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Abstract

The Full Bayesian Significance Test (FBST) for precise hypotheses is
presented, with some applications relevant to Biology. The FBST is an
alternative to significance tests or, equivalently, to p-values. In the FBST
we compute the evidence of the precise hypothesis. This evidence is the
probability of the complement of a credible set “tangent” to the sub-
manifold (of the parameter space) that defines the null hypothesis. We
use the FBST in applications arising in population dynamics, genetics and
biology, like testing the Behrens-Fisher problem, coefficients of variation
and Hardy-Weinberg equilibrium.

KEY WORDS: Behrens-Fisher; Coefficient of Variation; Evidence,
Global optimization; Numerical integration; p-value; Posterior density;
Hardy-Weinberg equilibrium. AMS: 62A15; 62F15; 62H15.

1 Introduction

The Full Bayesian Significance Test (FBST) is presented in Pereira and Stern
(1999b) as a coherent Bayesian significance test. The FBST is intuitive and has
a geometric characterization. It can be easily implemented using modern nu-
merical optimization and integration techniques. The method is “Full” Bayesian
and consists in the analysis of credible sets. By Full we mean that we need only
the knowledge of the parameter space represented by its posterior distribution.
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The FBST needs no additional assumption, like a positive probability for the
precise hypothesis, that generates the Lindley’s paradox effect. The FBST re-
gards likelihoods as the proper means for representing statistical information,
a principle stated by Royall (1997) to simplify and unify statistical analysis.
Another important aspect of the FBST is its consistency with the “benefit of
the doubt” juridical principle. These remarks will be understood in the sequel.

Significance tests are regarded as procedures for measuring the consistency
of data with a null hypothesis, Cox (1977) and Kempthorne and Folks (1971).
p-values are a tail area under the null hypothesis, calculated in the sample space,
not in the parameter space where the hypothesis is formulated.

Previously defined Bayesian significance tests, like Bayes Factor or the pos-
terior probability of the null hypothesis, consider the p-value as a measure of
evidence of the null hypothesis and present alternative Bayesian measures of
evidence, Aitkin (1991), Berger and Delampady (1987), Berger et al. (1997),
Irony and Pereira (1986 and 1995), Pereira and Wechsler (1993), Sellke et al.
(1999). As pointed out in Cox (1977), the first difficulty to define the p-value
is the way the sample space is ordered under the null hypothesis. Pereira and
Wechsler (1993) suggests a p-value that always regards the alternative hypoth-
esis. To each of these measures of evidence one could find a great number of
counter arguments. The most important argument against Bayesian tests for
precise hypothesis is presented by Lindley (1957). Arguments against the clas-
sical p-value are full in the literature. The book by Royall (1997) and its review
by Vieland et al. (1998) present interesting and relevant arguments for statis-
ticians to start thing about new methods of measuring evidence. In a more
philosophical terms, Carnap (1962), de Finetti (1989), Good (1983) and Popper
(1989) discuss, in a great detail, the concept of evidence.

2 Motivation

In order to better illustrate the FBST we discus a well known problem. Given
a sample from a normal distribution with unknown parameters, we want to test
if the mean is equal to a constant. The hypothesis u = c is a straight line. We
have a precise hypothesis since it is defined by a manifold (surface) of dimension
(one) strictly smaller than the dimension of the parameter space (two).

It can be shown that the conjugate family for the Normal Distribution is a
family of bivariate distributions, where the conditional distribution of the mean,
u, for a fixed precision, p = 1/0?, is normal, and the marginal distribution of the
precision, p, is gamma, DeGroot (1970), Lindley (1978). We use the standard
improper priors, uniform on | — oo, +o0o[ for u, and 1/p on )0, +oo[ for p, in
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order to get a fair comparison with p-values, DeGroot (1970). Hence we have
the parameter space, hypothesis and posterior joint distribution:

©={(mp) €eRxRy} , Oo={(n,p) €O|p=c}
F (1, p| z) o /P exp(—np(p — u)* (2)ezp(—bp)p*~!

n n
T=[11...2,), a= 22—1 , u=-1-21:,-, b=p-2(:r‘-—u)2
iz 25
~ In Figure 1 we plot some level curves of the posterior density function,
including the level curve tangent to the hypothesis manifold. At the tangency
point, 8*, the posterior density attains its maximum, f*, on the hypothesis.
The interior of the tangent level curve, T*, includes all points with posterior
density greater than f*, i.e. it is the highest probability density set tangent to
the hypothesis.

