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1 Introduction

In the absence of direct observation of new physics at the LHC, precision physics remains
a crucial tool to search for phenomena beyond the Standard Model. With the recent
developments in multi-loop calculations in Quantum Chromodynamics (QCD), theoretical
uncertainties in several key observables are now dominated by the errors on the fundamental
QCD parameters, namely the quark masses and the strong coupling, ag. It is therefore
essential to achieve an excellent control over these quantities. With the forthcoming ete™
facilities that should aim at Higgs and top-quark mass precise measurements, a good control
of o as well as the charm-, bottom-, and top-quark masses will remain central for the
determination of constraints on the Standard Model and searches for physics beyond it.

One of the most frequently used tools for the precise extraction of the charm- and
bottom-quark masses are QCD sum rules [1, 2], where theory predictions are related to
measurements of the inclusive hadronic ete™ cross-section through weighted integrals over
the Rgy4(s) ratio. The inverse moments defined as
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with n > 1 and ¢ = ¢, b, are highly sensitive to the heavy quark mass and play a central
role in this program. With the use of analyticity and unitarity constraints, these moments
can be related to the coefficients of the small-momentum (below threshold) expansion of
the quark vector-current correlator. These coefficients, in turn, can be calculated reliably
in perturbative QCD (pQCD) for not too large values of n. This type of sum-rules has
been, for a long time, the basis for precise determinations of the charm- and bottom-quark
masses (m. and mp) [3-9].

Recently, it has been shown that dimensionless ratios of roots of moments MCK n are
also an important source of reliable information about ay [10, 11]. Given the present status
of the experimental measurements, and the fact that «g extractions at low energies often
result in accurate predictions for aﬁ”f =5) (mg), the ratios of charm-quark moments lead to
a particularly precise determination of the strong coupling. Ratios of this type had already
been exploited in determinations of oy and m, from the pseudo-scalar current moments by
several lattice groups [12-16].

In all studies of this type, it is essential to reliably estimate the theoretical uncertainties
associated with missing higher orders in the respective perturbative series. The pQCD
expansion of the first three physical moments is known, at present, up to O(a2) [19-23].
The error stemming from lacking higher orders must therefore be carefully assessed through
conservative renormalisation-scale variations and/or estimates of higher-order coefficients.
Alternative treatments of these perturbative errors lead to discrepancies in the magnitude
of the final uncertainties quoted by different groups [5-9].

In many cases, the final error on the extracted parameters receives an important con-
tribution from the theoretical error associated with the truncation of perturbation theory.
The appraisal of the different prescriptions for the computation of these errors can bene-
fit from partial knowledge about the yet unknown higher-order coefficients of the pQCD
expansion of the moments M(;/ n- In this context, the large-fy limit of QCD is an impor-
tant tool. In this approximation, one first considers the limit of a large number of quark
flavors, ny, while keeping asng ~ O(1). The leading-ns terms of the pQCD series, which
correspond to QED-like diagrams, are calculated to all orders in ag. Then, through the
procedure known as naive non-abelianization [25-27], the fermionic contribution to the
leading-order (LO) QCD g function is replaced by the full coefficient, [y, thereby effec-
tively introducing a set of non-abelian terms. This results in a series that is known to all
orders in the coupling and whose Borel transform can be studied exactly. The singularities
of the Borel transform arising from IR and UV regions of loop subgraphs are the renor-
malons of perturbation theory, which govern the divergent behaviour of the series at high
orders. In QCD, IR renormalons play a particularly important role since in many cases
they are in one-to-one correspondence with non-perturbative QCD condensates arising in
the operator product expansion. In some situations, the large-5y limit provides a good
estimate of higher-order coefficients. However, even when this is not the case, it contains
important information about the renormalons of perturbation theory, whose position is
unchanged in the full QCD result.

The result for the small-momentum expansion of the vector correlator in the large- 3,
limit is available since the work of Grozin and Sturm [28]. Here, we confirm their result



and calculate, for the first time, the small-momentum expansion of the scalar, pseudo-
scalar, and axial-vector correlators at O(1/5p). From a phenomenological point of view,
the main focus is on the vector and pseudo-scalar correlators, since their small- momentum
expansion is the input for the precise extraction of m., ms, and a, from data on the Ryg(s)
ratio, in the vector case, and for the determination of m. and «y from lattice data for the
pseudo-scalar correlator. (Lattice data for the vector and axial-vector charm moments also
exist, see e.g. [13], but are not as competitive as the lattice pseudo-scalar moments.)

Our results for the vector and pseudo-scalar correlators are then employed in a study
of the perturbative behaviour of the ratios of moments used for the extraction of agz. We
obtain their Borel transform in closed form, study their renormalon content, and show that
these ratios benefit from a partial cancelation of the leading UV renormalon, as well as
a reduction of the leading IR pole residue. This softening of the leading singularities is
behind the good perturbative behavior of these moments. Additionally, the knowledge of
the renormalon singularities provides us with new information that can be used to design
combinations of moments that exihibit stronger cancellations of the leading renormalons.

This work is structured as follows. In section 2 we define the correlators we are
interested in, their moments, and the ratios of moments. In section 3 we describe and
present the calculation of the small-momentum expansion of the quark-current correlators
at O(1/5p). Then, in section 4, these results are used to obtain the large-fy expansion
of the ratios of vector and pseudo-scalar moments employed in «a, analyses. We discuss
the leading renormalon contribution to the ratios and show that partial cancellations take
place, which is one of the main results of this paper. We also discuss how to combine
ratios of moments so as to obtain better-behaved perturbative series. Our conclusions are
presented in section 5. Finally, details about the small-momentum expansion of the relevant
two-loop integrals and a number of explicit results from our calculations are relegated to

appendices A and B, respectively.

2 Theory overview

In this section we define the correlators that will be calculated in section 3 and discuss
their small-momentum expansion, which, in the vector case, is related to the moments of
eq. (1.1). We also define the dimensionless ratios of moments whose perturbative behaviour
will be studied in section 4.

Even though our main focus is on the vector and pseudo-scalar correlators, given the
phenomenological application of their small-momentum expansion as already discussed, for
completeness we will present results for the vector (V), axial-vector (A), scalar (5), and
pseudo-scalar (P) correlators which we define as

(@9 — 2ua) I (5) — qug 115, (5) = *i/dw QT 5 ()75 1(0)|9) (2.1)
for § = V, A whereas
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for § = S, P. In the equations above ¢?> = s and the bilinear quark currents are

gy (@) = q(x)yua(z), G (@) = a(@)ysa(e),
§9(x) = 2mg q(z)q(x), and 3T (@) = 2imy q(x)vs5q(z) . (2.3)
The mass factor in the scalar and pseudo-scalar currents, which in this context corresponds
to the bare mass, is introduced to ensure renormalisation group invariance [29]. The longi-
tudinal contribution to the vector correlator I1Y is zero due to the vector Ward identity. In
the case of the axial-vector current, Hf can be obtained by applying the projector g*q¢” or
using the axial Ward identity, which relates this contribution to the pseudo- scalar corre-
lator [22, 23].! When using dimensional regularisation for loop computations, the currents
that contain ~5 must be carefully extended to d dimensions; we employ the prescription
described in ref. [30].2
With the usual definition of the experimentally accessible Rg4(s) ratio

