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ABSTRACT
The coronavirus disease 2019 (COVID-19) pandemic has triggered a global health crisis, with over 700 million confirmed cases
and at least 7 million deaths reported by early 2024. Children are less vulnerable to severe SARS-CoV-2 infection than adults
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and typically experience milder respiratory symptoms. However, a rare but significant complication, known as multisystem

inflammatory syndrome in children (MIS-C), can develop weeks after infection, characterized by a spectrum of inflammatory

symptoms. This study employed whole-exome sequencing and over-representation analysis to identify genetic variants of

potential clinical significance related to MIS-C or severe COVID-19 in a group of children with acute respiratory distress
syndrome (ARDS), all of whom were unvaccinated for COVID-19. We observed the enrichment of potentially pathogenic
genetic variants in genes related to carbohydrate metabolism, particularly glycogen breakdown, in severe COVID-19 pediatric
patients, and in genes related to cholesterol and lipoprotein metabolism in MIS-C patients. These findings offer insights into the
genetic underpinnings of MIS-C and severe COVID-19, suggesting potential genes and biological pathways for further research.

1 | Introduction

The coronavirus disease 2019 (COVID-19) pandemic, caused by
the severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2), has resulted in a major global health crisis. By early
2025, over 700 million confirmed cases and more than seven
million deaths had been reported [1]. Clinical manifestations
range from asymptomatic or mild upper respiratory tract
symptoms to severe pneumonia and acute respiratory distress
syndrome (ARDS), which can lead to respiratory failure and
death [2]. Pre-existing conditions - including overweight, dia-
betes, cardiac disease, age over 60 years - significantly increase
the risk of severe disease and mortality [3].

In children, COVID-19 typically manifests with milder symp-
toms than in adults [4]. However, a rare Kawasaki-like pre-
sentation known as Multisystem Inflammatory Syndrome in
Children (MIS-C) has emerged [5], characterized by fever, rash,
shock, gastrointestinal and neurological symptoms, myocardi-
tis, and coagulopathy [6]. MIS-C usually develops three to
5 weeks following a SARS-CoV-2 infection [7].

The genetic mechanisms underlying pediatric COVID-19 ARDS
and MIS-C remain unclear. Evidence suggests genetic variants
in cytokine-related genes [8], ACE2 [9], and inborn errors of
immunity [10] may predispose to severe disease. Other studies
have further implicated genes related to immune and inflam-
matory disorders in MIS-C pathogenesis [11-15].

The present study provides a comprehensive analysis of potentially
pathogenic exonic variants with low or unknown population fre-
quency in public databases, identified in unvaccinated pediatric
patients who experienced severe COVID-19 (sCOVID-19) or MIS-C.
The primary objective was to determine which genes and pathways
may be involved in these severe pediatric manifestations, thereby
offering insights into the pathogenesis of SARS-CoV-2 infection in
children. The findings highlight genetic variants that may confer
susceptibility to severe outcomes in pediatric patients, informing
genetic screening approaches and therapeutic strategies.

2 | Methods
2.1 | Subjects and Definition of Phenotypes
This prospective, multicenter cohort study (September 2020-August

31, 2021) was conducted in private and public institutions across the
Brazilian states of Bahia, Rio de Janeiro, Sdo Paulo and Parani. The

participating institutions included Instituto Fernandes Figueira (Rio
de Janeiro), Hospital Real D’Or (Rio de Janeiro), Hospital Alvorada
(Sao Paulo), Hospital Universitario Pedro Ernesto (Rio de Janeiro),
Unimed Leste Fluminense (Sdo Gongalo), Hospital Martagdo Ges-
teira (Salvador), Complexo Hospitalar de Niterdi (Niter6i), Hospital
Quinta D’Or (Rio de Janeiro), and Hospital Universitario Evangé-
lico Mackenzie (Curitiba).

Data from the MIS-C cohort study by Reis et al. (2023) were
included in this study as part of a project approved by the Internal
Review Board (IRB) of the Instituto D’Or de Pesquisa
e Ensino (IDOR), the proponent institution, under CAAE no.
30272920.0.1001.5249. Each participating institution also received
approval from its respective IRB. The remaining COVID-19 and
MIS-C samples were part of projects approved by the Human
Research Ethics Committee of the Faculdade Evangélica Mack-
enzie do Parand under CAAE no. 55543322.2.0000.0103 and by the
Human Research Ethics Committee of the Health Sciences
Sector of the Federal University of Parand under CAAE no.
55543322.2.3001.0102.

Two groups of patients were defined based on symptom progres-
sion: severe COVID-19 (sCOVID-19) and MIS-C, all of whom were
unvaccinated for COVID-19 at the time of sample collection.
sCOVID-19 was defined according to acute respiratory distress
syndrome criteria: hypoxemic respiratory failure, hypoxemia, and
need for mechanical ventilation. MIS-C was defined based on the
World Health Organization criteria for patients aged 0-19 years with
persistent fever ( > 3 days) along with least two of the following: (1)
Rash or bilateral non-purulent conjunctivitis or muco-cutaneous
inflammation signs (oral, hands, or feet); (2) Hypotension or shock;
(3) Myocardial dysfunction, pericarditis, valvulitis, or coronary
abnormalities (by ECHO or elevated Troponin/NT-proBNP); (4)
Coagulopathy (abnormal PT/PTT, elevated p-Dimers); (5) Acute
gastrointestinal symptoms (diarrhea, vomiting or abdominal pain);
(6) Elevated inflammatory markers (ESR, C-reactive protein or
procalcitonin) and no other obvious microbial cause of inflamma-
tion, including bacterial sepsis; (7) Evidence of infection by
SARS-CoV-2 (RT-PCR, antigen test or positive serology) or likely
contact with infected patients. The sCOVID-19 group included 15
pediatric patients, while the MIS-C group comprised 29 (Figure 1a).