The posterior probability of T®, x*, gives an indication of inconsistency
between the posterior and the hypothesis: Small values of «* indicate that the
hypothesis traverses high density regions, favoring the hypothesis. Therefore we
define Ev(H) = 1 — k* as the measure of evidence (for the precise hypothesis).

In Figure 1 we test ¢ = 10 with n = 16 observations of mean m = 11 and
standard deviation s = 1, 2 and 3. We give the FBST evidence, Ev, and the
standard t-test, tt.

Of course this example is a mere illustration: there is no need of new meth-
ods to test the mean of a normal distribution. However, efficient numerical
optimization and integration computer programs, make it straightforward to
extend the FBST to more complex structures. In sections 5 and 6 we present
two important tests involving the normal distribution: Behrens-Fisher and Co-
efficient of variation comparison of two populations. These problems appear in
several biological and pharmacological applications, and the tests in the litera-
ture are somewhat controversial. In section 7 we present the Hardy-Weinberg
equilibrium problem, of extreme relevance in contemporary applied genetics,
Weir (1996). Again, the tests in the literature are either asymptotic or exact
but conditional. The FBST is exact and, more important, it performs well inde-
pendently of sample size and low frequencies. For the sake of comparison with
the standard tests, we present the simple case of two alleles.

The FBSF is also motivated by the authors’ activities in the role of audit,
control or certification agents, whose activities had to be consistent with the
benefit of the doubt juridical principle, or safe harbor liability rule. This kind
of principle establishes that there is no liability as long as there is a reasonable
basis for belief, effectively placing the burden of proof on the plaintiff, who, in a
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lawsuit, must prove false a defendant’s misstatement. Such a rule also prevents
the plaintiff of making any assumption not explicitly stated by the defendant,
or tacitly implied by existing law or regulation. The use of an a priori point
mass on the null hypothesis, as on standard Bayesian tests, can be regarded as
such an ad hoc assumption. In the next section we give a more formal definition

of the FBST.

3 The Evidence Calculus

Consider the random variable D that, when observed, produces the data d. The
statistical space is represented by the triplet (Z, A, ©) where E is the sample
space, the set of possible values of d, A is the family of measurable subsets of =
and © is the parameter space. We define now a prior model (@, B, 74), which
is a probability space defined over ©. Note that in this model Pr{A|8} has
to be © measurable. As usual, after observing data d, we obtain the posterior
probability model (8, B, n,), where 74 is the conditional probability measure
on B given the observed sample point, d. In this paper we restrict ourselves to
the case where the functions ¢ has a probability density function f.

To define our procedure we should concentrate only on the posterior proba-
bility space (6, B, 74). First, we define T, as the subset of the parameter space
where the posterior density is greater than (.

T, = {0 € ©|f(6) > ¢}

The credibility of T, is its posterior probability,
k= 14(T,) = [T (0| d)ds = j.ef¢(6|d)d0

where f,(z) = f(z) if f(z) > ¢ and zero otherwise.
Now, we define f* as the maximum of the posterior density over the null
hypothesis, attained at the argument *,

0 € argsré%::f(e) y T =1(0)

and define T* = Tj. as the set “tangent” to the null hypothesis, H, whose
credibility is °*.

The measure of evidence we propose in this article is the complement of the
probability of the set T*. That is, the evidence of the null hypothesis is

Ev(H)=1-&" or 1—my(T*)
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If the probability of the set T* is “large”, it means that the null set is in
a region of low probability and the evidence in the data is against the null
hypothesis. On the other hand, if the probability of 7* is “small”, then the null
hypothesis is in a region of high probability and the evidence in the data is in
its favor. In the next section we give an operational construction of the FBST.

4 Numerical Optimization and Integration

We restrict the parameter space, ©, to be always a subset of R*, and the
hypothesis is defined as a further restricted subset 8y C © C R™. Usually, ©,
is defined by vector valued inequality and equality constraints:

G0 = {0 € ©|g(8) <OAA®G) =0}

Since we are working with precise hypotheses, we have at least one equality
constraint, hence dim(©p) < dim(©). Let f(f) be the posterior probability
density function, as defined in the last section.

The computation of the evidence measure defined in the last section is per-
formed in two steps, a numerical optimization step, and a numerical integration
step. The numerical optimization step consists of finding an argument 6* that
maximizes the posterior density f(6) under the null hypothesis. The numeri-
cal integration step consists of integrating the posterior density over the region
where it is greater than f(6*). That is,

e Numerical Optimization step:

6" €argmax f(6) , w=f"=f(F)
e Numerical Integration step:

K= je f,(0]d)do
where f,(z) = f(z) if f(z) > ¢ and zero otherwise.

