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Abstract—Knowledge extraction from large information net-
works has received increasing attention in recent years. Among
existing methods for knowledge extraction, transductive classifi-
cation is a well-known semi-supervised learning method, where
both labeled and unlabeled vertices are used in the learning
process. However, transductive classification tasks become im-
practical in large information networks and the use of network
sampling techniques in the transductive classification setting is
not a trivial task, since it is required that all the vertices of the
original network be classified during the transductive learning —
and not only the vertices of the sample. In this paper, we present a
framework called TCSN (Transductive Classification for Sampled
Networks). TCSN allows the use of various network sampling
techniques, as well as enables the use of various methods of
transductive classification for information networks. We present
a variation of the Chernoff Bounds method to calculate the
minimum size of a sampled network, thereby bounding sampling
error within a pre-specified tolerance level. Moreover, TCSN
extends the concept of evidence accumulation to combine the
results of several rounds of transductive classification into a
final classification. Experimental results from different infor-
mation networks reveals that TCSN statistically outperformed
the classification performance in the whole original network.
These promising results show that the TCSN enables transductive
classification in large information networks without loss of quality
in the knowledge extraction process.

Index Terms—network sampling, classification, regularization

I. INTRODUCTION

Information networks are very useful for modeling rela-

tionships between real-world entities through vertices and

edges [1]. There are many applications involving information

networks, such as co-author networks or paper citation net-

works extracted from bibliographic databases, social networks,

networks of financial transactions for fraud detection, and

interaction networks between users and items for recommen-

dation systems. Information Networks can also be interpreted

as graphs, where vertices contain extra information, such as

labels and features [2].

Knowledge extraction from large information networks has

received increasing attention in recent years [3]. Among exist-

ing methods for knowledge extraction, it is worth mentioning

semi-supervised learning for information networks, since it

allows learning from labeled and unlabelled data [4]. Thus,

given a small set of labeled vertices, a large set of unlabelled

vertices is classified considering the structure of the infor-

mation network. This technique is also called a transductive

classification [5], since the entire data set is known in advance

during the learning process. However, transductive classifica-

tion tasks become impractical in large information networks

[6]. In this scenario, sampling techniques for networks are

essential.
We can define the machine learning task from sampled

networks as follows. Let N = (V,E,W ) be an information

network, where V is a set of vertices, E is the set of edges

between vertices, and W is the set of weights of the edges.

Sampling techniques aim to obtain a reduced network Ns =
(Vs, Es,Ws), with |Vs| � |V | and similar performance P in

some machine learning task L, i.e., P (L,N ) ∼= P (L,Ns). In

fact, network sampling techniques obtain (sub)networks with

representative vertices in order to maintain the main charac-

teristics of the original network [7]. In a traditional scenario,

inductive classification methods can directly use the sampled

network as a training set to obtain a classification model. On

the other hand, the use of network sampling techniques in

transductive classification setting is not a trivial task, since

it is required that all the vertices of the original network be

classified during the transductive learning. Moreover, there

are other important research questions such as (i) what is

the best network sampling technique?; (ii) how to define the

minimum size of the sampled network?; and (iii) how to extend

transductive classification for sampled networks?
In this paper, we present a framework called TCSN (Trans-

ductive Classification for Sampled Networks). TCSN allows

the use of various network sampling techniques, such as

vertex-based sampling or edge-based sampling, as well as the

use of various methods of transductive classification for infor-

mation networks. To the best of our knowledge, this would

represent the first attempt of a practical integration between

network sampling techniques and transductive classification

methods. Our main contributions are two-fold:

• We present a variation of the Chernoff Bounds [8] to

calculate the minimum size of a sampled network, given

(i) a confidence level of the approximation in relation

to the original network and (ii) the number of classes.
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Thus, our proposed TCSN has the advantage of bounding

sampling error within a pre-specified tolerance level.

• We proposed a method to perform repeated sampling

in the information network in order that each vertex

is reached at least once. A transductive classification

method is applied to each sampling. Next, we use the

concept of evidence accumulation [9] to combine the

results of several rounds of transductive classification into

a final classification, in which all vertices are classified.

Moreover, we demonstrate that the computational com-

plexity of the TCSN is proportional to the size of the

sampled network and the number of sampling repetitions.

We carried out a thorough experimental evaluation of the

proposed TCSN framework, involving twelve real-world in-

formation networks, six network sampling techniques, and a

state-of-the-art method for transductive network classification.

