UNIVERSIDADE DE SÃO PAULO

Instituto de Ciências Matemáticas e de Computação ISSN 0103-2577

A Remark on an Eigenvalue Condition for the Global Injectivity of Differentiable Maps of \mathbb{R}^2

Carlos Gutierrez Nguyen Van Chau

Nº 224

NOTAS

Série Matemática

São Carlos – SP Abr./2005

SYSNO 1240439

DATA ________
ICMC - SBAB

Sobre uma condição nos autovalores para a injetividade global de aplicações diferenciáveis do $I\!\!R^2$

Carlos Gutierrez

Nguyen Van Chau

Resumo

Usando a técnica da semi-componente de Reeb, como introduzida em [?], procuramos clarificar a relação intrínsica existente entre a injetividade de homeomorfismos locais diferenciáveis X do \mathbb{R}^2 e o comportamento assintótico dos autovalores reais das derivadas DX(x). O resultado principal mostra que um homeomorfismo local diferenciável X do \mathbb{R}^2 é injetivo e tem imagem $X(\mathbb{R}^2)$ convexa, se satisfaz a seguinte condição: (*) Não existe nenhuma seqüência $\mathbb{R}^2 \ni x_i \to \infty$ tal que $X(x_i) \to a \in \mathbb{R}^2$ e $DX(x_i)$ tem um autovalor real $\lambda_i \to 0$. Quando o gráfico de X é um conjunto algébrico, a condição (*) fica sendo necessária e suficiente para que X seja um difeomorfismo global.

A remark on an eigenvalue condition for the global injectivity of differentiable maps of \mathbb{R}^2

Carlos Gutierrez *

ICMC-USP, P.O.Box 668, 13560-970, São Carlos, SP, Brazil

E-mail: gutp@icmc.usp.br

Nguyen Van Chau[†]

Institute of Mathematics, P.O. Box 1078, Hanoi, Vietnam

E-mail: nvchau@math.ac.vn

Abstract

Using the half-Reeb component technique as introduced in [10], we try to clarify the intrinsic relation between the injectivity of differentiable local homeomorphisms X of \mathbb{R}^2 and the asymptotic behavior of real eigenvalues of derivations DX(x). The main result shows that a differentiable local homeomorphism X of \mathbb{R}^2 is injective and that its image $X(\mathbb{R}^2)$ is a convex set if X satisfies the following condition: (*) There does not exist a sequence $\mathbb{R}^2 \ni x_i \to \infty$ such that $X(x_i) \to a \in \mathbb{R}^2$ and $DX(x_i)$ has a real eigenvalue $\lambda_i \to 0$. When the graph of X is an algebraic set, this condition becomes a necessary and sufficient condition for X to be a global diffeomorphism. 2000 Mathematics Subject Classification: Primary: 14R15. Secondary: 14E07, 14E09, 14E40. Key words and phrases: Injective differentiable maps, eigenvalue condition, polynomial diffeomorphism.

1 Introduction

Let $X: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ be a differentiable map (not necessarily C^1) and denote by Spec(X) the union of all eigenvalues of DX(x), for all $x \in \mathbb{R}^2$. The following result, which was recently obtained in [7], led to a positive solution of the Markus-Yamabe conjecture in the two-dimensional differentiable case.

Theorem 1. A differentiable map X of \mathbb{R}^2 , not necessarily C^1 , is injective if for some $\epsilon > 0$

$$Spec(X) \cap [0, \epsilon) = \emptyset.$$
 (S1)

This is the deepest theorem added to a long sequence of results on both the two-dimensional Markus-Yamabe conjecture and the eigenvalue condition for injectivity of map of the real plane.

^{*}Supported in part by FAPESP and CNPq, grant numbers TEMÁTICO 03/03107-9 and 306992/2003-5, respectively.

[†]Supported in part by the National Basic program on Natural Science, Vietnam.