3s Octe—— qq-l—X(S)
Ryq(s) = mge+e—%q(j+){(s) = Ue*e*—),uﬁu*(s) )

(2.4)

where « is the effective electromagnetic coupling constant, the corresponding moments of
eq. (1.1) can be related to the coefficients of the Taylor expansion of the vector-current
correlator around s = 0 using analyticity and unitarity as

© s 1272Q2 qr
\/a B o q %4
M, = / sy Ryq(s) = T a4 I, (s) e (2.5)
We will generalize this definition beyond the vector current and define the moments
1272Q2 q»
6 q 4
Mq’n =0 —dSan(s) o (2.6)

As will be discussed in the next section, we restrict the analysis to physical moments,
i.e. those that do not require a scheme-dependent subtraction besides coupling and mass
renormalisation. For vector and axial-vector correlators this means n > 1. For § = P, S in
eq. (2.6) we must have n > 0.% In all cases, the description in terms of standard perturbative
QCD supplemented with OPE condensate contributions breaks down for large values of n,
when a non-relativistic treatment becomes imperative, since the moments in this case are
dominated by the resonant contributions. Therefore, our phenomenological analysis will
be restricted to values of n < 4.

The expansion of the moments Min in perturbative QCD can be cast in the following
general form

i [i—1]

M= g 2 ) S 3 A wles e e

a=0 b—=0 Mg (fim Mg (km)

IThe axial-vector moments are defined with respect to the small momentum expansion of the transverse
contribution.

2No finite renormalisation of the axial and pseudo-scalar currents is required in our case.

3Care must be taken when comparing with other papers since in some cases the 2m, factor is not
included in the S and P quark currents and a ¢ appears on the left-hand side of eq. (2.2). Effectively, this
shifts the values of n by one unit for 6 = S, P and our moment Mf » corresponds to the moment with the
n+ 1 in the conventions of ref. [23]. (Here we follow more closely the definitions of [8, 9].)



where we define [i — 1] = max(i — 1,0), as(pa) = agnf)(ua) and mg(pm) = mf]”f)(um),
with ny the number of active quark flavours.* Here i, (p,) and as(ua) are the quark
mass and strong coupling, respectively, in the MS scheme. The independent (or non-log)
coefficients Cf:(()j]()) must be calculated in perturbative QCD, while the logarithms can be
generated with renormalisation group equations. For notational simplicity we also omit
the quark charge dependence (through a global factor of 9Q2 /4) and the ny dependence
of the coefficients ci’éfl). The expansion is exactly known in QCD up to O(a?) for the
first three physical moments for the four correlators we consider here thanks to a huge
computational effort [17-23]. The fourth moment of the pseudo-scalar and vector currents
are also known exactly [23, 24] while higher moments have been estimated [31-34]. To be
fully general, we allow for different renormalisation scales in the mass and the coupling.
The leading logarithm in eq. (2.7) appears already at order a.

Only the vector moments can be determined from experimental data. Sum rules with
the vector moments of eq. (2.5) are the basis for precise extractions of m. and m; from
R,4(s) experimental data [3-9]. The first few charm pseudo-scalar moments have been
determined from lattice simulations with good precision by several groups [12-16] and
analogous sum rules for the pseudo-scalar moments have been used in the extraction of
m,. from these lattice results. The 0-th pseudo-scalar moment, due to its reduced mass
dependence, has also been used for a determinations.

It is also useful to work with dimensionless ratios of roots of moments (with n > 0).
In these ratios the mass dependence almost completely disappears, entering only through

a?-suppressed logarithms. We define the following dimensionless ratios

1
(Mg,)"

(Mq&,n-i-l

1
Rq’n

: mug (2.8)
where 0 = V, P. This type of ratios of moments was first introduced for the analysis of
pseudo-scalar lattice data [12, 15]. Their use in the case of the vector current was introduced
in refs. [10, 11] where it was shown that they can be employed for precise extractions of o
thanks to their reduced mass dependence and to the fact that these ratios can be accurately
determined from Rg;(s) experimental data, benefiting from positive correlations between
the moments M(Xn and M(Xn—f—l'
The general structure of the perturbative expansion of the moments Rg}n is

i [i—1] [i—2]
R n = [Oés(/ta)} r& lnj[ﬂm }lnk[ Pa } ; 2.9
B ; g kzz:o ;) Lk Mg (Hm) Mg () (29)

. 5 - . . .
where the mass dependence in the prefactor of Mg, is explicitly canceled by construction

and the coefficients r?’ﬁ) can be obtained from the cfs’(n)

l7j7k:
Since the ratios are dimensionless, the residual mass dependence appears only in the argu-

upon re-expansion of the ratios.

ments of the logarithms, and now start to contribute only at O(a?) [10]. When comparing

“In full QCD one has ny = ng + 1, with n, the number of massless quarks, but since heavy-quark mass
loops are 1/8y suppressed, in the large-3o one effectively has ny = ny.



the results in large-5y and QCD it will be convenient to consider the scale dependent «y
coefficients of eq. (2.9) that we define as

[i—1][i
Hm k Ha
(s fom,) T lnj[ }ln { } 2.10
l;) ]ZO ’]k Mg (k) Mg(tm) ( )

Finally, we remark that the dimensionless combinations of moments are certainly not
unique. In fact, with the knowledge about the renormalon singularities in large- 8y obtained
here, we are in a position to design other dimensionless combinations of moments that
could display a better perturbative behaviour due to stronger renormalon cancellation. We
discuss this possibility in section 4.3.

3 The moments Min in the large-8y limit

In this section we will present the results for the small-momentum expansion of the vector,
axial-vector, scalar, and pseudo-scalar correlators in the large-5y limit of QCD. We will
cast the expansion of the renormalised correlators in this limit in the following form

N N, o] s n
0( 2\ c 0 6
n=ns q H

where N, = 3 is the number of colours and N? is the O(a?) (one-loop) result in d = 4

dimensions.?

With this normalisation, the perturbative expansion of C?(u) starts as 1.
We are interested in physical moments, i.e. those that do not have an UV divergence after
coupling and mass renormalisation which would require a scheme-dependent subtraction.
Accordingly, we remove from the definition of II%(¢2) in eq. (3.1) the unphysical terms
setting n4 = ny = 1 and ng = np = 0. The moments are characterised by the non-trivial
reduced moments C2(u), for which we will obtain a Borel representation. They retain a
quark-mass dependence through the ratio p/m,(p), which appears in logarithms in the
perturbative expansion. From the definition of the moments Min given in eq. (2.5), one

obtains
N6
9 g ()]

For the calculation of C%(y) in the large-3y limit, given that renormalisation is required,

fQQ =C () - (3:2)

we rely on the formalism described in detail in ref. [36], which was employed in the original
calculation of the small-momentum expansion of the vector correlator in this limit [28].
(This formalism was recently generalised to the case of quantities with cusp anomalous
dimension in [37].)

To obtain C%(u) in the large-Bo limit one starts from the insertion of massless quark
bubbles in the gluon propagators that appear in two-loop diagrams, as depicted in figure 1.

