

RT-MAE 2007-10

**LATENT TRAIT ESTIMATION THROUGH NOMINAL
RESPONSE AND DICHOTOMOUS MODELS: A CASE
STUDY IN A MULTIPLE CHOICE TEST.**

**Caio L. N. Azevedo
and
Dalton F. de Andrade**

Palavras-Chave: Latent trait, nominal response model, dichotomous models, bayesian estimation, asymmetry distribution.

Classificação QA277.24.

Latent Trait Estimation through Nominal Response and Dichotomous Models : A case study in a multiple choice test

Caio L. N. Azevedo ^a and Dalton F. Andrade^b

^aDepartment of Statistics, Institute of Mathematics and Statistics, University of São Paulo,

P.O. Box 66.281 , São Paulo, SP, Brazil

^bDepartment of Informatics and Statistics, Federal University of Santa Catarina, P.O. Box 476, Florianópolis, SC, Brazil

The Bock's Nominal Response Model (Bock, 1972) was proposed to improve the latent trait (ability) estimation. However, a large number of real situations are modelled by the three-parameter logistic model (Baker and Kim, 2004). In this article we discuss the ability estimation under these two models and conducted a simulation study to verify the behavior of their estimatives. Basically, we use suitable estimation methods considering both item and latent trait estimation. For every model we conducted the estimation procedures using modifications of the Maximum Marginal a Posteriori (MMAP) (for the item parameters) and Expectation (EAP) and Maximum a posteriori (MAP) (for latent traits). We compare the models considering different sample sizes (number of individuals) and different levels of asymmetry for the latent density through the skew-normal distribution (Genton, 2004).

Key words : Latent trait, nominal response model, dichotomous models, bayesian estimation, asymmetry distribution.

Classificação AMS : QA 277.24.

1. Introduction

Birnbaum (1968) proposed the well known three-parameter logistic model to analyze multiple choice items and to estimate the individual latent trait. This model simply consider whether the subject answers or not correctly the item. So, the information contained in the wrong alternatives are not considered. On the other hand, Bock (1972) proposed the Nominal Response Model to improve the latent trait estimation. This

model, differently from the Birnbaum's model, considers the probability of choosing any alternative and in this way it uses all the information contained in the item.

Our main goal is to compare the latent trait estimation under these two models through, suitable bayesian estimation methods. In next Section we present the models. In Section 3 we present and discuss briefly about the estimation methods used. Section 4 brings a simulation study and finally, in Section 5, we discuss the results obtained.

2. The Models

The three-parameter logistic model (henceforth, DRM - 3P) has the following form

$$P(Y_{ij} = 1 | \theta_j, \zeta_i) = c_i + (1 - c_i) \frac{1}{1 + e^{-D a_i (\theta_j - b_i)}}, \quad (1)$$

where $Y_{ij} = 1$, if subject j answers correctly the item i , and 0 otherwise; a_i is the item parameter that represents the item's discrimination (slope); b_i is the item parameter that represents the item's difficult; c_i is the item parameter that represents the probability of a correct answer given by a low abilities' level individual; θ_j is the individual latent trait (or ability); D a scaling factor that is 1, if we want the results in the logistic metric or 1.7, if we want the results in the normal metric, see Baker and Kim (2004).

This model has two basically assumptions that are essential to the estimation processes, which are :

1. The responses of different subjects are independent;
2. Given the ability's (latent trait) subject its response to different items are independent (commonly known as conditional independency).

Notice that, taking $c_i = 0$ in (1) we have the two parameter logistic model (henceforth, DRM-2P), see Baker and Kim (2004).

The Nominal Response Model (henceforth NRM), see Baker and Kim (2004) for example, has the following form

$$P_{ij,s} = P(Y_{ij,s} = 1 | \theta_j, \zeta_i) = \frac{e^{a_{is}(\theta_j - b_{is})}}{\sum_{h=1}^{m_i} e^{a_{ih}(\theta_j - b_{ih})}}, \quad (2)$$

where $Y_{ij,s}$ is the random variable that assumes value 1, if subject j , $j = 1, 2, \dots, n$ chooses the alternative s , $s = 1, 2, \dots, m_i$ of item i , $i = 1, 2, \dots, I$ and 0, otherwise,

a_{is} e b_{is} represent the parameters related to the discrimination and the difficult of the category, respectively. In this model we may have negative values for both type of parameters. For the parameter discrimination we expect negative, or small values, for the wrong alternatives and positive value for the right alternative. This means that a higher value for individual ability is associated with higher probability of this subject chooses the right alternative. The difficult parameter represents, in some way, the ability that a subject must have to choose the referred alternative.

Notice that, the two parameter logistic model is not a particular case of the NRM with only two categories.

This model has three basically assumptions that are essential to the estimation processes. Two of them are that ones considered in DRM-3P and the third one is related to the probability that a subject chooses an alternative of a specific item, which can be modelled by the multivariate Bernoulli model, that is,

$$P(\mathbf{Y}_{ij.} = \mathbf{y}_{ij.} | \theta, \zeta_i) \equiv P(\mathbf{Y}_{ij.} = \mathbf{y}_{ij.}) = \prod_{s=1}^{m_i} P_{ij.s}^{y_{ij.s}},$$

where $\mathbf{y}_{ij.} = (y_{ij1}, \dots, y_{ijm_i})^t$ represents a specific set of responses of a subject to a specific item.

In the next section we present the estimation methods.

