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Abstract 

The Full Bayesian Significance Test (FBST) for precise hypotheses is 
presented, with some applications relevant to Biology. The FBST is an 
alternative to significance tests or, equivalently, top-values. In the FBST 
we compute the evidence of the precise hypothesis. This evidence is the 
probability of the complement of a credible set "tangent" to the sub­
manifold (of the parameter space) that defines the null hypothesis. We 
use the FBST in applications arising in population dynamics, genetics and 
biology, like testing the Behrens-Fisher problem, coefficients of variation 
and Hardy-Weinberg equilibrium. 

KEY WORDS: Behrens-Fisher; Coefficient of Variation; Evidence, 
Global optimization; Numerical integration; p-value; Posterior density; 
Hardy-Weinberg equilibrium. AMS: 62Al5; 62Fl5; 62Hl5. 

1 Introduction 

The Full Bayesian Significance Test (FBST) is presented in Pereira and Stern 
(1999b) as a coherent Bayesian significance test. The FBST is intuitive and has 
a geometric characterization. It can be easily implemented using modern nu­
merical optimization and integration techniques. The method is "Full" Bayesian 
and consists in the analysis of credible sets. By Full we mean that we need only 
the knowledge of the parameter space represented by its posterior distribution. 

1 
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The FBST needs no additional assumption, like a positive probability for the 
precise hypothesis, that generates the Lindley's paradox effect. The FBST re­
gards likelihoods as the proper means for representing statistical information, 
a principle stated by Royall (1997) to simplify and unify statistical analysis. 
Another important aspect of the FBST is its consistency with the "benefit of 
the doubt" juridical principle. These remarks will be understood in the sequel. 

Significance tests are regarded as procedures for measuring the consistency 
of data with a null hypothesis, Cox (1977) and Kempthorne and Folks (1971). 
p-values are a tail area under the null hypothesis, calculated in the sample space, 
not in the parameter space where the hypothesis is formulated. 

Previously defined Bayesian significance tests, like Bayes Factor or the pos­
terior probability of the null hypothesis, consider the p-value as a measure of 
evidence of the null hypothesis and present alternative Bayesian measures of 
evidence, Aitkin (1991), Berger and Delampady (1987), Berger et al. {1997), 
Irony and Pereira (1986 and 1995), Pereira and Wechsler (1993), Sellke et al. 
{1999). As pointed out in Cox (1977), the first difficulty to define the p-value 
is the way the sample space is ordered under the null hypothesis. Pereira and 
Wechsler (1993) suggests a p-value that always regards the alternative hypoth­
esis. To each of these measures of evidence one could find a great number of 
counter arguments. The most important argument against Bayesian tests for 
precise hypothesis is presented by Lindley (1957). Arguments against the clas­
sical p-value are full in the literature. The book by Royall (1997) and its review 
by Vieland et al. (1998) present interesting and relevant arguments for statis­
ticians to start thing about new methods of measuring evidence. In a more 
philosophical terms, Carnap {1962), de Finetti {1989), Good (1983) and Popper 
(1989) discuss, in a great detail, the concept of evidence. 

2 Motivation 

In order to better illustrate the FBST we discus a well known problem. Given 
a sample from a normal distribution with unknown parameters, we want to test 
if the mean is equal to a constant. The hypothesis µ = c is a straight line. We 
have a precise hypothesis since it is defined by a manifold (surface) of dimension 
(one) strictly smaller than the dimension of the parameter space (two). 