®Specifically, with our conventions we have, for the vector case, NY = 16/15, NY = 16/35, and
N3 = 256/945. (with the conventions of ref. [28] the N,Y would be divided by 4™.) For the pseudo-scalar
moments we have N§ = 4/3, N{ = 8/15, and Ni = 32/105. The one-loop normalization for S and A
moments can be found in the accompanying file [35].



The insertion of these fermion loops amounts, essentially, to the calculation of the two-loop
correction with the gluon propagator in the Landau gauge analytically regularized [27, 36].

Quite generally, a Borel representation for the renormalised functions Cg(u) can be
written in the following form

50y 1, L[ eWda 2my(@) v ST 1
Clln) =1+ 5 /0 = ( ! 2)+/0 due” w50 (u) +O<Bg>, (3.3)
where
a, = ﬁOZ«;(:u) , (34)

with [y the one-loop coefficient in the perturbative expansion of the QCD S function,
defined as

dOéS (M) n+1

_ as(p)
du —205() ngoﬁn [ A

Blos(p)) - (3.5)

In the conventions we are following Sy = 11 N./3 — 4Trny/3, where Tr = 1/2 and ny is
the number of light-quark flavors. We remind that the running of a(u) is to be performed
with one-loop accuracy.

The first integral in eq. (3.3) over 7, the anomalous dimension of C9(u), is present only
in quantities that require additional subtractions beyond the massless fermion bubble renor-
malisation in the dressed gluon propagator [27, 36]. Here, besides the coupling renormalisa-
tion, the renormalisation MS-mass factor in the expansion brings an extra renormalisation
constant,® given by Z2", and therefore the anomalous dimension for the quantities Cz(,u) is

V() = —4nm(a), (3.6)

where v, () is the MS mass anomalous dimension at O(1/fp) accuracy [36, 38]

Cra,(3 + 2a,)'(4 + 2a,) ( 1 )

(a) = — -, 3.7
() = @t a1 — 4T 2 + ) T\ (3.7

and a,, is given in eq. (3.4). Our definition of the mass anomalous dimension is

_ k
p dmy(p) (k) {%(u)}

— = 2Ymlas(W)] =2) : 3.8
T ) =250 |5 (38)
with fyy(,?) = —3Cr = —4. In ref. [37] a recursive formula to efficiently obtain ’y,(,lf) was

provided. The solution to the RG equation in the large-/3g limit is simple and if expanded
strictly to O(1/8p) can be written as

) =1 - [ o (@) o) oy 00 )

Bo Jaym,) o o Bo as(my)

where here and in what follows T, = M, ().

5Since we express the bare quark mass in terms of the MS mass, in practice this amounts to dropping
all 1/e™ divergent terms in the series. The dropped factor is precisely Z,,2" — 1 ~ —2n(Zm — 1).



Figure 1. Feynman diagrams for the calculation of the heavy-quark correlators in the large-g3y
limit. The rightmost diagram must be counted twice. Dashed lines represent gluon propagators
with light-quark bubble insertions. Crosses stand for the insertion of the currents of eq. (2.3).

The functions S9(u) in eq. (3.3) are, therefore, the Borel transforms of C2(u). From
the Borel representation of the functions C9(u) it is straightforward to extract their o
expansion in the large-5y limit as

son [y D& (dsE 2 \aw(w) ] 1
o) = 1+/&)’;<du,ﬁ_l s [ o } +0<53). (3.10)

Explicit analytic expressions for S (u) are obtained as

Sp(u) = Fa(0.u) - 50,0 (3.11)

where the auxiliary functions F? (e, u) are given by [36]
Fo(e,u) = ue'®al (1 +u—e,e)u®D(e)= " (3.12)

In the last expression, D(e) is the massless fermionic correction to the gluon propagator
in d = 4 — 2¢ dimensions and a’ (1 +u — ¢,¢) are the coefficients in the small-momentum
expansion of the two-loop correction with the Landau-gauge gluon propagator analytically
regularised, i.e. with the denominator 1/(—p?) modified to 1/(—p?)(1+4—2)

2 \n

(14 u—ee) :Z(Zlqmg> No(e)ad(14+u—e,e), (3.13)
n

where N2 () ensures the result of af is normalised to the LO result and at this point m,

is still the bare mass.

The result of eq. (3.13) is obtained computing the Feynman diagrams shown in figure 1.
After calculating the Dirac trace, all terms in the numerator can be written in terms of
propagators, which reduces the problem to the study of scalar two-loop integrals given
explicitly in eq. (A.1) of appendix A. The scalar two-loop integrals are then expanded
around ¢ = 0 using the method of ref. [39] as described in detail in appendix A and, after
setting ¢> = 0, one is left with single-scale tadpole integrals that can be solved analytically.

3.1 Results

Following the procedure outlined above, we performed the calculation of the small-
momentum expansions of vector, axial-vector, scalar, and pseudo-scalar correlators in the
large-f5y limit.



For the vector correlator, we computed the functions SY (u) up to n = 12, finding
agreement with the results presented in ref. [28], which were given up to n = 2. The
results for the scalar, pseudo-scalar, and axial-vector current correlators are obtained here
for the first time. Here we quote explicitly the results for the first three physical moments
of each current, but obtaining the functions S? (u) for higher values of n is, essentially, just
a matter of computational time. (We remind that for the vector and axial-vector current
correlators n starts at 1, while for the pseudo-scalar and scalar correlators n starts at 0.)

The results can be conveniently cast in terms of polynomials of u, P?(u), which must
be determined case by case, in the following form

st = —sor | ey P, 1
51 = S =50 i;/:; u (n4:2<)2(1_ T Lriui)rr(?sin; -?;u) Pi(u),  (314b)
300 = S sy [y ] GO .
st =7 o, [ T ANNG kg

The first few polynomials P?(u) are available in appendix B.1. Additional results can be
found in the accompanying file [35]. As we are working at leading order in 1/5y, one can
replace (1) by M, in these relations, since the running of the quark mass produces terms
that are 1/82 and beyond, as per eq. (3.9). With this replacement it is easy to show exact
p-independence of the Borel integrals of the moments in the large-3y limit.

The general structure of the functions S (u) fulfils the expectations of typical results
in large-fy. Terms with the factor [¢%/ > /mz(p)]* lead to a Borel integral that is scheme
and scale invariant [27]. However, here, since renormalisation is required, the functions
S(u) have a 1/u term without this factor, which is a reminder of the renormalisation
scheme and scale dependence of the quark mass [26, 27]. In fact, quite generally, this first
term can be written as —2n %(7?) Ju. There is, however, no singularity at v = 0 thanks
to an exact cancellation when both terms in eqs. (3.14) are added up. The scheme and
scale dependence arising from the 1/u term is canceled by the integral over the anomalous
dimension and the global mass prefactor in eq. (3.2).

