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The Bock's Nominal Response Model (Bock, 1972) was proposed to improve the latent 
trait (ability) estimation. However, a large number of real situations are modelled by 

the three-parameter logistic model (Baker and Kim, 2004). In this article we discuss the 

ability e.~timation under these two models and conducted a simulation study to verify the 

behavior of their estimatives. Basically, we use suitable estimation methods considering 
both item and latent trait estimation. For every model we conducted the estimation pro­
cedures using modifications of the Maximum Marginal a Posteriori (MMAP) (for the item 

parameters) and Expectation (EAP) Md Maximum a posteriori (MAP) (for latent traits). 

We compare the models considering different sample sizes (number of individuals) and 
different levels of asymmetry for the latent density through the skew-normal distribution 
(Genton, 2004). 

Key words : Latent trait, nominal response model, dichotomous models, bayesian 

estimation, asymmetry distribution. 
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1. Introduction 

Birnbaum ( 1968) proposed the well known three-parameter logistic model to analyze 

multiple choice items and to estimate the individual latent trait. This model simply 
consider whether the subject answers or not correctly the item. So, the information 

contained in the wrong alternatives arc not considered. On the other hand, Bock ( 1972) 

proposed the Nominal Response Model to improve the latent trait estimation. This 
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model, differently from the Birnbaum's model, considers the probability of choosing any 

alternative and in this way it uses all the information contained in the item. 

Our main goal is to compare the Jaten trait estimation under these two models through, 

suitable bayesian estimation methods. In next Section we present the models. In Section 

3 we present and discuss briefly about the estimation methods used. Section 4 brings a 
simulation study and finally, in Section 5, we discuss the results obtained. 

2. The Models 

The three-parameter logistic model (henceforth, DRM - 3P) hes the following form 

(1) 

where Y;; = I, if subject j answers correctly the item i, and O otherwise; a; is the item 

parameter that represents the item's discrimination (slope); b; is the item parameter that 

represents the item's difficult; e; is the item parameter that represents the probability of 

a correct answer given by a low abilities' level individual; 0, is the individual latent trait 

(or ability); D a scaling factor that is 1, if we want the results in the logistic metric or 

l.7, if we want the results in the normal metric, see Baker and Kim (2004). 
This model hes two basically assumptions that are essential to the estimation processes, 

which are: 

I. The responses of different subjects are independent; 

2. Given the ability's (latent trait) subject its response to different items are indepen­

dent (commonly known as conditional independency). 

Notice that, taking e; = 0 in (I) we have the two parameter logistic model (henceforth, 

DRM-2P), see Baker and Kim (2004). 

The Nominal Response Model (henceforth NRM), see Baker and Kim (2004) for exam­

ple, hes the following form 

e•,,(D,-b,,) 

m; L e•"(o;-b,.J 

h=I 

(2) 

where Y;i., is the random variable that assumes value I, if subject j, j = 1,2, ... , n 

chooses the alternative s, s = 1, 2, ... , m; of item i, i = 1, 2, ... , I and 0, otherwise, 
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a;, e b;, represent the parameters related to the discrimination and the difficult of 

the category, respectively. In this model we may have negative values for both type of 

parameters. For the parameter discrimination we expect negative, or small values, for the, 

wrong alternatives and positive value for the right alternative. This means that a higher 

value for individual ability is associated with higher probability of this subject chooses 

the right alternative. The difficult parameter represents, in some way, the ability that a 

subject must have to choose the referred alternative. 

Notice that, the two parameter logistic model is not a particular case of the NRM with 
only two categories. 

This model has three basically assumptions that are essential to the estimation pro­

cesses. Two of them are that ones considered in DRM-3P and the third one is related 

to the probability that a subject chooses an alternative of a specific item, which can be 

modelled by the multivariate Bernoulli model, that is, 

m, 

P(Y,j. = Yij.10, <,) = P(Y;,_ := Y;,_) = II P,~t' 
.1=l 

where Y;1 = (y;11, ••• , y;1,...)' represents a specific set of responses of a subject to a specific 

item. 