3. Estimation Methods

There is an interesting and wide literature concerning estimation methods in IRT. We may cite Baker and Kim (2004), Patz and Junker (1999 a and 1999 b), Albert (1992) among others. In these references, the authors discuss different approaches, both classical and bayesian ones, to fit IRT models. Based on the results of these works, we will use in this article the MMAP procedure, see Baker and Kim (2004), to the item parameter estimation and two bayesian methods with suitable modification, to estimate the latent trait. Such modification is to consider a skew-normal distribution to the EAP and to the MAP methods. For both MMAP and EAP procedures, we use different quadrature weights based on this priori distribution. These quadrature points will be discussed ahead. Then, we conduct the estimation processes in two steps using the marginal bayesian approach, see Mislevy (1986), instead of the full bayesian one (Patz and Junker, 1999 a). We briefly describe the two methods, EAP and MAP, suitable modified and the maximum likelihood to the NRM latent trait estimation. The correspondent estimation methods to the DRM are obtained using a different IRF (item response function), see Baker and Kim (2004), for example.

3.1. Maximum Likelihood Estimation

As described in Baker and Kim (2004) and Azevedo (2003) we have the following log-likelihood to an individual latent trait

$$l(\theta_j, \widehat{\Gamma}) \equiv l(\theta_j) = \sum_{i=1}^I \sum_{s=1}^{m_i} y_{ijs} \ln P_{ijs},$$

where $\widehat{\Gamma}$ represents an estimate of the item free parameters (Azevedo 2003). After some algebra, we obtain the score function,

$$S(\theta_j) = \sum_{i=1}^I \alpha_i^t T_i [y_{ij} - P_{ij}] , \quad (3)$$

and Hessian matrix

$$H(\theta_j) = - \sum_{i=1}^I \{ \alpha_i^t T_i W_{ij} T_i^t \alpha_i \} , \quad (4)$$

where α_i , T_i , and W_i are suitable matrices which do not depend on the responses. We may notice, by (4), that the Hessian Matrix is non-stochastic, then the Information Matrix is only $I(\theta_j) = -H(\theta_j)$. Thereafter, considering $\widehat{\theta}_j$, an estimative of θ_j in iteration t , we can define the Newton-Raphson / Fisher Scoring method (Baker and Kim, 2004) as

Newton-Raphson

$$\widehat{\theta}_j^{(t+1)} = \widehat{\theta}_j^{(t)} - H(\widehat{\theta}_j^{(t)})^{-1} S(\widehat{\theta}_j^{(t)}) , \quad (5)$$

Fisher Scoring

$$\widehat{\theta}_j^{(t+1)} = \widehat{\theta}_j^{(t)} + I(\widehat{\theta}_j^{(t)})^{-1} S(\widehat{\theta}_j^{(t)}) , \quad (6)$$

$t = 1, 2, \dots$, up to reach a convergence criteria.

In the next subsection we present the modal and expectation bayesian estimation.

3.2. Bayes Modal Estimation

In a general way, in the bayesian estimation we need to use the posterior distribution which follows directly from the Bayes Theorem (Bernardo and Smith, 1998),

$$g_j^*(\theta_j) \equiv C g(\theta_j | y_{j.}, \hat{\Gamma}, \eta) = C P(Y_{j.} | \theta_j, \hat{\Gamma}) g(\theta_j | \eta) \\ \propto P(Y_{j.} | \theta_j, \hat{\Gamma}) g(\theta_j | \eta), \quad (7)$$

where $Y_{j.} = (Y_{1j1}, \dots, Y_{1jm_i}, \dots, Y_{lj1}, \dots, Y_{ljm_i})^t$, $P(Y_{j.} | \theta_j, \hat{\Gamma})$ is the profile likelihood, $g(\theta_j | \eta)$ is a convenient priori, η are the hyperparameters (or the populational parameters) and C is a normalization constant. To evaluate the bayes modal we need to maximize equation (7). Thereafter, taking its natural logarithm we have

$$\ln g_j^*(\theta_j) \equiv l_j^*(\theta_j) = l(\theta_j) + \ln g(\theta_j | \eta) + \text{const.} \quad (8)$$

Differentiating (8) we have the bayesian estimating equation

$$S(\theta_j)_B = \frac{\partial l_j^*(\theta_j)}{\partial \theta_j} = \frac{\partial l(\theta_j)}{\partial \theta_j} + \frac{\partial \ln g(\theta_j | \eta)}{\partial \theta_j}. \quad (9)$$

Notice that the first term in the right-hand side of (9) is exactly the score function defined in (3) and, considering a skew-normal distribution as the prior, that is, $\theta_j | \eta_j \sim SN(\mu_{\theta_j}, \sigma_{\theta_j}^2, \lambda_{\theta_j})$ (Genton, 2004) it follows that

$$S(\theta_j)_B = S(\theta_j) - \frac{\theta_j - \mu_{\theta_j}}{\sigma_{\theta_j}^2} + \left\{ \Phi \left[\lambda_{\theta_j} \left(\frac{\theta_j - \mu_{\theta_j}}{\sigma_{\theta_j}} \right) \right] \right\}^{-1} \phi \left[\lambda_{\theta_j} \left(\frac{\theta_j - \mu_{\theta_j}}{\sigma_{\theta_j}} \right) \right] \frac{\lambda_{\theta_j}}{\sigma_{\theta_j}},$$

where $\eta_j = (\mu_{\theta_j}, \sigma_{\theta_j}^2, \lambda_{\theta_j})^T$, μ_{θ_j} is the mean, $\sigma_{\theta_j}^2$ is the variance, λ_{θ_j} is the asymmetry parameter, $\phi(\cdot)$ and $\Phi(\cdot)$ are the density and cumulative function of a standard normal distribution. It follows that, the hessian matrix and the Fisher information are given by