There are several non-trivial tests that we have performed to ensure the correctness of
our results:

e In all cases, the leading-ny; power at each order in ay in the perturbative expansion
of the moments Min should be correctly reproduced. We have checked that this is
the case for results that are known in QCD from refs. [19-23].

o The functions S2(u) written in terms of the MS quark mass have simple poles of
IR origin on the positive v axis at u = 2,3,4,...; no pole at v = 1 is present.
This is expected, since the leading condensate contribution is the dimension-4 gluon
condensate [27], which corresponds to the pole at u = 2. (We have checked that



rewriting these Borel transforms in the on-shell scheme, the pole mass renormalon
at u = 1/2 becomes the leading IR singularity, followed by an additional u = 1 pole,
again as expected [26]. The contribution of the pole mass to the IR singularities is
however not related to the OPE condensates.)

o A third rather non-trivial test is also related to the gluon-condensate contribution.
The gluon condensate coefficient is known for the four currents at NLO [40]. In one
specific case, namely the moment n = 2 of the pseudo-scalar correlator, this coefficient
vanishes at lowest order. Accordingly, we find that for the S{(u), and only in this
case, the IR singularity at u = 2 is absent, because P2P (u) has a zero at u = 2 as can
be seen in eq. (B.2), in agreement with the expectation that the IR renormalons in
the MS scheme are in one-to-one correspondence with OPE contributions.

« Finally, we have verified that the axial Ward identity relating the longitudinal part
of I (u) and TI” (u) is verified at O(1/8p).

Because of the existence of the IR poles, the Borel integral in eq. (3.3) is not well
defined and a prescription to deal with the singularities along the positive real axis must
be adopted. Here we use the principal value prescription, such that the Borel integral
acquires an imaginary part whose value (divided by m) is commonly considered to be a
good estimate for the ambiguity of the Borel integral. The contribution of each pole to
this ambiguity scales as a non-perturbative correction. At the scales we consider here,
the ambiguity of the Borel integral is numerically quite small, as we will show in the next
sections, which simply reflects the fact that the non-perturbative corrections in the OPE,
dominated by the gluon condensate contribution, are rather small. This is particularly true
for bottom quark moments, where the non-perturbative contributions can be neglected for
all practical purposes [9, 11].

Apart from the IR renormalon poles that we already mentioned, the functions S,‘i (u)
have UV poles at u = —1,—2,—3,... as well, which lie on the negative real axis. In the
functions S°(u) all IR singularities are simple poles, stemming from I'(2 — u). For the
UV poles the pattern that emerges is a little more intricate. There are poles at negative
u from I'(u) as well as from squared gamma functions in the numerator. The UV poles
can be simple or double plus simple depending on the structure of the denominator. The
functions SY (u), for instance, have singularities with a double- plus simple-pole structure
at u = —n,—(n + 2),—(n + 3),... while all other UV poles are simple. For 6 = P, S
the double poles start at u = —(n + 1). There can be exceptions, though. For example,
u = —7 is a root of P (u) [see eq. (B.2)], and the UV pole at u = —7 becomes simple
in 5’(1)3 (u). We will not speculate about the physical origin of this pattern, but the leading
UV renormalons will be discussed in more detail in the context of the ratios ngn in the
remainder of this paper.

Our calculation of the moments M, gn for § = P, S, Ain the large-fg limit is a new result
in the literature. From the expansion of these results one can obtain their perturbative
k nlg_l terms, which must be
the same as in full QCD. To expand the various gamma functions efficiently one can use

expressions in large-By and read off the coefficients of the «

~10 -



the following compact form, valid for n > 0

" (g - %)} (3.15)

with H,sk) = >, n~% the harmonic number of order k¥ and vz Euler’s constant. Using the

P(n+u) = (n—1)! exp{U(Hff_)l — ) + i [(
k=2

formula above, all gamma functions appearing in eq. (3.14) and the pu-dependent prefactor
can be combined into a single exponential, which is afterwards expanded using eq. (6.5) of
ref. [37]. Finally, the expanded exponential is easily combined with the (already expanded)
accompanying finite polynomials into a single expansion using

N min(N,i—n)
Zaimz Z bj:cj = Z ' Z ai_jbj, (3.16)
i=n j=m i=n+m j=m

where both sums over ¢ run all the way to infinity. Exemplarily we work out analytically
the main steps of the expansion for S (u):

SV (u) 2n  4"[(n+ 1)? 2

2
20 4"[(n+1)Y? o ) 2_1 1
3Cr u  nu(2n+2) exp{“ {Q(H”“ M) ¥ 375 Hog(m?z(u) >] (3.17)

ook _1k
w3 [ i) + (-2,

which implies the constraint P (0) = 2'=2"n2(2n + 2)!/[(n + 1)!]? satisfied by eq. (B.1).
The asymptotic expansion concerning IR poles is

SY @y _ o [ %27 (m = DI+ m+ ) PY(m)
scFIR“4 2wl e i-m (319

\IR 4nz' P (m—1)[(m+n)]*  Pi(m)

_mg(,u)_ 2(m+n)(1+2m+2n)! u—m "’

u | [P )" (m=D[(m+n))*  PI(m)

HXM .
3CF mz::g- m2(p)] (34 2m+2n)(1+2m+2n) u—m’

SPl _ g [ 2)" = Dlom + )1 B (m)

3Cp = __Wg(,u)_ 2(14+2m+2n)! u—m’

where = means singular part of. The above expressions are very useful to carry out
the Borel integral with the principal value prescription, and are responsible for the total
ambiguity of the Borel sum. Due to the more complicated pattern of UV singularities it is
not easy to find the corresponding asymptotic expansions for arbitrary values of n.

We collect in appendix B.2 the results for the leading n, terms in the oy expansions
of the combinations N2C? of eq. (3.2) up to O(al), which is the first unknown previous
to this work in the case of 6 = P, S, and A. Additional terms in these expressions can be
easily generated from the results presented here.
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3.2 The ratios R® in the large-3¢ limit

q,n

We turn now to a discussion of the moment ratios Rgm in the large-fg limit. Using the defi-

nition of the dimensionless ratios, eq. (2.8), together with the Borel representation of C9(u)

in eq. (3.3), by consistently re-expanding in 1/8y one can obtain the Borel representation

of Rgm in the large-fy limit as
1

o= ()™ S L Pacsso(E).

3=

where BJ(u) are the Borel transforms of R? ,, which can easily be written in terms of the

q,n’?
S9(u) functions as follows

_ Sa(uw)  Spia(u)
Bl (u) = - n+—|1—1 : (3.20)

In obtaining the above result we are tacitly assuming that the non-perturbative corrections
in the OPE are smaller than the perturbative contribution such that they can be expanded
out. The knowledge of the gluon-condensate contribution shows that this is an excellent
approximation for the bottom and a very good one for the charm [10, 11]

Since the ratios Rg}n are designed so as to cancel the explicit mass factor of eq. (2.7),

their Borel transforms do not have the term proportional to 77(79) /u which vanishes in
eq. (3.20). Accordingly, the integral over the mass anomalous dimension in eq. (3.3) also
vanishes, and the integral of ratios of moments are scheme and scale invariant thanks to
the now global factor of [¢®/3 2 /ma(p)]*. In the perturbative expansion, the residual mass
dependence starting at O(nga?) now enters only through 1/3-suppressed logarithms. An
important comment is that changing the renormalisation scale (or scheme) of the running
quark mass brings corrections of order 1/3% and superior, which are subleading in our
approximation and should consistently be dropped in a strict large-3y expansion.