Efficient computational algorithms are available, for local and global opti-
mization as well as for numerical integration, Bazaraa et al. (1993), Horst et al.
(1995), Luenberger (1984), Nocedal and Wright (1999), Pinter (1996), Krommer
and Ueberhuber (1998), and Sloan and Joe (1994). Computer codes for several
such algorithms can be found at software libraries as ACM, GSL and NAG, or
at internet sites as www.ornl.gov and www-rocqg.inria. fr.
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We notice that the method used to obtain T* and to calculate x* can be
used under general conditions. Our purpose, however, is to discuss precise
hypothesis testing, i.e. dim(0g) < dim(0), under absolute continuity of the
posterior probability model, the case for which most solutions presented in the
literature are controversial.

5 Behrens-Fisher

At the Behrens-Fisher problem we want to test the hypothesis that two normal
random variables, with unknown means, g, and p,, and unknown variances, o2
and o2, have the same mean:

©= {[f-‘l)pla #2,P2] € (R X R+)2}

6o = {[11,p1, 42, p2] € O | 1 = pio}

At the optimization step it is better, for numerical stability, to maximize
the log-likelihood. Given two samples, of size n, and n,,

fl(l-"hpls H2,y P2 I ny, w, bl) N2, U2, b?) =
(n1/2 ~ 1)Ylog(p1) — bipr — (n1p1/2) (11 — ’“-1)2
+(n2/2 — 1)log(pa) — bapr — (nap2/2) (2 — ua)?

the hypothesis being represented by the constraint

g, pr a2, p2) = 1 — pa =0

The gradients of fI( ) and g( ) have easy analytical expressions, that can be
given to the optimizer:

dfl = [—-mpi(m —w), (m/2=1)/p = b = (n/2)( — w)?,
- mopa(p2 — w2) , (M2f2 - 1)/p2 — by — (n2/2) (2 — 12)° ]
dg = [1,0,1,0]

Table 1 presents results for some illustrative examples, comparing the FBST
with the p-values of the Welsh approximated t-test, Lehmann (1986 pp. 208-
209). While the FBST is a probability in the parameter space, the p-value is a
probability in the sample space. Therefore we can only check if they agree in
tendency, but there would be no meaning in a direct comparison of the figures.
We are comparing the mean of a first sample, of size, mean, and standard
deviation n; = 16, m; = 100 and s; = 3, with a second sample, of size and
standard deviation n, = 20 and s, = 3. The mean of the second sample, mg, is
at the table.
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Table 1: Tests for Behrens-Fisher

m,; FBST it
100 1.00 1.00
101 0.93 0.34
102 0.50 0.06
103 0.13 0.01
104 0.02 0.00
106  0.00 0.00
n = 16 ny =20
m1=100 8 =82=3

6 Coeflicient of Variation Applications

The Coefficient of Variation (CV) of a random variable X is defined as the
ratio CV(X) = Std(X)/E(X), i.e. the ratio of its standard deviation by its
mean. We want to test the hypothesis that two normal random variables, with
unknown mean and variance, have the same CV. Using the same notation of
the last section,

©o = {[11, 1, 2, 2] € O 1p1 = ip2}
The hypothesis is represented by the constraint

9(p1, 1y pi2, p2) = pipr — pp2 = 0

whose gradient can be given to the optimizer:
dg=[2mpr, B}, ~2p2 s — )]

Table 2 presents results for some illustrative examples. Some simpler hy-
pothesis on the CV are analyzed in Lehmann (1986). However we are not aware
of exact p-values to compare with the FBST. We are comparing the coefficient
of variation of a first sample, of size, mean, and standard deviation n; = 16,
m; = 100 and s; = 2, with a second sample of size and mean ny, = 20 and
m, = 200. The standard deviation of the second sample, s, is at the table.

7 Hardy-Weinberg Equilibrium

In this biological application there is a sample of n individuals, where z; and z;
are the two homozygote sample counts and 2 = n — z; — z3 is hetherozygote
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Table 2: Tests for Coefficients of Variation

52 CW/CV; FBST
1 400 0.00
2 200 0.10
3 133 0.83
4 1.00 1.00
5 080 0.95
6  0.67 0.68
8  0.50 0.17

10 0.40 0.03

12 033 0.00

n=16 np=20 s; =2
m; = 100 mg = 200

sample count. § = [, 0,, 85) is the parameter vector. Here we consider only the
uniform prior, for easier comparison with frequentist procedures. However other
priors can be used, in particular, Dirichlet priors render a posterior with the
same functional form. We present the simple biallelic case, but the FBST can
be extended to multi-allelic problems, as required in studies of DNA databases.