Hessian Matrix

$$H(\theta_j)_B = H(\theta_j) - \left\{ \frac{1}{\sigma_{\theta_j}^2} + h(\lambda_{\theta_j}, \theta_j) \right\},$$

where $H(\theta_j)$ is given by (4) and,

$$h(\lambda_{\theta_j}, \theta_j) = \left\{ \Phi \left[\lambda_{\theta_j} \left(\frac{\theta_j - \mu_{\theta_j}}{\sigma_{\theta_j}} \right) \right] \right\}^{-2} \phi \left[\lambda_{\theta_j} \left(\frac{\theta_j - \mu_{\theta_j}}{\sigma_{\theta_j}} \right) \right] \left(\frac{\lambda_{\theta_j}}{\sigma_{\theta_j}} \right)^2 \times \left\{ \Phi \left[\lambda_{\theta_j} \left(\frac{\theta_j - \mu_{\theta_j}}{\sigma_{\theta_j}} \right) \right] \frac{\lambda_{\theta_j}}{\sigma_{\theta_j}} (\theta_j - \mu_{\theta_j}) + \phi \left[\lambda_{\theta_j} \left(\frac{\theta_j - \mu_{\theta_j}}{\sigma_{\theta_j}} \right) \right] \right\}, \quad (10)$$

Fisher Information

$$I(\theta_j)_B = I(\theta_j) + \frac{1}{\sigma_{\theta_j}^2} + h(\lambda_{\theta_j}, \theta_j).$$

The Fisher information is only the symmetric value of hessian matrix in the NRM. The iterative process may be applied as described in (5) and (6). In the next subsection we present the bayes expectation estimator.

3.3. Bayes Expectation

From (7) we have that the bayes expectation is given by

$$E[\theta_j | \mathbf{y}_{j,.}, \widehat{\Gamma}, \eta] = \frac{\int_{\mathbb{R}} \theta_j P(\mathbf{Y}_{j,.} | \theta_j, \widehat{\Gamma}) g(\theta_j | \eta) d\theta_j}{\int_{\mathbb{R}} P(\mathbf{Y}_{j,.} | \theta_j, \widehat{\Gamma}) g(\theta_j | \eta) d\theta_j}. \quad (11)$$

Generally, the integrals in (11) do not have an explicit form and then they must be solved by some numerical method of integration (Robert and Casella, 1999). Again, considering a $SN(\mu_{\theta}, \sigma_{\theta}^2, \lambda_{\theta})$ with $\lambda_{\theta_j} = 0$, i.e., a normal distribution, the integrals may be solved by Gauss-Hermite method (Stroud and Secrest, 1966) or by generating quadrature points considering any value to λ_{θ} . Then, in terms of the quadrature points, (11) becomes

$$\begin{aligned} E[\theta_j | \mathbf{y}_{j,.}, \widehat{\Gamma}, \eta] &\approx E[\bar{\theta}_j | \mathbf{y}_{j,.}, \widehat{\Gamma}, \eta] = \frac{\sum_{l=1}^q \bar{\theta}_l P(\mathbf{Y}_{j,.} | \bar{\theta}_l, \widehat{\Gamma}) g(\bar{\theta}_l | \eta)}{\sum_{l=1}^q P(\mathbf{Y}_{j,.} | \bar{\theta}_l, \widehat{\Gamma}) g(\bar{\theta}_l | \eta)} \\ &= \frac{\sum_{l=1}^q \bar{\theta}_l P(\mathbf{Y}_{j,.} | \bar{\theta}_l, \widehat{\Gamma}) A_l}{\sum_{l=1}^q P(\mathbf{Y}_{j,.} | \bar{\theta}_l, \widehat{\Gamma}) A_l}, \end{aligned}$$

where $\bar{\theta}_l$ and A_l , are the quadrature points and the quadrature weights, respectively. A measure of precision of the EAP estimation is given by the Variance a Posteriori (VAP) that has the following form

$$Var[\bar{\theta}_j|y_{j*}, \hat{\Gamma}, \eta] = \frac{\sum_{l=1}^q \left\{ \bar{\theta}_l - E[\bar{\theta}_j|y_{j*}, \hat{\Gamma}, \eta] \right\}^2 P(Y_{j*}|\bar{\theta}_l, \hat{\Gamma}) A_l}{\sum_{l=1}^q P(Y_{j*}|\bar{\theta}_l, \hat{\Gamma}) A_l}.$$

We need to point out that for both MAP and EAP methods we used an asymmetry sample estimative for λ_θ using the observed scores. To generate quadrature points considering any value for λ_θ , it was written a R-function that generates quite similar values to those used for Bilog (Mislevy and Bock, 1990) when $\lambda_\theta = 0$.

In next section we present the simulation study.

4. Simulation Study

First of all, we want to clarify that the our main goal is to compare the models not the estimation methods. In this sense, it is very likely that, depending on the situation, other estimation methods may work better.

To conduct the study of simulation we consider three levels of asymmetry for the latent distribution $\lambda_\theta = (-2, 0, 2)^t$, under the parameterization considered in Genton (2004) and three sample sizes, $n = (500, 1000, 3000)^t$.

Concerning the test we considered the following situation. We generated individual's answers using two item parameter sets related to NRM, one of them related to $\lambda_\theta = 0$ and $\lambda_\theta = 2$ and the another one concerning to $\lambda_\theta = -2$, in order to ensure the covering of the latent trait range. After this, the answers were corrected as right/wrong, considering the most difficult alternatives as the right ones. This was made in order to use the DRM (both the 2P and 3P models).

