
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=goms20

Optimization Methods and Software

ISSN: 1055-6788 (Print) 1029-4937 (Online) Journal homepage: https://www.tandfonline.com/loi/goms20

Complexity and performance of an Augmented
Lagrangian algorithm

E. G. Birgin & J. M. Martínez

To cite this article: E. G. Birgin & J. M. Martínez (2020): Complexity and performance
of an Augmented Lagrangian algorithm, Optimization Methods and Software, DOI:
10.1080/10556788.2020.1746962

To link to this article: https://doi.org/10.1080/10556788.2020.1746962

Published online: 31 Mar 2020.

Submit your article to this journal

Article views: 20

View related articles

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=goms20
https://www.tandfonline.com/loi/goms20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/10556788.2020.1746962
https://doi.org/10.1080/10556788.2020.1746962
https://www.tandfonline.com/action/authorSubmission?journalCode=goms20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=goms20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/10556788.2020.1746962
https://www.tandfonline.com/doi/mlt/10.1080/10556788.2020.1746962
http://crossmark.crossref.org/dialog/?doi=10.1080/10556788.2020.1746962&domain=pdf&date_stamp=2020-03-31
http://crossmark.crossref.org/dialog/?doi=10.1080/10556788.2020.1746962&domain=pdf&date_stamp=2020-03-31

OPTIMIZATION METHODS & SOFTWARE
https://doi.org/10.1080/10556788.2020.1746962

Complexity and performance of an Augmented Lagrangian
algorithm

E. G. Birgin a and J. M. Martínez b

aDept. of Computer Science, Institute of Mathematics and Statistics, University of São Paulo, São Paulo, Brazil;
bDept. of Applied Mathematics, Institute of Mathematics, Statistics and Scientific Computing, State University
of Campinas, Campinas, Brazil

ABSTRACT
Algencan is a well established safeguarded Augmented Lagrangian
algorithm introduced in [R. Andreani, E. G. Birgin, J. M. Martínez,
and M. L. Schuverdt, On Augmented Lagrangian methods with gen-
eral lower-level constraints, SIAM J. Optim. 18 (2008), pp. 1286–1309].
Complexity results that report its worst-case behaviour in terms of
iterations and evaluations of functions and derivatives that are nec-
essary to obtain suitable stopping criteria are presented in this work.
In addition, its computational performance considering all problems
from the CUTEst collection is presented, which shows that it is a use-
ful tool for solving large-scale constrained optimization problems.

ARTICLE HISTORY
Received 4 July 2019
Accepted 21 March 2020

KEYWORDS
Nonlinear programming;
Augmented Lagrangian
methods; complexity;
numerical experiments

2010MATHEMATICS
SUBJECT
CLASSIFICATIONS
90C30; 65K05; 49M37; 90C60;
68Q25

1. Introduction

Augmented Lagrangian methods have a long tradition in numerical optimization. The
main ideas were introduced by Powell [49], Hestenes [43], and Rockafellar [51]. At each
(outer) iteration of an Augmented Lagrangian method one minimizes the objective func-
tion plus a term that penalizes the non-fulfilment of the constraints with respect to suitable
shifted tolerances. Whereas the classical external penalty method [37,38] needs to employ
penalty parameters that tend to infinity, the shifting technique aims to produce conver-
gence by means of displacements of the constraints that generate approximations to a
solution with moderate penalty parameters [20]. As a by-product, one obtains approxi-
mations of the Lagrange multipliers associated with the original optimization problem.
The safeguarded version of the method [1] discards Lagrange multipliers approxima-
tions when they become very large. The convergence theory for safeguarded Augmented
Lagrangianmethods was given in [1,20]. Recently, examples that illustrate the convenience
of safeguarded Augmented Lagrangians were given in [47].

Conn et al. [28] produced the celebrated package Lancelot, that solves constrained opti-
mization problems using Augmented Lagrangians in which the constraints are defined
by equalities and bounds. The technique was extended to the case of equality constraints

CONTACT E. G. Birgin egbirgin@ime.usp.br Dept. of Computer Science, Institute of Mathematics and Statistics,
University of São Paulo, Rua do Matão, 1010, Cidade Universitária, 05508-090 São Paulo, SP, Brazil

© 2020 Informa UK Limited, trading as Taylor & Francis Group

http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/10556788.2020.1746962&domain=pdf&date_stamp=2020-03-30
http://orcid.org/0000-0002-7466-7663
http://orcid.org/0000-0003-3331-368X
mailto:egbirgin@ime.usp.br

2 E. G. BIRGIN AND J. M. MARTÍNEZ

plus linear constraints in [27]. Differently from Lancelot, in Algencan [1,20] (see, also,
[2,3,14,15,17–19]), the Augmented Lagrangian is defined not only with respect to equal-
ity constraints but also with respect to inequalities. The theory presented in [1] and [20]
admits the presence of lower-level constraints not restricted to boxes or polytopes. How-
ever, in the practical implementations of Algencan, lower-level constraints are always
boxes.

In the last 10 years, the interest in Augmented Lagrangian methods was renewed due to
their ability to solve large-scale problems. Dostál and Beremlijski [33,34] employed Aug-
mented Lagrangian methods for solving quadratic programming problems that appear in
structural optimization. Fletcher [39] applied Augmented Lagrangian ideas to the min-
imization of quadratics with box constraints. Armand and Omheni [12] employed an
Augmented Lagrangian technique for solving equality constrained optimization prob-
lems and handled inequality constraints by means of logarithmic barriers [13]. Curtis
et al. [30,31] defined an Augmented Lagrangian algorithm in which decreasing the penalty
parameters is possible following intrinsic algorithmic criteria. Local convergence results
without constraint qualifications were proved in [36]. The case with (possibly complemen-
tarity) degenerate constraints was analyzed in [46]. Chatzipanagiotis and Zavlanos [26]
defined and analyzed Augmented Lagrangian methods in the context of distributed
computation. An Exact Penalty algorithm for constrained optimization with complex-
ity results was introduced in [25]. Grapiglia and Yuan [41] analyzed the complexity of
an Augmented Lagrangian algorithm for inequality constraints based on the approach
of Sun and Yuan [56] and assuming that a feasible initial point is available. For many
structured problems that appear in applications, the well-known ADMM (Alternating
Direction Method of Multipliers), that may be interpreted as an Augmented Lagrangian
variation, exhibits remarkable practical performance. Several complexity and conver-
gence analyses for ADMM are available in the literature. (See [44] and the references
therein.)

In this paper, we report iteration and evaluation complexity results for Algencan,
including complexity results for the bound-constraint solver that is used to tackle the
Augmented Lagrangian subproblems. In addition, we also report numerical experiments
and some implementation features of the current implementation of Algencan that, as all
its predecessors, fits within the model algorithm described in [1,20]. The current imple-
mentation of Algencan preserves the main characteristics of previous implementations:
constraints are considered in the form of equalities and inequalities, without slack vari-
ables, and box-constrained subproblems are solved using active-set strategies. A new
acceleration procedure is introduced by means of which an approximate KKT point may
be obtained. It consists in applying a local Newton method to a semismooth KKT sys-
tem [48,50] starting from every Augmented Lagrangian iterate. Exhaustive numerical
experimentation is given and all the software employed is available on a free basis in
http://www.ime.usp.br/∼ egbirgin/, so that computational results are fully reproducible.

The paper is organized as follows. In Section 2, we recall the definition of Algencan
with box lower-level constraints and we review global convergence results. In Section 3,
we prove complexity properties. In Section 4, we describe the algorithm for solving box-
constrained subproblems and present its complexity results. In Section 5, we describe the
computer implementation. In Section 6, we report numerical experiments. Conclusions
are given in Section 7.

http://www.ime.usp.br/{{\mathsurround =\opskip $\sim $}}egbirgin/

OPTIMIZATION METHODS & SOFTWARE 3

Notation: If C ⊆ R
n is a convex set, PC(v) denotes the Euclidean projection of v onto

C. If �, u ∈ R
n, [�, u] denotes the box defined by {x ∈ R

n | � ≤ x ≤ u}. If a, b ∈ R, [a, b]n
denotes the box defined by {x ∈ R

n | a ≤ xi ≤ b for i = 1, . . . , n}. (·)+ = max{0, ·}. If v ∈
R
n, v+ denotes the vector with components (vi)+ for i = 1, . . . , n. If v,w ∈ R

n, min{v,w}
denotes the vector with components min{vi,wi} for i = 1, . . . , n. The symbol ‖ · ‖ denotes
the Euclidean norm. Rn+ = {x ∈ R

n | x ≥ 0}.

2. Augmented Lagrangian

In this section, we consider constrained optimization problems defined by

Minimize
x∈Rn

f (x) subject to h(x) = 0, g(x) ≤ 0, and � ≤ x ≤ u, (1)

where f : Rn→ R, h : Rn→ R
m, and g : Rn→ R

p are continuously differentiable. We
assume �, u ∈ R

n, i.e. −∞ < �i and ui < +∞ for i = 1, . . . , n. Since we are not dealing
with convex objective functions, the existence of solutions of subproblems (to be defined
later) is guaranteed by this boundedness assumption.

We consider the Augmented Lagrangian method in the way analyzed in [1] and [20].
This method has interesting global theoretical properties. On the one hand, every limit
point is a stationary point of the problem of minimizing the infeasibility measure
‖h(x)‖2 + ‖g(x)+‖2 subject to the bound constraints � ≤ x ≤ u. On the other hand, every
feasible limit point satisfies a sequential optimality condition [5–7]. This implies that every
feasible limit point is KKT-stationary under very mild constraint qualifications [6,7]. The
basic definition of themethod and themain theoretical results are reviewed in this section.

The Augmented Lagrangian function [43,49,51] associated with problem (1) is
defined by

Lρ(x, λ,μ) = f (x)+ ρ

2

[m∑
i=1

(
hi(x)+ λi

ρ

)2
+

p∑
i=1

(
gi(x)+ μi

ρ

)2

+

]

for all x ∈ [�, u], ρ > 0, λ ∈ R
m, and μ ∈ R

p
+.

Algorithm 2.1 below is a safeguarded Augmented Lagrangian method in the sense that
approximations of the Lagrangemultipliers are estimated at every iteration but are ignored
for computing the new iterate if their sizes exceed user-given values represented by λmin,
λmax, andμmax. The adjective ‘safeguarded’ for this type ofmethods seems to be due to [47].

Algorithm 2.1: Assume that x0 ∈ R
n, λmin < λmax, λ̄1 ∈ [λmin, λmax]m, μmax > 0,

μ̄1 ∈ [0,μmax]p, ρ1 > 0, γ > 1, 0 < τ < 1, and {εk}∞k=1 are given. Initialize k← 1.

Step 1. Find xk ∈ [�, u] as an approximate solution to

Minimize
x∈Rn

Lρk(x, λ̄
k, μ̄k) subject to � ≤ x ≤ u (2)

satisfying ∥∥∥P[�,u] (xk −∇Lρk(x
k, λ̄k, μ̄k)

)
− xk

∥∥∥ ≤ εk. (3)

4 E. G. BIRGIN AND J. M. MARTÍNEZ

Step 2. Define

Vk = min

{
−g(xk), μ̄

k

ρk

}
.

If k = 1 or

max
{
‖h(xk)‖, ‖Vk‖

}
≤ τ max

{
‖h(xk−1)‖, ‖Vk−1‖

}
, (4)

choose ρk+1 = ρk. Otherwise, define ρk+1 = γρk.
Step 3. Compute

λk+1 = λ̄k + ρkh(xk) and μk+1 =
(
μ̄k + ρkg(xk)

)
+
. (5)

Compute λ̄k+1 ∈ [λmin, λmax]m and μ̄k+1
i ∈ [0,μmax]p. Set k← k+ 1 and go to

Step 1.

Algorithm 2.1 iterates by approximately minimizing the Augmented Lagrangian func-
tion subject to the bound constraints and updating the penalty parameter and the Lagrange
multipliers. Test (4) takes into account improvements of feasibility and complementarity.
If both feasibility and complementarity were improved, it is considered that the penalty
parameter is sufficiently large and, thus, it is not increased. Otherwise, it is multiplied by
γ > 1. The Lagrange multipliers λk+1 and μk+1 associated with the current approxima-
tion to the solution xk+1 are estimated by (5) at Step 3. In the same step, the safeguarded
values λ̄k+1 and μ̄k+1 are computed. It should be noted that, in theory, these values do not
need to be related to the Lagrangemultipliers λk+1 andμk+1 at all. However, in practise, we
proceed as follows. If λk+1 ∈ [λmin, λmax]m andμk+1 ∈ [0,μmax]p, we define λ̄k+1 = λk+1
and μ̄k+1 = μk+1. Otherwise, λ̄k+1 and μ̄k+1 may be given by any other arbitrary choice.
The projection of λk+1 and μk+1 onto the corresponding boxes is a possibility; as well as
it is a possibility setting λ̄k+1 = 0 and μ̄k+1 = 0. The problem of finding an approximate
minimizer of Lρk(x, λ̄

k, μ̄k) onto [�, u] in the sense of (3) can always be solved. In fact, due
to the compactness of [�, u], a global minimizer, that obviously satisfies (3), always exists.
Moreover, local minimization algorithms are able to find an approximate stationary point
satisfying (3) in a finite number of iterations. Therefore, given an iterate xk, the iterate xk+1
is well defined. (A way of choosing εk in (3) was introduced in [35], where, employing the
equivalence between the Augmented Lagrangian and the Proximal Point method applied
to the dual problem, the convergence on convex problemswas analyzed. See, also, [52–55].)
So, Algorithm 2.1 generates an infinite sequence {xk}whose properties are surveyed below.
Of course, as it will be seen later, suitable stopping criteria can be defined bymeans ofwhich
acceptable approximate solutions to (1) are usually obtained.