The fact that BY is given by a difference of two Borel transforms suggests that renor-
malon cancellations may take place. We find that the residues of the leading UV and
IR poles are significantly smaller in B than their counterparts in SY. For example, for
the leading UV pole, figure 2(a) shows that the residue at u = —1 of BY is 31(38) times
smaller than that of SY (S)). For the leading IR pole the residue of BY at u = 2 is
only 16.0%(8.1%) that of SY (S}). Furthermore, in absolute terms, the residue of R},
at u = —1 decreases as n grows, as shown in figure 2(b), which leads to the expectation
of an exact cancellation in the limit of n — oco. This can be corroborated by an analy-
sis of the residue of the leading UV pole for large n. For the vector current one has that
PY(—1) ~ 0.7n%/2, while the rest of terms in the residue at u = —1 tend to 6Cre=>/3\/7/n
(with g =), such that the complete residue can be approximated by the linear expres-
sion 1.4Cgn. This, in turn, implies the conjectured cancellation and vector moment ratios
have zero residue for n — oo (decreasing as 1/n?). Very similar conclusions can be drawn
for the pseudo-scalar correlator.

A similar observation can be made for the leading IR pole at « = 2. This time,
however, even though the dependence of the residue with n is tamed for the moment
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—— p=—11
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Figure 2. (a) Absolute value of the residues of B) relative to those of SV for the leading UV and
IR poles at p = —1 and p = 2, respectively. (b) Absolute value of the residues of BY for the same
two poles.

ratios, it still grows (in absolute value) with n. This can be understood in the following
way: the polynomials PY (u) evaluated at u = 2 are all positive and grow approximately
like 2.1n7/2. At the sight of eq. (3.18) one concludes that the residue at u = 2 in the MS
scheme is always positive and, given that the rest of terms behave as (3/64)Crel%/3\/x/n
for large n, can be approximated by 4.9Crn3. For moment ratios the residue becomes
negative and softened to a linear expression: —6.8Cr(2.6 + n), as can be seen (in absolute
value) in figure 2(b).

We have also checked that if the quark mass is expressed in the pole scheme, the
residues of the Borel transform S) at u = 2 for the first four physical moments are signifi-
cantly reduced. When switching to the pole scheme one gets a negative contribution to the
u = 2 renormalon of the form —ne!%/3Cx (common to all currents), that is, proportional to
n. This contribution is of similar size that the MS term in absolute value for n < 3, trans-
lating into a significant cancellation (particularly strong for n = 1,2). For larger values of
n the cancellation is less important, and becomes more and more irrelevant as n grows.
(A similar behaviour is expected in the case of the axial-vector current.) This decrease of
the u = 2 residue should be regarded as accidental and not related to a softening of the
non-perturbative contribution coming from the gluon condensate.

We observe that for the pseudo-scalar moments MC{D ., changing to the pole mass does
not lead to a reduction in the residue of the leading IR pole. In this case, one has that
Pf (2) is negative for n < 2, positive for n > 2, and, as already discussed, vanishes at n = 2.
Furthermore, they rapidly grow in absolute value as n increases, and one can conjecture
again a n’/2 behaviour. At the sight eq. (3.18) one easily sees that the non-polynomial
terms yield a positive factor that for large n becomes again (3/64)Cre'?/3./x /n. Therefore
one never has cancellations in this case because in the region where the two contributions
are of similar size they are both positive, and when signs become opposite the pole-mass

correction is already much smaller than the main term.
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Since the leading renormalon singularities in R}z/,n are softened with respect to the
moments Mq‘f n, We can expect that the perturbative behaviour of the ratios should be
significantly improved. In particular, the partial cancellation of the leading UV pole should
lead to series that are better behaved, specially for larger n, postponing the onset of the
sign alternation pattern for the coefficients. For the moments and ratios of moments with
0 = P a very similar scenario for the leading renormalon singularities emerges and we
refrain from showing the equivalent of figure 2 for this case, but similar conclusions apply.”
We investigate the perturbative expansion of the ratios with § = P and V in the light of
our findings for the renormalons in the next section.

4 Perturbative expansion of Rg,n in the large-8y limit

4.1 Higher order behavior of the perturbative series

Let us turn to a study of the perturbative series of the moments Rgﬂ with 6 =V, P
in the large-By limit. The perturbative coefficients for the a, expansions of these ratios
of moments can be obtained analytically from the expressions of BS(u) and the use of a
formula analogous to eq. (3.10) but without the terms proportional to fyﬁ,]f ). Tn the large-f3g
limit, the “true value” for the moments Rg’n is known and given by the Borel integral of
eq. (3.19), with an imaginary ambiguity arising from the IR poles that is numerically quite
small in our case. This result is scheme and scale independent, as already discussed. We
restrict our analysis to ratios that involve moments with n < 4 because for larger n the
series is, effectively, an expansion in agy/n [41] and we checked that our results have this
behaviour for n large, as expected.

In the perturbative expansion in powers of as(u) one has the usual freedom of vary-
ing the renormalisation scale p, which is often used as a way to probe higher orders
and assess the uncertainty associated with the truncation of perturbation theory. One
should recall that in these series, since the quark mass appears only in the argument
of 1/Bp-suppressed logarithms, the running of the MS quark mass, m,(u), will generate
O(1/B2) or higher subleading terms. Therefore, here, we will use the fixed reference masses
me = 1.28 GeV and my, = 4.18 GeV, which will not be RG-evolved in our phenomenological
explorations. For the strong coupling we use the reference value aﬁ"f =5) (mz) = 0.1179,
with my = 91.1876 GeV [42], which yields o™ =" (7,) = 0.2245 and o™= (77.) = 0.3865
using the five-loop running coupling [43-46] and four-loop matching [47, 48] at the thresh-
olds, both in full QCD. These values have been obtained with REvolver [49]. The running
of as(u) in the large-fy perturbative series is then performed at one-loop accuracy, for
consistency. In this limit they correspond to Agé;4) = 145MeV and AgLCfES) = 210 MeV.
In our large-By analyses we will use ny = 3 and ny = 4 active flavors for charm and
bottom moments, respectively. The results obtained in this section were implemented in

independent Mathematica and Python codes that agree to machine precision.

"For the cases without a direct phenomenological application, namely § = S and A, the singularities are
again softened in the ratios of moments, but the cancellation of the leading UV renormalon when n — oo
is not apparent.
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Figure 3. Perturbative series of ratios of vector-current charm moments Rxn in the large-5y limit
normalized to the real part of the Borel integral of Rz‘:/,n' The gray band represents the ambiguity
of the Borel integral.

In figure 3 we show the perturbative expansion of the first three ratios R(‘jn for three
choices of the scale p. In these plots, we normalize the results to the real part of the

Borel integral of RY such that all the series should approach unity. Since the UV poles

n
lie at negative VahlZS of the variable u, their residues grow for lower renormalisation scales
and it is expected that small u will enhance these singularities, as can be clearly seen in
figure 3(a), where the series with p = 1.5 GeV shows the sign alternation pattern typical
of UV renormalons already at the first few orders of perturbation theory. For larger u the
residue of the leading UV pole is smaller and this oscillation is postponed. Ratios RZH with
higher values of n have weaker UV renormalons, as shown in figures 3(b) and 3(c), which is
a consequence of the partial cancellation of the leading UV pole discussed in the previous
section. However, the series for higher n do not stabilize around the true value given by the
Borel integral. Instead, they cross this value with a fixed sign pattern and later run into
the asymptotic regime. This is typical of series that have a large IR renormalon [50, 51]
and is in full agreement with the discussion in section 3.2, namely that the residue of the
leading IR pole grows with n. Another salient feature of these results is that the partial
cancellation of the leading UV renormalon leads to series that are somewhat better behaved
but that do not necessarily approach the true value faster. In fact, it turns out that for
higher n the series truncated at a2 are further away from the true result.

