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Abstract—Knowledge extraction from large information net-
works has received increasing attention in recent years. Among
existing methods for knowledge extraction, transductive classifi-
cation is a well-known semi-supervised learning method, where
both labeled and unlabeled vertices are used in the learning
process. However, transductive classification tasks become im-
practical in large information networks and the use of network
sampling techniques in the transductive classification setting is
not a trivial task, since it is required that all the vertices of the
original network be classified during the transductive learning —
and not only the vertices of the sample. In this paper, we present a
framework called TCSN (Transductive Classification for Sampled
Networks). TCSN allows the use of various network sampling
techniques, as well as enables the use of various methods of
transductive classification for information networks. We present
a variation of the Chernoff Bounds method to calculate the
minimum size of a sampled network, thereby bounding sampling
error within a pre-specified tolerance level. Moreover, TCSN
extends the concept of evidence accumulation to combine the
results of several rounds of transductive classification into a
final classification. Experimental results from different infor-
mation networks reveals that TCSN statistically outperformed
the classification performance in the whole original network.
These promising results show that the TCSN enables transductive
classification in large information networks without loss of quality
in the knowledge extraction process.

Index Terms—network sampling, classification, regularization

I. INTRODUCTION

Information networks are very useful for modeling rela-
tionships between real-world entities through vertices and
edges [1]. There are many applications involving information
networks, such as co-author networks or paper citation net-
works extracted from bibliographic databases, social networks,
networks of financial transactions for fraud detection, and
interaction networks between users and items for recommen-
dation systems. Information Networks can also be interpreted
as graphs, where vertices contain extra information, such as
labels and features [2].

Knowledge extraction from large information networks has
received increasing attention in recent years [3]. Among exist-
ing methods for knowledge extraction, it is worth mentioning
semi-supervised learning for information networks, since it
allows learning from labeled and unlabelled data [4]. Thus,
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given a small set of labeled vertices, a large set of unlabelled
vertices is classified considering the structure of the infor-
mation network. This technique is also called a transductive
classification [5], since the entire data set is known in advance
during the learning process. However, transductive classifica-
tion tasks become impractical in large information networks
[6]. In this scenario, sampling techniques for networks are
essential.

We can define the machine learning task from sampled
networks as follows. Let N' = (V, E, W) be an information
network, where V' is a set of vertices, E is the set of edges
between vertices, and W is the set of weights of the edges.
Sampling techniques aim to obtain a reduced network N, =
(Vs, Eg, W), with V5| < |V| and similar performance P in
some machine learning task L, i.e., P(L,N) = P(L,N). In
fact, network sampling techniques obtain (sub)networks with
representative vertices in order to maintain the main charac-
teristics of the original network [7]. In a traditional scenario,
inductive classification methods can directly use the sampled
network as a training set to obtain a classification model. On
the other hand, the use of network sampling techniques in
transductive classification setting is not a trivial task, since
it is required that all the vertices of the original network be
classified during the transductive learning. Moreover, there
are other important research questions such as (i) what is
the best network sampling technique?; (ii) how to define the
minimum size of the sampled network?; and (iii) how to extend
transductive classification for sampled networks?

In this paper, we present a framework called TCSN (Trans-
ductive Classification for Sampled Networks). TCSN allows
the use of various network sampling techniques, such as
vertex-based sampling or edge-based sampling, as well as the
use of various methods of transductive classification for infor-
mation networks. To the best of our knowledge, this would
represent the first attempt of a practical integration between
network sampling techniques and transductive classification
methods. Our main contributions are two-fold:

o« We present a variation of the Chernoff Bounds [8] to

calculate the minimum size of a sampled network, given
(1) a confidence level of the approximation in relation
to the original network and (ii) the number of classes.



Thus, our proposed TCSN has the advantage of bounding
sampling error within a pre-specified tolerance level.

e We proposed a method to perform repeated sampling
in the information network in order that each vertex
is reached at least once. A transductive classification
method is applied to each sampling. Next, we use the
concept of evidence accumulation [9] to combine the
results of several rounds of transductive classification into
a final classification, in which all vertices are classified.
Moreover, we demonstrate that the computational com-
plexity of the TCSN is proportional to the size of the
sampled network and the number of sampling repetitions.