Algorithm 2.1 has been presented without a ‘stopping criterion’. This means that, in
principle, the algorithm generates an infinite sequence of primal iterates xk and Lagrange-
multiplier estimators. Complexity results presented in this work report the worst-case
effort that could be necessary to obtain different properties, that may be used as stopping
criteria in practical implementations or not. We believe that the interpretation of these
results helps to decide which stopping criteria should be used in a practical application.

OPTIMIZATION METHODS & SOFTWARE 5

The relevant theoretical properties of this algorithm are the following:

(1) Every limit point x∗ = limk∈K xk of the sequence generated by the algorithm satisfies
the complementarity condition

μk+1
i = 0 whenever gi(x∗) < 0 (6)

for k ∈ K large enough. (See [20, Theorem 4.1].)
(2) Every limit point x∗ of the sequence generated by the algorithm satisfies the first-order

optimality conditions of the problem of minimizing the infeasibility measure subject
to the box constraints given by

Minimize ‖h(x)‖2 + ‖g(x)+‖2 subject to � ≤ x ≤ u. (7)

(See [20, Theorem 6.5].)
(3) If, for all k ∈ {1, 2, . . .}, xk is an approximate global minimizer of Lρk(x, λ̄

k, μ̄k) onto
[�, u] with tolerance η > 0, every limit point of {xk} is a global minimizer of the
infeasibility measure ‖h(x)‖2 + ‖g(x)+‖2. Condition (3) does not need to hold in this
case. (See [20, Theorem 5.1].)

(4) If, for all k ∈ {1, 2, . . .}, xk is an approximate global minimizer of Lρk(x, λ̄
k, μ̄k)

onto [�, u] with tolerance ηk ↓ 0, in the sense that it satisfies Lρk(x
k, λ̄k, μ̄k) ≤

Lρk(x, λ̄
k, μ̄k)+ ηk for all x ∈ [�, u], then every feasible limit point of {xk} is a

global minimizer of the general constrained minimization problem (1). As before,
condition (3) is not necessary in this case. (See [20, Theorem 5.2].)

(5) If εk ↓ 0, every feasible limit point x∗ = limk∈K xk of the sequence generated by the
algorithm satisfies the sequential optimality condition AKKT [5] given by

lim
k∈K

∥∥∥P[�,u] (xk − (∇f (xk)+∇h(xk)λk+1 +∇g(xk)μk+1
))
− xk

∥∥∥ = 0 (8)

and

lim
k∈K

max{‖h(xk)‖∞, ‖min{−g(xk),μk+1}‖∞} = 0. (9)

(See [20, Theorem 6.4].)

Under an additional Lojasiewicz-like condition, it is obtained that limk∈K
∑p

i=1 μk+1
i

gi(xk) = 0 (see [10]). Moreover, in [4], it was proved that an even stronger sequential opti-
mality condition is satisfied by the sequence {xk}, which implies that Algencan generates
bounded approximations to Lagrange multipliers under weak constraint qualifications,
even in the case that the set of Lagrange multipliers at the solution is unbounded.

These properties say that, even if εk does not tend to zero, Algorithm 2.1 finds stationary
points of the infeasibilitymeasure ‖h(x)‖2 + ‖g(x)+‖2 subject to � ≤ x ≤ u and that, when
εk tends to zero, feasible limit points satisfy a sequential optimality condition. Thus, under
very weak constraint qualifications, feasible limit points satisfy Karush-Kuhn-Tucker con-
ditions. See [6,7]. Some of these properties, but not all, are shared by other constrained
optimization algorithms. For example, the property that feasible limit points satisfy opti-
mality KKT conditions is proved to be satisfied by other optimization algorithms only
under much stronger constraint qualifications than the ones required by Algorithm 2.1.

6 E. G. BIRGIN AND J. M. MARTÍNEZ

Moreover, the Newton-Lagrange method may fail to satisfy approximate KKT conditions
even when it converges to the solution of rather simple constrained optimization problems
[8,9].

Augmented Lagrangian implementations have a modular structure. At each iteration,
a box-constrained optimization problem is approximately solved. The efficiency of the
Augmented Lagrangian algorithm is strongly linked to the efficiency of the box-constraint
solver.

Algencan may be considered to be a conservative variant of the Augmented Lagrangian
framework. For example, subproblems are solved with relatively high precision, instead
of stopping subproblem solvers prematurely according to information related to the con-
strained optimization landscape. It could be argued that solving subproblems with high
precision at points that may be far from the solution represents a waste of time. Nev-
ertheless, our point of view is that saving subproblem iterations when one is close to a
subproblem solution is not worthwhile because in that region Newton-like solvers tend
to be very fast; and accurate subproblems’ solutions help to produce better approxima-
tions of Lagrange multipliers. Algencan is also conservative when subproblems’ solvers
use minimal information about the structure of the Augmented Lagrangian function they
minimize. The reason for this decision is connected to the modular structure of Algencan.
Subproblem solvers are continuously being improved due to the continuous and fruitful
activity in bound-constraint minimization. Therefore, we aim to take advantage of those
improvements with minimal modifications of subproblem algorithms when applied to
minimize Augmented Lagrangians.

3. Complexity

This section is devoted to worst-case complexity results related to Algorithm 2.1.
Algorithm 2.1 was not devised with the aim of optimizing complexity. Nevertheless, our
point of view is that the complexity analysis that follows helps to understand the actual
behaviour of the algorithm, filling a gap in the convergence theory.

By (5) and straightforward calculations, we have that, for all k = 1, 2, 3, . . .,

∇f (xk)+∇h(xk)λk+1 + ∇g(xk)μk+1 = ∇Lρk(x
k, λ̄k, μ̄k).

Therefore, the fulfilment of

‖P[�,u](xk −∇Lρk(x
k, λ̄k, μ̄k))− xk)‖ ≤ ε (10)

implies that the projected gradient of the Lagrangian at xk with multipliers λk+1 and
μk+1 approximately vanishes with precision ε. The approximate annihilation of the
projected gradient of the Lagrangian is a necessary optimality condition for minimizers
of problem (1). Thus, numerical algorithms for solving (1) generally stop when xk ∈ [�, u],
λk+1 ∈ R

m, and μk+1 ∈ R
p
+ are such that

‖P[�,u](xk − [∇f (xk)+∇h(xk)λk+1 +∇g(xk)μk+1]− xk)‖ ≤ ε

for a small tolerance ε > 0 and, additionally, feasibility and complementarity conditions
hold for a small tolerance δ > 0, i.e.

‖h(xk)‖∞ ≤ δ, ‖g(xk)+‖∞ ≤ δ, and, for all j = 1, . . . , p, μk+1
j = 0 if gj(xk) < −δ. (11)

OPTIMIZATION METHODS & SOFTWARE 7

The next lemma shows that the fulfilment of

max{‖h(xk)‖∞, ‖Vk‖∞} ≤ δ (12)

implies that (11) holds. For this reason, in the context of Algorithm 2.1, iterates that
satisfy (10) and (12) are considered approximate stationary points of problem (1).

Lemma 3.1: For all δ > 0,

max{‖h(xk)‖∞, ‖Vk‖∞} ≤ δ (13)

implies that

‖h(xk)‖∞ ≤ δ, ‖g(xk)+‖∞ ≤ δ, and, for all j = 1, . . . , p, μk+1
j = 0 if gj(xk) < −δ. (14)

Proof: By (13), ‖h(xk)‖∞ ≤ δ and |min{−gj(xk), μ̄k
j /ρk}| ≤ δ for all j = 1, . . . , p.

Therefore, −gj(xk) ≥ −δ, so gj(xk) ≤ δ for all j = 1 . . . , p. Moreover, by (13), if
gj(xk) < −δ, we necessarily have that μ̄k

j /ρk ≤ δ. Adding these two inequalities, we
obtain that, if gj(xk) < −δ then gj(xk)+ μ̄k

j /ρk < 0. Consequently, ρkgj(xk)+ μ̄k
j < 0, so

μk+1
j = 0. Therefore, (13) implies (14) as we wanted to prove. �

The lemma below is a technical lemma that will be used in the forthcoming sections.
From now on, cbig will always denote a positive constant satisfying (15), whose existence is
guaranteed by Lemma 3.2.

Lemma 3.2: There exists cbig > 0 such that, for all k ≥ 1,

max{‖h(xk)‖∞, ‖Vk‖∞} ≤ cbig. (15)

Proof: Since, by definition of the algorithm, ρk ≥ ρ1, the bound (15) comes from the
continuity of h and g, the compactness of the domain [�, u], and the boundedness
of μ̄k. �

The rest of this section is organized as follows. In Section 3.1, there are given complex-
ity results under the assumption that the sequence {ρk} of penalty parameters generated by
Algorithm 2.1 is bounded by a constant ρbound that only depends on algorithmic parame-
ters and characteristics of the problem. In Section 3.2, there are given complexity results for
the case in which the boundedness assumption on {ρk} is dropped, but it is assumed that
there is a user-given constant ρbig such that Algorithm 2.1 stops if, at iteration k, ρk ≥ ρbig.
In Section 3.3, complexity results are given for the case in which, without assuming the
existence of ρbound and without the user-given constant ρbig, Algorithm 2.1 may stop at
an iterate xk that appears to be infeasible and, at the same time, a local minimizer of the
infeasibility measure subject to the bound constraints.

8 E. G. BIRGIN AND J. M. MARTÍNEZ

3.1. Complexity under boundedness of the sequence of penalty parameters

In this subsection, we assume that the sequence {ρk} of penalty parameters generated by
Algorithm 2.1 is bounded by a constant ρbound that only depends on algorithmic param-
eters and characteristics of the problem. Sufficient conditions for this requirement were
given in [1] and [20, Chapter 7]. The sufficient conditions involve the convergence of the
whole sequence to a local solution of problem (1), the fulfilment of a second-order suffi-
cient condition for local minimization, and the non-singularity of the Jacobian of the KKT
system at the solution.

Note that, in this subsection, ρbound corresponds to an unknown upper bound for the
sequence {ρk} of penalty parameters that is assumed to exist. It is also assumed that there
exists N(ε) ∈ {1, 2, 3, . . .} such that εk ≤ ε for all k ≥ N(ε). Clearly, this condition can be
enforced by the criterion used to define {εk}. For example, if ε1 > ε, then εk+1 = 1

2εk obvi-
ously implies that εk ≤ ε if k ≥ N(ε) ≡ log2(ε1/ε)+ 1. Moreover, it must be noticed that
N(ε) ≡ 1 is an acceptable definition for N(ε) which implies that, at every iteration k, the
subproblem is solvedwith the highest required precision, i.e. εk = ε. The definition ofN(ε)

suggests that, if one wants to solve the original problem with optimality precision ε, one
would need at least N(ε) iterations.

Theorem 3.1: Let δ > 0 and ε > 0 be given. Assume that, for all k ∈ {1, 2, 3, . . .},
ρk ≤ ρbound. Moreover, assume that, for all k ≥ N(ε), we have that εk ≤ ε. Then, after
at most

max
{
N(ε),

[
log(ρbound/ρ1)/ log(γ)

]× [log(δ/cbig)/ log(τ)
]}

(16)

iterations, we obtain xk ∈ [�, u], λk+1 ∈ R
m, and μk+1 ∈ R

p
+ such that∥∥∥P[�,u] (xk − (∇f (xk)+∇h(xk)λk+1 +∇g(xk)μk+1

))
− xk

∥∥∥ ≤ ε, (17)

‖h(xk)‖∞ ≤ δ, ‖g(xk)+‖∞ ≤ δ, (18)

and, for all j = 1, . . . , p,

μk+1
j = 0 whenever gj(xk) < −δ. (19)

Proof: The number of iterations such that ρk+1 = γρk is bounded above by

log(ρbound/ρ1)/ log(γ). (20)

Therefore, this is also a bound for the number of iterations at which (4) does not hold.
By (15), if (4) holds during

log(δ/cbig)/ log τ (21)

consecutive iterations, we get that

max{‖h(xk)‖∞, ‖Vk‖∞} ≤ δ,

which, by Lemma 3.1, implies (18) and (19).