It can be shown that the conjugate family for the Normal Distribution is a 
family of bivariate distributions, where the conditional distribution of the mean, 
µ,fora fixed precision, p = 1/u2, is normal, and the marginal distribution of the 
precision, p, is gamma, DeGroot (1970), Lindley (1978). We use the standard 
improper priors, uniform on ] - oo, +oo[ for µ, and 1/ p on JO, +oo( for p, in 
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order to get a fair comparison with J>-Values, DeGroot (1970). Hence we have 
the parameter space, hypothesis and posterior joint distribution: 

6 = {(µ,p) ER x R+} , 0o = {(µ,p) E 0 Iµ= c} 

/(µ,PI x) <X vP exp(-np(µ - u)2 /2)exp(-bp)p4
-

1 

n-1 1n nn 
x=[X1 -- -Xn], a=-

2
-, u=-Exi, b=-}:(x;-u)2 

n i=l 2 i=l 

. In Figure 1 we plot some level curves of the posterior density function, 
including the level curve tangent to the hypothesis manifold. At the tangency 
point, 0*, the posterior density attains its maximum, /*, on the hypothesis. 
The interior of the tangent level curve, T*, includes all points with posterior 
density greater than /*, i.e. it is the highest probability density set tangent to 
the hypothesis. 

The posterior probability of T•, K.*, gives an indication of inconsistency 
between the posterior and the hypothesis: Small values of K.0 indicate that the 
hypothesis traverses high density regions, favoring the hypothesis. Therefore we 
define Ev(H) = 1 - K.

0 as the measure of evidence {for the precise hypothesis). 
In Figure 1 we test c = 10 with n = 16 observations of mean m = 11 and 

standard deviation s = 1, 2 and 3. We give the FBST evidence, Ev, and the 
standard t-test, tt. 

Of course this example is a mere illustration: there is no need of new meth­
ods to test the mean of a normal distribution. However, efficient numerical 
pptimization and integration computer programs, make it straightforward to 
extend the FBST to more complex structures. In sections 5 and 6 we present 
two important tests involving the normal distribution: Behrens-Fisher and Co­
efficient of variation comparison of two populations. These problems appear in 
several biological and pharmacological applications, and the tests in the litera­
ture are somewhat controversial. In section 7 we present the Hardy-Weinberg 
equilibrium problem, of extreme relevance in contemporary applied genetics, 
Weir (1996). Again, the tests in the literature are either asymptotic or exact 
but conditional. The FBST is exact and, more important, it performs well inde­
pendently of sample size and low frequencies. For the sake of comparison with 
the standard tests, we present the simple case of two alleles. 

The FBSF is also motivated by the authors' activities in the role of audit, 
control or certification agents, whose activities had to be consistent with the 
benefit of the doubt juridical principle, or safe harbor liability rule. This kind 
of principle establishes that there is no liability as long as there is a reasonable 
basis for belief, effectively placing the burden of proof on the plaintiff, who, in a 
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lawsuit, must prove false a defendant's misstatement. Such a rule also prevents 
the plaintiff of making any assumption not explicitly stated by the defendant, 
or tacitly implied by existing law or regulation. The use of an a priori point 
mass on the null hypothesis, as on standard Bayesian tests, can be regarded as 
such an ad hoc assumption. In the next section we give a more formal definition 
of the FBST. 

3 The Evidence Calculus 

Consider the random variable D that, when observed, produces the data d. The 
statistical space is represented by the triplet (3, ll, 0) where 3 is the sample 
space, the set of possible values of d, ll is the family of measurable subsets of 3 
and 0 is the parameter space. We define now a prior model (0, B, ,rd), which 
is a probability space defined over 0. Note that in this model Pr{A 10} has 
to be e measurable. As usual, after observing data d, we obtain the posterior 
probability model (6, B, ,rd), where ,rd is the conditional probability measure 
on B given the observed sample point, d. In this paper we restrict ourselves to 
the case where the functions ,rd has a probability density function /. 

To define our procedure we should concentrate only on the posterior proba­
bility space (0, B, ,rd)- First, we define T,p as the subset of the parameter space 
where the posterior density is greater than ip. 

Tip= {0 E 01/(0) ~ ip} 

The credibility of T,p is its posterior probability, 

where /ip(x) = f (x) if /(x) ~ <p and zero otherwise. 
Now, we define /" as the maximum of the posterior density over the null 

hypothesis, attained at the argument 0', 

0' e argmax/(0), f' = /(0') 
0E8o 

and define T" = Tr as the set "tangent" to the null hypothesis, H, whose 
credibility is ,r,'. 