For each one of 9 response sets we used MMAP method to the item parameter estimation and, given these estimatives, we used the EAP and MAP to obtain the latent trait estimatives. All the simulated data and the calculations were done using specific programs written by the authors in R language, see R Development Core Team (2006), and may be asked for directly from the authors.

We have also to keep in mind that the real model that generates the responses in a real multiple-choice test is not necessarily neither the NRM or the DRM, but we are considering that the former and/or the latter ones are reasonable mechanisms to the represent this process.

The statistics used in the simulation study were,

- Correlation : the mean of all correlations between the true latent traits and their estimatives among all replicas.

- Mvar : the mean of all variances associated to all replicas and all estimatives.
- MSR : the mean of squared residuals among all replicas and latent traits, that is,, $\frac{1}{nR} \sum_{r=1}^n \sum_{j=1}^R (\theta_j - \hat{\theta}_{jr})^2$.
- Mbias: the sum of two former statistics.

Table 1 shows statistics for all of three models. We may see that highest correlations are associated with NRM and also that, for negative asymmetry, the NRM seems more appropriate than the other models. The estimatives from NRM with EAP present the smallest variances associated to the latent trait estimation as well as the smallest residuals, considering null and negative asymmetry. The NRM with MAP presents the smallest statistics, variance and residuals, for positive asymmetry. These behaviors are more clear in the highest samples sizes. In general, one may see that the bias related to the estimatives are smallest for the NRM approach with both EAP and MAP methods.

Figures 1 to 9 present the scatter plots of true latent traits and their estimatives. It is clear that to the negative asymmetry, the estimatives are worse than the other situations because the distance between them and true values. Probably, this happens because the estimation procedures. For the null asymmetry the results are closer to those related to the presence of positive asymmetry. In these analysis is also evident the superiority of NRM approach.

Figures 10 to 18 show the variance associated to the estimatives along the latent traits values. For the negative asymmetry, the variances are smaller in the DRM approaches, for small values of latent traits and the variances of NRM approach are smaller for other values of latent trait. The same happens to the null asymmetry but is more evident the superiority of NRM approach. However, for the positive asymmetry, it seems that the NRM with EAP presents the best results for all latent trait values.

Figures 19 to 27 present the mean of squared residuals. We may see that, for the negative asymmetry, the NRM presents the smallest values, for negative latent trait values and the highest for the positive latent trait values, even though this last difference is very slight. For symmetry situation, the NRM shows the smallest values independently of the latent trait value, specially for smaller values of them. Finally, for the positive asymmetry, we may notice that the NRM produces the smallest values for the positive latent traits and the highest for the negative values of latent trait. Again, the difference in favor to the NRM is higher than that against it.

Figures 28 to 36 present the bias of the estimatives obtained from the three models. Basically, the results go toward to that from mean of squared residuals.

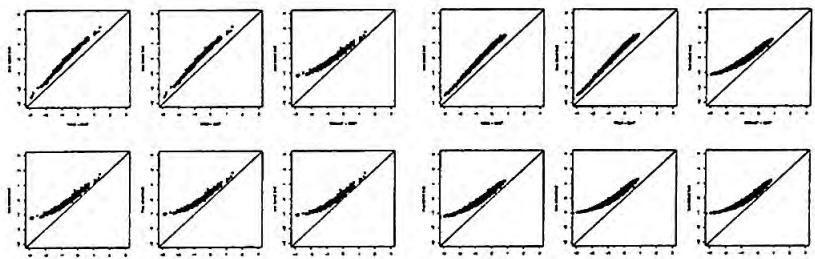


Figure 1. Correlation of estimatives and true values: $\lambda_\theta = -2$ and $n = 500$

Figure 2. Correlation of estimatives and true values: $\lambda_\theta = -2$ and $n = 1000$

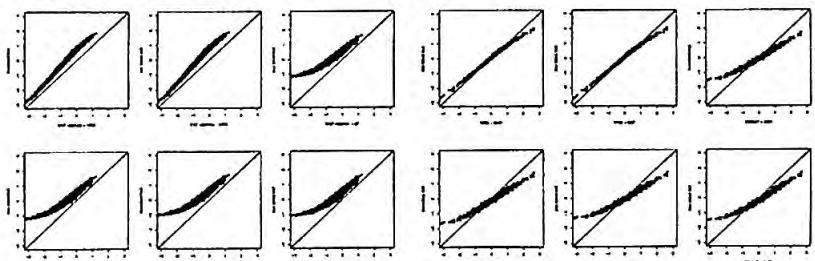


Figure 3. Correlation of estimatives and true values: $\lambda_\theta = -2$ and $n = 3000$

Figure 4. Correlation of estimatives and true values: $\lambda_\theta = 0$ and $n = 500$

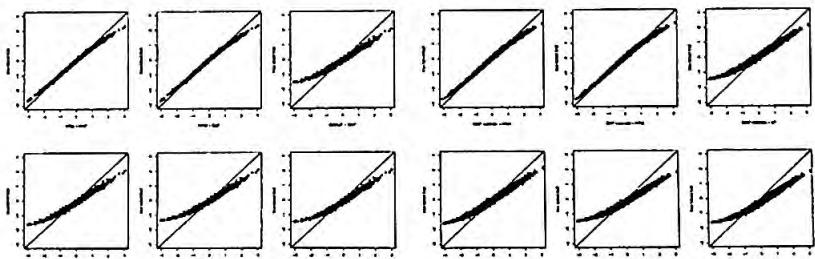


Figure 5. Correlation of estimatives and true values: $\lambda_\theta = 0$ and $n = 1000$

Figure 6. Correlation of estimatives and true values: $\lambda_\theta = 0$ and $n = 3000$

Figure 6 shows the highest level of correlation among all the plots, with points tightly clustered around the diagonal line.