The posterior density for this trinomial model is

f(0] z) o 67267265°
The parameter space and the null hypothesis set are:

G={0€R1|01+92+03=1}
8 ={0c0 |6 =(1-/0)%

The log-likelihood to be optimized, the constraints, and all the giadients
are:
fi(@lz) = =z, log(6y) + z2log(62) + z3 log(6s)
dfl = [21/61, 22/6 , 32/6)]
G = 0+6,+6;—1=0

(1- 8 -6;=0

g2 =
d91 = [1 N 1 ) 1]
d92 = [—(1 - Jg—l)/ 6,0, _1]
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Table 3 presents figures, for n = 20, to compare Ev(H) with the p-value with
Yates continuity correction and the p-value for the Fisher exact test. Figure 2
presents ©g and T™* for £, = 5, 2 = 5 and z3 = 10.

Table 3: Tests of Hardy-Weinberg equilibrium, n = 20

Ev pV Fisher
0.01 0.01 1.00
0.01 0.02 1.00
0.04 0.04 1.00
0.09 0.09 1.00
0.18 0.17 0.99
031 0.29 0.97
0.48 0.46 0.95
0.66 0.65 0.91
0.83 0.85 0.85
11 095 0381 0.78
12 1.00 0.59 0.69
13 096 0.73 0.58
14 0.84 0.85 0.47
15 0.66 0.78 0.35
16 047 0.59 0.25
17 027 037 0.15
18 0.13 0.16 0.08
0 0.02 0.02 1.00

Ev  pV Fisher
0.09 0.09 1.00
0.29 0.26 097
0.61 0.54 090
0.89 087 0.79
1.00 1.00 0.63
090 0.88 0.46
0.66 0.60 0.30
040 035 0.17
021 018 0.09
0.09 0.08 0.04
0.21 0.21 1.00
066 0.65 091
099 0.76 0.69
086 0.84 043
049 044 0.22
0.21 0.18 0.09
0.06 0.07 0.03
0.01 0.02 0.01

]
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8 Final Remarks

The theory presented in this paper, grew out of the necessity of testing precise
hypotheses made on the behavior of software controlled machines, Pereira and
Stern (1999a). The authors had the responsibility of certifying whether those
machines were working according to some legal requirements and the manu-
facturer’s specifications. The real machine software was not available, but a
emulator could be used for limited input-output black-box simulation. Compli-
ance with those requirements and specifications was the precise hypotheses be-
ing tested, formulated as equality constraints on contingency tables. In Pereira
and Stern (1999b) we describe several applications based on contingency tables,
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comparing the use of FBST with standard Bayesian and Classical tests. The
applications presented in this paper are very similar in spirit. The implemen-
tation of FBST for all examples presented here is immediate, as long as good
numerical optimization and integration programs are available in a user friendly,
interactive and extensible environment, like Matlab, or the open source software
Scilab, Gomez (1999). Any one of the tests presented takes only a few seconds
to run on a Pentium-PC.

In the applications presented in this paper, as well as in those in Pereira
and Stern (1999b), it is desirable or necessary to use a test with the following
characteristics:

e Be formulated directly in the parameter space.

¢ Take into account the full geometry of the null hypothesis as a manifold
(surface) imbedded in the whole parameter space.

o Have an intrinsically geometric definition, independent of any non-geometric
aspect, like the particular parametrization of the (manifold representing
the) null hypothesis being used.

e Be consistent with the benefit of the doubt juridical principle (or safe
harbor liability rule), i.e. consider in the “most favorable way” the claim
stated by the hypothesis.

¢ Considering only the observed sample, allowing no ad hoc artifice (that
could lead to judicial contention), like a positive prior probability distri-
bution on the precise hypothesis.

e Consider the alternative hypothesis in equal standing with the null hy-
pothesis, in the sense that increasing sample size should make the test
converge to the right (accept/reject) decision.

e Give an intuitive and simple measure of significance for the null hypoth-
esis, ideally, a probability in the parameter space.

FBST has all these theoretical characteristics and can be efficiently imple-
mentated with the appropriate computational tools. Moreover, as shown in
Madruga et al. (2000), the FBST is also in perfect harmony with Bayesian de-
cision theory of Rubin (1987}, in the sense that there are specific loss functions
which render the FBST. In case an alternative parametrization in the likeli-
hood function is adopted, an invariance correction like in Evans (1997) should
be used. Finally, we notice that statements like “increase sample size to reject
(accept) the hypothesis” made by many users of frequentist (standard Bayesian)
tests, do not hold for the FBST. ’
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