,2
Equations (17), (9) and (19) are consistent if
80 = po+ Eq—ph. &1 =p1, 83 = p3 — Eq—ph,
E— 80 — g3’
2
which implies:
80— 83  po—P3
Ee+ Eq—ph = ) + Eq—ph;
(ng) = (np), 21)
and
AR ) )

Taking into account Eq. (20) from (22) we obtain the spec-
trum of quasi-electrons in the constant magnetic field:

2 70 1 2 2
=2eB|—No+ - |+ + s
Po ¢ (a) 0 2> py T m

w28 (23)
- (np)

Since t9(e = 0) = w, the well-known spectrum of a rela-
tivistic spinless particle in the constant magnetic field, fol-
lows from Eq. (23),

~) 1 2 2
P2 =2eB(No+ =)+ p3+m> (24)

2
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For small ¢ the roots %, are:

wQ

Tka = Kk + e+ 0(?
ki = Kk 2¢B (/ck+(—1))‘wo) %
k,x=1,2, (25)
o ((woNoy
T9o=wps1—e— — —1
eB \ po
X Z(a)(z)—/c,)_ + O(e%)
s'=1,2
B
W= — > (26)
Po + p3

In this approximation, the spectrum of the quasi-electrons in
the constant magnetic field has form:

1) X (ob-nd)

s'=1,2
+ 0(&?). (27)

1

woNo woNo
po=po+e

Po

Using Egs. (25) and (26) we obtain for small ¢ expressions for
matrices (A1) defining the canonical transformation (A1):

Us ko = — {3k,185,08)\,03s,k

sgn [wo + (—1)*«]
+
V2
X (1 — 85)0) 33’1{
o~/
N 0/€ 5r0
2eBky |wo — kil

(8.1 4+i(=1)782]

(1= 68k0) 8, }+0(8)

Vy As/ oA = { (_i))\_la)O\/E (] — 8 ()) 5 k
e V2eBk (w0 + k) B
a)oﬁ
=850 (1 = 8k,0) 82,180.2 N TS

L [T wo [8x1 +i(=1)8; 0] e
V ks 2¢ BV/2 (ics 4 i) |wo + (—1)7 k|

x (1= 85,0) (1 = 8k,0) } + 0(e). (28)

Substituting x (x2) given by Eq. (20) in Eq. (8) for ®(x),
for small ¢ we obtain:
D(x) = [De) ® |Pg—ph) + O(e),

|de) = exp {—i (pot + pix® + P3Z)}

(29)

3 Photon entanglement problem
3.1 General

We recall that a qubit is a two-level quantum-mechanical
system with state vectors (two columns) ) = (¥, )T e

H = C2, (Y'|¥) = ¥{*¥1 + ¥5*¥2. An orthogonal basis
la), a = 0, 1in H is: [0) = (1,007, [1) = (0, DT,
(ala’) = Saars Yqeo la)(al = I, where I = diag (1, 1).
E.g. two levels can be taken as spin up and spin down
of an electron; or two polarizations of a single photon. A
system, composed of two qubit subsystems A and B with
the Hilbert space Hap = Ha ® Hp where Ha/p = C?
is a four level system. If |a),4 and |b)p, a, b = 0, 1,
are orthonormal bases in 4 and Hp respectively, then
lab) = |a) ® |b) is a complete and orthonormalized basis in
Hag, lab) = la) ® |b) = (a1b1, a1ba, azby, azby)™ . The
so-called computational basis |®),, s = 1, 2, 3, 4, reads:

1©); =100)=(1000)",
@), =101) = (0100)",
1©); =110)=(0010)",
@), =111)=(0001)". (30)

A pure state |W) 45 € Hap is called separable iff it can
be represented as: (W) 5 = |W)4 ® |W)p, |V)4 € Ha,
|W)p € Hp. Otherwise, it is entangled. An entanglement
measure M (|W) 4p) of the state |V) 4 g is real and positive.
This measure is zero for separable states, and is 1 for maxi-
mally entangled states. In what follows, we use the informa-
tion measure

M (W) ap) = S (pa) = S (bB) .