We statistically compared the results of transductive classi-

fication in sampled networks with transductive classification

in original networks. The analysis of the results reveals that

edge-based sampling techniques and some techniques based

on random walk have achieved an impressive classification

performance (Macro-F1), outperforming even the classification

performance in the original network. These promising results

show that the TCSN enables classification in large information

networks by using sampling techniques, without loss of quality

in the knowledge extraction process.

II. BACKGROUND AND RELATED WORK

In this section, we discuss the basic concepts and related

work involving transductive classification for networks, as well

as network sampling techniques.

A. Transductive Classification for Information Networks

Transductive classification for information networks has

received great attention in recent years, where the central

idea is to use labeled vertices, unlabeled vertices and the

network topology to infer a class confidence vector for all

network vertices [10]. Many popular transductive classification

methods have been applied successfully in different areas.

Zhu et al. [4] proposed a transductive learning method using

Gaussian fields and harmonic functions. Zhou et al. [11]

proposed a novel transductive learning method based on local

and global consistency. Belkin et al. [12] developed a general-

purpose regularization framework for transductive classifica-

tion in information networks. Although there are differences

in these proposals, two properties are common to the methods

of transductive classification [5]: First, the estimated class

confidence vectors of two vertices must be similar if these

two vertices are linked in the information network. Second, the

estimated class confidence vectors of labeled vertices should

be similar to real class information.

Transductive classification methods for information net-

works can be generically defined through a regularization

framework [12]. Let N = (V,E,W ) be an information

network, where V is a set of vertices, E is the set of edges

between vertices, and W is the set of weights of the edges.

Let VL be a set of labeled vertices, with VL ⊂ V . Equation 1

defines the regularization framework for transductive learning

[13], where the first term (Ω(.)) calculates the proximity

of the class confidence vectors between each pair of ver-

tices in the network. The second term (Ω′(.)) calculates the

proximity between the estimated class confidence vector of

labeled vertices and their real class information. Moreover,

wu,v indicates the weight of the relation between the vertices

and μ indicates the importance of the real class information

during the classification process. The fv indicates the estimated

class confidence vector of a vertex v; and yu indicates real

class information of a labeled vertex u. The regularization

function is a minimization problem that aims to obtain a class

confidence matrix F, which represents the estimated class

confidence of the entire information network.

Q(F) =
1

2

∑
u,v∈V

wu,vΩ(fu, fv) + μ
∑

u∈V L

Ω′(fu,yu) (1)

A promising approach to instantiating this regularization

framework was proposed by Ji et al. [5], called GNetMine.

GNetMine considers different levels of importance for the

vertices, as well as the level of importance of the labeled

data. In practice, GNetMine generalizes other regularization

functions proposed in the literature. Equation 2 defines the

GNetMine regularization function, where the λ(u,v) defines the

importance level between vertices u and v, with 0 ≤ λ(u,v) ≤
1. To suppress popular vertices (high degree) from dominating

the class vector confidence estimations, d(.) is used to sum

the edge weights of all neighbors of a vertex u belonging to

the same relationship1 of (u, v). The importance of real class

information of a labeled vertex u is defined by α(u), with

0 < α(u) ≤ 1.

Q(F) =
∑

u,v∈V
λ(u,v)wu,v

∥∥∥∥∥ fu√
d(u, v)

− fv√
d(v, u)

∥∥∥∥∥
2

(2)

+
∑

u∈V L

α(u)(fu − yu)

GNetMine can be solved through iterative solutions called

label propagation. In this case, vertices gradually propagate

their class information to neighboring vertices considering

their relation weights. In the label propagation, the class

confidence vector f of unlabeled vertices is initialized with

0 and f = y for the labeled vertices. The stopping criterion of

the label propagation is obtained when there are no significant

changes in the class matrix confidence F of the vertices (or a

maximum number of iterations).

B. Network Sampling

Network sampling techniques have been used for a wide

variety of applications. Previous work uses network sampling

to improve visualization tasks [14]. Studies in graph clustering

1For homogeneous information networks, all vertices belong to the same
type of relationship. Heterogeneous networks organize vertices in different
types of relationships.
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use sampling for speed up algorithms, such as spectral clus-

tering [15]. Network sampling has also been employed for

noise removal and speed up inductive relational classification

algorithms [16], but is still underexplored in the context of

transductive classification.