In the next section we present the estimation methods. 

3. Estimation Methods 

There is an interesting and wide literature concerning estimation methods in IRT. We 

may cite Baker and Kim (2004), Patz and Junker (1999 a and 1999 b), Albert (1992) 

among others. In these references, the authors discuss different approaches, both classical 

and bayesian ones, to fit !RT models. Based on the results of these works, we will use 
in this article the MMAP procedure, see Baker and Kim (2004), to the item parameter 

estimation and two bayesian methods with suit.able modification, to estimate the latent 

trait. Such modification is to consider a skew-normal distribution to the EAP and to 

the MAP methods. For both MMAP and EAP procedures, we use different quadrature 

weights based on this priori distribution. These quadrature points will be discussed ahead. 
Then, we conduct the estimation processes in two steps using the marginal bayesian 

approach, sec Mislevy (1986), instead of the full bayesian one (Patz and Junker, 1999 a). 
We briefly describe the two methods, EAP and MAP, suitable modified and the ma.xirnum 

likelihood to the NRM latent trait estimation. The correspondent estimation methods to 

the DR.i\.1 are obtained using a different !RF (item response function), see Baker and Kirn 

(2004), for exan1ple. 
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3.1. Maximum Likelihood Estimation 

As described in Baker and Kim (2004) and Azevedo (2003) we have the following log­

likelihood to an individual latent trait 

1 m, 
1(0;, I') = 1(0;) = LL y;;, In P;;., 

i=-1 •=• 

where f represents an estimate of the item free parameters (Azevedo 2003). After some 

algebra, we obtain the score function, 

I 

S(O;) = Lo:T;[Y;;.-P;;], (3) 
i=J 

and Hessian matrix 

I 

H(9;) = - L {o:T;W;;T:o;}, (4) 
ia:1 

where o,, T, and W; are suitable matrices which do not depend on the responses. We 

may notice, by (4) , that the Hessian Matrix is non-stochaslic, then the Information Matrix 

is only /(0;) = -H(9;). Thereafter, considering O; an estimative of O; in iteration t, we 

can define the Ncwton-R.aphson / Fisher Scoring method (Baker and Kim, 2004) as 

Newton-Raphson 

0<•+1> = o<•> - H (0<•>)-1 s (o<•>) 
J J ) J I 

(5) 

Fisher Scoring 

(6) 

t = 1, 2, . .. , up to reach a convergence criteria. 

In the next subsection we present the modal and expectation bayesian estimation. 
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3.2. Bayes Modal Estimation 

In a general way, in the baycsian estimation we need to use the posterior distribution 

which follows directly from the Bayes Theorem (Bernardo and Smith, 1998), 

g;(0i) = Cg(OilY.j., f, 11) = C P(Y ;.18;, I')g(8;!11) 

cc P(Y.;.l8i , I')g(8;l11), (7) 

where Y .i. = (Yi;1, .. . , Y1;m., .. . , Yi;1, ... , Y1;m,)', P(Y.;18;, I') is the profile likelihood, 

g(8;l11) is a convenient priori, 77 are the hyperparameters (or the populational param­

eters) and C is a normalization constant. To evaluate the bayes modal we need to 

maximize equal.ion (7). Thereafter, taking its natural logarithm we have 

In gJ(Oi) = 1; (8,) = l (8;) +Ing (8;111) + const. (8) 

Differentinting (8) we have the bayesian estimating equation 

(9) 

Notice that the first term in the right-hand side of (9) is exactly the score function 

defined in (3) and, considering a skew-normal distribution as the prior, that is, 8;/11; ~ 
SN(µ,,,oi,,>-o, ) (Gcnton, 2004) it follows that 

where f/J = (µ,,,o't,,>-o1)T, µ,1 is the mean, oi, is the variance,>-,, is the asymmetry 

parameter, it,(.) and <I>(.) arc the density and cumulative function of a standard normal 

distribution. It follows that, the hessian matrix and the Fisher information are given by 

Hessian Matrix 

H(O;)s = H(O;)-{:i +h(>-,, ,8;)} , 

where H(B;) is given by (4) and, 
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h(>-o;, O;) 

(10) 

Fisher Information 

The Fisher information is only the symmetric value of hessian matrix in the NRM. The 

iterative process may be applied as described in (5) and (6). In the next subsection we 

present the bayes expectation estimator. 