OPTIMIZATION METHODS & SOFTWARE 9

Now, by hypothesis, after N(ε) iterations, we have that εk ≤ ε. Therefore, by (20)
and (21), after at most

max
{
N(ε),

[
log(ρbound/ρ1)/ log(γ)

]× [log(δ/cbig)/ log(τ)
]}

(22)

iterations, we have that (17), (18), and (19) hold. �

Theorem 3.1 shows that, as expected, if ρk is bounded, we obtain approximate feasibility
and optimality. In the following theorem, we assume that subproblems are solved bymeans
of some method that, for obtaining precision ε > 0, employs at most cinner ε−q iterations
and evaluations, where cinner only depends on characteristics of the problem, the upper
bound for ρk, and algorithmic parameters of the method, i.e. cinner does not depend on the
required precisions ε and δ.

Theorem 3.2: In addition to the hypotheses of Theorem 3.1, assume that there exist
cinner > 0 and q > 0, where cinner only depends on ρbound, λmin, λmax, μmax, �, u, and
characteristics of the functions f, h, and g, such that the number of inner iterations, function
and derivative evaluations that are necessary to obtain (3) is bounded above by cinnerε

−q
k .

Then, the number of inner iterations, function evaluations, and derivative evaluations that
are necessary to obtain k such that (17)–(19) hold is bounded above by

cinnerε
−q
min max

{
N(ε),

[
log(ρbound/ρ1)/ log(γ)

]× [log(δ/cbig)/ log(τ)
]}

,

where

εmin = min
{
εk | k ≤ max

{
N(ε),

[
log(ρbound/ρ1)/ log(γ)

]× [log(δ/cbig)/ log(τ)
]}}

.
(23)

Proof: The desired result follows from Theorem 3.5 and the assumptions of this theorem.
�

Note that, in Theorem 3.2, we admit the possibility that εk decreases after completing
N(ε) iterations. This is the reason for the definition of εmin (23). In practical imple-
mentations, it is reasonable to stop decreasing εk when it achieves a user-given stopping
tolerance ε. According to Theorem 3.2, the complexity bounds related to approximate opti-
mality, feasibility, and complementarity depend on the optimality tolerance ε in, essentially,
the same way that the complexity of the subproblem solver depends on its stopping toler-
ance. In other words, under the assumption of boundedness of penalty parameters, the
worst-case complexity of the Augmented Lagrangian method is essentially the same as the
complexity of the subproblem solver.

3.2. Complexity using a big-ρ stopping criterion

In this subsection, ρbig ≥ ρ1 is an arbitrary positive given number. In this subsection, it is
not assumed the existence of an upper bound for the sequence {ρk} of penalty parameters
generated by Algorithm 2.1. The presented complexity results correspond to the situation
in which it is assumed that, when ρk exceeds the given value ρbig, the algorithm stops. This

10 E. G. BIRGIN AND J. M. MARTÍNEZ

is because, in computer implementations, it is usual to employ, in addition to a (success-
ful) stopping criterion based on (17)–(19), an (unsuccessful) stopping criterion based on
the size of the penalty parameter. The rationale is that if the penalty parameter grew to be
very large, it is not worthwhile to expect further improvements with respect to feasibil-
ity and we are probably close to an infeasible local minimizer of the infeasibility measure
‖h(x)‖2 + ‖g(x)+‖2 subject to � ≤ x ≤ u. By ‘infeasible’, we mean lack of fulfilment of
h(x) = 0 or g(x) ≤ 0, since bound constraints are fulfilled by every iterate ofAlgorithm2.1.
The complexity results that correspond to this decision are given below.

Theorem 3.3: Let δ > 0, ε > 0, and ρbig ≥ ρ1 be given. Assume that, for all k ≥ N(ε), we
have that εk ≤ ε. Then, after at most

max
{
N(ε),

[
log(ρbig/ρ1)/ log(γ)

]× [log(δ/cbig)/ log(τ)
]}

(24)

iterations, we obtain xk ∈ [�, u], λk+1 ∈ R
m, and μk+1 ∈ R

p
+ such that (17)–(19) hold or

we obtain an iteration such that ρk > ρbig.

Proof: If ρk ≤ ρbig for all k ≤ max{N(ε), [log(ρbig/ρ1)/ log(γ)]× [log(δ/cbig)/ log(τ)]},
by the same argument used in the proof of Theorem 3.1, with ρbig replacing ρbound, we
obtain that (17–(19) hold. �

Theorem 3.4: In addition to the hypotheses of Theorem 3.3, assume that there exist
cinner > 0 and q > 0, where cinner only depends on ρbig, λmin, λmax, μmax, �, u, and
characteristics of the functions f, h, and g, such that the number of inner iterations, function
and derivative evaluations that are necessary to obtain (3) is bounded above by cinnerε

−q
k .

Then, the number of inner iterations, function evaluations, and derivative evaluations that
are necessary to obtain k such that (17)–(19) hold or such that ρk > ρbig is bounded above by

cinnerε
−q
min,2 max

{
N(ε),

[
log(ρbig/ρ1)/ log(γ)

]× [log(δ/cbig)/ log(τ)
]}

,

where

εmin,2 = min
{
εk | k ≤ max

{
N(ε),

[
log(ρbig/ρ1)/ log(γ)

]× [log(δ/cbig)/ log(τ)
]}}

.
(25)

Proof: The desired result follows directly from Theorem 3.3. �

Note that in Theorem 3.4, as in the case of Theorem 3.2, cinner does not depend on the
required precisions ε and δ.

3.3. Complexity stopping at probable local minimizers of infeasibility measure

Augmented Lagrangian algorithms stop successfully when an approximate KKT point is
found. A second stopping criterion must always be considered because, normally, we have
no guarantees that the feasible region is non-empty. In the previous subsection,we analyzed
the situation in which the second stopping criterion is represented by a very big penalty
parameter. In the present subsection, boundedness of the sequence {ρk} is not assumed

OPTIMIZATION METHODS & SOFTWARE 11

and we consider an alternative stopping criterion based on the ocurrence of an iterate that
appears to be infeasible and, at the same time, a local minimizer of the infeasibilitymeasure
subject to the bound constraints. If the original problem is infeasible, the algorithm stops
with the fulfilment of this criterion.

The complexity results proved up to now indicate that suitable stopping criteria for
Algorithm 2.1 could be based on the fulfilment of (17)–(19) or, alternatively, on the occur-
rence of an undesirable big penalty parameter. The advantage of these criteria is that,
according to them, provided thatN(ε) = O(1), worst-case complexity is of the same order
of the complexity of the subproblems solver. Convergence results establish that solutions
obtainedwith very large penalty parameters are close to stationary points of the infeasibility
measure.However, stationary points of the infeasibilitymeasuremay be feasible points and,
again, convergence theory shows thatwhenAlgorithm2.1 converges to a feasible point, this
point satisfies AKKT optimality conditions, independently of constraint qualifications. As
a consequence, the danger exists of interrupting executions prematurely, in situations in
which meaningful progress could be obtained admitting further increases of the penalty
parameter. This state of facts leads one to analyze the complexity of Algorithm 2.1 inde-
pendently of penalty parameter growth and introducing a possibly more reliable criterion
for detecting infeasible stationary points of the infeasibilitymeasure. Roughly speaking, we
will say that an iterate seems to be an infeasible stationary point of the infeasibility measure
subject to the bound constraints when the projected gradient of the infeasibility measure is
significantly smaller than the infeasibility value. The natural question that arises is whether
the employment of this (more reliable) stopping criterion has an important effect on the
complexity bounds.

Lemma 3.3: There exist clips > 0 and cf > 0 such that, for all x ∈ [�, u], λ ∈ [λmin, λmax]m,
and μ ∈ [0,μmax]p, one has

‖∇h(x)‖‖λ‖ + ‖∇g(x)‖‖μ‖ ≤ clips (26)

and

‖∇f (x)‖ ≤ cf . (27)

Proof: The desired result follows from the boundedness of the domain, the continuity of
the functions, and the boundedness of λ and μ. �

The following lemma establishes a bound for the projected gradient of the infeasibility
measure in terms of the value of the displaced infeasibility and the value of the penalty
parameter.

Lemma 3.4: For all x ∈ [�, u], λ ∈ [λmin, λmax]m, μ ∈ [0,μmax]p, and ρ > 0, one has that∥∥P[�,u] (x−∇ [‖h(x)‖2 + ‖g(x)+‖2])− x
∥∥

≤ ∥∥P[�,u] (x−∇ [‖h(x)+ λ/ρ‖2 + ‖(g(x)+ μ/ρ)+‖2
])− x

∥∥+ 2clips/ρ,

where clips is defined in Lemma 3.3.

12 E. G. BIRGIN AND J. M. MARTÍNEZ

Proof: Note that

1
2
∇
[
‖h(x)+ λ/ρ‖2 +

∥∥∥(g(x)+ μ/ρ
)
+
∥∥∥2]

= h′(x)T (h(x)+ λ/ρ)+ g′(x)T
(
g(x)+ μ/ρ

)
+

and

1
2
∇ [‖h(x)‖2 + ‖g(x)+‖2] = ∇h(x)h(x)+∇g(x)g(x)+.

Therefore,

∥∥∥∥12∇
[
‖h(x)+ λ/ρ‖2 + ‖ (g(x)+ μ/ρ)+

∥∥2]− 1
2
∇ [‖h(x)‖2 + ‖g(x)+‖2]

∥∥∥∥
≤ ∥∥∇h(x)λ/ρ +∇g(x) [(g(x)+ μ/ρ)+ − g(x)+

]∥∥
≤ 1

ρ

[‖∇h(x)‖‖λ‖ + ‖∇g(x)‖‖μ‖] .
Then, by (26), if ρ > 0, x ∈ [�, u], λ ∈ [λmin, λmax]m, and μ ∈ [0,μmax]p,

∥∥∥∇ [‖h(x)‖2 + ‖g(x)+‖2]−∇ [‖h(x)+ λ/ρ‖2 + ‖ (g(x)+ μ/ρ
)
+ ‖2

]∥∥∥ ≤ 2clips/ρ.

So, by the non-expansivity of projections,

‖P[�,u](x−∇[‖h(x)‖2 + ‖g(x)+‖2])− P[�,u](x− ∇[‖h(x)+ λ/ρ‖2

+ ‖(g(x)+ μ/ρ)+‖2])‖ ≤ 2clips/ρ.

Thus, the thesis is proved. �

The following theorem establishes that, before the number of iterations given by (28),
we necessarily find an approximate KKT point or we find an infeasible point that, very
likely, is close to a stationary point of the infeasibility measure at least when δ � δlow. The
latter type of infeasible points is characterized by the fact that the projected gradient of
the infeasibility measure is smaller than δlow whereas the infeasibility value is bigger than
δ � δlow.

In the bound (28) the quantity ρmax appears, the definition of which is given in (29).
Thus, ρmax depends of μmax and, through clips, also on λmax. Note that μmax and λmax
are not bounds on the true Lagrange multipliers at the solution, which, in fact could not
exist at all, but user-given parameters that define the safeguardedness of the Augmented
Lagrangian algorithm.

OPTIMIZATION METHODS & SOFTWARE 13

Theorem 3.5: Let δ > 0, δlow ∈ (0, δ), and ε > 0 be given. Assume that N(δlow, ε) is such
that εk ≤ min{ε, δlow}/4 for all k ≥ N(δlow, ε). Then, after at most

max
{
N(δlow, ε),

[log(δ/cbig)
log(τ)

]
×
[
log (ρmax/ρ1)

log(γ)

]}
(28)

iterations, where

ρmax = max
{
1,
4clips
δlow

,
μmax

δ
,
4cf
δlow

}
, (29)

we obtain an iteration k such that one of the following two facts takes place:

(1) The iterate xk ∈ [�, u] verifies

‖P[�,u](xk − ∇[‖h(xk)‖2 + ‖g(xk)+‖2])− xk‖
≤ δlow and max{‖h(xk)‖∞, ‖g(xk)+‖∞} > δ. (30)

(2) The multipliers λk+1 ∈ R
m and μk+1 ∈ R

p
+ are such that

∥∥∥P[�,u] (xk − (∇f (xk)+∇h(xk)λk+1 +∇g(xk)μk+1
))
− xk

∥∥∥ ≤ ε, (31)

‖h(xk)‖∞ ≤ δ, ‖g(xk)+‖∞ ≤ δ, (32)

and, for all j = 1, . . . , p,

μk+1
j = 0 whenever gj(xk) < −δ. (33)

Proof: Let kend be such that

∥∥∥P[�,u] (xk − ∇ [‖h(xk)‖2 + ‖g(xk)+‖2])− xk
∥∥∥

≤ δlow ⇒ max{‖h(xk)‖∞, ‖g(xk)+‖∞} ≤ δ (34)

for all k ≤ kend whereas (34) does not hold if k = kend + 1. (With some abuse of notation,
we say that kend = ∞ when (34) holds for all k.) In other words, if k ≤ kend,

∥∥∥P[�,u] (xk − ∇ [‖h(xk)‖2 + ‖g(xk)+‖2])− xk
∥∥∥

> δlow or max{‖h(xk)‖∞, ‖g(xk)+‖∞} ≤ δ, (35)

whereas (35) does not hold if k = kend + 1. (Note that (34) and (35) are equivalent and
that (30) is the negation of them.)