2.2 | DNA Extraction, Whole-Exome Sequencing,
and Variant Calling

Peripheral blood DNA was extracted from 29 MIS-C and 10
sCOVID-19 samples using the QIAamp DNA Blood Mini Kit
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FIGURE1 | Study design overview. (a) Whole-exome sequencing was performed on 44 pediatric patients infected with SARS-CoV-2 - 15
diagnosed with severe COVID-19 (sCOVID-19) and 29 with Multisystem Inflammatory Syndrome in Children (MIS-C) - yielding 766 filtered variants
across 674 candidate genes. (b) Over-representation analysis (ORA) using Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG),
and Reactome databases was conducted on sCOVID-19-specific, MIS-C-specific, and shared candidate genes, resulting in 115 enriched biological
terms (q < 0.01 for GO/KEGG, q < 0.02 for Reactome). (c) From 382 ORA-enriched genes, 172 were prioritized using logistic regression with an L2
penalty (coefficient > 10.13 |). Hierarchical clustering based on Euclidean distance was then applied to these prioritized genes to group patient
samples. (d) Of the 115 enriched terms identified, 23 were found to be most associated with sCOVID-19 or MIS-C after applying logistic regression
with an L1 penalty, highlighting key pathways that distinguish the two conditions.

(QIAGEN). Library preparation was performed with the Illu- sCOVID-19 samples underwent DNA extraction from buccal
mina Exome Panel, followed by paired-end sequencing mucosa using the QIAamp 96 DNA QIAcube HT kit (QIAGEN).
(2x100bp) on a NextSeq. 2000 at Centro de Gendmica Fun- Libraries were prepared with the Illumina DNA Prep with
cional (ESALQ/USP, Piracicaba, Brazil). An additional five Exome 2.0 Enrichment kit and sequenced (2x100bp) on an
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Illumina NovaSeq. 6000 RPTO01P/Carlos Chagas - Fiocruz
Parana.

Adapter trimming and quality filtering were performed using
Trimmomatic [16], and FASTQ files were mapped to the
GRCh37 reference genome with the Illumina DRAGEN Bio-IT
Platform (v4.2), retaining only primary alignments. All samples
were verified to have a > 45X mean coverage. Variant calling
was conducted using the DRAGEN Small Variant Caller with
machine learning-based recalibration enabled.

2.3 | Kinship Inference

To exclude hidden familial relationships, we estimated pair-wise
kinship coefficients with KING (v2.2.7) [17]. Autosomal, biallelic
SNPs were extracted from the joint multi-sample VCF and fil-
tered as follows: quality flag = PASS; minor-allele frequency
> 5%; genotype missingness < 5%. Linkage-disequilibrium prun-
ing was performed in PLINK (v2.0) [18] (--indep-pairwise 50 5
0.2), and the pruned data set was converted to binary PLINK
format for KING analysis with default parameters. All kinship
coefficients (®) were below the 0.044 threshold for third-degree
relatives, confirming that every participant can be treated as
unrelated in downstream analyses.

2.4 | Variant Annotation and Filtering

Variants were annotated using Nirvana (v3.18) [19], including
clinical-grade and populational frequency annotations. Vari-
ables from Nirvana included variant consequence from VEP
(v91), RefSNP (dbSNP 155), REVEL (v20200205), phyloP
(v20091110), GERP++ (v20110522), ClinVar (v20230822), allele
frequencies from the Greater Middle East Variome (v20160618),
and from all ancestry populations derived from 1000 genomes
Phase 3 v5a (African, Admixed American, East Asian,
European, and South Asian) and gnomAD v2.1 (African,
Latino/Admixed American, Ashkenazi Jewish, East Asian,
Finnish, Non-Finnish European, South Asian, and Other).
Brazilian population allele frequencies were subsequently
incorporated from the ABraOM (VSABE-609-WES) and
DNABR databases [20, 21].

The final list of variants was filtered based on variant conse-
quence according to Sequence Ontology terms [22], including
missense variants, in frame insertions and deletions,
stop-gained, start-lost, frameshift variants, splice region var-
iants, splice site variants, and nonsense-mediated mRNA decay.
Only variants with REVEL scores > 0.773 [23] or classified as
pathogenic in at least one ClinVar submission were retained.
Additionally, only variants with a frequency < 5% (or lacking
frequency data) across all populations were selected, and a
subset analysis used a < 1% cutoff. Variants in the MADCAM1
gene were removed due to a high frequency bias in our samples,
as they were no longer classified as low-frequency following the
gnomAD v4 update. Variants were additionally annotated with
single-nucleotide conservation scores: PhyloP 46-way and
GERP++ RS. These metrics were employed solely for descrip-
tive stratification and never as inclusion or exclusion filters. On

the basis of established cut-offs that mark strong purifying
selection [24, 25], each variant was placed in one of five cate-
gories: (i) Highly conserved (both PhyloP >2 and GERP RS >
4); (ii) Conserved (PhyloP) (PhyloP > 2 but GERP RS < 4); (iii)
Conserved (GERP) (GERP RS >4 but PhyloP <2); (iv) Low
conservation (neither threshold satisfied); (v) Unscored (both
scores missing).

Variant pathogenicity was then appraised with the Franklin by
QIAGEN platform, which implements the 2015 American Col-
lege of Medical Genetics and Genomics/Association for Molec-
ular Pathology (ACMG/AMP) framework [26, 27]. Franklin
automatically assigns evidence codes (PS, PM, PP, BS, BP) and
one of five standard categories: pathogenic, likely pathogenic,
variant of uncertain significance, likely benign, or benign. As
with the conservation scores, ACMG/AMP classifications in-
formed downstream interpretation only and were not employed
as inclusion or exclusion criteria during variant selection.

2.5 | Over-Representation Analysis

Over-Representation Analysis (ORA) was applied to identify
over-represented terms among genes carrying potentially
pathogenic variants. ORA was performed using Gene Ontology
(GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and
Reactome databases via R packages (clusterProfiler v4.10, DOSE
v3.28.2, GOSemSim v2.28, and ReactomePA v1.46.0) [28-31].
For each group (sCOVID-19, MIS-C, and all samples), the input
included all genes with identified variants (not limited to ex-
clusive genes). Enriched terms were retained if they had
g-values < 0.01 (GO/KEGG) or < 0.02 (Reactome).