3.3. Bayes Expectation 

From (7) we have that the baycs expectation is given by 

l OP(Y ;IOj, l')g(Oi1'1)d0 

l P(Y.j.10,,r)g(oj111)do · 
(11) 

Generally, the integrals in (11) do not have an explicit form and then they must be solved 

by some numerical method of integration (Robert and Casella, 1999). Again, considering 

a SN(µ 8, uJ, >.o) with >-o, = 0, i.e. , a normal distribution, the integrals may be solved by 
Gauss-Hermite method (Stroud and Secrest, 1966) or by generating quadrature points 

considering any value to >-o. Then, in terms of the quadrature points, (11) becomes 

where 01 and Ar, are the quadrature points and the quadrature weights, respectively. A 

measure of precision of the EAP estimation is given by the Variance a Posteriori (YAP) 

that has the following form 
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t {01 - JE [o,IY,., f, 11] r P(Y.,I01,f)A1 
l=I 

q 

L P(Y;.IOi. l')A1 
l=I 

We need to point out that for both MAP and EAP methods we used aa asymmetry 
sample estimative for >.0 using the observed scores. To generate quadrature points con­
sidering any value for >.o, it was written a R-function that generates quite similar values 

to those used for Bilog (Mislevy and Bock, 1990) when >.o = 0. 

In next section we present the simulation study. 

4. Simulation Study 

First of all, we want to clarify that the our main goal is to compare the models not the 

estimation methods. In this sense, it is very likely that, depending on the situation, other 
estimation methods may work better. 

To conduct the study of simulation we consider three levels of asymmetry for the latent 

distribution >.8 = (-2, 0, 2)1
, under the parameterization considered in Genton (2004) and 

three sample sizes, n = (500, 1000, 3000)'. 

Concerning the test we considered the following situation. We generated individual's 

answers using two item parameter sets related to NRM, one of them related to >.s = 0 
and ,\9 = 2 and the another one concerning to >.o = -2, in order to ensure the covering of 
the latent trait range. After this, the answers were corrected as right/wrong, considering 
the most difficult alternatives as the right ones. This was made in order to use the DR.'vl 

(both the 2P and 3P models). 
For each one of 9 response sets we used MMAP method to the item parameter esti­

mation and, given these estirnatives, we used the EAP and MAP to obtain the latent 

trait estimatives. All the simulated data and the calculations were done using specific 
programs written by the authors in R language, see R Development Core Team (2006), 
and may be asked for directly from the authors. 

We have also to keep in mind that the real model that generates the responses in a 
real multiple-choice test is not necessarily neither the NRM or the DRM, but we are 

considering that the former and/or the latter ones are reasonable mechanisms to the 
represent this process. 

The statistics used in the simulation study were, 

• Correlation : the mean of all correlations between the true latent traits and their 

estimatives among all replicas. 
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• Mvar : the mean of all variances associated to all replicas and all estimatives. 

• MSR : the mean of squared residuals among all replicas and latent traits, that is, . 

n~ L;=l L:..1(8; - 9;,)2. 

• Mbias: the sum of two former statistics. 

Table 1 shows statistics for all of three models. We may sec that highest correlations 
are associated with NRM and also that, for negative asymmetry, the NRM seems more 

appropriate than the other models. The estimatives from NRM with EAP present the 

smallest variances associated to the latent trait estimation as well as the smallest residuals, 
considering null and negative n.5ymmetry. The NRM with MAP presents the smallest 
statistics, variance and residuals, for positive asymmetry. These behaviors are more clear 
in the highest samples sizes. In general, one may see that the bias related to the estimatives 

are smallest for the Nfuvl approach with both EAP and MAP methods. 