14 E. G. BIRGIN AND J. M. MARTÍNEZ

We consider two possibilities:

kend < max
{
N(δlow, ε),

[log(δ/cbig)
log(τ)

]
×
[
log (ρmax/ρ1)

log(γ)

]}
<∞ (36)

and

kend ≥ max
{
N(δlow, ε),

[log(δ/cbig)
log(τ)

]
×
[
log (ρmax/ρ1)

log(γ)

]}
. (37)

In the first case, since (34) and, so, (35), does not hold for k = kend + 1, it turns out
that (30), the negation of (35), occurs at iteration kend + 1. Therefore, the thesis is proved
in this case. It remains to analyze the case in which (37) takes place.

Consider now the case in which (37) holds. Suppose that there exists k such that

k ≤ max
{
N(δlow, ε),

[log(δ/cbig)
log(τ)

]
×
[
log (ρmax/ρ1)

log(γ)

]}
, (38)

εk ≤ δlow/4, (39)

ρk ≥ 1, (40)

ρk ≥ 4cf /δlow, (41)

ρk ≥ 4clips/δlow, (42)

ρk ≥ μmax/δ, (43)

k ≥ N(δlow, ε). (44)

We are going to prove that, under these assumptions, it holds∥∥∥P[�,u] (xk − ∇ (‖h(xk)‖2 + ‖g(xk)+‖2))− xk
∥∥∥ ≤ δlow.

By (3), for all k ≥ 1, we have that∥∥∥∥∥∥P[�,u]
⎛
⎝xk − ∇f (xk)− ρk

2
∇
⎧⎨
⎩

m∑
i=1

[
hi(xk)+ λ̄ki

ρk

]2

+
p∑

i=1

[(
gi(xk)+ μ̄k

i
ρk

)
+

]2⎫⎬
⎭
⎞
⎠− xk

∥∥∥∥∥∥ ≤ εk.

Therefore, by (40),∥∥∥∥P[�,u]
(
xk − 1

ρk
∇f (xk)− 1

2
∇
(
‖h(xk)+ λ̄k/ρk‖2 + ‖(g(xk)+ μ̄k/ρk)+‖2

))
− xk

∥∥∥∥
≤ εk.

Therefore, by the non-expansivity of projections and (27), we have that∥∥∥∥P[�,u]
(
xk − 1

2
∇
(
‖h(xk)+ λ̄k/ρk‖2 + ‖(g(xk)+ μ̄k/ρk)+‖2

))
− xk

∥∥∥∥ ≤ εk +
cf
ρk

.

(45)

OPTIMIZATION METHODS & SOFTWARE 15

By (39), we have that εk ≤ δlow/4 and, by (41), we have that cf /ρk ≤ δlow/4. Then,
εk + cf /ρk ≤ δlow/2 and, by (45),∥∥∥P[�,u] (xk −∇ (‖h(xk)+ λ̄k/ρk‖2 + ‖(g(xk)+ μ̄k/ρk)+‖2

))
− xk

∥∥∥ ≤ δlow/2. (46)

Therefore, by Lemma 3.4 and (42),∥∥∥P[�,u] (xk −∇ (‖h(xk)‖2 + ‖g(xk)+‖2))− xk
∥∥∥ ≤ δlow. (47)

By (37) and (38), we have that k ≤ kend, so, by (47) and (35),

‖h(xk)‖∞ ≤ δ and ‖g(xk)+‖∞ ≤ δ. (48)

By (48), gj(xk) ≤ δ for all j = 1, . . . , p. Now, if gj(xk) < −δ, we have that μ̄k
j + ρkgj(xk) <

μ̄k
j − δρk, which is smaller than zero because of (43), so μk+1

j = 0. Therefore, the approx-
imate feasibility and complementarity conditions

‖h(xk)‖∞ ≤ δ, ‖g(xk)+‖ ≤ δ, and μk
j = 0 if gj(xk) < −δ (49)

hold at xk. Moreover, by (44) and Lemma 3.1, we have that (31) also holds. Therefore, we
proved that (37), (38), (39), (40), (41), (42), (43), and (44) imply (31), (32), and (33). So,
we only need to show that there exists k that satisfies (38)–(44) or satisfies (38), (31), (32),
and (33). In other words, we must prove that, before completing

max
{
N(δlow, ε),

[log(δ/cbig)
log(τ)

)

]
×
[
log (ρmax/ρ1)

log(γ)

]}
,

iterations, we get (31), (32), and (33) or we get (38)–(44).
To prove this statement, suppose that, for all k satisfying (38), at least one among the

conditions (31), (32), and (33) does not hold. Since (31) necessarily holds if k ≥ N(δlow, ε),
this implies that for all k satisfying (38) and (44) at least one among the conditions (32)
and (33) does not hold. By Lemma 3.1, this implies that for all k satisfying (38) and (44),

max{‖h(xk)‖∞, ‖Vk‖∞} > δ.

Then, by (15), for k ≥ N(δlow, ε), the existence of more than log(δ/cbig)/ log(τ)

consecutive iterations k, k+ 1, k+ 2, . . . satisfying (4) and (38) is impossible.
Therefore, after the firstN(δlow, ε) iterations, if ρk is increased at iterations k1 < k2, but

not at any iteration k ∈ (k1, k2), we have that k2 − k1 ≤ log(δ/cbig)/ log(τ). This means
that, after the firstN(δlow, ε) iterations, the number of iterations atwhichρk is not increased
is bounded above by log(δ/cbig)/ log(τ) times the number of iterations at which ρk is
increased. Now, for obtaining (40)–(43), log(ρmax/ρ1)/ log(γ) iterations in which ρk is
increased are obviously sufficient. This completes the proof of the desired result. �

Theorem 3.6: In addition to the hypotheses of Theorem 3.5, assume that there exist
c̄inner > 0, v > 0, and q > 0, where c̄inner only depends on λmin, λmax, μmax, �, u, and
characteristics of the functions f, h, and g, such that the number of inner iterations, function
and derivative evaluations that are necessary to obtain (3) is bounded above by c̄inner ρv

kε
−q
k .

16 E. G. BIRGIN AND J. M. MARTÍNEZ

Then, the number of inner iterations, function evaluations, and derivative evaluations that
are necessary to obtain k such that (30) holds or (31), (32) and (33) hold is bounded above by

c̄inner ρv
maxε

−q
min,3 max

{
N(δlow, ε),

[log(δ/cbig)
log(τ)

)

]
×
[
log (ρmax/ρ1)

log(γ)

]}
,

where ρmax is given by (29) and

εmin,3 = min
{
εk | k ≤ max

{
N(δlow, ε),

[log(δ/cbig)
log(τ)

)

]
×
[
log (ρmax/ρ1)

log(γ)

]}}
. (50)

Proof: The desired result follows from Theorem 3.5 and the assumptions of this theorem.
�

Note that, in Theorem 3.6, it is assumed that the number of inner iterations, function
and derivative evaluations that are necessary to obtain (3) is bounded above by c̄inner ρv

kε
−q
k

or, equivalently, cinner ε
−q
k , if we define cinner = c̄inner ρv

k . Therefore, unlike the case of
Theorems 3.2 and 3.4, due to (29), the factor cinner depends on the tolerances δ and δlow.

The comparison between Theorems 3.4 and 3.6 is interesting. This comparison seems
to indicate that, if we want to be confident that the diagnostic ‘xk is an infeasible stationary
point of the infeasibility measure’ is correct, we must be prepared to pay for that increased
level of confidence. In fact, the bound ρmax on the penalty parameter for the algorithm is
defined by (29), which not only grows with 1/δlow, but also depends on the global bounds
of the problem clips and cf . Moreover, εk also needs to decrease below δlow/4 because
the decrease of the projected gradient of the infeasibility measure is only guaranteed by
a stronger decrease of the projected gradient of the Augmented Lagrangian.

4. Complexity of the box-constraint solver

The problem considered in this section is

Minimize
(x) subject to x ∈ �, (51)

where � = {x ∈ R
n | � ≤ x ≤ u}. The function
 is assumed to possess a Lipschitz-

continuous gradient with constant L, so, for all x, z ∈ �,

(z)−
(x) ≤ ∇
(x)T(z − x)+ L
2
‖z − x‖2. (52)

Second derivatives are not assumed to exist. Note that
 is, in general, non-quadratic and
non-convex. Problem (51) is of the same type of the one that is approximately solved at
Step 1 of Algorithm 2.1 and, thus, we have in mind the case
(x) ≡ Lρk(x, λ̄

k, μ̄k). Many
algorithms have been proposed for solving (51). See, for example, [11,16,29,42]. In [21], a
method that possesses worst-case iteration and evaluation complexity O(ε−3/2), when the
Hessian of the objective function is Lipschitz continuous, was introduced. However, the
subproblem that has to be approximately solved at Step 1 of Algorithm 2.1 does not satisfy
these hypothesis. The bound-constraint minimization method described in this section,
that will be shown to exhibit worst-case iteration and evaluation complexity O(ε−2), is
closely related to the method introduced in [16]. See also [20, Chapter 9].

OPTIMIZATION METHODS & SOFTWARE 17

In Theorem 3.6, we proved that the iteration and evaluation complexities of
Algorithm 2.1 are given by expressions that involve the complexity of the box-constraint
solver used to approximately solve suproblem (2) at Step 1. We assumed that there exist
cinner > 0, v>0, and q>0, where cinner only depends on algorithmic parameters, bounds
� and u, and characteristics of the functions f, h, and g, such that the number of inner
iterations, function and derivative evaluations that are necessary to obtain (3) is bounded
above by cinnerρv

kε
−q
k . In this section we show that this assumption actually holds for the

box-constraint solver that is used in the current implementation of Algencan.
For all I ⊆ {1, . . . , 2n}, we define the open face

FI = {x ∈ � | xi = �i if i ∈ I, xi = ui if n+ i ∈ I, �i < xi < ui otherwise}.

By definition, � is the union of its open faces and the open faces are disjoint. Thus, every
x ∈ � belongs to exactly one face FI . The variables xi such that �i < xi < ui are called free
variables. For every x ∈ �, we define the continuous projected gradient of
 by

ϒ�,
(x) = P�(x−∇
(x))− x. (53)

It will be useful to compareϒ�,
(x)with P�(x− t∇
(x))− x for different values of t>0.
By (53), if t ≥ 1, we have that

‖P�(x− t∇
(x))− x‖ ≥ ‖P�(x−∇
(x))− x‖ = ‖ϒ�,
(x)‖. (54)

If t<1, it is easy to see that, for each component i, we have that

|[P�(x− t∇
(x))− x]i| ≥ t|[P�(x−∇
(x))− x]i|.

Therefore, if t<1,

‖P�(x− t∇
(x))− x‖ ≥ t‖P�(x−∇
(x))− x‖ = t‖ϒ�,
(x)‖. (55)

If FI is the open face to which x belongs, the continuous projected internal gradient
ϒ I

�,
(x) is given by

[ϒ I
�,
(x)]i =

{
[ϒ�,
(x)]i, if xi is a free variable,
0, otherwise.

Note that, if FI is a vertex of the box, FI is a singleton {x}, there are no free variables, and,
in consequence, ϒ I

�,
(x) = 0.
The bound-constraint minimization method described in this section is based on the

active set strategy. The iterates visit the different faces of the box � staying in the current
face while the quotient ‖ϒ I

�,
(x)‖/‖ϒ�,
(x)‖ is big enough and the new iterate does not
hit the face boundary. When the quotient reveals that few progress can be expected from
staying in the current face, the face is abandoned by means of a spectral projected gradi-
ent [22–24] iteration.Within each face, iterations obey a safeguarded sparse quasi-Newton
schemewith line searches, whereas a Truncated-Newton procedure was considered in [16].
The employment of this method for solving subproblems is coherent with the conservative
point of view of Algencan. For example, we do not aim to predict the active constraints at

18 E. G. BIRGIN AND J. M. MARTÍNEZ

the solution and the inactive bounds have no influence in the iterations, independently of
the distance of the current iterate to a bound. Moreover, we do not try to use second-order
information for leaving the faces. The description of the algorithm follows.