We carried out a thorough experimental evaluation of the
proposed TCSN framework, involving twelve real-world in-
formation networks, six network sampling techniques, and a
state-of-the-art method for transductive network classification.
We statistically compared the results of transductive classi-
fication in sampled networks with transductive classification
in original networks. The analysis of the results reveals that
edge-based sampling techniques and some techniques based
on random walk have achieved an impressive classification
performance (Macro-F1), outperforming even the classification
performance in the original network. These promising results
show that the TCSN enables classification in large information
networks by using sampling techniques, without loss of quality
in the knowledge extraction process.

II. BACKGROUND AND RELATED WORK

In this section, we discuss the basic concepts and related
work involving transductive classification for networks, as well
as network sampling techniques.

A. Transductive Classification for Information Networks

Transductive classification for information networks has
received great attention in recent years, where the central
idea is to use labeled vertices, unlabeled vertices and the
network topology to infer a class confidence vector for all
network vertices [10]. Many popular transductive classification
methods have been applied successfully in different areas.
Zhu et al. [4] proposed a transductive learning method using
Gaussian fields and harmonic functions. Zhou et al. [11]
proposed a novel transductive learning method based on local
and global consistency. Belkin et al. [12] developed a general-
purpose regularization framework for transductive classifica-
tion in information networks. Although there are differences
in these proposals, two properties are common to the methods
of transductive classification [5]: First, the estimated class
confidence vectors of two vertices must be similar if these
two vertices are linked in the information network. Second, the
estimated class confidence vectors of labeled vertices should
be similar to real class information.

Transductive classification methods for information net-
works can be generically defined through a regularization
framework [12]. Let N' = (V,E,W) be an information
network, where V' is a set of vertices, E is the set of edges
between vertices, and W is the set of weights of the edges.
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Let V7, be a set of labeled vertices, with V, C V. Equation 1
defines the regularization framework for transductive learning
[13], where the first term (€2(.)) calculates the proximity
of the class confidence vectors between each pair of ver-
tices in the network. The second term (€2'(.)) calculates the
proximity between the estimated class confidence vector of
labeled vertices and their real class information. Moreover,
Wy, indicates the weight of the relation between the vertices
and g indicates the importance of the real class information
during the classification process. The f,, indicates the estimated
class confidence vector of a vertex v; and y, indicates real
class information of a labeled vertex u. The regularization
function is a minimization problem that aims to obtain a class
confidence matrix F, which represents the estimated class
confidence of the entire information network.

1
QE) =5 > wuol(ff) + 4 Y V(fiyu) (D)

u, eV ueV>k

A promising approach to instantiating this regularization
framework was proposed by Ji et al. [5], called GNetMine.
GNetMine considers different levels of importance for the
vertices, as well as the level of importance of the labeled
data. In practice, GNetMine generalizes other regularization
functions proposed in the literature. Equation 2 defines the
GNetMine regularization function, where the A, ,) defines the
importance level between vertices u and v, with 0 < A, ) <
1. To suppress popular vertices (high degree) from dominating
the class vector confidence estimations, d(.) is used to sum
the edge weights of all neighbors of a vertex u belonging to
the same relationship! of (u,v). The importance of real class
information of a labeled vertex u is defined by c ), with
0< Q(y) <1

2
f f,
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+ Z a(u)(fu - yu)
ueVl
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GNetMine can be solved through iterative solutions called
label propagation. In this case, vertices gradually propagate
their class information to neighboring vertices considering
their relation weights. In the label propagation, the class
confidence vector f of unlabeled vertices is initialized with
0 and f =y for the labeled vertices. The stopping criterion of
the label propagation is obtained when there are no significant
changes in the class matrix confidence F' of the vertices (or a
maximum number of iterations).

B. Network Sampling

Network sampling techniques have been used for a wide
variety of applications. Previous work uses network sampling
to improve visualization tasks [14]. Studies in graph clustering

'For homogeneous information networks, all vertices belong to the same
type of relationship. Heterogeneous networks organize vertices in different
types of relationships.



use sampling for speed up algorithms, such as spectral clus-
tering [15]. Network sampling has also been employed for
noise removal and speed up inductive relational classification
algorithms [16], but is still underexplored in the context of
transductive classification.