2.6 | Gene and Term Selection

To reduce dimensionality for hierarchical clustering, genes
were prioritized using logistic regression with an L2 penalty
(Ridge regression) in Python's scikit-learn [32]. The model used
disease status (sCOVID-19 or MIS-C) as the response variable
and included 382 covariates, representing gene variant counts
from ORA-enriched terms with g-values < 0.01 (GO/KEGG) or
<0.02 (Reactome). Genes with regression coefficients > 10.13|
were retained, yielding 172 genes for hierarchical clustering.

The most relevant enriched terms were identified using logistic
regression with an L1 penalty (Least Absolute Shrinkage and
Selection Operator - LASSO), with disease status as the
response and 115 enriched terms as covariates, using default
scikit-learn parameters. These terms, each representing the
number of genes with variants per patient, were selected based
on ORA results with g-values <0.01 (GO/KEGG) or <0.02
(Reactome).

2.7 | Hierarchical Clustering

Hierarchical clustering was performed using per-patient variant
counts for the 172 genes with regression coefficients > 10.13|
from the L2 logistic regression model. Euclidean distances
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between patients were calculated using Python’s scipy [33], and
clustering was executed using Ward’s method. The final num-
ber of clusters was determined by visual inspection of the
dendrogram and assessment of cluster interpretability.

2.8 | Three-Dimensional Protein Modeling

Protein sequences, structural features and functional annota-
tions were retrieved from UniProtKB [34] for the four proteins
that were taken forward to three-dimensional modelling:
ABCB11 (095342), CFTR (P13569), GALT (P07902) and PYGM
(P11217). These variants - GALT p. GIn188Arg (rs75391579),
PYGM p. Ala365Val (rs116135678), CFTR p. Leu206Trp
(rs121908752) and ABCBI11 p. Arg517His (rs760750012) — were
chosen because each met three stringent filters: (i) high pre-
dicted pathogenicity (REVEL > 0.80), (ii) an ACMG/AMP clas-
sification of pathogenic, and (iii) strong evolutionary constraint
(PhyloP >4.0 and GERP++ RS>4.5). An expanded protein
modeling analysis with ABCA5 (Q8WWZ7), ABCB4 (P21439),
ADIPOQ (Q15848), APOE (P02649), AMY2B (P19961), GAA
(P10253), GALE (Q14376), GANC (QSTET4), NR1H3 (Q13133),
PHKAL1 (P46020), PGM1 (P36871), and SI (P14410) is available
in Supplementary Methods.

The 3.2 A cryo-EM structure of ABCB11 (PDB ID 8PMD), the
2.80 A cryo-EM structure of CFTR (PDB ID 8EIO), the 1.73 A
crystal structure of GALT (PDB ID 5IN3), and the 2.30 A crystal
structure of PYGM in complex with AMP and glucose (PDB ID
1Z8D) were obtained from the Protein Data Bank (PDB).

For the trans-membrane transporters, the positioning and tilt
angle relative to the lipid bilayer were estimated using the Po-
sitioning of Proteins in Membrane (PPM) server [35], which
applies an empirically adjusted, physically based implicit
membrane model. Missense variants were modeled into the
protein structures using the UCSF ChimeraX [36] “swapaa”
command guided by Dunbrack backbone-dependent rotamer
libraries [37], and hydrogen bond interactions along with three-
dimensional structural representations were analyzed using
ChimeraX's default settings.

3 | Results
3.1 | Whole-Exome Sequencing and Variant
Calling

Whole-exome sequencing (WES) was conducted on 15 pediatric
patients with severe COVID-19 (sCOVID-19) (8 females [53.3%],
7 males [46.7%]; median age: 8 months [range: 1-180]) and 29
with MIS-C (18 females [62.1%], 11 males [37.9%]; median age:
72 months [range: 2-192]) (Wilcoxon test, p = 0.019; Supporting
Information S1: Figure 1). The mean [SD] WES coverage across
all samples was 67.5x [26.9], including 80.85x [38.7] for
SCOVID-19 samples and 60.54x [14.6] for MIS-C samples
(Supporting Information S1: Figure 2). Kinship analysis based
on autosomal SNPs returned ® <0.044 for all 946 pairwise
comparisons, indicating that none of the 44 individuals are
related at the third-degree level or closer.

Variant calling identified 203 815 genetic variants. After apply-
ing filters for variant consequence, predicted pathogenicity, and
population frequency (<5% or unreported), 766 variants
remained (Figure 1a). Among these, 730 were single nucleotide
variants, 23 were deletions, and 13 were insertions. Specifically,
variants were retained if they were predicted to be potentially
pathogenic by REVEL (n =596), had at least one pathogenic
entry in ClinVar (n=197), or exhibited unknown frequency
(n=286) or frequencies below 5% (n=680) in ABraOM, gno-
mAD, and 1000 Genomes. Collectively, these variants affected
674 genes, with 277 identified in sCOVID-19 and 464 in MIS-C
(Figure 1b).

3.2 | Over-Representation Analysis

Over-Representation Analysis (ORA) identified both shared and
distinct biological pathways linked to genetic variants in
sCOVID-19 and MIS-C. In total, 674 genes carrying these var-
iants (277 in sCOVID-19 and 464 in MIS-C) were used as ORA
input with GO, KEGG, and Reactome databases. From this
analysis, 115 enriched biological terms were identified, com-
prising 62 specific to MIS-C, 31 specific to sCOVID-19, and 8
shared between the two groups (Figure 1b).

3.3 | Sample Clustering

Sample clustering (Figure 1c) revealed distinct genetic profiles
for patients with sCOVID-19 and MIS-C. Hierarchical clustering
was performed using Euclidean distances on the variant counts
from 172 genes selected through logistic regression (L2 penalty,
coefficient > 10.13 |). This approach separated the two clinical
groups; however, four samples diverged from the overall pattern
(three MIS-C samples clustered with sCOVID-19, and one
sCOVID-19 sample clustered with MIS-C) (Figure 2). These find-
ings suggest distinct patterns of genetic variants in sCOVID-19
and MIS-C patients, indicating that different gene sets contribute
to the severity and clinical presentation of these conditions.