In figure 4 we show similar results for the pseudo-scalar current correlator. Here,
we start with the moment M, 0 Which does not have the mass dependent pre-factor and is
therefore a quantity completely analogous to the ratios Rg . However, this moment cannot
benefit from the partial cancellation of renormalons that we discussed in the previous
section, since its Borel transform is given solely by eq. (3.14d). We see in figure 4(a) that
this moment has a very large contribution of the UV singularities, with sign alternation
clearly visible even for high values of u. For the ratio RE 1, we see in figure 4(b) that the
partial cancellation is now in place, but the sign alternation is still present at lower orders
and only for R":/Q this behaviour starts to be tamed.
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Figure 4. Perturbative series of ratios of pseudo-scalar current charm moments Rfj , in the large-

Bo limit normalized to the real part of the Borel integral of RE n- The gray band represents the
ambiguity of the Borel integral.

[Rl\)/l]F() / [Rl\)/]]Borvl [RI‘J/Q]F() / [RXQ]B(H‘OI [Rl\)/g]F() / [Rl‘)/‘)]Borol
1.010_| T ’I T T 7I T T i 1.010-| T ; T T .I T T i l.olo-l T ’I T T 7I T T ]
[ —*— p=5GeV 1 [~ u=5GeV ] [~ p=5GeV 1
1 005'_ —+— =10 GeV 14 005'_ —— =10 GeV 1 005'_ —— =10 GeV h
' [ —=— u=15GeV i ' [ —=— pu=15GeV ] ' [ —=— u=15GeV i
1.000F 4 1.000F 4 1.000F .
0.995F 4 0.995F 1 0.995F .
L1 L1 L1 ] I T TR TR S TR T L1 L1 L1 L]
0905546 s 101214 "5 o T 6101212 "5 46 8 1012 14
Perturbative order Perturbative order Perturbative order
(a) (b) (c)

Figure 5. Perturbative series of ratios of vector-current bottom moments Rl‘)fn in the large-fgy limit
normalized to the real part of the Borel integral of Rl‘{n.

Finally, in figure 5 we show the results for the first three bottom-quark vector correlator
ratios Rl‘){n. The main difference in this case is that, overall, all the series are much better
behaved, which simply reflects the fact that as(u) is now much smaller, postponing the
onset of the asymptotic regime to significantly higher orders. Again, for n = 1 with the
lowest value of scale, here = 5 GeV, the effects of the leading UV pole are clearly seen in
the sign alternation of the series coefficients. For higher values of n, the partial cancellation
of the UV renormalon leads to series with a uniform approach to the true value. Albeit
very well behaved, all the series approach the true value somewhat slowly, and at O(a?) a
relatively large spread with scale variation is still visible. The ambiguity arising from IR
poles is tiny and not visible in the plots of figure 5. This reinforces that non-perturbative
effects are negligible in the vector bottom ratios RXH.
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4.2 From the large-Bg limit to QCD

Before we can use the large-f3y results for jon to derive consequences for their counterpart
in QCD, it is important to compare the results up to O(a?), the last order known in QCD,
and assess how close the two series are. Our goal here is not to use the large-3y results
as an estimate of the unkown higher-order coefficients. Rather, we intend to derive more
general conclusions that could guide the phenomenological applications, with special focus
on the ratios Rg,n with 6 = V, P. In full QCD, we use four and five active flavors for
charm and bottom moments, respectively. Furthermore, to mimic as much as possible our
large-fy analyses, we set j,,, = M, and identify p, = p in eq. (2.9).

Let us start with a direct comparison of the series obtained in large-8y and QCD for
three exemplary ratios of moments with 1 ~ 2m,. We see in the upper panels of figure 6
that the large-fg results do capture most of the features of the QCD series. There is, how-
ever, a difference related to the leading UV renormalon. As we have shown, in large-0y,
for lower renormalisation scales the dominance of the UV singularity is established at very
low orders, which is manifest in the sign alternation of the perturbative series coefficients,
defined in eq. (2.10), which produces a large order-by-order oscillatory behavior in the asso-
ciated partial sum. In QCD, lowering the renormalisation scale does not produce the same
effect. Some of the coefficients do change sign, but no systematic sign alternation emerges,
as can be seen in the lower panels of figure 6. In particular in panels 6(d) and 6(e), the
coefficients flip sign at O(a?) but in QCD the coefficient remains negative for a2 correc-
tions as well. This means that the UV renormalon is not as salient as in large-y and that,
likely, a competition between IR and UV renormalons persists at intermediate orders even
for significantly low renormalisation scales. (This has already been observed in the context
of the Adler function [52].) Therefore, the series coefficients at low renormalisation scales
can be significantly different between large-8y and QCD. In particular, the independent
coefficients r%%) of eq. (2.9) are not well reproduced beyond o2, since they are evaluated
at u = my. However, for larger renormalisation scales, for which the dominance of the
UV pole has already subsided in large-3y, the series can be quite similar to full QCD up
to O(a?).

Another general observation of figure 6 is that, fortunately, the QCD series appear
to approach the data-based determinations of the ratios of moments faster than the series
in large-By approach the Borel sum. We also remark that the Borel sum in large-f3g is in
very good agreement with the data-based determination of the ratios of vector moments
as well as the lattice determination of the pseudo-scalar ratios of moments with, perhaps,
the exception of the ratios RY.

> but even those are still marginally compatible since they

have larger uncertainties.

4.3 Combined ratios of moments

With the knowledge of the renormalon structure of the ratios of moments in large-5y we
can construct new dimensionless combinations designed to further suppress or even exactly
cancel specific renormalons. Ideally, one should rely on combinations that involve, at
most, the first four physical moments, since these are well described within pQCD. From
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Figure 6. Perturbative series for exemplary ratios of moments in large-5y and full QCD for
1 ~ 2m, (upper panels) and p ~ 7, (lower panels). The solid horizontal line represents the large-
Bo Borel sum while the dashed lines are the values of the ratios obtained from experimental data
Ry, = 0.8502+0.0014, RY, = 1.770+0.017 [10, 11] or lattice simulations RY; = 1.199+0.004 [15].

the vector moments with n < 4 and pseudo-scalar moments with 0 < n < 3, general
dimensionless combinations are given by®

pV
R, (a,b,¢c)
pP
Ry (a,b,c)

[RY )[Ry 5] [RY 5],
(M) [REL PR S)C (4.1)

with arbitrary real parameters a, b, and c¢. The large-Fy limit of ﬁg is obtained by con-
sistently re-expanding in 1/5y the given combination using the results of eq. (3.19). The
Borel transform of R can then be easily written in terms of BS (u).