Although different sampling techniques have been proposed
in recent years, the most popular are known as sampling
by exploration (e.g. random walk) and edge-based sampling.
In this section, we describe six popular techniques that we
consider appropriate for large information networks, due to
the low computational cost [7], [17].

o Edge Sampling (Edge) [7]: Randomly select a subset
of edges F; C E. The set of sampled vertices is Vs =
{u,v|(u,v) € Es}, which is added in the N, network.
This process is repeated until the desired network sample
size is reached.

« Simple Random Walk Sampling (SRW) [7], [18]:
Randomly select an initial vertice v € V. Let Z(v) be
the set of neighboring vertices of v. Randomly select a
neighbor v € Z(v) and add (u, v) to the sampled network
N. Repeat the process from u and stop the random walk
when the desired network sample size is reached. If the
random walk stuck on isolated component of the network,
then restart the walk from an unvisited (random) vertex.

« Random Walk Sampling with Fly Back Probability
(RWF) [7]: Performs a random walk similar to the SRW,
but considering a probability p of returning to some vertex
already visited.

o Induced Subgraph Random Walk Sampling (ISRW)
[19]: First, it performs network sampling using the SRW.
Next, all edges E of the original network N that connect
u,v € N; are added to the sampled network N, if
E(u,v) ¢ Nj. Thus, the average degree of the N, gets
closer to the original network N

« Snowball (SB) [20]: In the first stage, select randomly
a set of k vertices and add to V(9. In the next stage
i, obtain a sample of edges E(*) from the k neighbors
of each vertex in V=1, Vertices selected in this stage
are VO = {u,v|(u,v) € EW}. The final sample Vsp
consists of the union of the vertices selected in each stage
t (until reaching the sample size), i.e., Vgp = U;%:OV(”.

o Forest Fire (FF) [21]: Randomly select a initial vertex
and begin “burning” associated edges and the corre-
sponding neighbor vertices. If an edge gets burned, the
neighbors vertices get a chance to burn its own edges,
and so on recursively until reaching the desired sample
size. FF has the burning probability p parameter.

III. TRANSDUCTIVE CLASSIFICATION FOR SAMPLED
NETWORKS (TCSN)

In this section, we present details of our TCSN framework,
which is divided into three steps: (1) compute the size of the
sampled network, (2) repeat the sampling process until each
vertex v € V is present in some sampled network; and (3)
combine the result of the individual transductive classification
from each sampled network using evidence accumulation.
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In the first step of the TCSN, our goal is to define a
lower bound regarding the number of vertices of the sampled
network, i.e, a minimum number of vertices || to represent
the original network A with a certain level of confidence
a. To determine this lower bound, we propose a variation
method based on Chernoff bounds, where we also consider
the class information, in particular, the expected fraction of
labeled vertices by each class.

Let B(N) be the lower bound for the number of vertices
||, where the original network A has ¢ classes and a total
of |V| vertices. Let e be a fraction of the minimum number
of vertices expected in each class, where 0 < e < 1. Thus,
Equation 3 calculates the minimum number of vertices so that
the sampled network N, can maintain the class distribution of
the original network (given a confidence level o).

B(N) > \‘(‘Vl + (:~log(é) + (:\/log(é)z + Qel—vl‘lo,q((%)J 3)

Cc

Once a minimum number of vertices has been determined
to guarantee the class distribution, the network sampling
techniques aim to maintain the topological properties of the
original network. Thus, in the second step of the TCSN,
we perform repeated network samplings until each vertex is
present in some sampled network.

Let S {Noy, Nsyy s N5, } be a set of m sampled
networks from a network N. Let VS] be the set of vertices of
the j-th sampled network N, . Let V'L be the set of labeled
vertices of the network N, with VL' C V. The sampling
repetition of the TCSN is performed until two criteria are
satisfied:

1) The labeled vertices V' must be present in each sampled
network (Equation 4); and

ﬁ(vsj nvh =vk

Jj=1

“

2) The union of the sets of vertices of each sampled
network must be equal to the set of vertices of the
original network (Equation 5).

m

Uv,=v
j=1

While the first criterion allows to maintain labeled infor-
mation for transductive classification in each sampling, the
second criterion guarantees that a vertex will be classified at
least once in some sampled network.