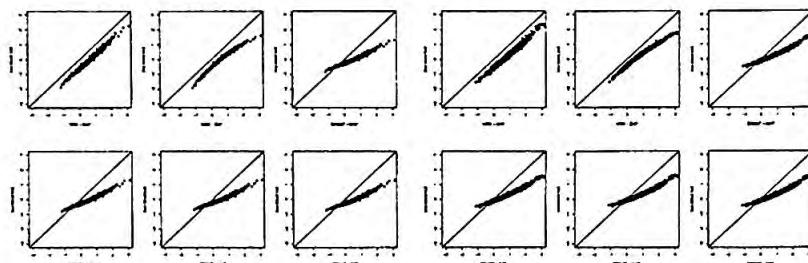


Figure 7. Correlation of estimatives and true values: $\lambda_\theta = 2$ and $n = 500$

Figure 8. Correlation of estimatives and true values: $\lambda_\theta = 2$ and $n = 1000$

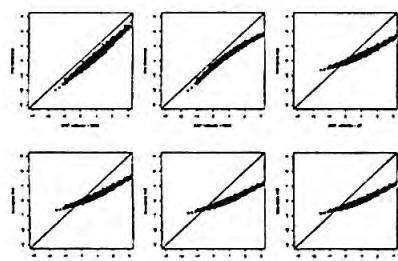


Figure 9. Correlation of estimatives and true values: $\lambda_\theta = 2$ and $n = 3000$