Algorithm 4.1: Assume that x0 ∈ �, r ∈ (0, 1], α ∈ (0, 12), 0 < λBmin ≤ λBmax, and
0 < λ

spg
min ≤ λ

spg
max are given. Initialize k← 0.

Step 1. If ‖ϒ�,
(xk)‖ = 0, stop.
Step 2. Let I be such that xk ∈ FI . If ‖ϒ I

�,
(xk)‖ ≥ r‖ϒ�,
(xk)‖, find xk+1 by means of
Algorithm 4.2. Otherwise, find xk+1 by means of Algorithm 4.3.

Step 3. Set k← k+ 1 and go to Step 1.

Sections 4.1 and 4.2 below describe Algorithms 4.2 and 4.3, respectively. Parameters α,
λBmin, and λBmax of Algorithm 4.1 are parameters of Algorithm 4.2; while parametersα, λspgmin,
and λ

spg
max of Algorithm 4.1 are parameters of Algorithm 4.3. They appear as parameters of

Algorithm 4.1 because it is assumed that every time Algorithm 4.1 calls Algorithms 4.2
and 4.3, it calls them with the same parameters.

4.1. Decrease within the faces

Algorithm 4.2, presented in this section, describes the way in which, starting from an iter-
ate xk in the open face FI , an iterate xk+1 is obtained in FI or on its boundary. Without loss
of generality, in order to avoid cumbersome notation, let us assume that the first nI ≥ 1
variables are the free ones at the face FI . Accordingly, ∇̃
(x) ∈ R

nI will denote the vec-
tor formed by the nI first components of ∇
(x). Clearly, for all x ∈ FI and i = 1, . . . , n,
|[ϒ I

�,
(x)]i| ≤ |[∇̃
(x)]i|, therefore

‖ϒ I
�,
(x)‖ ≤ ‖∇̃
(x)‖. (56)

Algorithm 4.2: Assume that xk ∈ FI , α ∈ (0, 12), and Bk, an nI × nI symmetric positive
definite matrix with eigenvalues between λBmin and λBmax, are given.

Step 1. Compute d̃k = −B−1k ∇̃
(xk).
Define dk ∈ R

n by

[dk]i =
{
[d̃k]i, if i ≤ nI ,
0, if i > nI .

Step 2.
Step 2.1. If xk + dk ∈ FI set tmax = 1 and go to Step 3.
Step 2.2. Compute tmax = max{t ∈ (0, 1] | xk + tdk ∈ �}.
Step 2.3. If
(xk + tmaxdk) ≤
(xk) then define tk = tmax and go to Step 4.

Step 3. Compute tk as the first element t of the sequence {tmax/20, tmax/21, tmax/22, . . .}
that satisfies

(xk + tdk) ≤
(xk)+ αt∇
(xk)Tdk. (57)

Step 4. Define xk+1 = xk + tkdk and return.

OPTIMIZATION METHODS & SOFTWARE 19

Theorem 4.1: Whenever Step 3 of Algorithm 4.2 is executed, tk is well defined and satisfies

tk ≥ min
{
1,

(1− 2α)λBmin
2L

}
. (58)

Moreover,

(xk + tkdk) ≤
(xk)−
(

α(1− 2α)λBminr
2

2LλBmax

)
‖ϒ�,
(xk)‖2 (59)

and the number of evaluations of
 that are necessary to guarantee the fulfilment of (57) is
bounded above by ∣∣∣∣log2

(
min

{
1,

(1− 2α)λBmin
2L

})∣∣∣∣+ 1. (60)

Proof: Suppose that t ∈ R is such that

0 < t ≤ (1− 2α)λBmin
L

. (61)

By Step 2 of Algorithm 4.1, we have that ‖ϒ I
�,
(x)‖ > 0. Then, by (56), ‖∇̃
(x)‖ > 0 and,

consequently, dk �= 0. Define

σ = −∇
(xk)Tdk

t‖dk‖2 . (62)

Since Bk is positive definite and ∇̃
(xk) �= 0, we have that σ > 0. (Note that
σ = −(∇̃
(xk)Td̃k/t‖d̃k‖2).)

By (52),

(xk + tdk)−
(xk) ≤ ∇
(xk)T(tdk)+ L
2
t2‖dk‖2

= ∇
(xk)T(tdk)+ σ

2
t2‖dk‖2 + L− σ

2
t2‖dk‖2. (63)

By (62),

t = −∇
(xk)Tdk

σ‖dk‖2 .

Therefore, t is the minimizer of the parabola defined by ϕ(s) = ∇
(xk)Tdks+
(σ/2)s2‖dk‖2. Since ϕ(0) = 0, it turns out that

∇
(xk)T(tdk)+ σ

2
t2‖dk‖2 ≤ 0.

Therefore, by (63),

(xk + tdk)−
(xk) ≤ L− σ

2
t2‖dk‖2. (64)

20 E. G. BIRGIN AND J. M. MARTÍNEZ

Now, by (61), since α < 1
2 ,

Lt
1− 2α

≤ λBmin.

So, by the definition of λBmin,

Lt
1− 2α

≤ (d̃k)TBkd̃k

‖dk‖2 .

Thus, by the definition of dk,

−∇
(xk)Tdk

‖dk‖2 ≥ Lt
1− 2α

or, equivalently,

−∇
(xk)Tdk

t‖dk‖2 ≥ L
1− 2α

.

Then, by (62),

σ ≥ L
1− 2α

or, equivalently,

σ ≥ L+ 2ασ .

Therefore, by (62),

σ ≥ L− 2α∇
(xk)Tdk

t‖dk‖2
or, equivalently,

L− σ

2
≤ α∇
(xk)Ttdk

t2‖dk‖2
Therefore,

L− σ

2
t2‖dk‖2 ≤ α∇
(xk)Ttdk.

Then, by (64),

(xk + tdk) ≤
(xk)+ αt∇
(xk)Tdk. (65)

So far, we proved that (61) implies (65).
If the first trial t is such that t = tmax = 1, and (65) holds for this t, then (58) holds

trivially. If tmax < 1 and Step 3 is executed, we have that
(xk + tmaxdk) >
(xk) and, so,
t = tmax does not satisfy (65). Therefore, we only need to analyze the case inwhich t = tmax
does not satisfy (65). Therefore, tmax > (1− 2α)λBmin/L. However, after a finite number
of backtrackings, we necessarily find taccepted ≤ (1− 2α)λBmin/L that, as a consequence,
satisfies (65). Then, the last rejected t is such that trejected > (1− 2α)λBmin/L, which means
that the accepted t satisfies taccepted > (1− 2α)λBmin/(2L). Thus, tk fulfils (58) as wewanted
to prove. The bound (60) is an obvious corollary of this fact.

OPTIMIZATION METHODS & SOFTWARE 21

Now, due to (57), the definitions of dk and λBmax, (58), and (56), the amount of decrease
per iteration
(xk)−
(xk + tkdk) is bounded below in the following way:

(xk)−
(xk + tkdk) ≥ −αtk∇
(xk)Tdk

= αtk∇̃
(xk)TB−1k ∇̃
(xk)

≥ αtk
‖∇̃
(xk)‖2

λBmax

≥ α(1− 2α)λBmin
2LλBmax

‖∇̃
(xk)‖2

≥ α(1− 2α)λBmin
2LλBmax

‖ϒ I
�,
(xk)‖2

≥ α(1− 2α)λBminr
2

2LλBmax
‖ϒ�,
(xk)‖2,

where the last inequality follows from the fact that ‖ϒ I
�,
(xk)‖ ≥ r‖ϒ�,
(xk)‖. Therefore,

the theorem is proved. �

4.2. Decrease when leaving a face

In this section we describe Algorithm 4.3, which is used by Algorithm 4.1 for
leaving faces. The algorithm corresponds to a monotone iteration of the Spectral Projected
Gradient [22–24] (SPG) method.

Algorithm 4.3: Assume that xk ∈ �, α ∈ (0, 12), and λ
spg
min > 0, λspgmax > λ

spg
min are given.

Step 1. Choose λ
spg
k ∈ [λspgmin, λ

spg
max] and compute dk as the solution to

Minimize
d∈Rn

∇
(xk)Td + λ
spg
k
2
‖d‖2 subject to xk + d ∈ �. (66)

(Therefore, dk = P�(xk − (1/λspgk)∇
(xk))− xk.)
Step 2. Compute tk as the first element of the sequence {1/20, 1/21, 1/22, . . .} that satisfies

(xk + tdk) ≤
(xk)+ αt∇
(xk)Tdk. (67)

Step 3. Define xk+1 = xk + tkdk, set k← k+ 1, and go to Step 1.

Theorem 4.2: At Step 2 of Algorithm 4.3, tk is well defined and satisfies

tk ≥ min

{
1,

(1− 2α)λ
spg
min

4L

}
. (68)

Moreover,

(xk + tkdk) ≤
(xk)− α(1− 2α)

8L
min

{
λ
spg
min,

λ
spg
min

λ
spg
max

}2

‖ϒ�,
(xk)‖2 (69)

22 E. G. BIRGIN AND J. M. MARTÍNEZ

and the number of evaluations of
 that are necessary to guarantee the fulfilment of (67) is
bounded above by ∣∣∣∣∣log2

(
min

{
1,

(1− 2α)λ
spg
min

4L

})∣∣∣∣∣+ 1. (70)

Proof: Algorithm 4.3 is called by Algorithm 4.1 when ‖ϒ�,
(xk)‖ �= 0. Then, by (55),

dk = P�

(
xk − 1

λ
spg
k
∇
(xk)

)
− xk �= 0.

By (66), we have that

∇
(xk)dk + λ
spg
k
2
‖dk‖2 ≤ 0.

So,

− ∇
(xk)Tdk

‖dk‖2 ≥ λ
spg
k
2
≥ λ

spg
min
2

> 0. (71)

Assume that

0 < t ≤ (1− 2α)λ
spg
min

2L
(72)

and define

σ = −∇
(xk)Tdk

t‖dk‖2 . (73)

By (71) and (72), we have that σ > 0; so, by (73),

t = −∇
(xk)Tdk

σ‖dk‖2 .

Therefore, t is the minimizer of the parabola defined by ϕ(s) = ∇
(xk)Tdks+
(σ/2)s2‖dk‖2. Since ϕ(0) = 0, it turns out that

∇
(xk)T(tdk)+ σ

2
t2‖dk‖2 ≤ 0. (74)

Thus, by (52) and (74),

(xk + tdk)−
(xk) ≤ ∇
(xk)T(tdk)+ L
2
t2‖dk‖2

= ∇
(xk)T(tdk)+ σ

2
t2‖dk‖2 + L− σ

2
t2‖dk‖2

= L− σ

2
t2‖dk‖2. (75)

By (72), we have that

t ≤ (1− 2α)λ
spg
min

2L

OPTIMIZATION METHODS & SOFTWARE 23

and, since α ∈ (0, 12),

Lt
1− 2α

≤ λ
spg
min
2

.

Thus, by (71),

Lt
1− 2α

≤ −∇
(xk)Tdk

‖dk‖2 .

Then

−∇
(xk)Tdk

t‖dk‖2 ≥ L
1− 2α

or, equivalently, (
−∇
(xk)Tdk

t‖dk‖2
)
≥ L− 2α

(
∇
(xk)Tdk

t‖dk‖2
)
.

Therefore, by (73),

σ ≥ L− 2α∇
(xk)Ttdk

t‖dk‖2
or, equivalently,

L− σ

2
t2‖dk‖2 ≤ α∇
(xk)Ttdk.

Then, by (75),

(xk + tdk) ≤
(xk)+ α∇
(xk)Ttdk. (76)

So far, we proved that (72) implies (76). If (76) holds for t=1 then (68) holds
trivially. Otherwise, we have that 1 > (1− 2α)λ

spg
min/(2L). However, after a finite number

of backtrackings, we necessarily find t ≤ (1− 2α)λ
spg
min/(2L) that, as a consequence, satis-

fies (76). Then, last rejected t is such that t > (1− 2α)λ
spg
min/(2L), which means that the

accepted t satisfies t > (1− 2α)λ
spg
min/(4L), as we wanted to prove. The bound (70) is an

obvious corollary of this fact.
Now, by (67), (68), and (71), we have that

(xk)−
(xk + tkdk) ≥ −αtk∇
(xk)Tdk ≥ αλ
spg
min
2

tk‖dk‖2 ≥
α(1− 2α)(λ

spg
min)

2

8L
‖dk‖2.

(77)
On the other hand, since

dk = P�

(
xk − 1

λ
spg
k
∇
(xk)

)
− xk

and

ϒ�,
(xk) = P�(xk −∇
(xk))− xk,

we have that

‖dk‖ ≥ ‖ϒ�,
(xk)‖ if 1/λspgk ≥ 1

24 E. G. BIRGIN AND J. M. MARTÍNEZ

and

‖dk‖ ≥ (1/λspgk)‖ϒ�,
(xk)‖ ≥ (1/λspgmax)‖ϒ�,
(xk)‖ if 1/λspgk ≤ 1.