3.4 | Distinct Enriched Terms in sCOVID-19 and
MIS-C Revealed by ORA and Logistic Regression

Logistic regression identified terms most likely associated with
sCOVID-19 or MIS-C based on ORA findings (Figure 1d). This
approach yielded 23 prioritized terms, of which 8 demon-
strated coefficients exceeding 10.5! (Figure 3a). These terms
represented seven categories: cholesterol/lipoprotein metabo-
lism, digestive system processes, motor proteins activity,
muscle cell development, cardiomyopathies, carbohydrate
metabolism, and serine-type peptidase activity. These terms
guided deeper exploration of related enriched terms in the
ORA results (Figure 3b).

Additionally, ORA identified distinct pathways linked to either
sCOVID-19 or MIS-C (Figure 3b, Supporting Information S1:
Data 1). The sCOVID-19 group exhibited enrichment in cardi-
omyopathies, carbohydrate metabolism, and serine-type pepti-
dase activity, whereas MIS-C showed enrichment in cholesterol
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FIGURE 2 | Hierarchical clustering of patient samples. Hierarchical clustering was conducted using the per-gene variant counts for each of the
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This clustering indicates distinct genetic variant profiles between the two clinical groups.
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FIGURE 3 | Terms prioritized by logistic regression and over-representation analysis. (a) Logistic regression with an L1 penalty was applied to

115 enriched terms to identify those most closely associated with either severe COVID-19 (sCOVID-19) or MIS-C. Negative regression coefficients
indicate terms more likely linked to sCOVID-19, whereas positive coefficients indicate those preferentially associated with MIS-C. (b) Dot plot
illustrating the key terms (coefficient > 10.5 in panel a) and closely related enriched terms from the over-representation analysis (ORA). Terms were
derived from GO, KEGG, and Reactome databases, each meeting the respective significance thresholds (g <0.01 for GO/KEGG, g < 0.02 for
Reactome). Color coding denotes broad functional categories, including cholesterol and lipoprotein metabolism, digestive system, motor protein
activity, muscle cell development, cardiomyopathies, carbohydrate metabolism, and serine-type peptidase activity.
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and lipoprotein metabolism, the digestive system, motor pro-
teins activity, and muscle cell development. The present anal-
ysis focuses on carbohydrate and cholesterol metabolism, as
related pathways remained enriched even under a stricter
populational variant frequency threshold (< 1% in public data-
bases; Supporting Information S1: Data 2).

3.5 | Genes Affected in sCOVID-19 and MIS-C
Enriched Terms

To further explore the pathways enriched in Figure 3b, terms
exclusively linked to sCOVID-19 or MIS-C were merged,
yielding distinct gene lists for each group. Figures 4 and 5
illustrate and quantify the presence of variants in these genes
among sCOVID-19 and MIS-C samples. The results reinforce
the ORA findings and highlight the unique sets of genes that
may shape the pathophysiology in each condition.

Among the pathway genes recovered by the over-representation
analysis, an exclusivity filter was applied: genetic variants in
carbohydrate-metabolism genes were retained only when observed
in sCOVID-19 cases, whereas genetic variants in cholesterol/
lipoprotein-metabolism genes were retained only when observed in
MIS-C cases. This pathway-phenotype criterion yielded 34 rare,
putatively deleterious genetic variants distributed across 30 genes
(Table 1). The resulting set segregates strictly by phenotype: nine
carbohydrate-metabolism genes carry sCOVID-19-specific genetic
variants, whereas 21 cholesterol/lipoprotein-metabolism genes carry
MIS-C-specific genetic variants

Clinical and evolutionary annotations further underline the
relevance of this 34 genetic variant panel. Under the ACMG/
AMP framework, 14 genetic variants (41,2%) were classified as
pathogenic or likely pathogenic, 13 (38,2%) as variants of
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FIGURE 4 |

b

uncertain significance, and 7 (20,6%) as benign. Conservation
scores were available for 32 of the 34 genetic variants. Of these,
28 (87,5%; 82,4% of the full shortlist) satisfied the stringent
dual threshold for evolutionary constraint (PhyloP >2 and
GERP++ RS > 4) and were labelled highly conserved. Only a
single genetic variant met the PhyloP criterion without ex-
ceeding the GERP++ threshold and was therefore classified as
conserved (PhyloP only), whereas three genetic variants failed
to reach either cut-off and were placed in the low-conservation
category. Although neither ACMG classification nor conserva-
tion metrics influenced genetic variant selection, the concor-
dance between predicted clinical impact, strong evolutionary
constraint, and phenotype-specific distribution suggests that
these genetic variants may contribute to the divergent patho-
physiological processes underlying sCOVID-19 and MIS-C.

Within carbohydrate metabolism, KEGG analysis identified
eight genes in the starch and sucrose metabolism pathway: six
in sCOVID-19 and two in MIS-C (Figure 6). The six sSCOVID-19
genes clustered in the Glycogen degradation and Glycogen
degradation (amylase) subnetworks, aligning with the enrich-
ment of the Glycogen breakdown (glycogenolysis) pathway in
Reactome (Figure 3b). Conversely, KEGG analysis of choles-
terol metabolism analysis revealed 12 genes involved in cho-
lesterol and lipoprotein metabolism, nine of which were
detected in the MIS-C group (Figure 7).