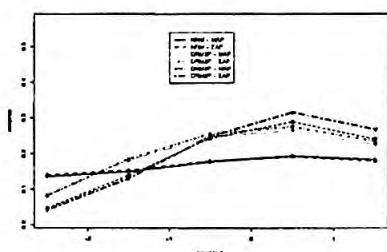


Figure 10. Variance of estimatives : $\lambda_\theta = -2$ and $n = 500$

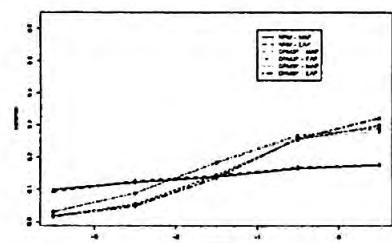


Figure 11. Variance of estimatives : $\lambda_\theta = -2$ and $n = 1000$

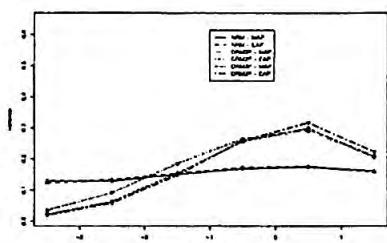


Figure 12. Variance of estimatives : $\lambda_\theta = -2$ and $n = 3000$

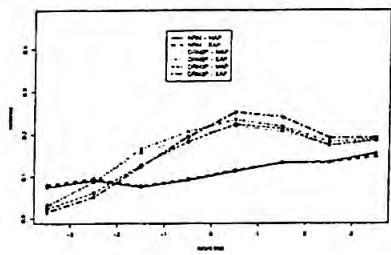


Figure 13. Variance of estimatives : $\lambda_\theta = 0$ and $n = 500$

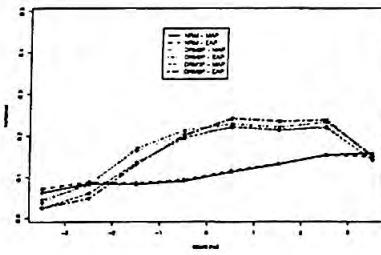


Figure 14. Variance of estimatives: $\lambda_\theta = 0$ and $n = 1000$

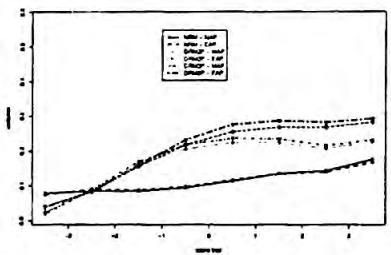


Figure 15. Variance of estimatives: $\lambda_\theta = 0$ and $n = 3000$

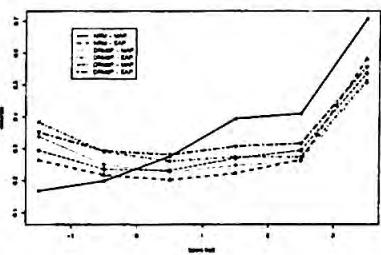


Figure 16. Variance of estimatives : $\lambda_\theta = 2$ and $n = 500$

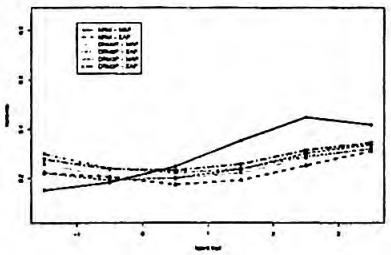


Figure 17. Variance of estimatives : $\lambda_\theta = 2$ and $n = 1000$

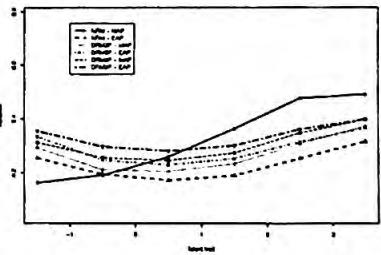


Figure 18. Variance of estimatives : $\lambda_\theta = 2$ and $n = 3000$

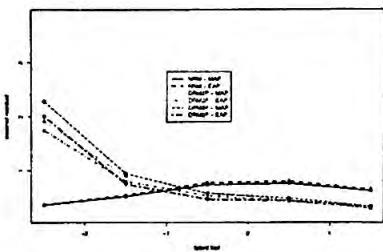


Figure 19. Mean of Squared Residual : $\lambda_\theta = -2$ and $n = 500$

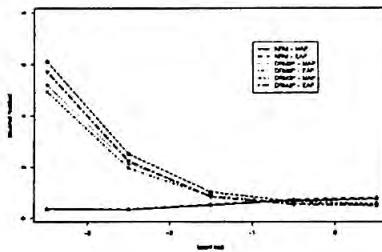


Figure 20. Mean of Squared Residual : $\lambda_\theta = -2$ and $n = 1000$

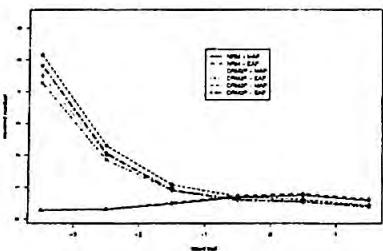


Figure 21. Mean of Squared Residual : $\lambda_\theta = -2$ and $n = 3000$

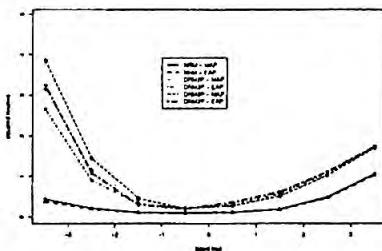


Figure 22. Mean of Squared Residual : $\lambda_\theta = 0$ and $n = 500$

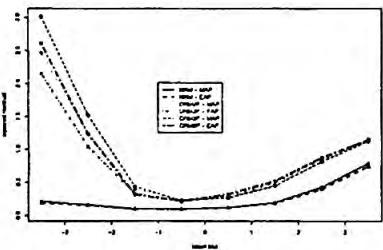


Figure 23. Mean of Squared Residual : $\lambda_\theta = 0$ and $n = 1000$

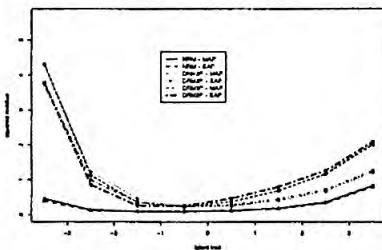


Figure 24. Mean of Squared Residual : $\lambda_\theta = 0$ and $n = 3000$

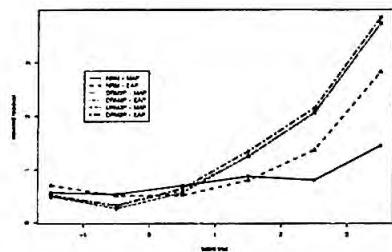


Figure 25. Mean of Squared Residual : $\lambda_\theta = 2$ and $n = 500$

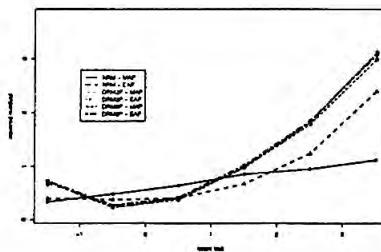


Figure 26. Mean of Squared Residual : $\lambda_\theta = 2$ and $n = 1000$

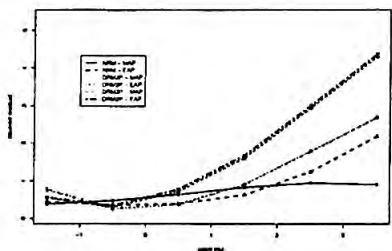


Figure 27. Mean of Squared Residual : $\lambda_\theta = 2$ and $n = 3000$

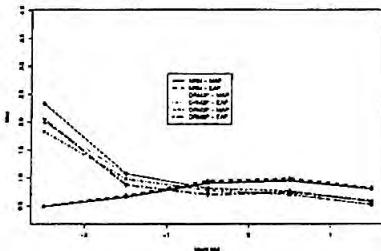


Figure 28. Bias of Estimatives : $\lambda_\theta = -2$ and $n = 500$

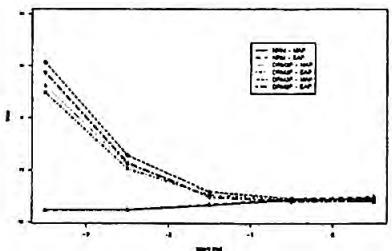


Figure 29. Bias of Estimatives : $\lambda_\theta = -2$ and $n = 1000$

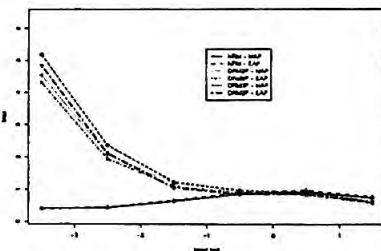


Figure 30. Bias of Estimatives : $\lambda_\theta = -2$ and $n = 3000$

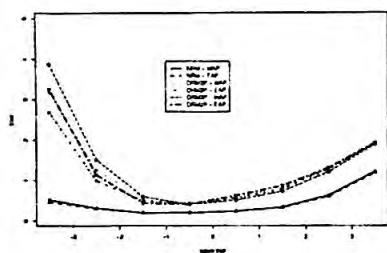


Figure 31. Bias of Estimatives : $\lambda_\theta = 0$ and $n = 500$

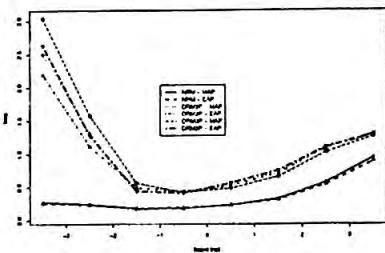


Figure 32. Bias of Estimatives : $\lambda_\theta = 0$ and $n = 1000$

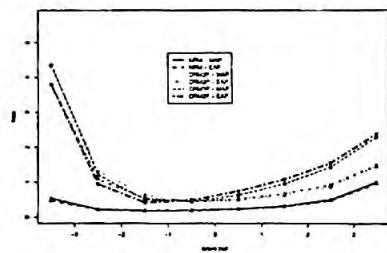


Figure 33. Bias of Estimatives : $\lambda_\theta = 0$ and $n = 3000$

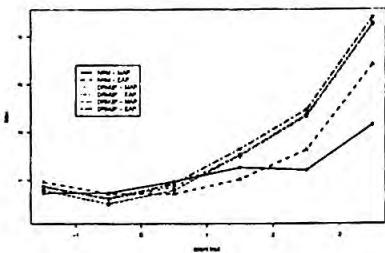


Figure 34. Bias of Estimatives : $\lambda_\theta = 2$ and $n = 500$

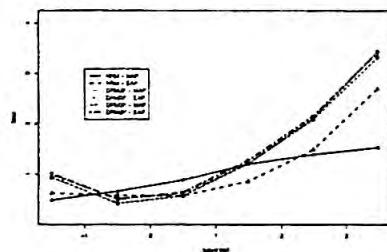