The measure of evidence we propose in this article is the complement of the 
probability of the set T' . That is, the evidence of the null hypothesis is 

Ev(H) = 1 - ,r,' or 1 - ,rd(T') 
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If the probability of the set r• is "large", it means that the null set is in 
a region of low probability and the evidence in the data is against the null 
hypothesis. On the other hand, if the probability of T• is "small", then the null 
hypothesis is in a region of high probability and the evidence in the data is in 
its favor. In the next section we give an operational construction of the FBST. 

4 Numerical Optimization and Integration 

We restrict the parameter space, 0, to be always a subset of R!', and the 
hypothesis is defined as a further restricted subset 0 0 c 0 s;; R!'. Usually, 0 0 

is defined by vector valued inequality and equality constraints: 

80 = {8 E 0lg(8) :5 0/\ h(8) = O}. 

Since we are working with precise hypotheses, we have at least one equality 
constraint, hence dim(00) < dim(0). Let /(8) be the posterior probability 
density function, as defined in the last section. 

The computation of the evidence measure defined in the last section is per­
formed in two steps, a numerical optimization step, and a numerical integration 
step. The numerical optimization step consists of finding an argument 8° that 
maximizes the posterior density f (8) under the null hypothesis. The numeri­
cal integration step consists of integrating the posterior density over the region 
where it is greater than f (8°). That is, 

• Numerical Optimization step: 

8° E arg max f (8) , 'P = /" = f (8•) 
8E9o 

• Numerical Integration step: 

K,. = fa f ,p(8 I d)d8 

where f,p(x) = f(x) if f(x) ~'{)and zero otherwise. 

Efficient computational algorithms are available, for local and global opti­
mization as well as for numerical integration, Bazaraa et al. (1993), Horst et al. 
(1995), Luenberger (1984), Nocedal and Wright (1999), Pinter (1996), Krammer 
and Ueberhuber {1998), and Sloan and Joe (1994). Computer codes for several 
such algorithms can be found at software libraries as ACM, GSL and NAG, or 
at internet sites as www.ornl.gov and www-rocq.inria.fr. 
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We notice that the method used to obtain T* and to calculate ,,,. can be 
used under general conditions. Our purpose, however, is to discuss precise 
hypothesis testing, i.e. dim(00) < dim(0), under absolute continuity of the 
posterior probability model, the case for which most solutions presented in the 
literature are controversial. 

5 Behrens-Fisher 

At the Behrens-Fisher problem we want to test the hypothesis that two normal 
random variables, with unknown means, µ1 and µ 2, and unknown variances, uf 
and u~, have the same mean: 

e = {[µ1, Pi, 1£2, p,i) e (R X R+)2} 

0o = {[µ1, pi, 1£2, p,i) E e I µl = µ2} 

At the optimization step it is better, for numerical stability, to maximize 
the log-likelihood. Given two samples, of size n 1 and 7¼, 

fl(µi, Pi, 1£2, P'2 I n1, u1, b1, 7¼, ¾, ~) = 
(ni/2 - l)log(p1) - b1P1 - (n1pi/2)(µ1 - u1)2 

+(n2/2 - l)log(p,i) - ~P'i - (?¼P'i/2)(µ2 - u2)2 

the hypothesis being represented by the constraint 

g(µi, pi, µ2, p,i) = µ1 - µ2 = 0 

The gradients of/ l( ) and g( ) have easy analytical expressions, that can be 
given to the optimizer: 

dfl = [ -n1p1(µ1 - u1), (ni/2 - l)/P1 - b1 - (ni/2)(µ1 - u1)2 , 

- 1½P'2(1'2 - ¾) , (7¼/2 - 1)/ P'2 - ~ - (n2/2)(µ2 - u2)2 ) 
dg = [1,0,1,0) 