3.6 | Three-Dimensional Protein Modeling of
Potentially Pathogenic Genetic Variants in
Carbohydrate Metabolism and Cholesterol
Metabolism

To provide a comprehensive understanding of the structural impact
of genetic variants, they were subjected to three-dimensional

Serine-type peptidase activity

c2
] HPR
m KLKB1
PCSK5

PLG
i PRSS36

0 RELN
u] TLL2
o TMPRSS11B
O TYSND1
TMPRSS6

Group [ covip [ mis-c
Y
0 1 2

Genes affected in sCOVID-19-enriched terms. Heatmaps display the presence of genetic variants in each patient sample (columns)

across key genes (rows) within the sSCOVID-19 group (purple) and MIS-C group (green). The intensity of red indicates the number of variants

detected in each gene-sample pair. Genes are organized into three main categories enriched in sCOVID-19: (a) Carbohydrate metabolism (Starch and
sucrose metabolism [KEGG], Glycogen breakdown [glycogenolysis] [Reactome], and Galactose metabolism [KEGG]). (b) Serine-type peptidase
activity (GO). (c) Cardiomyopathy (Hypertrophic cardiomyopathy [KEGG], Dilated cardiomyopathy [KEGG], and Arrhythmogenic right ventricular

cardiomyopathy [KEGG]).
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FIGURE 5 | Genes affected in MIS-C-enriched terms. Heatmaps display the presence of genetic variants in each patient sample (columns) across

key genes (rows) within the sCOVID-19 group (purple) and MIS-C group (green). The intensity of red indicates the number of variants detected in
each gene-sample pair. Genes are grouped into categories enriched in MIS-C. (a) Cholesterol metabolism (Cholesterol transport [GO], Cholesterol
metabolism [KEGG], Cholesterol homeostasis [GO]). (b) Lipoprotein metabolism (Plasma lipoprotein clearance [Reactome], Plasma lipoprotein
assembly, remodeling, and clearance [Reactome], Lipoprotein particle receptor binding [GO], Lipoprotein particle binding [GO]). (c) Motor proteins
(Motor proteins [KEGG], Cytoskeletal motor activity [GO]). (d) Digestive system process (GO). (e) Muscle cell development (GO).

protein modeling. These analyses reveal how amino-acid substitu-
tions can impair protein stability, diminish catalytic activity, or
disrupt ligand-binding networks. From this extensive analysis, four
key genetic variants were selected for detailed presentation and in-
depth discussion in the main text (Figures 8 and 9), based on three
stringent filters: a high pathogenicity prediction (REVEL > 0.80), an
ACMG/AMP classification of pathogenic, and strong evolutionary
constraint (PhyloP>4.0 together with GERP++ >4.5). Two
arise in carbohydrate-metabolism genes: GALT p.GInl88 Arg
(rs75391579) and PYGM p.Ala365Val (rs116135678). The remaining
two genetic variants identified are involved in cholesterol and
lipoprotein metabolism genes: CFTR p.Leu206Trp (rs121908752)
and ABCBI11 p.Arg517His (rs760750012). For CFIR protein,
beyond the p.Leu206Trp variant, other missense variants identified
(Argll62Leu and Ile285Phe) were also structurally analyzed, with
details provided for all three missense variants in Figure 9. The
CFTR p.Phe508del variant was identified but not amenable to this
specific structural modeling approach due to the method limitation
to work with sequence deletions. Additional structural modeling for
an expanded panel of carbohydrate-metabolism genes (AMY2B,
GAA, GALE, GANC, PGM1, PHKA1, SI) and -cholesterol

-metabolism genes (ABCAS5, ABCB4, ADIPOQ, APOE, NR1H3)
was likewise performed and is provided in Supplementary Results.
The LRP1 p.Tyr3245Cys variant could not be structurally charac-
terized due to the protein’s substantial molecular weight (4,544
amino acids) and absence of experimental structures encompassing
the variant site, though the Tyr-to-Cys substitution potentially af-
fects disulfide bonding patterns within the extracellular domain.
LIPA was excluded from the structural-modelling section because
the interrogated variant, p.GIn298= is synonymous. In LIPC, the
p-lle165Thr substitution proved structurally neutral: situated in a
buried core region, the threonine side chain introduced no signifi-
cant steric, electrostatic, or cavity-volume changes, rendering addi-
tional modelling results non-informative.

GALT encodes the enzyme galactose-1-phosphate uridylyl-
transferase, which catalyzes a key step in the metabolism of
galactose by converting galactose-1-phosphate and UDP-glucose
to glucose-1-phosphate and UDP-galactose (Figure 8a). A variant
designated NP_000146.2:p.GIn188Arg (rs75391579) has been
identified in GALT and is associated with a severe form of
galactosemia, a metabolic disorder characterized by the impaired
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Conservation
classification

ACMG
classification

(Continued)

TABLE 1

PhyloP GERP

ACMG criteria
PVS1, BA1, BS2, BP6
PP3, PP2, BS1, BS2, BP6

REVEL

dbSNP
1541341748
rs35248744
rs79836534
1s774079609

HGVSG

Gene

Low conservation

2.84
5.54
4.23
5.08
—0.263

4.51

0.7

:2.16012594 G > A
:2.21113475T > C

NC_000018.9

NC_000008.10

MSR1

0.844
0.869
0.974
0.028

NPC1

Highly conserved

NC_000007.13

Highly conserved

4.1

VUuS

PM2, PP3

:g.44575482 A>T
:g.47282095G > A

NC_000011.9

NPC1L1
NR1H3
PCSK9
PGM1

Highly conserved

5.5
0.1

LP

PP3, PM2
BA1, BS2, BP4, BP6

NC_000001.10

Low conservation

rs11591147
15397515423

:g.55505647G > T

NC_000001.10

Highly conserved

33
3.5

PM3, PVS1, PM2

:£.64120045C > T

NC_000023.10

Highly conserved

4.26

VvUS

PM2, PP3
PM3, PP3, PM2, PP2, PP5

0.917

15782546754
rs116135678
15121912616

:g.71802375C > T
:2.64521496 G > A

NC_000011.9

PHKA1
PYGM

SI

Highly conserved

4.8
4.64

5.2
5.1

0.946
0.521
0.