In our proposed TCSN, a given sampling technique is
applied repeatedly until these two criteria are satisfied. The
first criterion can be reached more easily by starting the
sampling technique from V% or by adding V' in the sampled
network at the end of the sampling process. The latter strategy
is used in the TCSN. Although the number m of sampled

(&)

2A proof is available along with the technical documentation and source
code of the TCSN framework at https://github.com/BrucceNeves/TCSN



networks may vary according to the sampling technique, the
size of each sampled network is close to the value determined
by the estimated lower bound.

In the third step of the TCSN, each sampled network is
used as input to a transductive classification process resulting
in m class confidence matrices (one for each sampled network)
R = {F1,Fs,...,F,,}, where F; corresponds to the class
confidence matrix obtained with the transductive learning (e.g.
GNetMine regularization) from the sampled network N,.

To obtain the final class confidence matrix F, we use the
idea of evidence accumulation, where I' = {v1,72, ..., Ym }
indicates the importance levels of each individual class con-
fidence matrix F; € R, with v > 0, Vy; € I'. Equation 6
defines the calculation of the final class confidence matrix,
where FEU) indicates the class confidence vector of an vertex
v in a sampled network N,. Note that if the T’ importance
levels was equal to 1 for all samplings, then the evidence
accumulation of the F is an unweighted mean. However,
this importance can be estimated in alternative ways, such
as accuracy of the transductive classifier of each sampling,
thereby resulting in a weighted average.

o I Sy, WEY)
Z?;l Vi

After obtaining the indicator class matrix F' by evidence
accumulation from each sampling, we can define the final label
of a vertex v € V based on the class label with the highest
confidence value in the estimated class vector f(*) € F,
as defined in Equation 7, where the function ¢l returns the
class label ¢ for a given class confidence vector. Thus, all the
vertices of the original information network can be classified
considering the combination of class information confidence
in each sampled network.

F

(6)

— £(v)
label = cl(arg gllagxc f; ) @)

The computational complexity of the transductive classifica-
tion on the original information network is given by the com-
plexity of the network regularization, i.e., ©(ct(|V] + | E|)),
where c¢ is the number of classes and ¢ is the number of
iterations.

The TCSN depends on the time complexity of each step,
defined as 7, (network sampling technique), 7.4 (regulariza-
tion in a sampled network) and 7. (evidence accumulation).
Thus, the complexity of the TCSN is O(Tgpr + Treg + Tec)-
While time complexity for network sampling and evidence
accumulation techniques are linear (|V|+ |E|), the time com-
plexity for network regularization is 7yq = mct(|Vs| + | Eql).
In this case, m is the number of sampled networks. Also,
the values |V;| and |E;| are defined by Chernoff Bounds of
the Equation 3. From a practical point of view, transductive
classification executions are independent of each other and
can be obtained in parallel for each sampled network, thereby
allowing the TCSN to be an alternative for scalability in large
information networks.
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IV. EXPERIMENTAL EVALUATION
A. Datasets

We carried out an experimental evaluation with twelve infor-
mation networks representing events extracted from Reuters>.
These information networks were used in the Websensors
Project* and are appropriate for experimental analysis in
our scenario due to the different types of domain, size and
topology. Table I presents an overview of these information
networks, including the network domain type, number of
vertices (|V|), number of edges (| E|) and number of classes.

TABLE I
OVERVIEW OF THE INFORMATION NETWORKS USED IN THE
EXPERIMENTAL EVALUATION.

[ Information Network (V) | [V[ [ [E[ [ #Classes |
Business Transactions (BT) 27604 322989 4
Commodity Markets (CM) 45615 857476 3
Consumer Finances (CF) 2526 22004 3
Crimes And Justice (CJ) 81202 1311486 3
Exchange Markets (EM) 114681 1515632 3
General Subjects (GS) 34482 414872 7
Government Indicators (GI) 31534 438813 4
Inflation (INF) 4016 39173 2
Lawsuits (LAW) 29516 384018 2
Natural Disasters (ND) 20047 263648 3
Reports (REP) 33502 402657 4
Trade Reserves (TR) 13799 178773 3

All the information networks used in this work are undi-
rected and unweighted. These information networks are or-
ganized into vertices representing events, as well as vertices
representing textual information, geographic information and
temporal information. For transductive learning, each vertex
type is used with a certain level of importance in the regular-
ization process.

B. Experimental Setup

In the network sampling step, we used the Equation 3 of
the TCSN framework to define the minimum sampling size,
with the expected fraction of vertices by class e = 0.15. The
confidence level for the lower bound was defined as 95% (o =
0.95). Table II summarizes the percentage of the size (100 x
%) of the sampled networks in relation to the original
network according to each sampling technique.