Figures 1 to 9 present the scatter plots of true latent traits and their cstimatives. It is 
clear that to the negative asymmetry, the estimatives are worse than the other situations 

because the distance between them and true values. Probably, this happens because the 

estimation procedures. For the null asymmetry the results arc closer to those related to 

the presence of positive asymmetry. In these analysis is also evident the superiority of 
NRM approach. 

Figures 10 to 18 show the variance associated to the estimatives along the latent traits 

values. For the negative asymmetry, the variances are smaller in the DRM approaches, 

for small values of latent traits and the variances of NRM approach arc smaller for other 
values of latent trait. The same happens to the null asymmetry but is more evident the 
superiority of NRM approach. However, for the positive asymmetry, it seems that the 
Nfu\1 with EAP presents the best results for all latent trait values. 

Figures 19 to 27 present the mean of squared residuals. We may see that , for the 

negative asymmetry, the NRM presents the smallest values, for negative latent trait values 

and the highest for the positive latent trait values, even though this last difference is very 
slight. For symmetry situation, the NRM shows the smallest values independently of the 
latent trait value, specially for smaller values of them. Finally, for the positive asymmetry, 

we may notice that the NR.M produces the smallest values for the positive latent traits 

and the highest for the negative values of latent trait. Again, the difference in favor to 
the NRM is higher than that against it. 

Figures 28 to 36 present the bias of the estimatives obtained from the three models. 

Basically, the results go toward to that from mean of squared residuals. 
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Figure 1. Correlation of estimatives and Figure 2. Correlation of estimatives and 

true values: >.9 = -2 and n= 500 true values: >.o = -2 and n= 1000 
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Figure 3. Correlation of estimativcs and Figure 4. Correlation of estimatives and 

true values: >.9 = -2 and n= 3000 true values: ).9 = 0 and n= 500 
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Figure 5. Correlation of estimatives and Figure 6. Correlation of estimatives and 

true values: >.9 = 0 and n= 1000 true values: >., = 0 and n= 3000 
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Figure 7. Correlation of estirnatives and Figure 8. Correlation of estirnatives and 
true values: Ao = 2 and n= 500 true values: >., = 2 and n= 1000 
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Figure 9. Correlation of estimatives and Figure 10. Variance of estimatives : ),.0 = 
true values: Ag = 2 and n= 3000 -2 and n= 500 

Figure 11. Variance of estimatives : >., = Figure 12. Variance of estimatives : >., = 

-2 and n= 1000 -2 and n= 3000 
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Figure 13. Variance of eslimatives : >., = 0 Figure 14. Variance of estimatives: >., = 0 

and n= 500 and n= 1000 
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Figure 15. Variance of estimatives: >., = 0 Figure 16. Variance of estimatives : >., = 2 

and n= 3000 and n= 500 

I, 

Figure 17. Variance of estimatives : >.0 = 2 Figure 18. Variance of estimatives : >., = 2 

and n= 1000 and n= 3000 
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Figure 19. Mean of Squared Residual: Au= Figure 20. Mean of Squared Residual : Au = 

-2 and n= 500 -2 and n= 1000 

Figure 21. Mean of Squared Residual: Au = Figure 22. Mean of Squared Residual : Au = 

-2 and n= 3000 0 and n= 500 

J. I . 

Figure 23. Mean of Squared Residual : Ao = Figure 24. Mean of Squared Residual : Ao = 

0 and n= 1000 0 and n= 3000 
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I· I. 
I 

Figure 25. Mean of Squared Residual : >.o = Figure 26. Mean of Squared Residual : >.o = 
2 and n= 500 2 and n= 1000 

I· 
I 

Figure 27. Mean of Squared Re8idual : >.o = Figure 28. Bias of Estimatives : >.o = -2 

2 and n= 3000 and n= 500 

..... 