NC_000003.11

LP
A4S

PM2, PP5

Highly conserved

:2.164739053 C>T
:2.104142911 G > A

NC_000012.11

Highly conserved

5.29

5.8

PM2, PP3

87

1s375507356

STAB2

#The table lists 34 genetic variants distributed across 30 genes that passed a multi-tiered filtering pipeline and segregate exclusively with one clinical phenotype. Variants in carbohydrate-metabolism genes occur only in SCOVID-19 cases,
whereas those in cholesterol/lipoprotein-metabolism genes are confined to MIS-C cases, suggesting pathway-specific genetic susceptibilities. Column definitions: Gene - HGNC symbol; HGVSG - HGVS genomic nomenclature; dbSNP —
rsID; REVEL - predicted pathogenicity score; ACMG criteria — evidence codes assigned by Franklin (PS, PM, PP, BS, BP); ACMG classification - final tier (P, LP, VUS, LB, B); PhyloP and GERP++ - nucleotide conservation scores;

Conservation class - “highly conserved” when PhyloP > 2 and GERP++ > 4.

ability to metabolize galactose. The p.GIn188Arg variant involves
the substitution of the medium-sized polar glutamine residue
with the larger, basic arginine residue within the active site of the
enzyme. Structural analysis revealed that the wild-type residue
GIn188 forms crucial hydrogen bond interactions with Trp190
and the ligands 1-O-phosphono-a-p-glucopyranose (G1P) and
5,6-dihydrouridine-5’-monophosphate (H2U) (Figure 8b). How-
ever, the p.Gln188Arg variant is predicted to disrupt these in-
teractions due to the introduction of the larger, positively charged
arginine side chain (Figure 8c). The loss of hydrogen bonding
interactions with Trp190 and the ligands is anticipated to impair
the proper folding and stability of the enzyme, with potential to
reduce its catalytic activity.

PYGM encodes the glycogen phosphorylase muscle form, a cru-
cial enzyme involved in the breakdown of glycogen, the primary
storage form of glucose in skeletal muscle (Figure 8d). Structural
analysis of PYGM revealed that the NP_005600.1:p.Ala365Val
(rs116135678) missense variant could result in significant steric
hindrance. The substitution of the small, non-bulky alanine
residue at position 365 (Figure 8e) with the larger, branched-
chain valine side chain is predicted to cause clashes with the
neighboring residues Met351, Met360, and Leu354 (Figure 8f).
These steric conflicts arising from introducing the bulkier valine
residue could disrupt the precise packing and folding of the local
structural environment, potentially destabilizing the overall ter-
tiary structure and conformational dynamics of the glycogen
phosphorylase muscle form.

CFTR encodes a chloride channel implicated in cystic fibrosis
pathogenesis and cholesterol trafficking. Structural examination
revealed that the wild-type residue Argll62 forms hydrogen
bonds with Asp979 and Glul046 on adjacent a-helices. More-
over, Glul046 participates in a hydrogen bonding network
involving Ser1049, which connects to Asn974 and Argl048.
(Figure 9b). The substitution of the positively charged Argl162
with the nonpolar leucine (NP_000483.3:p.Argll62Leu,
rs1800120) would disrupt these critical hydrogen bonds with
Asp979 and Glul046, potentially destabilizing and impairing
CFTR function (Figure 9c). The NP_000483.3:p.Ile285Phe
(rs151073129) variant occurs within an o-helix of CFTR
(Figure 9d). Substituting the smaller isoleucine with the larger,
aromatic phenylalanine results in increased steric bulk, poten-
tially clashing with Thr262on an adjacent helix (Figure 9e).
Such steric hindrance can disrupt the structural integrity and
stability of the adjacent helix, affecting CFTR's overall tertiary
structure and potentially perturbing interactions with essential
biomolecules. The NP_000483.3:p.Leu206Trp (rs121908752)
variant is situated within the transmembrane region of CFTR,
facing the solvent-exposed region near a cholesterol molecule
(CLR) observed in the electron microscopy structure (PDB ID:
8EIO) (Figure 9f). The introduction of the bulky, aromatic
tryptophan residue in place of the smaller, aliphatic leucine
could significantly influence protein-solvent interactions, dis-
rupt membrane integrity, and modulate the dynamics of
protein-membrane associations (Figure 9g).

ABCBI1 encodes the bile salt export pump (BSEP), an ATP-
dependent transporter whose efflux of hydrophobic bile acids
preserves hepatic bile acid balance and, via bile salt-dependent
biliary lipid secretion, integrates into systemic lipid metabolism.
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FIGURE 6 | Carbohydrate metabolism and glycogen breakdown pathways. Adapted from the KEGG Starch and Sucrose Metabolism pathway,
this diagram highlights key enzymes involved in carbohydrate metabolism as identified through over-representation analysis (ORA). Genes har-
boring variants in sSCOVID-19 are shown in purple, whereas those in MIS-C appear in green. Light purple outlines indicate components of the KEGG
glycogen degradation pathways (N00718 and N00720), underscoring the prominent role of glycogenolysis in the pathophysiology of severe COVID-19

and MIS-C.

The variant NP_003733.2:p.Arg517His, located within the
highly conserved nucleotide-binding fold region essential for
ATP binding and hydrolysis, demonstrated potential structural
perturbations. Structural analysis revealed that the wild-type
Arg517 residue establishes hydrogen bond interactions with
both Glu514 and Glu521, creating a stabilizing network within
the ATP-binding domain (Figure 9i). The substitution of the
positively charged arginine with the smaller histidine residue
disrupts both hydrogen bonding interactions simultaneously
(Figure 9j), while electrostatic potential mapping demonstrated
a transition from neutral to negative charge distribution at the
variant site (Figure 9h,i), potentially compromising ATP bind-
ing affinity and nucleotide hydrolysis efficiency.

4 | Discussion

ORA revealed distinct gene sets in sSCOVID-19 and MIS-C. A
combined analysis of all samples showed enrichment of cho-
lesterol and lipoprotein metabolism, but after stratification only
the MIS-C group retained these pathways, whereas carbohy-
drate metabolism—particularly glycogen breakdown—was
uniquely enriched in sCOVID-19.