S(pass) = —tr (pasplog pass) .

pa=trppap =y (blpaslb),
b

P =trapas =y _(alpapla), (31)
a

where S (p) = —tr(plogp) is von Neumann entropy of

0. One can see that S (p4) = S (pp) . Although the entan-

glement measure of a pure state is always zero, its reduced

statistical operators have nonzero entanglement measures.
For a the pure state |V) 5 = Z?:] vs |®), , we obtain:

pag = AV (V| aB
= [v1 [00) + v2 [01) + v3 [10) + vg [11)]
x [Vf(00] + v3 (01] 4 v3(10] 4 vz (11]].

@ Springer
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Then

pa = B(01pap|0)g + B(llpanIl)p
= [v11%10) (0] + v1v3 0) (1] + [v2]*10) (O]
+ vauj [0) (1] + w3 1) (O] + [us] [1) (1]
+uav 1) (0] + |ual [1) (1]
( (A)l p(A)2>
(A)l p(A)z
A) _

p“ = v > + [nl? oY

1012 = U1V3 + v},

P = vsul +uavy, py) = [usl? + ual. (32)

Calculating the entanglement measure, we may use eigen-
values of the matrix o4,

/S(A)Pa = Aa Py,

Aa

1
S (o1 + 2 + s + Jual? + (=17 y)

ot P+ [va |2 —[va 2 —|vs 2 +(= D)%y
2(v3vi4ugvy) ,
1

> halogy ha = H(2),
a=1,2

H(z) = —[zlogy z + (1 — 2) logy(1 — 2)],
z=10+y/2

2
y= [(|v1|2 + o2l = sl = [v3l?)

Pa

M (W) ap) = —

12
4o vl + UZUZ;F] . (01og,0=0). (33)

Function H(z) is the so-called binary entropy function; see
e.g. Refs. [5,6].

3.2 Entanglement of photons with anti-parallel
polarizations in the model under consideration

Here using solutions of the model under consideration con-
structed in Sect. 2, we study the entanglement of photons
with anti-parallel polarizations by the electron medium and
by the external magnetic field.

Consider the state ‘ CI>q,ph> describing quasi-photons, with
different frequencies and with anti-parallel polarizations, A1
and Ay # Ay, 1.6, Ni3—y, = No3—p, =0, N1y = Noj, =
1:

iq)q_Ph()\l’ K2)> = 6I,A162+,A2 |O>C ’
|0>c = |O>c1 ® |0>cz s és,)u |O>c = 07 (34)

where s = 1, 2.

@ Springer

With account taken of Egs. (A1) and (28) we can see that
the last equation (34) implies for small ¢:

wo/e las 1+ as 2 | At
=025 | 2 @t x| 201
£ 0. 3)

Then, it follows from Eq. (35) that |0), = |0) + O (/).
Taking into account expansion (A1) for state (34), we obtain:

| @qpn(A1. 22)) = ¢], &, 10) + O(Ve)
= Z Z uv,)\;2,)\2us,)u;l,klaj/’)h/&;’)» |0)

s,8'=1,2x,A'=1,2

AT At
+U0,1;2,3, Z Z .31, 5. 10)

s=1,2x1=1,2
+Y D usa2avia, | 10)
5s=0,1,21=1,2
+0(Ve),
2
| ®q—pn(r1, 22)[" = 1+ 0(e). (36)

We believe that the corresponding free photon nonentan-
gled beam after passing through the macro region, which
consists of the electron media in the presence of the mag-
netic field, is deformed to this form, and there exists an ana-
lyzer detecting a two photon state for measuring the entan-
glement of the initial free photons. The two photon state
|<f>q,ph (A1, A2)) is represented by the first term in Eq. (36),

}&)q—ph()tl» )»2)> =

At AT
X E E us,)\;2,)u2’/‘s’,k’;1,)\1‘151’)L/as,)L |0),

s,8'=12 1, 1=1,2

where D is a normalization factor. It follows from Eq. (28)
that ug .2 ,Us 1,0, = O(e (AK)_l). Then at Ak =
|k — k1] > 1, the two photon state (37) can be reduced
to the following form:

Hz —1, 37)

‘&)q—ph(kl s )¥2)>

=D Z [ul,)\ﬁz,y + MZ,)L/IZL)&] &iA&ZA/ |0)

Py
+0 ((Alc)_l) ,
Ugp = Us jilhg> U = Ug pi2.0- (38)
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In terms of the computational basis,

+ o+ + o+
[01) = a9 10), [92) = a9z, 10),

[93) = ai2a2+,1 [0}, |94) = ailaZI [0},

the state (38) can be rewritten as follows:

4
‘éq—ph(h’ A2)> =D v;|v)),
j=1

4 —1/2
D=<Z]mﬁ ,
i=1

vl = uy,Uo,1 + Uz 1,1, Vs = U,

vy =uy i + Uz iy, U3 = —u2. (39

Let us calculate the entanglement measure M (A1, Ap) =
M (|®q—ph(r1, 12))) of the state |®q—_pn (A1, A2)) as the von
Neumann entropy of the reduced density operator 51 of the
subsystem of the first photon,

MG, 22) = —te (5P log, 5V

=- Z Ma 108y fa
a=1,2

= —[zlogyz + (1 — 2)log, (1 — 2)] (40)

where 11y, a = 1,2, are eigenvalues of the operator 51,
In fact, we have to calculate the quantity y to obtain the
entanglement measure M (A1, A2). At small ¢ they read:

y=1-g"+0(@),

g (Po/Ak)*

8(wo + (=D k1)2(wo + (—1)*2k2)%"
M (i, ) = —2Be*log, ¢

B B 5
+21n2<1 ln2> + 0@, 41)

Further, it is convenient for us to choose a reference
frame relative to which the momentum p3 of electrons in
the charged medium is zero, p3 = 0. Then the quantity wq
is related to the magnetic field B as:

eB
wy = .
V2eB (No + 1/2) + m?

(42)

We note that the quantity y given by Eq. (41) is singular,
if
{Kl, ifa =1, =2
wo =

Ky, ifA; =2, Ay=1. @3)

The corresponding to such wy strengths of the magnetic field
B, will be called resonant ones. There exist two such resonant
values, B = By at wg = «; for .y = 1 and B = B, at

wo = kp for Ay = 2:

B =L J(No+ 1/t +m?
e
+ (No +1/2) k2,
K2
By = —=/(Ng + 1/2)2«2 2
2= 2o+ 17223 +m

+ (No + 1/2) k3. (44)

When B = Bj, the expansions

T2 =K1 +L+ 0(e?),
' 2(k1 + k2)e By
K1€&
7,1 = K2 — 2B, + O (¢e) 45)

take place. Similarly, when B = B,, the expansions

K+ 240
' 2(k1 + k2)eBy '

K&
QJ=m—J§§+0® (46)

hold. They have a different character than the one given by
Eqgs. (25) for similar roots. We suppose thatat B = Bjor B =
B> analytical properties of roots (25) change as functions of
the parameter ¢.

From (45) and (46), we find that when a resonant value
B is reached, the entanglement manifests itself already in a
lower order in ¢ compared to expression (41). For B = By,
we have:

71,2 =

y=1=38+ 0",

5 — 1 K13
' (A e + k)2 \eBr )

3
M(Ay, Ap) = —58183 log, &

+5—‘ | —ma &+ 0(h (47)
2In2 2 ’

whereas for B = B,, we obtain:

y=1-68¢+ 0(h),

5 — 1 K2 3
2T 400k + )2 \eBy )

3
MO, A2) = —53283 log, &

82 82\ 3 4
+21n2 (l ln2>8 + O(eY). (48)

It can be seen that if the photon polarizations are the same,
A1 = X, then the entanglement measure is equal to zero,
M,1)=MQ2,2)=0.
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Fig. 1 The entanglement measure as a function of the magnetic field

Fig. 2 The entanglement
measure M (2, 1) as a function
of the electron medium density

M(2,1)