Thus,

‖dk‖ ≥ min{1, 1/λspgmax}‖ϒ�,
(xk)‖. (78)

Therefore, (69) follows from (77) and (78). This completes the proof. �

4.3. Complexity of Algorithm 4.1

Theorem 4.3: Assume that ε > 0 and
target ≤
(x0). Then, there exists a constant
c > 0 that only depends on parameters of Algorithm 4.1 and characteristics of
 such that the
number of iterations employed by Algorithm 4.1 that are necessary to obtain
(xk) ≤
target
or ‖ϒ�,
(xk)‖ ≤ ε is bounded above by

c(n+ 1)Lε−2(
(x0)−
target). (79)

Moreover, the corresponding number of function evaluations is bounded above by

c(n+ 1)Lε−2(
(x0)−
target)×
(∣∣∣∣∣log2

(
min

{
1,

(1− 2α)max{λBmin, λ
spg
min

2L

})∣∣∣∣∣+ 1

)
.

(80)

Proof: By Theorems 4.1 and 4.2, there exists c1 > 0, that only depends on parameters
of Algorithm 4.1 and characteristics of
, such that, whenever xk+1 is computed by
Algorithm 4.3 or by Step 3 of Algorithm 4.2, we have that

(xk+1) ≤
(xk)− c1
L
‖ϒ�,
(xk)‖2.

Thus, if ‖ϒ�,
(xk)‖ ≥ ε,

(xk+1) ≤
(xk)− c1
L

ε2.

This implies that the number of iterations computed by Algorithm 4.3 or by Step 3 of
Algorithm 4.2 is bounded above by

cLε−2(
(x0)−
target), (81)

with c = 1/c1.
The bound (81) excludes the iterations computed at Step 2 of Algorithm 4.2. At these

iterations,
(xk+1) ≤
(xk) and the number of free variables at xk+1 is strictly smaller
than the number of free variables at xk. This means that each iteration computed by
Algorithm 4.3 or by Step 3 of Algorithm 4.2 may be followed by, at most, n consecu-
tive iterations computed at Step 2 of Algorithm 4.2. This explains the factor n+ 1 in the
bound (79). So, the complexity bound (79) is proved. The bound (80) on the number of
function evaluations follows from (79), (60), and (70). �

OPTIMIZATION METHODS & SOFTWARE 25

Remark: By (79) and (80), we have that the complexity exhibited by the box-constraint
solver corresponds to the assumption of Theorem 3.6 for proving the complexity of
Algorithm 2.1 with q = 2 and ν = 2. In fact, by the definition of
 in the Augmented
Lagrangian framework, we have that the Lipschitz constant of its gradient is bounded above
by a multiple of ρ and the same happens with
(x0)−
target.

5. Implementation

We implemented Algorithms 2.1 and 4.1–4.3 in Fortran 90. Implementation is freely avail-
able at http://www.ime.usp.br/∼ egbirgin/. Interfaces for solving user-defined problems
coded in Fortran 90 as well as problems from the CUTEst [40] collection are available.
All tests reported below were conducted on a computer with 3.5GHz Intel Core i7 pro-
cessor and 16GB 1600MHz DDR3 RAM memory, running OS X High Sierra (version
10.13.6). Codes were compiled by the GFortran compiler of GCC (version 8.2.0) with the
−O3 optimization directive enabled.

5.1. Implementation of the Augmented Lagrangian framework

Algorithm 2.1 was devised to be applied to a scaled version of problem (51). Following the
Ipopt strategy described in [57, p. 46], in the scaled problem, the objective function f is
multiplied by

sf = max
{
10−8,

100
max{1, ‖∇f (x0)‖∞}

}
,

each constraint hj (j = 1, . . . ,m) is multiplied by

shj = max
{
10−8,

100
max{1, ‖∇hj(x0)‖∞}

}
,

and each constraint gj (j = 1, . . . , p) is multiplied by

sgj = max
{
10−8,

100
max{1, ‖∇gj(x0)‖∞}

}
,

where x0 ∈ R
n is the given initial guess. The scaling is optional and it is used when the

input parameter ‘scale’ is set to ‘true’. If the parameter is set to ‘false’, the original problem,
that corresponds to considering all scaling factors equal to one, is solved.

As stopping criterion, we say that an iterate xk ∈ [�, u] with its associated Lagrange
multipliers λk+1 and μk+1 satisfies the main stopping criterion when

max
{
‖h(xk)|‖∞, ‖g(xk)+‖∞

}
≤ εfeas, (82)∥∥∥∥∥∥P[�,u]

⎛
⎝xk −

⎡
⎣sf∇f (xk)+ m∑

j=1
λk+1j shj∇hj(xk)+

p∑
j=1

μk+1
j sgj∇gj(xk)

⎤
⎦
⎞
⎠− xk

∥∥∥∥∥∥∞
≤ εopt,

(83)

max
j=1,...,p

{
min{−sgjgj(xk),μk+1

j }
}
≤ εcompl, (84)

http://www.ime.usp.br/{{\mathsurround =\opskip $\sim $}}egbirgin/

26 E. G. BIRGIN AND J. M. MARTÍNEZ

where εfeas > 0, εopt > 0, and εcompl > 0 are given constants. This means that the stop-
ping criterion requires unscaled feasibility with tolerance εfeas plus scaled optimality with
tolerance εopt and scaled complementarity (measured with the min function) with toler-
ance εcompl. Note that xk ∈ [�, u], i.e. it satisfies the bound-constraints with zero tolerance.
In addition to this stopping criterion, Algorithm 2.1 also stops if the penalty parameter ρk
reaches the value ρbig or if, in three consecutive iterations, the inner solver that is used at
Step 1 fails at finding a point xk ∈ [�, u] that satisfies (3).

In (3) and (4), we consider ‖ · ‖ = ‖ · ‖∞. At Step 2, we consider ε1 = √εopt and
εk = max{εopt, 0.1εk−1} for k>1; and, at Step 3, if λk+1 ∈ [λmin, λmax]m and
μk+1
i ∈ [0,μmax]p then we set λ̄k+1 = λk+1 and μ̄k+1 = μk+1. Otherwise, we set λ̄k+1 =

0 and μ̄k+1 = 0. In the numerical experiments, we set εfeas = εopt = εcompl = 10−8,
ρbig = 1020, λmin = −1016, λmax = 1016, μmax = 1016, γ = 10, τ = 0.5, λ̄1 = 0, μ̄1 = 0,
and

ρ1 = 10max
{
1,

|f (x0)|
max{‖h(x0)‖22 + ‖g(x0)+‖22}

}
.

Two additional strategies complete the implementation of Algorithm 2.1. On the one
hand, if Algorithm 2.1 fails at finding a point that satisfies (82), the feasibility problem (7)
is tackled with Algorithm 4.1 with the purpose of, at least, finding a feasible point to the
original NLP problem (1). On the other hand, at every iteration k, prior to the subproblem
minimization at Step 1, (xk−1, λk,μk) is used as initial guess to perform ten iterations of the
‘pure’ Newton method (no line search, no inertia correction) applied to the semismooth
KKT system [48,50] associated with problem (51), with dimension 3n+m+ p, given by

⎛
⎜⎜⎜⎜⎝
∇f (x)+∑m

j=1 λj∇hj(x)+
∑p

j=1 μj∇gj(x)− ν� + νu

h(x)
min{−g(x),μ}
min{x− �, ν�}
min{u− x, νu}

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
0
0
0
0
0

⎞
⎟⎟⎟⎟⎠ ,

where ν�, νu ∈ R
n are the Lagrange multipliers associated with the bound constraints

� ≤ x and x ≤ u, respectively. This process is related to the so-called acceleration process
described in [18] in which a different KKT system was considered. (See [18] for details.)
The stopping criteria for the acceleration process are (i) ‘the Jacobian of the KKT system
has the “wrong” inertia’, (ii) ‘a maximum of 10 iterations was reached’, and (iii)

max
{‖h(x)|‖∞, ‖g(x)+‖∞, ‖(�− x)+‖∞, ‖(x− u)+‖∞

} ≤ εfeas, (85)∥∥∥∥∥∥∇f (x)+
m∑
j=1

λj∇hj(x)+
p∑

j=1
μj∇gj(x)− ν� + νu

∥∥∥∥∥∥∞
≤ εopt, (86)

max
{

max
j=1,...,p

{
[min{−g(x),μ}]j

}
, max
i=1,...,n

{
[min{x− �, ν�}]i

}
,

max
i=1,...,n

{
[min{u−x, νu}]i

}} ≤ εcompl. (87)

OPTIMIZATION METHODS & SOFTWARE 27

Note that criterion (iii) corresponds to satisfying approximate KKT conditions for the
unscaled original problem (1). On the other hand, differently from an iterate xk ∈ [�, u]
of Algorithm 2.1 that satisfies (82)–(84), a point that satisfies criterion (iii) may violate the
bound constraints with tolerance εfeas.

If the acceleration process stops satisfying criterion (i) or (ii), everything it was done
in the acceleration is discarded and the iterations of Algorithm 2.1 continue. On the other
hand, assume that a point satisfying criterion (iii) was found by the acceleration process. If
(xk−1, λk,μk) satisfies (82)–(84) with half the precision, i.e. with εfeas, εopt, and εcompl sub-
stituted by ε

1/2
feas, ε

1/2
opt , and ε

1/2
compl, respectively, then we say the acceleration was successful,

the point found by the acceleration process is returned, and the optimization process stops.
On the other hand, if (xk−1, λk,μk) is far from satisfying (82)–(84), we believe the approx-
imate KKT point the acceleration found may be an undesirable point. The point is saved
for further references, but the optimization process continues; and the next Augmented
Lagrangian subproblem is tackled by Algorithm 4.1 starting from xk−1 and ignoring the
point found by the acceleration process.

5.2. Implementation of the box-constraint solver

The box-constraint solver was implemented according to the description of
Algorithms 4.1–4.3, with the following specifications.

(1) Matrices Bk were chosen as modifications of the Hessian of
, corrected in order to
preserve safeguarded positive-definitess. In the cases that the Hessian does not exist
because it is possible to choose between ∇2gj(x) or the null matrix we used ∇2gj(x).

(2) In Algorithms 4.2 and 4.3, we described the line search as being straight bisection,
for the sake of simplicity in the statement of complexity bounds. In the implementa-
tion, we used safeguarded quadratic interpolation, which exhibits the same complexity
properties.

(3) The line search used in the implementation includes occasional extrapolations that
are not mentioned in the formal description of Section 4 as they do not interfere in
the complexity analysis.

As main stopping criterion of Algorithm 4.1–4.3, we considered the condition

‖ϒ�,
(xk)‖∞ ≤ ε (88)

When an unconstrained or bound-constrained problem is being solved, in (88) and in
the alternative stopping criteria described below, we use ε = εopt = 10−8. When the prob-
lem being tackled by Algorithm 4.1–4.3 is a subproblem of Algorithm 2.1, the value of
ε in (88) and in the alternative stopping criteria described below is the one described
in Section 5.1 (that we cannot mention here since we are using k to denote iterations
of both Algorithms 2.1 and 4.1). In addition, Algorithm 4.1–4.3 may also stop at itera-
tion k by any of the following alternative stopping criteria: (a) ‖ϒ�,
(xk−�)‖∞ <

√
ε for all

0 ≤ � < 100; (b) ‖ϒ�,
(xk−�)‖∞ < ε1/4 for all 0 ≤ � < 5000; (c) ‖ϒ�,
(xk−�)‖∞ < ε1/8

for all 0 ≤ � < 10,000; (d)
(xk) ≤
target; (e) k ≥ kmax = 50,000; and (f) kbest is the
smallest index such that
(xkbest) = min{
(x0),
(x1), . . . ,
(xk)} and k− kbest > 3, i.e.