Although different sampling techniques have been proposed

in recent years, the most popular are known as sampling

by exploration (e.g. random walk) and edge-based sampling.

In this section, we describe six popular techniques that we

consider appropriate for large information networks, due to

the low computational cost [7], [17].

• Edge Sampling (Edge) [7]: Randomly select a subset

of edges Es ⊂ E. The set of sampled vertices is Vs =
{u, v|(u, v) ∈ Es}, which is added in the Ns network.

This process is repeated until the desired network sample

size is reached.

• Simple Random Walk Sampling (SRW) [7], [18]:
Randomly select an initial vertice v ∈ V . Let Z(v) be

the set of neighboring vertices of v. Randomly select a

neighbor u ∈ Z(v) and add (u, v) to the sampled network

Ns. Repeat the process from u and stop the random walk

when the desired network sample size is reached. If the

random walk stuck on isolated component of the network,

then restart the walk from an unvisited (random) vertex.

• Random Walk Sampling with Fly Back Probability
(RWF) [7]: Performs a random walk similar to the SRW,

but considering a probability p of returning to some vertex

already visited.

• Induced Subgraph Random Walk Sampling (ISRW)
[19]: First, it performs network sampling using the SRW.

Next, all edges E of the original network N that connect

u, v ∈ Ns are added to the sampled network Ns, if

E(u, v) /∈ Ns. Thus, the average degree of the Ns gets

closer to the original network N .

• Snowball (SB) [20]: In the first stage, select randomly

a set of k vertices and add to V (0). In the next stage

i, obtain a sample of edges E(i) from the k neighbors

of each vertex in V (i−1). Vertices selected in this stage

are V (i) = {u, v|(u, v) ∈ E(i)}. The final sample VSB

consists of the union of the vertices selected in each stage

t (until reaching the sample size), i.e., VSB = ∪t
i=0V

(i).

• Forest Fire (FF) [21]: Randomly select a initial vertex

and begin “burning” associated edges and the corre-

sponding neighbor vertices. If an edge gets burned, the

neighbors vertices get a chance to burn its own edges,

and so on recursively until reaching the desired sample

size. FF has the burning probability p parameter.

III. TRANSDUCTIVE CLASSIFICATION FOR SAMPLED

NETWORKS (TCSN)

In this section, we present details of our TCSN framework,

which is divided into three steps: (1) compute the size of the

sampled network, (2) repeat the sampling process until each

vertex v ∈ V is present in some sampled network; and (3)

combine the result of the individual transductive classification

from each sampled network using evidence accumulation.

In the first step of the TCSN, our goal is to define a

lower bound regarding the number of vertices of the sampled

network, i.e, a minimum number of vertices |Ns| to represent

the original network N with a certain level of confidence

α. To determine this lower bound, we propose a variation

method based on Chernoff bounds, where we also consider

the class information, in particular, the expected fraction of

labeled vertices by each class.

Let B(N ) be the lower bound for the number of vertices

|Ns|, where the original network N has c classes and a total

of |V | vertices. Let e be a fraction of the minimum number

of vertices expected in each class, where 0 < e < 1. Thus,

Equation 3 calculates the minimum number of vertices so that

the sampled network Ns can maintain the class distribution of

the original network (given a confidence level α)2.

B(N ) ≥
⌊
e|V |+ c · log

( 1
α

)
+ c

√
log

( 1
α

)2

+ 2e
|V |
c

log
( 1
α

)⌋
(3)

Once a minimum number of vertices has been determined

to guarantee the class distribution, the network sampling

techniques aim to maintain the topological properties of the

original network. Thus, in the second step of the TCSN,

we perform repeated network samplings until each vertex is

present in some sampled network.

Let S = {Ns1 ,Ns2 , ...,Nsm} be a set of m sampled

networks from a network N . Let Vsj be the set of vertices of

the j-th sampled network Nsj . Let V L be the set of labeled

vertices of the network N , with V L ⊂ V . The sampling

repetition of the TCSN is performed until two criteria are

satisfied:

1) The labeled vertices V L must be present in each sampled

network (Equation 4); and

m⋂
j=1

(Vsj ∩ V L) = V L (4)

2) The union of the sets of vertices of each sampled

network must be equal to the set of vertices of the

original network (Equation 5).

m⋃
j=1

Vsj = V (5)

While the first criterion allows to maintain labeled infor-

mation for transductive classification in each sampling, the

second criterion guarantees that a vertex will be classified at

least once in some sampled network.