Figure 35. Bias of Estimatives : $\lambda_\theta = 2$ and $n = 1000$

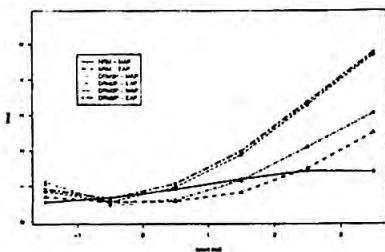


Figure 36. Bias of Estimatives : $\lambda_\theta = 2$ and $n = 3000$

Table 1

Statistics of the latent trait estimation

Statistic	Model	Estimation	Method	λ_θ								
				-2				0				
				n								
				500	1000	3000	500	1000	3000	500	1000	3000
Correlation	NRM	EAP	0.994	0.996	0.995	0.995	0.996	0.996	0.987	0.989	0.989	
			0.994	0.996	0.995	0.996	0.996	0.996	0.989	0.989	0.989	
	DRM-3P	EAP	0.968	0.960	0.965	0.983	0.985	0.986	0.978	0.978	0.979	
		MAP	0.971	0.963	0.967	0.984	0.986	0.987	0.977	0.977	0.979	
	DRM-2P	EAP	0.978	0.972	0.972	0.988	0.989	0.988	0.981	0.981	0.981	
		MAP	0.979	0.972	0.972	0.988	0.989	0.988	0.980	0.980	0.980	
Mvar	NRM	EAP	0.172	0.162	0.167	0.105	0.107	0.109	0.213	0.186	0.184	
		MAP	0.170	0.159	0.164	0.103	0.104	0.106	0.302	0.276	0.287	
	DRM-3P	EAP	0.216	0.228	0.230	0.206	0.208	0.243	0.292	0.244	0.293	
		MAP	0.212	0.225	0.228	0.189	0.196	0.228	0.246	0.213	0.260	
	DRM-2P	EAP	0.231	0.242	0.242	0.207	0.211	0.217	0.270	0.232	0.243	
		MAP	0.224	0.236	0.237	0.195	0.203	0.206	0.238	0.210	0.219	
MSR	NRM	EAP	0.686	0.673	0.664	0.137	0.126	0.123	0.623	0.514	0.497	
		MAP	0.653	0.634	0.627	0.138	0.127	0.123	0.729	0.689	0.683	
	DRM-3P	EAP	0.594	0.705	0.741	0.399	0.353	0.446	0.847	0.629	1.069	
		MAP	0.730	0.848	0.876	0.387	0.347	0.405	0.765	0.584	1.003	
	DRM-2P	EAP	0.633	0.725	0.750	0.372	0.339	0.329	0.795	0.610	0.578	
		MAP	0.694	0.788	0.811	0.370	0.338	0.331	0.764	0.601	0.563	
Mbias	NRM	EAP	0.858	0.835	0.831	0.242	0.232	0.231	0.836	0.700	0.681	
		MAP	0.823	0.793	0.790	0.241	0.231	0.229	1.031	0.965	0.971	
	DRM-3P	EAP	0.810	0.932	0.971	0.605	0.560	0.689	1.139	0.873	1.362	
		MAP	0.942	1.073	1.104	0.576	0.544	0.633	1.010	0.797	1.263	
	DRM-2P	EAP	0.865	0.967	0.992	0.580	0.550	0.546	1.065	0.842	0.821	
		MAP	0.917	1.024	1.048	0.565	0.541	0.537	1.002	0.810	0.782	

5. Discussion

In this work we compared the NRM and two types of DRM to estimate the latent traits in a multiple choice test. We used simulated data and developed specific programs in R language (R development Core Team, 2006) to do the simulations and also all the calculations. Furthermore, we study the effects of latent trait asymmetry in their estimation process which may be viewed as an extension of NRM proposed by Bock

(1972).

The results point out the best fit using NRM-EAP approach, even though, for the asymmetry situations, the estimatives were far from true values. We believe that the main reason for this is that the estimation methods used did not take into the asymmetry account in a suitable way. To use the observed scores to estimate the asymmetry parameter and then to use this value for the latent trait estimation procedure, may produce poor results as we observed. Better results could be obtained using MCMC methods, or another suitable approach, that would allow the estimation of all parameters concurrently.