28 E. G. BIRGIN AND J. M. MARTÍNEZ

the best functional value so far obtained is not updated in three consecutive iterations. In
the experiments, we set
target = −1012, as well as, r = 0.1, α = 10−4, λspgmin = 10−16, and
λ
spg
max = 1016.
The linear systems adressed at the inner-to-face iterations are solved with subroutine

MA57 from HSL [45] (using all its default parameters). When Algorithms 4.1–4.3 is used
to solve a subproblem of Algorithm 2.1, we have that ∇2
(x) = ∇2Lρk(x, λ̄k, μ̄k), i.e.
∇2
(x) is the Hessian of the augmented Lagrangian associated with the scaled version
of problem (51) given by

sf∇2f (x)+
m∑
j=1
{λ̄kj shj∇2hj(x)+ ρks2hj∇hj(x)∇hj(x)T}

+
∑
j∈Ik
{μ̄k

j sgj∇2gj(x)+ ρks2gj∇gj(x)∇gj(x)T}, (89)

where Ik = Iρk(x
k, μ̄k) = {j = 1, . . . , p | μ̄k + ρksgjgj(xk) > 0}. A relevant issue from the

practical point of view is that, despite the sparsity of the Hessian of the Lagrangian and the
sparsity of the Jacobian of the constraints, this matrix may be dense. Thus, factorising, or
even building it, may be prohibitive. As an alternative, instead of building and factorising
theHessian above, it can be solved an augmented linear systemwith the coefficients’ matrix
given by

⎛
⎝ sf∇2f (x)+∑m

j=1
{
λ̄kj shj∇2hj(x)

}
+∑j∈Ik

{
μ̄k
j sgj∇2gj(x)

}
J(x)T

J(x) − 1
ρk
I

⎞
⎠ , (90)

where J(x) is a matrix whose columns are ∇h1(x), . . . ,∇hm(x) plus the gradients ∇gj(x)
such that j ∈ Ik. This matrix preserves the sparsity of the Hessian of the Lagrangian and
of the Jacobian of the constraints. The implementation of Algorithms 4.1–4.3 dynamically
selects one of the two aproaches.

Another relevant fact from the practical point of view, related to matrices (89) and (90),
is that the current tools available in CUTEst compute the full Jacobian of the constraints
and

∑p
j=1 μ̄k

j sgj∇2gj(x) with μ̄k
j = 0 if j �∈ Ik instead of J(x) and

∑
j∈Ik μ̄k

j sgj∇2gj(x),
respectively. On the one hand, this feature preserves the Jacobian’s and the Hessian-of-the-
Lagrangian’s sparsity structures independently of μ̄k and x, as required by some solvers.
On the other hand, it impairs Algorithm 2.1, when applied to problems from the CUTEst
collection, of fully exploiting the potential advantage of dealing with inequality con-
straints without adding slack variables. In summary, the combination of Algorithm 2.1
plus Algorithm 4.1–4.3 is prepared to deal with matrices with different sparsity structures
at every iteration and, for that reason, it performs the analysis step of the factorization at
every iteration. This is the price to pay for exploiting inequality constraints without adding
slack variables. However, the CUTEst subroutines are not prepared to exploit this feature
and the combination of Algorithm 2.1 plus Algorithm 4.1–4.3, when solving problems
from the CUTEst collection, pays the price without enjoying the advantages. Of course,
this CUTEst inconvenient influences negatively the comparison of Algencan with other
solvers if the CPU time is used as a performance measure.

OPTIMIZATION METHODS & SOFTWARE 29

6. Numerical experiments

In this section, we aim to evaluate the performance of Algorithm 2.1–4.1 (referred as
Algencan from now on) for solving unconstrained, bound-constrained, feasibility, and
nonlinear programming problems. The performance of Ipopt [57] (version 3.12.12) is also
exhibited. Bothmethods were run in the same computational environment, compiled with
the same BLAS routines, and also using the same subroutine MA57 from HSL for solving
the linear systems. All Ipopt default parameters were used.1 A CPU time limit of 10min
per problemwas imposed. In the numerical experiments, we considered all 1258 problems
from the CUTEst collection [40] with their default dimensions. In the collection, there
are 217 unconstrained problems, 144 bound-constrained problems, 157 feasibility prob-
lems, and 740 nonlinear programming problems. A hint on the number of variables in
each family is given in Table 1.

Large tables with a detailed description of the output of each method in the 1258
problems can be found in http://www.ime.usp.br/∼ egbirgin/. A brief overview follows.
Note that, since themethods differ in the stopping criteria, arbitrary decisionswill bemade.
A point in common is that both methods seek satisfying the (sup-norm of the) violation
of the unscaled equality and inequality constraints with precision εfeas = 10−8. However,
as described in [57, Section 3.5], Ipopt considers a relative initial relaxation of the bound
constraints (whose default value is 10−8); and it may apply repeated additional relaxations
during the optimization process. Table 2 shows the number of problems in which each
method found a point satisfying

max{‖h(x)‖∞, ‖[g(x)]+‖∞} ≤ εfeas (91)

plus

max{‖(�− x)+‖∞, ‖(x− u)+‖∞} ≤ ε̄feas (92)

with εfeas = 10−8 and ε̄feas ∈ {0.1, 10−2, . . . , 10−16, 0}. Figures in the table show that, in
most cases, Algencan satisfies the bound constraints with zero tolerance and that the vio-
lation of the bound constraints rarely exceeds the tolerance 10−8. This is an expected result,
since the method satisfies these requirements by definition. Regarding Ipopt, the table
shows in which way the amount of problems in which (92) holds varies as a function of
the tolerance ε̄feas.

If the violation of the bound constraints is disregarded, Table 2 shows that Algencan
found points satisfying (91) and (92) with εfeas = 10−8 and ε̄feas = 0.1 in 1132 problems;
while Ipopt found the same in 1073. There are in the CUTEst collection 85 problems
(62 feasibility problems and 23 nonlinear programming problems) in which the number

Table 1. Distribution of the number of variables n in the CUTEst collection test
problems.

of problems with n ≥ ωnmax

Problem type of problems nmax ω = 0.1 ω = 0.01 ω = 0.001

unconstrained 217 100,000 15 87 97
bound-constrained 144 149,624 5 60 72
feasibility 157 123,200 5 40 55
NLP 740 250,997 67 263 379

http://www.ime.usp.br/{{\mathsurround =\opskip $\sim $}}egbirgin/

30
E.G

.BIRG
IN

A
N
D
J.M

.M
A
RTÍN

EZ

Table 2. Number of problems in which a point satisfying (91) and (92) was found by Algencan and Ipopt with εfeas = 10−8 and
ε̄feas ∈ {0.1, 10−2, . . . , 10−16, 0}.

ε̄feas

0.1 10−2 10−3 10−4 10−5 10−6 10−7 10−8 10−9 10−10 10−11 10−12 10−13 10−14 10−15 10−16 0

Algencan 1132 1132 1131 1131 1131 1130 1130 1130 1121 1115 1112 1105 1092 1081 1077 1069 1058
Ipopt 1073 1072 1070 1068 1056 1044 1016 970 794 793 793 793 793 792 792 792 791

OPTIMIZATION METHODS & SOFTWARE 31

of equality constraints is larger than the number of variables. Ipopt does not apply to these
problems and, thus, of course, it does not find a point satisfying (91) and (92). Algencan
did find a point satisfying (91) and (92) in 28 out of the 85 problems to which Ipopt does
not apply; and this explains half of the difference between the methods. In any case, it can
be said that, over a universe of 1258 problems, both methods found ‘feasible points’ in a
large fraction of the problems; recalling that the collection contains infeasible problems.

Table 3. Number of problems in which a point satisfying (91) with εfeas = 10−8, (92) with ε̄feas = 0,
and (93) with ftol ∈ {0.1, 10−2, . . . , 10−8, 0}was found by Algencan and Ipopt.

ftol
0.1 10−2 10−3 10−4 10−5 10−6 10−7 10−8 0

Algencan 722 715 706 694 691 678 675 663 498
Ipopt 723 708 699 694 683 653 623 592 383

Figure 1. Performanceprofiles comparing thenumber of functional evaluations and theCPU time spent
by Algencan and Ipopt in the 688 problems in which bothmethods found a point that satisfies (91) with
εfeas = 10−8, (92) with ε̄feas = 0, and (93) with ftol = 0.1.

32 E. G. BIRGIN AND J. M. MARTÍNEZ

We now consider the set of 757 problems in which both methods found a point
satisfying (91) with εfeas = 10−8 and (92) with ε̄feas = 0. For a given problem, let f1 be
the value of the objective function at the point found by Algencan; let f2 be the value of the
objective function at the point found by Ipopt; and let fmin = min{f1, f2}. Table 3 shows in
how many problems it holds

fi ≤ fmin + ftol max{1, |fmin|} for i = 1, 2 (93)

and ftol ∈ {0.1, 10−2, . . . , 10−8, 0}.
Finally, we consider the set of 688 problems in which both, Algencan and Ipopt, found

a point that satisfies (91) with εfeas = 10−8, (92) with ε̄feas = 0, and (93) with ftol = 0.1.
For this set of problems, Figure 1 shows the performance profile [32] that considers, as
performance measure, the number of functional evaluations and the CPU time spent by
each method. In the figure, for i ∈ M ≡ {Algencan, Ipopt},

�i(κ) = #
{
j ∈ {1, . . . , q} | tij ≤ κ mins∈M{tsj}

}
q

,

where #S denotes the cardinality of set S , q = 688 is the number of considered prob-
lems, and tij is the performance measure (number of functional evaluations or CPU time)
of method i applied to problem j. Thus, in the top of Figure 1, �Algencan(1) = 0.41 and
�Ipopt(1) = 0.66 say that Algencan used nomore functional evaluations than Ipopt in 41%
of the problems; while Ipopt used nomore functional evaluations than Algencan in 66% of
the problems. In the bottom of Figure 1, �Algencan(1) = 0.48 and �Ipopt(1) = 0.53 say that
Algencan was faster than Ipopt in 48% of the problems and Ipopt was faster then Algencan
in 53% of the problems. Complementing the performance profile, we can report that there
are 9 problems in which both methods spent at least a second of CPU time and one of the
methods is at least ten times faster than the other. Among these 9 problems, Ipopt is faster
in 5 and Algencan is faster in the other 4.

7. Conclusions

In this work, a version of the (safeguarded) Augmented Lagrangian algorithm Algencan
[1,20] that possesses iteration and evaluation complexity was described, implemented, and
evaluated. Moreover, the convergence theory of Algencan was complemented with new
complexity results. Theway inwhich anAugmented Lagrangianmethodwas able to inherit
the complexity properties from a method for bound-constrained minimization is a nice
example of the advantages of the modularity feature that Augmented Lagrangian methods
usually possess.

As a byproduct of this development, a new version of Algencan that uses a Newtonian
method with line search to solve the subproblems was developed from scratch. Moreover,
the acceleration process described in [18] was revisited. In particular, the KKT system
with complementarity modelled with the product between constraints and multipliers
was replaced with the KKT system that models the complementarity constraints with the
semismooth min function.

We provided a fully reproducible comparison with Ipopt, which is, probably, the most
effective and best known free software for constrained optimization. The main feature we

OPTIMIZATION METHODS & SOFTWARE 33

want to stress is that there exist a significative number of problems that Algencan solves
satisfactorily whereas Ipopt does not, and vice versa. This is not surprising because the way
inwhichAugmented Lagrangians and Interior PointNewtonianmethods handle problems
are qualitatively different. ConstrainedOptimization is an extremely heterogeneous family.
Therefore, we believe that what justifies the existence of new algorithms or the survival of
traditional ones is not their capacity of solving a large number of problems using slightly
smaller computer time than ‘competitors’, but the potentiality of solving some problems
that other algorithms fail to solve. Engineers and practitioners should not care about the
choice between algorithmA or B according to subtle efficiency criteria. The best strategy is
to contemplate both, using one or the other according to their behaviour on the family of
problems that they need to solve in practise. As in many aspects of life, competition should
give place to cooperation.

Note

1. Option ‘honor_original_bounds no’, that does not affect Ipopt’s optimization process, was used.
Ipopt might relax the bounds during the optimization beyond its initial relative relaxation factor
whose default value is 10−8. Option ‘honor_original_bounds no’ simply avoids the final iterate
to be projected back onto the box defined by the bound constraints. So, the actual absolute
violation of the bound constraints at the final iterate can be measured.

Acknowledgments

The authors are indebted to Iain Duff, Nick Gould, Dominique Orban, and Tyrone Rees for their
help in issues related to the usage of MA57 from HSL and the CUTEst collection.

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

This work was supported by Fundação de Amparo à Pesquisa do Estado de São Paulo
(FAPESP) (grants 2013/07375-0, 2016/01860-1, and 2018/24293-0) and Conselho Nacional de
Desenvolvimento Científico e Tecnológico (CNPq) (grants 302538/2019-4 and 302682/2019-8).

Notes on contributors

E. G. Birgin is a professor in the Department of Computer Science at the Institute of Mathe-
matics and Statistics of the University of São Paulo. He is a member of the editorial boards of
Mathematical Programming Computation, Computational Optimization and Applications, Journal of
Global Optimization, Springer Nature Operations Research Forum, Computational and AppliedMath-
ematics, International Transactions in Operational Research, Pesquisa Operacional, CLEI Electronic
Journal, and Bulletin of Computational Applied Mathematics. He has published over 100 papers on
computational optimization and applications.