Table 1 presents results for some illustrative examples, comparing the FBST 
with the p-values of the Welsh approximated t-test, Lehmann (1986 pp. 208-
209). While the FBST is a probability in the parameter space, the p-value is a 
probability in the sample space. Therefore we can only check if they agree in 
tendency, but there would be no meaning in a direct comparison of the figures. 
We are comparing the mean of a first sample, of size, mean, and standard 
deviation n1 = 16, m1 = 100 and 81 = 3, with a second sample, of size and 
standard deviation 7¼ = 20 and 82 = 3. The mean of the second sample, m2, is 
at the table. 
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Table 1: Tests for Behrens-Fisher 

17i2 FEST tt 
100 1.00 1.00 
101 0.93 0.34 
102 0.50 0.06 
103 0.13 O.Ql 
104 0.02 0.00 
105 0.00 0.00 
n1 = 16 n2 = 20 
m1 = 100 81 = S2 = 3 

6 Coefficient of Variation Applications 

The Coefficient of Variation (CV) of a random variable X is defined as the 
ratio CV(X) = Std(X)/ E(X), i.e. the ratio of its standard deviation by its 
mean. We want to test the hypothesis that two normal random variables, with 
unknown mean and variance, have the same CV. Using the same notation of 
the last section, 

0o = {[µ1, pi, µ2, .o-i] E e I µ~pl = µ~P2} 

The hypothesis is represented by the constraint 

g(µ1, pi, µ2, />2) = µ~pl - ~/>2 = 0 

whose gradient can be given to the optimizer: 

dg = [2µ1P1 , µ~ , -2µ2/}2 , -~I 
Table 2 presents results for some illustrative examples. Some simpler hy­

pothesis on the CV are analyzed in Lehmann (1986). However we are not aware 
of exact p-values to compare with the FBST. We are comparing the coefficient 
of variation of a first sample, of size, mean, and standard deviation n1 = 16, 
m1 = 100 and s 1 = 2, with a second sample of size and mean n2 = 20 and 
17i2 = 200. The standard deviation of the second sample, s2 , is at the table. 

7 Hardy-Weinberg Equilibrium 

In this biological application there is a sample of n individuals, where x1 and x3 

are the two homozygote sample counts and x2 = n - x 1 - X3 is hetherozygote 
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Table 2: Tests for Coefficients of Variation 

1 4.00 
2 2.00 
3 1.33 
4 1.00 
5 0.80 
6 0.67 
8 0.50 

10 0.40 
12 0.33 

FEST 
0.00 
0.10 
0.83 
1.00 
0.95 
0.68 
0.17 
0.03 
0.00 

n1 = 16 7i2 = 20 s1 = 2 
m1 = 100 m2 = 200 

8 

sample count. 8 = [81, 82 , 83] is the parameter vector. Here we consider only the 
uniform prior, for easier comparison with frequentist procedures. However other 
priors can be used, in particular, Dirichlet priors render a posterior with the 
same functional form. We present the simple biallelic case, but the FBST can 
be extended to multi-allelic problems, as required in studies of DNA databases. 
· The posterior density for this trinomial model is 

/(8 Ix) ex 8f1822 833 

The parameter space and the null hypothesis set are: 

e = { 8 e R! I 81 + 82 + 83 = 1} 

eo = {8 e e I 83 = (1 - /oi)2
} 

The log-likelihood to be optimized, the constraints, and all the gradients 
are: 

I l(8 Ix) = :i:1 log(81) + :i:2 log(82) + X3 log(83) 

dfl = [xi/81 , :i:2/82 , :i:2/82] 

91 = 81 + 82 + 83 - 1 = 0 

92 = (1 - Voi)2 
- 83 = 0 

d91 = [1 , 1 , 1] 

d92 = 1-(1- Voi)/Voi' 0' -1] 
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Table 3 presents figures, for n = 20, to compare Ev(H) with the p-value with 
Yates continuity correction and the p-value for the Fisher exact test. Figure 2 
presents 0o and T• for x 1 = 5, x2 = 5 and x 3 = 10. 