The numerators of the leading IR and UV renormalons now become linear combinations
of the parameters a, b, c. Suitable choices of these values can lead to significant reductions of
renormalon contributions to the perturbative series. Reducing the contribution from the IR

8In principle, one can even consider combinations of vector and pseudo-scalar moments, but we do not
explore this possibility.
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renormalon at u = 2 is of particular importance for charm correlators since it is responsible
for the runaway behaviour observed in the charm ratios ngn displayed in figures 3 and 4,
as well as being directly connected with the non-perturbative contribution from the gluon
condensate. However, working with a combination that makes the u = 2 residue vanish can
lead to an enhancement of the u = —1 pole and accordingly to perturbative series highly
dominated by the leading UV renormalon with a sign-alternating behaviour already at low
orders, even for high values of u. Therefore, one must achieve some compromise between
the suppression of the leading IR singularity and the enhancement of the leading UV.
For bottom ratios, given the tiny impact of the gluon condensate, finding a combination
with no u = —1 singularity seems the best strategy. Given that for n = 1 such pole
is double, the combination should be restricted to n = 2,3 (that is, with a = 0). But
since «s determinations from bottom moments are, at present, severely afllicted by large
experimental errors we do not explore this possibility any further.

For illustration purposes we show in figure 7 the perturbative expansion of the com-
bined charm vector ratio RY (—1/3,1,—1/3) for three values of p. This choice for the
parameters reduces both the leading IR and UV residues by about 70%, while the double
UV pole present in Rgl is suppressed only by the value of the parameter a. A competition
between both renormalons remains such that the perturbative series is not fully dominated
by a fixed-sign or a sign-alternating behavior. When compared to RZZ shown in figure 3(b),
from which the main results of refs. [10, 11] are based, we see that the perturbative se-
ries of ﬁg(—l /3,1,—1/3) approaches faster the true value given by the Borel sum, has
a weaker dependence on the renormalisation scale, and does not present a run-away be-
haviour typically seen in series dominated by IR renormalons. We have also checked from
a direct comparison that the large-3y series of ﬁb}f(—l /3,1, —1/3) reproduces the non-log
coeflicients predicted by its QCD counterpart with great precision, and thus the large-g3g
series captures the features of the QCD series even at low values of pu.
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4.4 Discussion

With the above observations we are in a position to draw a few conclusions and advance a
number of plausible hypothesis about the results in QCD and the impact on a extractions.
Concerning the ratios Rgﬂ with 6 =V, P:

e We demonstrated that, in large-f3p, these ratios benefit from partial cancellation of
the leading renormalons. In the case of QCD, the renormalon singularities become
branch cuts, but the similarities between the results in large-3y and QCD allow us to
speculate that an analogous mechanism for the softening of the singularities seems
to be at work for QCD as well. This strengthens the case for the use of these ratios
in a4 extractions.

e In large-fy, the perturbative series for the ratios with § = V, P are well behaved
for not too low pu. However, a relatively large spread arising from scale variations
remains at O(a3). This spread is significantly reduced at O(a?) which indicates that
the perturbative uncertainty in QCD could be significantly reduced should the a?
corrections be available.

e The softening of the singularities that is observed in large-5y leads to series that
approach their true value uniformly but somewhat slowly. The results for larger n
are further away from their true value which would translate into larger values of «;
for higher n in an extraction of the strong coupling. In refs. [10, 11] this behaviour
was found in the QCD analysis, and the partial renormalon cancellation that we
found in this work offers a plausible explanation for this trend.

e We should also point out that in large-3y the charm pseudo-scalar and vector moment
ratios behave rather similarly with respect to scale variations. This is different from
what is observed in QCD, where results from the P correlator tend to have larger
perturbative errors [10, 11]. Therefore, it seems that what is causing this qualitative
difference is beyond the 1/8y approximation.

e Finally, the results for the large-5y limit of the ratios of moments can be used to
derive new combinations of Rg}n guided by renormalon cancellations that optimize
the behaviour of the perturbative series. Reducing the spread of scale variations at
O(a?) could lead to significant reductions on the final error in as determinations
based on heavy-quark current correlators.

5 Conclusions

We have obtained the small-momentum expansion of the vector, axial-vector, scalar, and
pseudo-scalar correlators in the large-3g limit of QCD. The results for the vector correlator
for low values of n were known since the work of ref. [28] while the others are new.

We have used these results to gain understanding about general features of the pertur-
bative series for the ratios of moments Rg,n of eq. (2.8). Ratios Rf », have been used since

some time for the extraction of the strong coupling from lattice results for the pseudo-
\%4

scalar charm correlator, while ratios R,
’

with ¢ = ¢, b were recently shown to lead to
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competitive and reliable extractions of «ay from data for eTe™ — (hadrons) with charm
or bottom flavour content. We identified partial renormalon cancellations that make the
series for these ratios of moments better behaved than the series of moments Mq‘f n- These
cancellations, however, is accompanied by a slower convergence towards the expected re-
sults. This observation provides a plausible explanation for the tendency to larger values
of ag with increasing n observed in refs. [10, 11], although in QCD the effect appears to
be less pronounced than in large-g.

Another observation that can be drawn from the large-3y results is that the series at
O(a?) are still somewhat far from the expected values and still display a significant variation
with renormalisation scale. This means that having the O(a}) term for R},

likely, significantly improve the ag extractions from RSK{P)

would, very

in terms of both central values
and perturbative uncertainty. At present, we are aware of an ongoing calculation of the
O(a?) correction for MY, [53]. To obtain the ratios at this order, however, the results for
higher n would be required.

The renormalon structure of the ratios of moments obtained in the large-gy limit
can also be used to design combinations of Rg,n that display weaker scale variations and
that could approach the expected value faster. Provided that these combinations can be
reliably obtained from experimental and lattice data, they could be the basis for improved
determinations of a; from heavy-quark current correlators.

The results presented here can also have implications for the heavy-quark mass extrac-
tions from ete™ — (hadrons) and from lattice data for the pseudo-scalar charm correlator.
In the literature, the final perturbative uncertainty on the quark masses is estimated using
different prescriptions for the renormalisation scale variation. We intend to use the large-f3g
results presented here to shed light on this aspect of the quark mass extractions. A pos-
sibility to be explored is the construction of combinations of roots of moments (M9)1/2"
linearly sensitive to the quark mass, in the same spirit as the discussion in section 4.3, aim-
ing at partial renormalon cancellations and better perturbative behavior at O(a3), with the
potential of improving the determinations of heavy-quark masses, but this is left for future
work. The results we have obtained should also allow for a connection with non-relativistic
QCD, since we were able to obtain the small-momentum expansion of the correlators for
large values of n, which leave the domain of the relativistic sum rules. The investigation of
this connection is also beyond the scope of this work and should be explored in the future.
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A Small-momentum expansion of the two-loop integrals

In the calculation of the Feynman diagrams of figure 1, after the trace is performed and the
powers of momenta in the numerator are written in terms of the propagators, the problem
is reduced to the study of the following two-loop generic scalar integral
Jo(q%na,...,ns5) (A.1)
B d%%; d%,
- / [(k1 + @) — mg]™ (k2 + @)% — mg]"2 [k — mg]"s[k3 — mg]ms[(ky — ky)?]ms

where ns, the exponent of the gluon propagator, acts as an analytic regulator and therefore

the integral must be carried out for a generic value of this parameter (n; with 1 < i <4 are
always integer numbers). Because of this constraint, it is not possible to use integration-
by-parts [54] to reduce the problem to the calculation of a small set of master integrals
that can be expanded in ¢? using modern techniques such as the Mellin-Barnes trans-
form [55]. Therefore, we perform the asymptotic small-momentum expansion by successive
applications of the d’Alembertian operator in momentum space