All sampling techniques receive the minimum sample size
as input parameter. Here, we present the other parameters used

in each technique.

o Edge: The number of sampled edges starts with the same
value as the minimum sample size. The number of trials
to reach the minimum number of vertices was defined as
k=5.

o SRW, ISRW: These techniques use only the minimum
sample size as parameter.

« RWF: Minimum sample size and fly back probability
p=0.5.

3RCV1 (Reuters Corpus Volume 1)
“https://websensors.net.br/



TABLE II
PERCENTAGE OF THE SAMPLED NETWORKS SIZE IN RELATION TO THE
ORIGINAL NETWORK ACCORDING TO EACH SAMPLING TECHNIQUE.

[ N [ Edge [ FF [ ISRW | RWF [ SB [ SRW |

BT | 352% | 322% | 12.69% | 3.60% | 3.54% | 3.62%
CM | 2.01% 1.87% | 13.48% | 2.26% | 2.37% | 2.28%
CF | 10.56% | 8.15% | 15.98% | 8.95% | 9.24% | 8.92%
CJ | 213% | 2.00% | 12.17% | 2.40% | 2.35% | 2.42%
EM | 233% | 2.65% | 17.64% | 2.98% | 3.28% | 3.01%
GS | 379% | 3.34% | 12.05% | 3.70% | 3.51% | 3.71%
GI | 296% | 2.776% | 12.40% | 3.12% | 3.09% | 3.14%
INF | 650% | 5.52% | 14.39% | 6.08% | 6.25% | 6.08%
LAW | 2.82% | 2.62% | 11.30% | 2.88% | 2.84% | 2.88%
ND | 335% | 297% | 11.19% | 3.16% | 3.20% | 3.17%
REP | 332% | 3.11% | 12.38% | 3.37% | 3.24% | 3.38%
TR | 3.78% | 3.40% | 12.01% | 3.63% | 3.78% | 3.65%

¢ SB: Minimum sampling size and number of neighbors
k = 100.

o FF: Minimum sampling size and burning probability
calculated as described in [7].

We implemented a classifier based on the GNetMine reg-
ularization to perform the transductive classification. The
GNetMine parameters for each dataset were tuned by means
of 10-fold cross validation. In the evidence accumulation, we
define the same level of importance for each sampled network.

The source code of the sampling techniques, sampled net-
works, transductive classifier, and parameter analysis are pub-
licly available in the Git repository of the TCSN framework
at https://github.com/BrucceNeves/TCSN.

2 X Pmacro X anacro

F]-macro = 8

Pracro + Rinacro ®
Pracro =

\C| Z (TP, +FP (TP.. + FP.,) ©

Rinacro = (10)

|0| Z (TP., +FN (TP, + FN,,)

We used precision and recall measures to analyze the
classification performance. In particular, we adopted Macro-
F1 [22], which is defined as the harmonic mean (Equation
8) between Precision-Macro (Equation 9) and Recall-Macro
(Equation 10). In this case, TP, indicates the true positives
of the class ¢;, F'N,, the false negatives of the class c;, and
C indicates the set of labels of the network, where ¢; € C.

For all information networks, we used 50 randomly labeled
vertices and the 10-fold cross validation process to estimate
the Macro-F1 measure.

C. Results and Discussion

We present and discuss the experimental results considering
two aspects: (1) the Macro-F1 performance of the transductive
classification of the TCSN in comparison with the transductive
classification in the original information network; and (2) the
computational cost of each sampling technique used in the
TCSN, considering the number of sampling repetitions.
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Table III presents the Macro-F1 results for each information
network and sampling technique. The last column describes
the Macro-F1 results for the original information network
(without sampling). While it was expected that the classifica-
tion in sampling scenarios would obtain an approximation of
the classification performance without sampling, we obtained
the impressive results of the improvement of classification
performance using TCSN for some sampling techniques. We
believe that the step of evidence accumulation from different
sampled networks of the proposed TCSN is also a way
to reduce the impact of outliers and noises, consequently
improving transductive learning.

TABLE III
MACRO-F1 RESULTS OF THE PROPOSED TCSN IN COMPARISON WITH
TRANSDUCTIVE CLASSIFICATION WITHOUT SAMPLING.