In our proposed TCSN, a given sampling technique is

applied repeatedly until these two criteria are satisfied. The

first criterion can be reached more easily by starting the

sampling technique from V L or by adding V L in the sampled

network at the end of the sampling process. The latter strategy

is used in the TCSN. Although the number m of sampled

2A proof is available along with the technical documentation and source
code of the TCSN framework at https://github.com/BrucceNeves/TCSN
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networks may vary according to the sampling technique, the

size of each sampled network is close to the value determined

by the estimated lower bound.

In the third step of the TCSN, each sampled network is

used as input to a transductive classification process resulting

in m class confidence matrices (one for each sampled network)

R = {F1,F2, ...,Fm}, where Fi corresponds to the class

confidence matrix obtained with the transductive learning (e.g.

GNetMine regularization) from the sampled network Nsi .

To obtain the final class confidence matrix F̂, we use the

idea of evidence accumulation, where Γ = {γ1, γ2, ..., γm}
indicates the importance levels of each individual class con-

fidence matrix Fi ∈ R, with γi > 0, ∀γi ∈ Γ. Equation 6

defines the calculation of the final class confidence matrix,

where F
(v)
i indicates the class confidence vector of an vertex

v in a sampled network Nsi . Note that if the Γ importance

levels was equal to 1 for all samplings, then the evidence

accumulation of the F̂ is an unweighted mean. However,

this importance can be estimated in alternative ways, such

as accuracy of the transductive classifier of each sampling,

thereby resulting in a weighted average.

F̂←
∑m

i=1

∑
v∈Vsi

γi(F
(v)
i )∑m

i=1 γi
(6)

After obtaining the indicator class matrix F̂ by evidence

accumulation from each sampling, we can define the final label

of a vertex v ∈ V based on the class label with the highest

confidence value in the estimated class vector f̂ (v) ∈ F̂,

as defined in Equation 7, where the function cl returns the

class label c for a given class confidence vector. Thus, all the

vertices of the original information network can be classified

considering the combination of class information confidence

in each sampled network.

label = cl
(
arg max

1≤i≤c
f̂
(v)
i

)
(7)

The computational complexity of the transductive classifica-

tion on the original information network is given by the com-

plexity of the network regularization, i.e., Θ(ct(|V | + |E|)),
where c is the number of classes and t is the number of

iterations.

The TCSN depends on the time complexity of each step,

defined as Tspl (network sampling technique), Treg (regulariza-

tion in a sampled network) and Tec (evidence accumulation).

Thus, the complexity of the TCSN is Θ(Tspl + Treg + Tec).
While time complexity for network sampling and evidence

accumulation techniques are linear (|V |+ |E|), the time com-

plexity for network regularization is Treg = mct(|Vs|+ |Es|).
In this case, m is the number of sampled networks. Also,

the values |Vs| and |Es| are defined by Chernoff Bounds of

the Equation 3. From a practical point of view, transductive

classification executions are independent of each other and

can be obtained in parallel for each sampled network, thereby

allowing the TCSN to be an alternative for scalability in large

information networks.

IV. EXPERIMENTAL EVALUATION

A. Datasets

We carried out an experimental evaluation with twelve infor-

mation networks representing events extracted from Reuters3.

These information networks were used in the Websensors

Project4 and are appropriate for experimental analysis in

our scenario due to the different types of domain, size and

topology. Table I presents an overview of these information

networks, including the network domain type, number of

vertices (|V |), number of edges (|E|) and number of classes.

TABLE I
OVERVIEW OF THE INFORMATION NETWORKS USED IN THE

EXPERIMENTAL EVALUATION.

Information Network (N ) |V | |E| #Classes
Business Transactions (BT) 27604 322989 4
Commodity Markets (CM) 45615 857476 3
Consumer Finances (CF) 2526 22004 3
Crimes And Justice (CJ) 81202 1311486 3
Exchange Markets (EM) 114681 1515632 3
General Subjects (GS) 34482 414872 7
Government Indicators (GI) 31534 438813 4
Inflation (INF) 4016 39173 2
Lawsuits (LAW) 29516 384018 2
Natural Disasters (ND) 20047 263648 3
Reports (REP) 33502 402657 4
Trade Reserves (TR) 13799 178773 3

All the information networks used in this work are undi-

rected and unweighted. These information networks are or-

ganized into vertices representing events, as well as vertices

representing textual information, geographic information and

temporal information. For transductive learning, each vertex

type is used with a certain level of importance in the regular-

ization process.