Table 3: Tests of Hardy-Weinberg equilibrium, n = 20 

X1 X3 Ev pV Fisher X1 X3 Ev pV Fisher 
1 2 O.Ql 0.01 1.00 5 1 0.09 0.09 1.00 
1 3 0.01 0.02 1.00 5 2 0.29 0.26 0.97 
1 4 0.04 0.04 1.00 5 3 0.61 0.54 0.90 
1 5 0.09 0.09 1.00 5 4 0.89 0.87 0.79 
1 6 0.18 0.17 0.99 5 5 1.00 1.00 0.63 
1 7 0.31 0.29 0.97 5 6 0.90 0.88 0.46 
1 8 0.48 0.46 0.95 5 7 0.66 0.60 0.30 
1 9 0.66 0.65 0.91 5 8 0.40 0.35 0.17 
1 10 0.83 0.85 0.85 5 9 0.21 0.18 0.09 
1 11 0.95 0.81 0.78 5 10 0.09 0.08 0.04 
1 12 1.00 0.59 0.69 9 0 0.21 0.21 1.00 
1 13 0.96 0.73 0.58 9 1 0.66 0.65 0.91 
1 14 0.84 0.85 0.47 9 2 0.99 0.76 0.69 
1 15 0.66 0.78 0.35 9 3 0.86 0.84 0.43 
1 16 0.47 0.59 0.25 9 4 0.49 0.44 0.22 
1 17 0.27 0.37 0.15 9 5 0.21 0.18 0.09 
1 18 0.13 0.16 0.08 9 6 0.06 0.07 0.03 
5 0 0.02 0.02 1.00 9 7 O.Ql 0.02 0.01 

8 Final Remarks 

The theory presented in this paper, grew out of the necessity of testing precise 
hypotheses made on the behavior of software controlled machines, Pereira and 
Stern (1999a). The authors had the responsibility of certifying whether those 
machines were working according to some legal requirements and the manu­
facturer's specifications. The real machine software was not available, but a 
emulator could be used for limited input-output black-box simulation. Compli­
ance with those requirements and specifications was the precise hypotheses be­
ing tested, formulated as equality constraints on contingency tables. In Pereira 
and Stern (1999b) we describe several applications based on contingency tables, 
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comparing the use of FBST with standard Bayesian and Classical tests. The 
applications presented in this paper are very similar in spirit. The implemen­
tation of FBST for all examples presented here is immediate, as long as good 
numerical optimization and integration programs are available in a user friendly, 
interactive and extensible environment, like Matlab, or the open source software 
Scilab, Gomez (1999). Any one of the tests presented takes only a few seconds 
to run on a Pentium-PC. 

In the applications presented in this paper, as well as in those in Pereira 
and Stern (1999b), it is desirable or necessary to use a test with the following 
characteristics: 

• Be formulated directly in the parameter space. 

• Take into account the full geometry of the null hypothesis as a manifold 
(surface) imbedded in the whole parameter space. 

• Have an intrinsically geometric definition, independent of any non-geometric 
aspect, like the particular parametrization of the (manifold representing 
the) null hypothesis being used. 

• Be consistent with the benefit of the doubt juridical principle (or safe 
harbor liability rule), i.e. consider in the "most favorable way" the claim 
stated by the hypothesis. 

• Considering only the observed sample, allowing no ad hoc artifice (that 
could lead to judicial contention), like a positive prior probabiiity distri­
bution on the precise hypothesis. 

• Consider the alternative hypothesis in equal standing with the null hy­
pothesis, in the sense that increasing sample size should make the test 
converge to the right (accept/reject) decision. 

• Give an intuitive and simple measure of significance for the null hypoth­
esis, ideally, a probability in the parameter space. 

FBST has all these theoretical characteristics and can be efficiently imple­
mentated with the appropriate computational tools. Moreover, as shown in 
Madruga et al. (2000), the FBST is also in perfect harmony with Bayesian de­
cision theory of Rubin (1987), in the sense that there are specific loss functions 
which render the FBST. In case an alternative parametrization in the likeli­
hood function is adopted, an invariance correction like in Evans (1997) should 
be used. Finally, we notice that statements like "increase sample size to reject 
(accept) the hypothesis" made by many users offrequentist (standard Bayesian) 
tests, do not hold for the FBST. 
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