J. M. Martínez is a professor in the Department of Applied Mathematics at the University of
Campinas, Brazil. He is a member of the Brazilian Academy of Sciences, former Editor in Chief
of Computational and Applied Mathematics, member of the editorial board of Numerical Algo-
rithms and Optimization Methods and Software, and the author of over 200 papers on numerical
mathematics, optimization, and applications.

34 E. G. BIRGIN AND J. M. MARTÍNEZ

ORCID

E. G. Birgin http://orcid.org/0000-0002-7466-7663
J. M. Martínez http://orcid.org/0000-0003-3331-368X

References

[1] R. Andreani, E.G. Birgin, J.M. Martínez, and M.L. Schuverdt, On augmented Lagrangian
methods with general lower-level constraints, SIAM J. Optim. 18 (2008), pp. 1286–1309.

[2] R. Andreani, E.G. Birgin, J.M. Martínez, and M.L. Schuverdt, Augmented Lagrangian methods
under the Constant Positive Linear Dependence constraint qualification, Math. Program. 111
(2008), pp. 5–32.

[3] R. Andreani, E.G. Birgin, J.M. Martínez, and M.L. Schuverdt, Second-order negative-curvature
methods for box-constrained and general constrained optimization, Comput. Optim. Appl. 45
(2010), pp. 209–236.

[4] R. Andreani, N.S. Fazzio, M.L. Schuverdt, and L.D. Secchin, A sequential optimality condition
related to the quasi-normality constraint qualification and its algorithmic consequences, SIAM J.
Optim. 29 (2019), pp. 743–766.

[5] R. Andreani, G. Haeser, and J.M. Martínez, On sequential optimality conditions for smooth
constrained optimization, Optimization 60 (2011), pp. 627–641.

[6] R. Andreani, J.M.Martínez, A. Ramos, andP.J.S. Silva,A cone-continuity constraint qualification
and algorithmic consequences, SIAM J. Optim. 26 (2016), pp. 96–110.

[7] R. Andreani, J.M. Martínez, A. Ramos, and P.J.S. Silva, Strict constraint qualifications and
sequential optimality conditions for constrained optimization, to appear in Math. Oper. Res.
doi:10.1287/moor.2017.0879.

[8] R. Andreani, J.M. Martínez, and L.T. Santos, Newton’s method may fail to recognize proximity
to optimal points in constrained optimization, Math. Program. 160 (2016), pp. 547–555.

[9] R. Andreani, J.M. Martínez, L.T. Santos, and B.F. Svaiter, On the behavior of constrained
optimizationmethods when Lagrangemultipliers do not exist, Optim.Methods Softw. 29 (2014),
pp. 646–657.

[10] R. Andreani, J.M. Martínez, and B.F. Svaiter, A new sequential optimality condition for
constrained optimization and algorithmic consequences, SIAM J. Optim. 20 (2010),
pp. 3533–3554.

[11] M. Andretta, E.G. Birgin, and J.M. Martínez, Practical active-set Euclidian trust-region method
with spectral projected gradients for bound-constrained minimization, Optimization 54 (2005),
pp. 305–325.

[12] P. Armand and R. Omheni, A globally and quadratically convergent primal-dual augmented
Lagrangian algorithm for equality constrained optimization, Optim. Methods Softw. 32 (2017),
pp. 1–21.

[13] P. Armand and R. Omheni, A mixed logarithmic barrier-augmented Lagrangian method for
nonlinear optimization, J. Optim. Theory Appl. 173 (2017), pp. 523–547.

[14] E.G. Birgin, D. Fernández, and J.M. Martínez, On the boundedness of penalty parameters in an
Augmented Lagrangian method with lower level constraints, Optim. Methods Softw. 27 (2012),
pp. 1001–1024.

[15] E.G. Birgin, C.A. Floudas, and J.M. Martínez, Global minimization using an Augmented
Lagrangian method with variable lower-level constraints, Math. Program. 125 (2010),
pp. 139–162.

[16] E.G. Birgin and J.M. Martínez, Large-scale active-set box-constrained optimization method with
spectral projected gradients, Comput. Optim. Appl. 23 (2002), pp. 101–125.

[17] E.G. Birgin and J.M. Martínez, Structured minimal-memory inexact quasi-Newton method
and secant preconditioners for Augmented Lagrangian optimization, Comput. Optim. Appl. 39
(2008), pp. 1–16.

[18] E.G. Birgin and J.M. Martínez, Improving ultimate convergence of an Augmented Lagrangian
method, Optim. Methods Softw. 23 (2008), pp. 177–195.

http://orcid.org/0000-0002-7466-7663
http://orcid.org/0000-0003-3331-368X
http://doi.org/10.1287/moor.2017.0879

OPTIMIZATION METHODS & SOFTWARE 35

[19] E.G. Birgin and J.M. Martínez, Augmented Lagrangian method with nonmonotone penalty
parameters for constrained optimization, Comput. Optim. Appl. 51 (2012), pp.
941–965.

[20] E.G. Birgin and J.M. Martínez, Practical Augmented Lagrangian Methods for Constrained
Optimization, Fundamentals of Algorithms Vol. 10, Society for Industrial and Applied
Mathematics, Philadelphia, PA, 2014. doi:10.1137/1.9781611973365.

[21] E.G. Birgin and J.M. Martínez, On regularization and active-set methods for constrained
optimization, SIAM J. Optim. 28 (2018), pp. 1367–1395.

[22] E.G. Birgin, J.M. Martínez, and M. Raydan, Nonmonotone spectral projected gradient methods
on convex sets, SIAM J. Optim. 10 (2000), pp. 1196–1211.

[23] E.G. Birgin, J.M. Martínez, and M. Raydan, Algorithm 813: SPG – software for
convex-constrained optimization, ACM Trans. Math. Softw. 27 (2001), pp. 340–349.

[24] E.G. Birgin, J.M. Martínez, and M. Raydan, Spectral projected gradient methods: Review
and perspectives, J. Stat. Softw. 60(3) (2014), pp. 1–21. doi:10.18637/jss.v060.i03.

[25] C. Cartis, N.I.M. Gould, and Ph.L. Toint, On the evaluation complexity of composite function
minimizationwith applications to nonconvex nonlinear programming, SIAMJ.Optim. 21 (2011),
pp. 1721–1739.

[26] N. Chatzipanagiotis and M.M. Zavlanos, On the convergence of a distributed Augmented
Lagrangian method for nonconvex optimization, IEEE Trans. Automat. Contr. 62 (2017),
pp. 4405–4420.

[27] A.R. Conn, N.I.M. Gould, A. Sartenaer, and Ph.L. Toint, Convergence properties of an
Augmented Lagrangian algorithm for optimization with a combination of general equality and
linear constraints, SIAM J. Optim. 6 (1996), pp. 674–703.

[28] A.R. Conn, N.I.M. Gould, and Ph.L. Toint, Lancelot: A Fortran Package for Large Scale
Nonlinear Optimization, Springer-Verlag, Berlin, 1992.

[29] A.R. Conn, N.I.M. Gould, and Ph.L. Toint, Trust Region Methods, Society for Industral and
Applied Mathematics, Philadelphia, PA, 2000.

[30] F.E. Curtis, N.I.M. Gould, H. Jiang, and D.P. Robinson, Adaptive Augmented Lagrangian
methods: Algorithms and practical numerical experience, Optim. Methods Softw. 31 (2016),
pp. 157–186.

[31] F.E. Curtis, H. Jiang, and D.P. Robinson, An adaptive Augmented Lagrangian method for
large-scale constrained optimization, Math. Program. 152 (2015), pp. 201–245.

[32] E.D. Dolan and J.J. Moré, Benchmarking optimization software with performance profiles, Math.
Program. 91 (2002), pp. 201–213.

[33] Z. Dostál, Optimal Quadratic Programming Algorithms, Optimizaton and its Applications
Vol. 23, Springer, New York, 2009.

[34] Z. Dostál and P. Beremlijski, On convergence of inexact Augmented Lagrangians for separable
and equality convex QCQP problems without constraint qualification, Adv. Electr. Electron. Eng.
15 (2017), pp. 215–222.

[35] J. Eckstein and P.J.S. Silva, A practical relative error criterion for augmented Lagrangians, Math.
Program. 141 (2013), pp. 319–348.

[36] D. Fernández and M.V. Solodov, Local convergence of exact and inexact augmented Lagrangian
methods under the second-order sufficient optimality condition, SIAM J. Optim. 22 (2012),
pp. 384–407.

[37] A.V. Fiacco and G.P. McCormick, Nonlinear Programming: Sequential Unconstrained
Minimization Techniques, John Wiley & Sons, New York, 1968.

[38] R. Fletcher, Practical Methods of Optimization, Academic Press, London, 1987.
[39] R. Fletcher, Augmented Lagrangians, box constrained QP and extensions, IMA J. Numer. Anal.

37 (2017), pp. 1635–1656.
[40] N.I.M. Gould, D. Orban, and Ph.L. Toint, CUTEst: A constrained and unconstrained testing

environment with safe threads for mathematical optimization, Comput. Optim. Appl. 60 (2014),
pp. 545–557.

[41] G.N. Grapiglia and Y. Yuan, On the complexity of an Augmented Lagrangian method for
nonconvex optimization, Available at arXiv:1906.05622v1.

http://doi.org/10.1137/1.9781611973365
http://doi.org/10.18637/jss.v060.i03
http://arXiv:1906.05622v1

36 E. G. BIRGIN AND J. M. MARTÍNEZ

[42] W.W. Hager and H. Zhang, A new active set algorithm for box constrained optimization, SIAM
J. Optim. 17 (2006), pp. 526–557.

[43] M.R. Hestenes,Multiplier and gradient methods, J. Optim. Theory Appl. 4 (1969), pp. 303–320.
[44] M. Hong, Z.Q. Luo, and M. Razaviyayn, Convergence analysis of alternating direction method

of multipliers for a family of nonconvex problems, SIAM J. Optim. 26 (2016), pp. 337–364.
[45] HSL, A collection of fortran codes for large scale scientific computation. Available at

http://www.hsl.rl.ac.uk/.
[46] A.F. Izmailov, M.V. Solodov, and E.I. Uskov, Global convergence of augmented Lagrangian

methods applied to optimization problems with degenerate constraints, including problems with
complementarity constraints, SIAM J. Optim. 22 (2012), pp. 1579–1606.

[47] C. Kanzow and D. Steck, An example comparing the standard and safeguarded augmented
Lagrangian methods, Oper. Res. Lett. 45 (2017), pp. 598–603.

[48] J.M. Martínez and L. Qi, Inexact Newton methods for solving nonsmooth equation, J. Comput.
Appl. Math. 60 (1995), pp. 127–145.

[49] M.J.D. Powell, A method for nonlinear constraints in minimization problems, in Optimization,
R. Fletcher, ed., Academic Press, New York, NY, 1969, pp. 283–298.

[50] L. Qi and J. Sun, A nonsmooth version of a Newton’s method, Math. Program. 58 (1993),
pp. 353–367.

[51] R.T. Rockafellar, Augmented Lagrange multiplier functions and duality in nonconvex
programming, SIAM J. Contr. Optim. 12 (1974), pp. 268–285.

[52] R.T. Rockafellar, Augmented Lagrangians and applications of the proximal point algorithm in
convex programming, Math. Oper. Res. 1 (1976), pp. 97–116.

[53] M.V. Solodov and B.F. Svaiter, A hybrid approximate extragradient-proximal point algorithm
using the enlargement of amaximalmonotone operator, Set-ValuedAnal. 7 (1999), pp. 323–345.

[54] M.V. Solodov and B.F. Svaiter, A hybrid projection proximal point algorith, J. Convex Anal. 6
(1999), pp. 323–345.

[55] M.V. Solodov and B.F. Svaiter, An inexact hybrid generalized extragradient-proximal point
algorithm and some new results on the theory of Bregman functions, Math. Oper. Res. 25 (2000),
pp. 214–230.

[56] W. Sun and Y. Yuan, Optimization Theory and Methods: Nonlinear Programming, Springer,
Berlin, 2006.

[57] A. Wächter and L.T. Biegler, On the implementation of an interior-point filter line-search
algorithm for large-scale nonlinear programming, Math. Program. 106 (2006), pp. 25–57.

http://www.hsl.rl.ac.uk/

	1. Introduction
	2. Augmented Lagrangian
	3. Complexity
	3.1. Complexity under boundedness of the sequence of penalty parameters
	3.2. Complexity using a big- stopping criterion
	3.3. Complexity stopping at probable local minimizers of infeasibility measure

	4. Complexity of the box-constraint solver
	4.1. Decrease within the faces
	4.2. Decrease when leaving a face
	4.3. Complexity of Algorithm 4.1

	5. Implementation
	5.1. Implementation of the Augmented Lagrangian framework
	5.2. Implementation of the box-constraint solver

	6. Numerical experiments
	7. Conclusions
	Note
	Acknowledgments
	Disclosure statement
	Funding
	ORCID
	References