0
Oy = —F%—. A2
q 8quaqu ( )
The corresponding Taylor expansion can be cast as [39]:
Ja(q%ma, ) = i T (qQ)j [0 J2(¢% 1, - ms5)] (A.3)
) 3ty J:0]'<d/2)j 4 q ’ PR q=0" .

where (a); = TI'(a + j)/T'(a) is the Pochhammer symbol. The application of the
d’Alembertian operator on the integrals Jy results in
OgJ2 =4{(n1 +n2 + 1 —d/2)[n1 17 Ja + ne27 J]

+m2[ni(ng + 1)1 T T + na(ng +1)27T 1)

+ning2m?1t2t ]y — 172157 1)) (A.4)
where we used the notation 1%.J5(¢%;n1, ng, n3, na,ns) = Ja(¢?;ny + 1,m9,n3, 14, n5) and
analogously for 2% and 5%, with nt+ = (nt)2. Higher derivatives are obtained by
recursively applying the d’Alembertian operator. After setting ¢> = 0, the remaining
tadpole single-scale integrals can be solved analytically [56]
T, .. mg) = — w1 (2 s (A.5)

y DA+ A3 —d/2)T (A2 + A3 — d/2)T(d/2 — A3)T' (A1 + A2 + A3 — d)
T(A)T(X\)T (A + Ao + 2A3 — d)T'(d/2) ’

where A\{ = nj + ng, Ay = ns + ng and A3 = ns.

B Explicit results

B.1 Polynomials

In this appendix we give explicitly the first three polynomials P,‘f (u) for the four quark
currents considered in this work. Results for higher values of n for the vector and pseudo-
scalar currents are available in [35].
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Vector current:

92u  29u? Wl

PV — e - B.1
) () 3+27+27+9, (B.1)
2095u  7393u?  2887ud  Tut P
PY(u) = 10 fu  u
2 (1) T 962 T 1206 T 2502 T 54 T 06
PY () 315 54791u N 62653u? N 3039u3 N 1037u* N u® N 19u$ N u”
U) = —— — —_—.
3 16 1920 3840 640 1280 10 1920 1920
Pseudo-scalar current:
2u
Py (u) = = (T +u), (B.2)
11w 49u2 Su? ut
PP(y)=6—- — _“"> >~ _ =
L) =6 Ty Ty T 1
PP () 2 —u( u® N 19u* N 467u’ N 2311u? N 2677u N 15>
u) = — — ].
2 2 \192 ' 192 576 576 288 2
Scalar current:
PS (u) = u( 61, 235u 260u? N 20u? N 2u4) (B.3)
0 21 ' 21 27 9 9 )’ '
PS(u) = 15+ 703u N 233312 N 253913 N 305u? N 197u® N 7ub N 5u’
LA 36 72 72 18 48 12 ' 144°
S () 105 41357u N 15517u? N 513613u3 N 99889u* N 35993u°
U) = —
2 2 480 160 5760 1920 1920
N 1711ub N 223u7 N uj N u?
384 320 16 @ 2880 °
Auzial-vector current:
661u  1423u2  271u®  205u*  Tud
PA(w) =6 — B.4
P =06+—r+ . T 36 T 108 T35 (B-4)
PA( ) =30 + 2161u n 8315u? n 30793u3 n 1555u n 98u’ n 25uS n u’
u) = —
2 36 144 864 108 27 48 327
PAw) 315 N 77507u N 798> N 59687u? N 337453u* N 580397u’
u) = ——
3 4 480 5 576 6912 34560

699615 n 10969u’ L 1973u® n 77u?
17280 17280 34560 34560

B.2 Leading-n, coefficients

Here we give the leading-n, coefficients in the perturbative expansion of N,‘z C’,‘i, with p =
Mg, up to a? for the first four physical moments of each correlator. The coefficients of
order niﬁaﬁ for 6 = P, S, A are new in the literature. In the results of this section we define”

Qs

Co=NC? and as = —. (B.5)

n~'n>
™

9Not to be confused with a,, defined in eq. (3.4).
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Vector correlator:

GV =1.0667 + 2.5547 ag + (- - - + 0.66228 n¢)a? (B.6)
+ (-+- 4 0.096101 n2)a3 + (- - - + 0.096093 n3)a?
CY =0.45714 +1.1096 as + (- - - + 0.45492 ng)a
+ (- —0.01595n2)a2 + (- - - + 0.036331 n3)a? ,
Cy =0.27090 + 0.51940 a5 + (- - - + 0.42886 ny)a?
+ (-++ = 0.039596 17 )al + (- - - + 0.033047 1} )as
CY =0.18471 +0.20312a, + (- - - + 0.42483 ny)a?
4 (--- = 0.052774n3)a3 + (--- + 0.033935 n3)al .

Pseudo-scalar correlator:

CP =1.3333 +3.1111ay + (--- + 0.61729 ny)a? (B.7)
+ (- +0.37997n3)a3 + (- -+ 0.22899 n)a? |
CF =0.53333 +2.0642a, + (- - - + 0.28971 )’
+ (- +0.070202 n7)a> + (- - - 4 0.035807n3) a?
CF =0.30477 +1.2117 a + (- - + 0.26782 ng)a?
+ (-+ 4 0.015357 n7)ad + (- - + 0.021840 nf)ay ,
P =0.20318 + 0.71276 ag + (- - - + 0.28628 ny)a’
+ (-++ = 0.0091663 17 )a2 + (- -- + 0.021261 n}) al .

Scalar correlator:

C§ =0.8 +0.60247 a5 + (- - - + 058765 ng)a2 (B8)
4 (- +0.23981 n2)ad + (- + 0.20536 nd)a? |
C5 =0.22857 + 0.42582a; + (- - - + 0.23664 ny)a’
+ (- +0.0039812n2)a® + (- - - + 0.030916 nd)a? ,
C5 =0.10159 +0.15356 a + (- - - +0.15634n¢)a’
+ (- — 0.018026 n2)a® + (- - + 0.017163 nd)a? ,
C5 =0.055411 +0.032800 ay + (- + 0.12383 ng)a?
+ (- = 0.020009n2)a® + (- - + 0.013605n3) a? .

Axial-vector correlator:

CA =0.53333 + 0.84609 ay + (- - + 0.41317 ng)a’ (B.9)
4 (- +0.047848 n2)a? + (- - - + 0.069840 n3)a? |

G4 =0.15238 + 0.14166 a; + (- - - + 0.19218 ny) a2
+ (- — 0.020498 n2)a® + (- - + 0.017170 nd)a?
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C4' =0.067725 — 0.012760 a +
+ (--- —0.022336 n2)a’ +
Cit =0.036941 — 0.057469 a +
+ (- —0.020499 n?)a? +

-4 0.13562 ng)a?
-+ 40.012418n3)a?
-4 0.10678 110)a
-+ 40.010501 n3)a? .
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