The ACMG/AMP classification and evolutionary metrics con-
verge on a coherent signal of functional relevance of the genetic
variants identified in our study. Fourteen of the 34 shortlisted
genetic variants (41.2%) meet ACMG/AMP criteria for patho-
genicity or likely pathogenicity, 13 (38.2%) are genetic variants
of uncertain significance, and 7 (20.6%) are benign or likely
benign. Conservation scores are available for 32 genetic var-
iants; 28 (87.5%) lie at residues under strong purifying selection.
Kinship analysis confirmed that none of the 44 participants are
related at the third-degree level or closer, indicating that these

concordant annotations are not driven by familial clustering
and that genotype—phenotype comparisons represent indepen-
dent observations.

Although SARS-CoV-2 infection is an environmental trigger,
genome-wide and exomic surveys have uncovered multiple
genomic regions that measurably influence both susceptibility
to infection and the clinical course of COVID-19. These loci
account for only a fraction of overall risk and therefore cannot
yet support routine individual stratification, but they already
sharpen mechanistic insight and highlight candidate targets for
diagnostic and therapeutic development [38].

Because the ACMG/AMP framework was developed for highly
penetrant Mendelian disorders, its categories should be inter-
preted here as indicators of potential functional effect rather
than definitive causal pathogenicity. Variants labelled patho-
genic may act mainly as risk modifiers in these multifactorial
settings, whereas several VUS situated at highly conserved
residues could contribute to disease only in combination with
additional genetic or environmental factors. Recent proposals to
adapt ACMG terminology for complex traits by introducing
“predisposing” tiers and explicitly incorporating polygenic
background reinforce this interpretation [39]. Accordingly, the
convergence of ACMG and structural modeling evidence,
strong evolutionary constraint, and phenotype-specific distri-
bution suggests that the present variant set may contribute to
the divergent pathophysiological processes underlying MIS-C
and severe COVID-19.

In sCOVID-19, three enrichment categories not observed in
MIS-C were identified: cardiomyopathies, carbohydrate metabo-
lism, and serine-type peptidase activity. This finding aligns with
the known impact of pre-existing heart conditions on COVID-19
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FIGURE 7 |

Cholesterol metabolism pathway. Adapted from the KEGG Cholesterol Metabolism pathway, this diagram highlights genes within

the Cholesterol Metabolism supercategory identified by over-representation analysis (ORA). Genes harboring variants in sCOVID-19 are shown in

purple, while those in MIS-C appear in green. The pathway illustrates the interplay of lipoproteins - HDL, LDL, VLDL, and chylomicrons - in

cholesterol transport, uptake, and metabolism, emphasizing processes that may be disrupted by potentially pathogenic genetic variants.

outcomes, since the infection itself can exacerbate myocarditis
and other cardiovascular complications [40]. Moreover, a study
comparing shared differentially expressed genes in heart failure
and COVID-19 patients found the term “starch and sucrose
metabolism” enriched [41], suggesting the relevance of these
pathways. Consistently, among the 12 carbohydrate metabolism
genes associated with sCOVID-19, 8 participate in starch and
sucrose metabolism (KEGG), primarily contributing to glycogen
breakdown (Figure 6).

Carbohydrate metabolism is pivotal for immune cell function.
Activated mucosal-associated invariant T (MAIT) cells utilize

glycogen for rapid cytotoxic responses [42]. Dendritic cells
require glycogen for maturation and lymphocyte activation, as
blocking glycogen metabolism impairs these processes. Fur-
thermore, dendritic cells use distinct pathways for carbon
derived from glucose versus glycogen, with glycogen-derived
carbon preferentially contributing to citrate synthesis, which
supports cytokine production and secretion [43, 44]. In CD8+
T memory cells, glucose and glycogen metabolism are spe-
cifically orchestrated and compartmentalized to ensure cell
function. These cells show positive regulation of glycogenesis
via gluconeogenesis. The resulting glycogen is then channeled
into glycogenolysis, increasing levels of glucose-6-phosphate
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FIGURE 8 | Structural consequences of variants in carbohydrate metabolism genes. In silico analyses were conducted to model the effects of
missense variants on protein conformation and function, focusing on key residues and potential disruptions in active sites or binding pockets: (a—c)
GALT and NP_000146.2:p. GIn188Arg (rs75391579): (a) GALT structure. (b) Active site close-up: GIln188 bonding with Trp190, G1P, and H2U. (c)
Variant model: p. GIn188Arg disrupts Trp190 and ligand interactions, likely reducing catalytic activity. (d-f) PYGM and NP_005600.1:p. Ala365Val
(rs116135678): (d) PYGM structure with AMP and glucose. (e) Close-up of Ala365 (pink). (f) Variant model: p.Ala365Val causes steric clashes with

Met351, Met360, and Leu354.

(G6P). G6P derived from glycogen breakdown is oxidized in
the pentose phosphate pathway (PPP), generating NADPH
and high levels of reduced glutathione in these cells. Dis-
ruption of this pathway leads to an accumulation of reactive
oxygen species, impairing CD8+ T cell formation and

infection clearance [45, 46]. Similarly, macrophages rely on
the same glycogen breakdown pathway to supply NADPH and
glutathione [47], while neutrophils in severe COVID-19 ex-
hibit elevated glycolysis, cytoplasmic glycogen accumulation,
and enhanced glycogenolysis [48].
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FIGURE 9 | Structural consequences of variants in cholesterol metabolism genes. In silico analyses were conducted to model the effects of
missense variants on protein conformation and function, focusing on key residues and potential disruptions in active sites or binding pockets. (a-g)
CFTR chloride channel and NP_000483.3:p.[Argl162Leu; Ile285Phe; Leu206Trp]: (a) CFTR with predicted membrane orientation. (b) Close-up of
Argl1162, which forms hydrogen bonds with Asp979 and Glu1046. (c) Variant model: p. Argl162Leu (rs1800120) disrupts these hydrogen bonds. (d)
Close-up of I1e285. (e) Variant model: p. Ile285Phe (rs151073129) introduces steric bulk, potentially clashing with Thr262. (f) Close-up of Leu206 near
cholesterol (CLR). (g) Variant model: p. Leu206Trp (rs121908752) may perturb protein-solvent and membrane interactions. All models depict
extracellular surfaces in red and intracellular surfaces in blue. (h—-j) ABCB11 and NP_003733.2:p.Arg517His: (h) Overall structure of the bile salt
export pump ABCBI1. (i) Detailed view of Arg517, which forms hydrogen bonds with Glu514 and Glu521 within the nucleotide-binding region. (j)
Variant model: p.Arg517His disrupts both stabilizing hydrogen bond networks. Electrostatic potential surfaces color scheme demonstrates the
transitions from neutral to negative charge distribution upon aminoacidic substitution: electronegative regions in red, electropositive regions in blue,

and neutral areas in white.