Figure 29. Bias of Estimativcs : >.s = -2 Figure 30. Bias of Estimatives : >.9 = -2 

and n= 1000 and n= 3000 
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I' 

Figure 31. Bias of Estimatives : A9 = 0 and Figure 32. Bias of Estimatives : A9 = 0 and 

n= 500 n= 1000 

, . 

Figure 33. Bias of Estimatives : As = 0 and Figure 34. Bias of Estimatives : >.o = 2 and 

ll= 3000 ll= 500 

I • , . 

Figure 35. Bi88 of Estimative:; : Ao = 2 and Figure 36. Bias of Estimatives : A9 = 2 and 

n= 1000 n= 3000 



Latent Trait Estimation ihrough Nominal Response Model and Dichotomous Models 15 

Table 1 
Statistics of the latent trait estimation 

Statistic Model Estimation >.a 
Method -2 0 

n 
500 1000 3000 500 1000 3000 500 

Correlation NRM EAP 0.994 0.996 0.995 0.995 0.996 0.996 0.987 

MAP 0.994 0.996 0.995 0.996 0.996 0.996 0.989 

DRM-3P EAP 0.968 0.960 0.965 0.983 0.985 0.986 0.978 

MAP 0.971 0.963 0.967 0.984 0.986 0.987 0.977 

DRM-2P EAP 0.978 0.972 0.972 0.988 0.989 0.988 0.981 

MAP 0.979 0.972 0.972 0.988 0.989 0.988 0.980 

Mvar NRM EAP 0.172 0.162 0.167 0.105 0.107 0.109 0.213 

MAP 0.170 0.159 0.164 0.103 0.104 0.106 0.302 

DRM-3P EAP 0.216 0.228 0.230 0.206 0.208 0.243 0.292 

MAP 0.212 0.225 0.228 0.189 0.196 0.228 0.246 

DRM-2P EAP 0.231 0.242 0.242 0.207 0.211 0.217 0.270 

MAP 0.224 0.236 0.237 0.195 0.203 0.206 0.238 

MSR NRM EAP 0.686 0.673 0.664 0.137 0.126 0.123 0.623 

MAP 0.653 0.634 0.627 0.138 0.127 0.123 0.729 

DRM-3P EAP 0.594 0.705 0.741 0.399 0.353 0.446 0.847 

MAP 0.730 0.848 0.876 0.387 0.347 0.405 0.765 

DR.i'J-2P EAP 0.633 0.725 0.750 0.372 0.339 0.329 0.795 

MAP 0.694 0.788 0.811 0.370 0.338 0.331 0.764 

Mbias NRM EAP 0.858 0.835 0.831 0.242 0.232 0.231 0.836 

MAP 0.823 0.793 0.790 0.241 0 .231 0.229 1.031 

DRM-3P EAP 0.810 0.932 0.971 0.605 0.560 0.689 1.139 

MAP 0.942 1.073 1.104 0.576 0.544 0.633 1.010 

DRM-2P EAP 0.865 0.967 0.992 0.580 0.550 0.546 1.065 

MAP 0.917 1.024 1.048 0.565 0.541 0.537 1.002 

5. Discussion 

In this work we compared the NRM and two types of DRM to estimate the latent 

traits in a multiple choice test. We used simulated data and developed specific programs 

in R language (R development Core Team, 2006) to do the simulations and also all 

the calculations. Furthermore, we study the effects of latent trait asymmetry in their 

estimation process which may be viewed as an extension of NRM proposed by Bock 

2 
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(1972). 

The results point out the best fit using NR.M-EAP approach, even though, for the 

asymmetry situations, the estimativcs were far from true values. We believe that the. 

main reason for this is that the estimation methods used did not take into the asymmetry 

account in a suitable way. To use the observed scores to estimate the asymmetry param­

eter and then to use this value for the latent trait estimation procedure, may produce 

poor results as we observed. Better results could be obtained using MCMC methods, or 

another suitable approach, that would allow the estimation of all parameters concurrently. 
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