B. Experimental Setup

In the network sampling step, we used the Equation 3 of

the TCSN framework to define the minimum sampling size,

with the expected fraction of vertices by class e = 0.15. The

confidence level for the lower bound was defined as 95% (α =
0.95). Table II summarizes the percentage of the size (100×
|Vs|+|Es|
|V |+|E| ) of the sampled networks in relation to the original

network according to each sampling technique.

All sampling techniques receive the minimum sample size

as input parameter. Here, we present the other parameters used

in each technique.

• Edge: The number of sampled edges starts with the same

value as the minimum sample size. The number of trials

to reach the minimum number of vertices was defined as

k = 5.

• SRW, ISRW: These techniques use only the minimum

sample size as parameter.

• RWF: Minimum sample size and fly back probability

p = 0.5.

3RCV1 (Reuters Corpus Volume 1)
4https://websensors.net.br/
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TABLE II
PERCENTAGE OF THE SAMPLED NETWORKS SIZE IN RELATION TO THE

ORIGINAL NETWORK ACCORDING TO EACH SAMPLING TECHNIQUE.

N Edge FF ISRW RWF SB SRW
BT 3.52% 3.22% 12.69% 3.60% 3.54% 3.62%

CM 2.01% 1.87% 13.48% 2.26% 2.37% 2.28%
CF 10.56% 8.15% 15.98% 8.95% 9.24% 8.92%
CJ 2.13% 2.00% 12.17% 2.40% 2.35% 2.42%

EM 2.33% 2.65% 17.64% 2.98% 3.28% 3.01%
GS 3.79% 3.34% 12.05% 3.70% 3.51% 3.71%
GI 2.96% 2.76% 12.40% 3.12% 3.09% 3.14%

INF 6.50% 5.52% 14.39% 6.08% 6.25% 6.08%
LAW 2.82% 2.62% 11.30% 2.88% 2.84% 2.88%

ND 3.35% 2.97% 11.19% 3.16% 3.20% 3.17%
REP 3.32% 3.11% 12.38% 3.37% 3.24% 3.38%

TR 3.78% 3.40% 12.01% 3.63% 3.78% 3.65%

• SB: Minimum sampling size and number of neighbors

k = 100.

• FF: Minimum sampling size and burning probability

calculated as described in [7].

We implemented a classifier based on the GNetMine reg-

ularization to perform the transductive classification. The

GNetMine parameters for each dataset were tuned by means

of 10-fold cross validation. In the evidence accumulation, we

define the same level of importance for each sampled network.

The source code of the sampling techniques, sampled net-

works, transductive classifier, and parameter analysis are pub-

licly available in the Git repository of the TCSN framework

at https://github.com/BrucceNeves/TCSN.

F1macro =
2× Pmacro ×Rmacro

Pmacro +Rmacro
(8)

Pmacro =
1

|C|
∑
ci∈C

TPci

(TPci + FPci)
(9)

Rmacro =
1

|C|
∑
ci∈C

TPci

(TPci + FNci)
(10)

We used precision and recall measures to analyze the

classification performance. In particular, we adopted Macro-

F1 [22], which is defined as the harmonic mean (Equation

8) between Precision-Macro (Equation 9) and Recall-Macro

(Equation 10). In this case, TPci indicates the true positives

of the class ci, FNci the false negatives of the class ci, and

C indicates the set of labels of the network, where ci ∈ C.

For all information networks, we used 50 randomly labeled

vertices and the 10-fold cross validation process to estimate

the Macro-F1 measure.

C. Results and Discussion

We present and discuss the experimental results considering

two aspects: (1) the Macro-F1 performance of the transductive

classification of the TCSN in comparison with the transductive

classification in the original information network; and (2) the

computational cost of each sampling technique used in the

TCSN, considering the number of sampling repetitions.

Table III presents the Macro-F1 results for each information

network and sampling technique. The last column describes

the Macro-F1 results for the original information network

(without sampling). While it was expected that the classifica-

tion in sampling scenarios would obtain an approximation of

the classification performance without sampling, we obtained

the impressive results of the improvement of classification

performance using TCSN for some sampling techniques. We

believe that the step of evidence accumulation from different

sampled networks of the proposed TCSN is also a way

to reduce the impact of outliers and noises, consequently

improving transductive learning.