0.06F
0.05
0.04F
0.03F
0.02f

0.01

— Vv, =965 nm; B, =2.34 A/m
— Vo =947 nm; B, = 2.39 A/m
—— Vo =922 nm; By =245 A/m
— Vv =899 nm; B, = 2.51 A/m
— Vvp =855 nm; B, = 2.64 A/m
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Vo = 947 nm
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— Vo = 899 nm
— Vo = 855 nm

2

4 Tllustrative numerical calculations and some final
remarks

In our numerical calculations, we consider all the electrons
in the charge medium located on zero Landau level Ny = 0
and the beam of two photons with polarization A = 2 and
Az = 1. It follows from Eq. (41) that the resonant entan-
glement is related to the frequency of that photon whose
polarization vector is directed along the Ox axis at B > 0. If
you change the direction of the magnetic field, B < 0, then
the resonant entanglement will be related to the frequency
of that photon whose polarization vector is directed along
the Oy axis. Therefore in the case under consideration we
have the resonant value of the magnetic field is B = B,, see
Eq. (44).

On the first plot the entanglement measure M (2, 1) is cal-
culated as a function of the magnetic field B for the fixed first
photon frequency vy = 103 nm, and different second photon
frequency vo = 2mk, ', The electron density is chosen to be
p = 10"el m~3 (Fig. 1).

We see that the entanglement measure increases with
increasing the magnetic field strength B < B,. When the
magnetic field reaches its resonant value B = B,, the entan-

@ Springer
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glement measure experiences a jump. A further increase in
the magnetic field B > B; leads to a smooth decrease in the
entanglement. We also see that the entanglement measure
decreases as the difference in photon frequencies increases.
In the work [3] the entanglement of two photons in the
absence of a magnetic field was considered and it was shown
that the measure of the entanglement is the same for A = 1,
A = 2and Ay = 2, A, = 1. Here it is demonstrated that
the presence of the magnetic field removes the degeneracy in
photon polarizations and the entanglement measure depends
on the direction of photon polarizations in the beam. Increas-
ing the magnetic field strength increases entanglement, as
long as the magnetic field value is below a certain resonant
value, which is determined by the frequency of the photon
having polarization A = 1, see Eq. (44). The resonant value
of B increases with decreasing of photon frequencies. But
these values are not large, for example, for photons with fre-
quencies vy corresponding to the ultraviolet range 380 nm—
10 nm, the resonant values range from 6 to 225 A/m.

On the second plot the entanglement measure M (2, 1) is
calculated as a function of the electron medium density for
the fixed first photon frequency v; = 103 nm, and different
second photon frequencies v,. The magnetic field B is chosen
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to be B = 2 A/m which is less the corresponding resonant
values (Fig. 2).

Note that the measure of entanglement increases with
increasing density of the electronic medium and with increas-
ing of pre-resonance values of the magnetic field. In our cal-
culations the entanglement measure does not exceed 0.1.
However, such a magnitude of the entanglement is usual
in laboratory experiments, for example, similar magnitudes
appear when an entangled biphoton Fock state of photons is
scattered inside an optical cavity; see Refs. [7,8].

We stress that performed numerical calculations are
intended to illustrate the existence of a possible resonant
entanglement within the framework of the chosen model and
the approximations made. On the other hand, if our consid-
eration motivates possible experiments to detect the effect
of resonant entanglement then there may be an incentive to
refine the corresponding model, in particular, the analytical
formulas (41), (47) and (48) under weaker restrictions on
the density of the electron medium and frequencies of the
photons.
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Appendix A: Diagonalization of the operator H ¥ (0)

Here we are going to construct a linear canonical transfor-
mation from the operators aj , and asy, s =0,1,2, tosome

new Bose operators 61' ,andésy, s =0,1,2,
N « n
Cs,p = E : E : Ug 5,08 )
§'=0,1,2; '=1,2
AT R R
ST N s AU 575 A= e
+v5 3015, ag ; Co.n = Cody 1

AT AT
CS,A = E E MS,,A/QSv)Las/,A/

s=0,1,2; A=1,2

. A At AF
FVg 350857005 € = Codats (A1)
A oA A At
[é.00 é5r00] = [Cs,w Cs’,/\’] =0,
[6M, & N] = 858 (A2)

in terms of which operator (12) takes the following diagonal
form:

HO) = > > Ts,)»éj’)\és,)\. + Ho,

5=0,1,2 2=1,2

70,0 = T00x,1, Tsa > 0, I:Io = const. (A3)

It is known that for the linear transformation (A1) to be
canonical (namely, Eqgs. (A2) hold true) it is required that the
matrices u = (Ms,x;s/,)d) and v = (Us,x;s’,x/) must satisfy the
set of equations

uu' — oo’ = 1, vul = uvT; (A4)

(see Ref. [9]). We note that we are looking for the those
canonical transformations that diagonalizes the Hamiltonian
H + (0) transforming it to form (A3). In this case with account
taken of Eqs. (A2) and (A3) we obtain:

[ Ay @600 = =760 (AS)

Substituting Egs. (12) and (A1) into Eq. (A5), we obtain the
following system of equations
(A—1) ut — BT = 0, 7= (Ts,x) ,
A+t = Btut =0,
A= (As,)»;s’,}»’) , B= (Bs,)\;s’,)\’)-
In contrast to Eqs. (A4), it is linear in the matrices u and v
which allows one relatively easy its analysis. One can see that

system (A6) is joint if positive numbers T = (t,,,) for each
possible set s = 0, 1, 2 and A = 1, 2 satisfy the equations:

(A6)

Y 1.
2 _ 2
s:l,ZT Ks T
€ w

s'=1,2 s’
ife #0, (A7)
(r — k1) (1 — Kk2)*

w\ 2
><|:<—> —1}=o, ife =0. (A8)

T

We now suppose that roots T of Eq. (A7) are at the same time,
solutions of the equation

€ -’
Z 2 7 =1+

- KS/ TS,A

(A9)
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with the initial conditions: <0 ’ﬁ[ (O)‘ 0) m? + w " € Z —1 (A12)
x Tong L2 2L
Tos1|e—>0 =, Ts,1|6_)0 = Ks» o
Ty ‘5»0 = K. (A10) With account taken of Egs. (A1) and (A3), we obtain:
Thus, we define three positive roots 1o 1, 71,1, and 12 1 for (0 ’ﬁx (0)‘ 0) = Hy
A = 1 and two different positive roots 71,1 and 7y » for A = 2. )
Due to condition (A10), these five roots must be reduced to + Z Z Th.y! }US’)~§"’)‘/| : (A13)

roots of Eq. (A8) ase — 0.
Solving now Egs. (A6), we obtain the set:

[ Tk,o | Ks
Us rk,o = |:< K_ + . )
s k,o

81— i (=17 832
x 2 22 (1= 84,0)
2(1,30—KS2)

w
850812810 [—— | (1 = 85.28¢.0) .o »
ery .

Tk,o Ks
Vs, ak,o = K_ - ™
K N

S +i(—=1)% 850
x 2 22 (1= 84,0)
2(’13‘0 —KSZ)

w
_8s,081,k51,0 3 (1 - 80,28k,0) dk,o - (All)

€ry ,
Substituting it into Eqs. (A4) and taking into account
Eq. (A9), we derive the following expressions for the quan-
tities g o :

—1/2

(GROMIC =
dk,0c = - 3 +2 Z (Tkz,a _KS2>

€To s=1,2

We can verify that the Eqgs. detu # 0 and detv # 0 hold
true such that transformation (A1) is an reversible.

Let us return to Eq. (A3) and finally determine the form of
the constant ﬁo. To this end, we consider the vacuum mean
(with respect to vacuum (11)) of the operator ﬁx (0) in its
initial form (12),

@ Springer

5.k=0,1,2,3'=1,2

Comparing RHS of Egs. (A12) and (A13), we obtain the
constant Hy,

I:I mz + w
0=-—++=
2ng 2
2
- Z Z Tk, \ |Us,)\;k,)\/|
5.k=0,1,22,2'=1,2
€ —1
+5 >kl (A14)
s=1,2
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