6. Acknowledgments

This work was developed using results from Master's Dissertation written by the first author under the guidance of the second. The financial support was given by CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico) from which the authors are thankful.

REFERENCES

1. Albert, J. H. 1992. Bayesian Estimation of Normal Ogive Item Response Curves Using Gibbs Sampling. *Journal of Educational Statistics*, 17, 251 - 269.
2. Azevedo, C. L. N. 2003. *Estimation Methods in Item Response Theory*. Master's Dissertation (In Portuguese). Institute of Mathematics and Statistics. University of São Paulo, Brazil (www.teses.usp.br).
3. Baker, F. B. and Kim, Seock-Ho 2004. *Item Response Theory: Parameter Estimation Techniques*. Statistics, a Dekker Series of Textbooks and Monographs, New York, NY.
4. Bernardo, J. M. and Smith, A. F. M. 1998. *Bayesian Theory*. John Wiley & Sons.
5. Birnbaum, A. 1968. Some Latent Trait Models and Their Use in Inferring an Examinee's Ability. In F. M. Lord & M. R. Novick. *Statistical Theories of Mental Test Scores*. Reading, MA : Addison-Wesley.
6. Bock, R. D. 1972. Estimating item parameters and latent ability when responses are scored in two or more nominal categories. *Psychometrika*, 37, 29-51.
7. Bock, R. D. and Aitkin, M. 1981. Marginal maximum likelihood estimation of item parameters: An application of an EM algorithm. *Psychometrika*, 46, 433-459.
8. Genton, M. C. 2004. *Skew-elliptical Distributions and Their Applications: A Journey Beyond Normality*. Chapman & Hall/CRC.
9. Mislevy, R. J. 1984. Estimating Latent Distribution. *Psychometrika*, vol. 49, 359 - 381.

10. Mislevy, R.J. 1986. Bayes modal estimation in item response models. *Psychometrika*, 51, 177-195.
11. Mislevy, R. J. & Bock, R. D. 1990. *BILOG 3 : Item Analysis and Test Scoring with Binary Logistic Models*. Chicago : Scientific Software, Inc.
12. Mislevy, R. J. and Stocking, M. L. 1989. A Consumer's Guide to LOGISTIC and BILOG. *Applied Psychological Measurement*, 13, 57-75.
13. Muraki, E. and Bock, R. D. 1997. *PARSCALE: IRT Based Test Scoring and Item Analysis for Graded Open-Ended Exercises and Performance Tasks*. Chicago: Scientific Software, Inc.
14. Robert, C. P. and Casella, G. 1999. *Monte Carlo Statistical Methods*. Springer-Verlag New York.
15. Patz, J. R. and Junker, B. W. 1999 a. A Straightforward Approach to Markov Chain Monte Carlo Methods for Item Response Models. *Journal of Educational and Behavioral Statistics*, Vol. 24, 146 - 178.
16. Patz, J. R. and Junker, B. W. 1999 b. Applications and Extensions of MCMC in IRT: Multiple Item Types, Missing data, and Rated Responses. *Journal of Educational and Behavioral Statistics*, Vol. 24, 342-366.
17. R Development Core Team 2006. *R : a language and environment for statistical computing*. Vienna : R foundation for Statistical Computing.
18. Robert, C. P. and Casella, G. 2000. *Monte Carlo Statistical Methods*. Springer-Verlag New York, Inc.
19. Stroud, A. H. and Secrest, D. 1966. *Gaussian Quadrature Formulas*. Englewood Cliffs, New Jersey : Prentice Hall.

ÚLTIMOS RELATÓRIOS TÉCNICOS PUBLICADOS

2007-01 - POLPO, A., PEREIRA, C.A.B. Reliability nonparametric bayesian estimation in parallel systems 2007. 12p. (RT-MAE 2007-01)

2007-02 - GONÇALVES, M., Kolev, N. V., Fabris. A. E. Bounds for quantile-based measures of dependent risks' functions. 2007. 16p. (RT-MAE 2007-02)

2007-03 - MIMBELA, J. A. L, Kolev, N.V. Occupation measure of Markov - modulated risk processes 2007. 12p. (RT-MAE 2007-03)

2007-04 - GONÇALVES, M., Kolev, N. V., Fabris, A. E. Bounds for distorted risk measures. 2007. 11p. (RT-MAE 2007-04)

2007-05 - BUENO, V.C., A series representation of a parallel systems. 2007. 10p. (RT-MAE 2007-05)

2007-06 - KOLEV, N.V., PAIVA, D. Copula-Based Regression Models. 2007. 27p. (RT-MAE 2007-06)

2007-07 - POLETO, F. Z., SINGER, J.M., PAULINO, C.D., A product-multinomial framework for categorical data analysis with missing responses. 2007. 27p (RT-MAE 2007-07)

2007-08 - KOLEV, N.V., GONCALVES, M. DIMITROV, B. Probabilistic Properties of Sibuya's Dependence Function. 2007. 13p. (RT-MAE-2007-08)

2007-09 - AZEVEDO, C.L.N., ANDRADE, D.F. Latent Trait Estimation in Nominal Response Model: Latent Trait Asymmetry and Hierarchical and Empirical Framework. 2007.20p. (RT-MAE-2007-09)

The complete list of "Relatórios do Departamento de Estatística", IME-USP, will be sent upon request.

*Departamento de Estatística
IME-USP
Caixa Postal 66.281
05311-970 - São Paulo, Brasil*