TABLE III
MACRO-F1 RESULTS OF THE PROPOSED TCSN IN COMPARISON WITH

TRANSDUCTIVE CLASSIFICATION WITHOUT SAMPLING.

TCSN No
N Edge FF ISRW RWF SB SRW Sampling
BT 0.655 0.500 0.626 0.643 0.570 0.638 0.548

CM 0.874 0.735 0.850 0.862 0.821 0.860 0.833
CF 0.887 0.716 0.877 0.875 0.847 0.870 0.830
CJ 0.733 0.573 0.671 0.714 0.647 0.711 0.637

EM 0.616 0.537 0.549 0.609 0.544 0.607 0.562
GS 0.656 0.442 0.623 0.631 0.560 0.630 0.514
GI 0.661 0.495 0.603 0.641 0.553 0.641 0.531

INF 0.864 0.789 0.849 0.856 0.827 0.853 0.802
LAW 0.759 0.692 0.740 0.753 0.725 0.751 0.724

ND 0.853 0.709 0.841 0.838 0.794 0.839 0.758
REP 0.594 0.454 0.565 0.578 0.517 0.577 0.496

TR 0.789 0.647 0.775 0.774 0.709 0.771 0.671

1 2 3 4 5 6 7

Edge

RWF

SRW

ISRW

SB

No Sampling

FF

CD

Fig. 1. Critical difference diagram between each sampling technique.

A statistical analysis of Macro-F1 results is presented in

Figure 1, which illustrates the critical difference diagram

between each sampling technique (Friedman Non-Parametric

Test with Nemenyi post-hoc test [23]). In this case, each

sampling technique is organized into an average ranking

based on Macro-F1. If there is no statistically significant

difference between two techniques, then we connect these

two techniques by means of a line. The statistical analysis

reveals that the techniques Edge, RWF and SRW used in the

TCSN obtains superior results to the transductive classification

without sampling. On the other hand, the sampling techniques

ISRW, SB and FF used in the TCSN did not obtain Macro-

F1 performance with a statistically significant difference in

comparison to the transductive classification without sampling.
Regarding the computational cost of each sampling tech-

nique in TCSN, Figure 2 illustrates an overview of the com-

putational cost (average number of sampling repetitions) in

relation to the overall rank average. Each sampling technique
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Fig. 2. Comparison of the computational cost (average number of sampling
repetitions) in relation to the overall rank average for each sampling technique.
Each sampling technique is shown as a circle, in which the larger the radius
of the circle, the better the Macro-F1 performance.

is shown as a circle, in which the larger the radius of the circle,

the better the Macro-F1 performance of the technique (i.e.

average Macro-F1 value in all information networks). The FF

and SB sampling techniques did not achieve good Macro-F1

performance. In addition, these techniques present the highest

computational cost. We observed that these two sampling

techniques have low diversity in each round of sampling,

thereby requiring many repetitions to reach all vertices of

the information network. Moreover, evidence accumulation is

impaired in scenarios with low diversity.

We note that Edge Sampling achieves the highest perfor-

mance Macro-F1, but with a slightly higher computational

cost than Random Walk based techniques (RWF, SRW, and

ISRW). In practice, Edge, RWF and SRW showed the best

performances (Macro-F1 and computational cost) in most set-

tings, being the most appropriate for transductive classification

in large information networks.

V. CONCLUDING REMARKS

Generating smaller and representative information networks

from large networks is an important task for knowledge extrac-

tion in practical scenarios. Our experimental results revealed

that the simple sampling techniques based on Edge Sampling

and Random Walk (RWF and SRW) are the most suitable

for transductive classification in sampled networks. In addi-

tion to achieving good Macro-F1 classification results, such

techniques presented lower computational cost. TCSN using

Edge Sampling, RWF or SRW achieved a minium average

improvement of 12% in Macro-F1 performance (considering

all datasets) compared to the transductive classification without

sampling. This improvement is obtained with a significant

reduction in computational time, since the transductive classifi-

cation can be performed in parallel for each sampled network.

Directions for future work include extending sampling tech-

niques for weighted information networks. We also plan to

evaluate other network regularization algorithms.
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