The data presented here point to a significant role for glyco-
genolysis in immune responses during SARS-CoV-2 infection.
Two mechanisms may explain its importance: (i) glycogen
breakdown produces 3 ATP per glucose, outpacing the 2 ATP
from glycolysis, thereby meeting heightened energy demands,
and (ii) the partial diversion of G6P into PPP generates NADPH,
sustaining glutathione levels under oxidative stress. Both

mechanisms provided by glycogen breakdown could contribute
to immune cell survival during SARS-CoV-2 infection. Addi-
tionally, genetic variations in two of the four enzymes of the
Leloir pathway, GALT and GALE, which feed into glycogenesis,
may further compromise energy production via glycolysis, en-
ergy storage via glycogenesis, and redox balance in infected
children.
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In MIS-C, the identified potentially pathogenic variants may
functionally affect processes related to cholesterol and lipo-
protein metabolism (Figures 3b, 5, and 7). This hypothesis aligns
with reports that low levels of total and HDL cholesterol (HDL-C)
correlate with increased hospitalization risk in COVID-19 and
other infections [49]. Indeed, apolipoprotein A-1, a key component
of HDL-C, has been linked to antiviral activity, and its anti-
inflammatory and immunomodulatory roles have been discussed
[50]. Studies have demonstrated that cholesterol levels are lower
in patients infected with SARS-CoV-2 compared to healthy in-
dividuals, and as the severity of COVID-19 increases, cholesterol
levels decrease [51]. Transcriptomic data showed that the ex-
pression of genes involved in the cholesterol synthesis pathway is
inhibited during SARS-CoV-2 infection [52]. Furthermore, plasma
proteomic analyses in children with COVID-19 and MIS-C also
indicate suppression of cholesterol and lipoprotein metabolism
pathways [53]. Notably, pediatric COVID-19 cases presenting low
HDL-C develop more severe symptoms, with particularly low
HDL-C levels seen in severe cases that developed MIS-C [54]. In
these pediatric COVID-19 patients, a decrease in cholesterol efflux
capacity of macrophages was found, which was also associated
with the increased severity of COVID-19 and MIS-C [54].

Genetic variants that disrupt cholesterol transport may contribute
to reduced HDL levels and subsequent cholesterol accumulation
in cell membranes [55]. These cholesterol-rich membrane
domains, or lipid rafts, host ACE2 and other receptors critical for
SARS-CoV-2 entry. Elevated membrane cholesterol can reorganize
ACE2 within GM1 clusters, thereby enhancing viral binding and
endocytosis. Consequently, pharmacological approaches aimed at
disrupting GM1 clusters or promoting cholesterol efflux may offer
therapeutic advantages for critically ill COVID-19 patients [56].
HDL itself integrates innate and adaptive immunity by regulating
lipid raft cholesterol levels, influencing toll-like receptor function
and B-/T-cell receptor activity. In animal models, disruptions in
HDL metabolism or cholesterol efflux produce phenotypic traits
consistent with immune disorders [57]. These observations sug-
gest that genetic variants in cholesterol- and lipoprotein-related
genes could underlie the low cholesterol phenotypes observed in
MIS-C and intensify inflammatory responses, given that defective
cholesterol efflux in dendritic cells and macrophages promotes
hyperinflammatory states [58, 59].

Structural modeling of these carbohydrate- and cholesterol-
related genetic variants suggests that most substitutions are likely
to compromise protein function, consistent with their predicted
or documented pathogenicity. Additional studies are necessary to
clarify the roles of these genetic changes in disease severity.

Some study limitations merit consideration. First, the cohort
comprised only 15 children with severe COVID-19 and 29 with
MIS-C, a sample size that offers little power for single genetic
variant association tests. Recruitment of pediatric cases with these
rare and acute phenotypes is intrinsically difficult, and many
reports on comparable conditions present similar number of pa-
tients [15, 53, 60]. To maximize biological insight, ORA was
applied. By collapsing rare, putatively deleterious genetic variants
to the gene level and testing pathway enrichment, ORA converts
thousands of sparse variant-level comparisons into a few hundred
pathway-level hypotheses, greatly easing the multiple-testing
burden. Because the hypergeometric statistic that underlies

ORA depends chiefly on the proportion of genes in the list rather
than on sample count, its statistical power is largely
preserved even when a gene presents a variant in only one indi-
vidual [61]. Support for this strategy arise from a plasma-
proteomics study of paediatric MIS-C and COVID-19-related
ARDS, in which ORA applied to differentially abundant proteins
per group still recovered cholesterol-related pathways — despite
the small data set. Consistent with that precedent, ORA of the
present WES data highlighted carbohydrate-metabolism path-
ways in severe COVID-19 and cholesterol/lipoprotein pathways
in MIS-C - signals that single-gene tests could not detect at the
current sample size. ORA therefore serves as a biologically in-
formed signal amplifier that mitigates the constraints imposed by
the cohort size. Even so, WES coupled with ORA captures only
part of the genetic architecture of these conditions. Larger
cohorts, integration of complementary omics layers and func-
tional validation will be needed to refine the present findings.

In conclusion, whole-exome sequencing and over-representation
analyses identified distinct genetic variants in pediatric severe
COVID-19 and MIS-C. Carbohydrate metabolism genes, partic-
ularly those involved in glycogen breakdown, were predomi-
nantly affected in sSCOVID-19, whereas MIS-C exhibited variants
linked to cholesterol and lipoprotein metabolism. These findings
expand current understanding of the genetic landscape in severe
pediatric COVID-19 outcomes and may inform future diagnostic
and therapeutic strategies.
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