TCSN No
‘ N Edge ISRW | RWF SB SRW | Sampling ‘
BT | 0.655 | 0.500 | 0.626 | 0.643 | 0.570 | 0.638 0.548
CM | 0.874 | 0.735 | 0.850 | 0.862 | 0.821 | 0.860 0.833
CF | 0.887 | 0.716 | 0.877 | 0.875 | 0.847 | 0.870 0.830
CI [ 0733 | 0573 | 0.671 [ 0.714 | 0.647 | 0.711 0.637
EM | 0.616 | 0.537 | 0.549 | 0.609 | 0.544 | 0.607 0.562
GS | 0.656 | 0442 | 0.623 | 0.631 | 0.560 | 0.630 0.514
GI | 0.661 | 0495 | 0.603 | 0.641 | 0.553 | 0.641 0.531
INF | 0.864 | 0.789 | 0.849 | 0.856 | 0.827 | 0.853 0.802
LAW | 0.759 | 0.692 | 0.740 | 0.753 | 0.725 | 0.751 0.724
ND | 0.853 | 0.709 | 0.841 | 0.838 | 0.794 | 0.839 0.758
REP | 0.594 | 0454 | 0.565 | 0.578 | 0.517 | 0.577 0.496
TR | 0.789 | 0.647 | 0.775 | 0.774 | 0.709 | 0.771 0.671
o
? ? 3 “l 5 6 7
Edge j L FF
RWF No Sampling
ISRW
Fig. 1. Critical difference diagram between each sampling technique.

A statistical analysis of Macro-F1 results is presented in
Figure 1, which illustrates the critical difference diagram
between each sampling technique (Friedman Non-Parametric
Test with Nemenyi post-hoc test [23]). In this case, each
sampling technique is organized into an average ranking
based on Macro-F1. If there is no statistically significant
difference between two techniques, then we connect these
two techniques by means of a line. The statistical analysis
reveals that the techniques Edge, RWF and SRW used in the
TCSN obtains superior results to the transductive classification
without sampling. On the other hand, the sampling techniques
ISRW, SB and FF used in the TCSN did not obtain Macro-
F1 performance with a statistically significant difference in
comparison to the transductive classification without sampling.

Regarding the computational cost of each sampling tech-
nique in TCSN, Figure 2 illustrates an overview of the com-
putational cost (average number of sampling repetitions) in
relation to the overall rank average. Each sampling technique
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Fig. 2. Comparison of the computational cost (average number of sampling
repetitions) in relation to the overall rank average for each sampling technique.
Each sampling technique is shown as a circle, in which the larger the radius
of the circle, the better the Macro-F1 performance.

is shown as a circle, in which the larger the radius of the circle,
the better the Macro-F1 performance of the technique (i.e.
average Macro-F1 value in all information networks). The FF
and SB sampling techniques did not achieve good Macro-F1
performance. In addition, these techniques present the highest
computational cost. We observed that these two sampling
techniques have low diversity in each round of sampling,
thereby requiring many repetitions to reach all vertices of
the information network. Moreover, evidence accumulation is
impaired in scenarios with low diversity.

We note that Edge Sampling achieves the highest perfor-
mance Macro-F1, but with a slightly higher computational
cost than Random Walk based techniques (RWEF, SRW, and
ISRW). In practice, Edge, RWF and SRW showed the best
performances (Macro-F1 and computational cost) in most set-
tings, being the most appropriate for transductive classification
in large information networks.

V. CONCLUDING REMARKS

Generating smaller and representative information networks
from large networks is an important task for knowledge extrac-
tion in practical scenarios. Our experimental results revealed
that the simple sampling techniques based on Edge Sampling
and Random Walk (RWF and SRW) are the most suitable
for transductive classification in sampled networks. In addi-
tion to achieving good Macro-F1 classification results, such
techniques presented lower computational cost. TCSN using
Edge Sampling, RWF or SRW achieved a minium average
improvement of 12% in Macro-F1 performance (considering
all datasets) compared to the transductive classification without
sampling. This improvement is obtained with a significant
reduction in computational time, since the transductive classifi-
cation can be performed in parallel for each sampled network.

Directions for future work include extending sampling tech-
niques for weighted information networks. We also plan to
evaluate other network regularization algorithms.
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