This was initiated in Olech's work [13] (in 1962) who proved that the two dimensional case of the Markus-Yamabe conjecture [11] can be reduced to the statement: If X is of class C^1 , DetDX(x) > 0, and the set Spec(X) is contained in the open left half-complex line $\{\lambda \in \mathbb{C}^2 : Re\lambda < 0\}$, then X is injective. In 1988, Olech and Meister ([12]) gave a positive answer for the polynomial case. In 1994, Gutierrez [10] and Fessler [8] obtained this fact from the result that X is injective if X is locally diffeomorphic and the derivations DX(x) do not have positive real eigenvalues for |x| large enough. A weaker C^1 -version of Theorem 1 had already been proved in [5]. It is worth emphasizing that the Markus-Yamabe conjecture fails in \mathbb{R}^3 even for polynomial vector fields [4]. The proof of Theorem 1 presented in [7] (see also [5]) can be divided into two steps. The first step is the following theorem

Theorem 2. A differentiable map X of \mathbb{R}^2 is injective if for some $\epsilon > 0$

$$Spec(X) \cap (-\epsilon, \epsilon) = \emptyset.$$
 (S2)

The second it to obtain Theorem 1 by regarding a map X, which satisfies Condition (S1), as the limit of a sequence of injective maps each of which is of the form $X_t(x) = X(x) - tx$, where $t \in \mathbb{R} - \{0\}$ is small, and thus X_t satisfies condition (S2). As noted in [5], there are polynomial diffeomorphisms that do not satisfy the spectral condition (S1); for instance, when $X(x,y) = (-y,x+y^2)$, $Spec(X) = S^1 \cup \mathbb{R}^*$. In this article we will show that spectral condition (S2) ensures not only the injectivity of X but also the convexity of the image $X(\mathbb{R}^2)$. This improvement was obtained by steading the geometrical behavior of differentiable maps of \mathbb{R}^2 under the following condition on the real spectrum of DX(x).

(*) There does not exist a sequence $\mathbb{R}^2 \ni x_i \to \infty$ such that $X(x_i) \to a \in \mathbb{R}^2$ and $DX(x_i)$ has a real eigenvalue $\lambda_i \to 0$.

This condition is sufficient for the injectivity and the convexity of the image of differentiable local homeomorphisms.

Theorem 3. Suppose $X: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ is a differentiable local homeomorphism. Then:

- (i) If X satisfies Condition (*), then X is injective and its image $X(\mathbb{R}^2)$ is a convex set.
- (ii) X is a global homeomorphism of \mathbb{R}^2 if and only if X satisfies Condition (*) and its image $X(\mathbb{R}^2)$ is dense in \mathbb{R}^2

Condition (*) is somewhat weaker than condition (S1) and is not a necessary condition for injectivity. For example, each of the maps $X(x,y) = (\exp(x), \exp(\pm y))$ is injective and has convex image though does not satisfy Condition (*). However, from the principle "Injectivity \Rightarrow Bijectivity" (which asserts that every continuous injection from \mathbb{R}^n into itself, with algebraic graph, must be bijective, [9], [14]) and Theorem 3 one may easily obtain the following.

Theorem 4. A differentiable local homeomorphism $X : \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ with algebraic graph is a global homeomorphism of \mathbb{R}^2 if and only if X satisfies Condition (*).

By a canonical procedure, Theorem 3 (i) allows us to re-obtain theorem 2. We have already explained how to obtain Theorem 1 from Theorem 2. We will also show the following:

Theorem 5. Suppose that $X: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ is a local homeomorphism. Then,

(i) X is an injective map having convex image if and only if X has no half-Reeb components;

(ii) X is a global homeomorphism of \mathbb{R}^2 if and only if X has no half-Reeb components and its image $X(\mathbb{R}^2)$ is dense in \mathbb{R}^2 .

Our approach is based on the so-called half-Reeb component technique, as introduced in [10], and will be described in &2.

The problem of characterizing the injectivity of differentiable maps of an arbitrary dimensional space \mathbb{R}^n in terms of spectral conditions has been studied, for instance, in [3], [15], [6]. These works are related to the Jacobian conjecture, which can be reduced to the question of whether every polynomial map $X: \mathbb{C}^n \longrightarrow \mathbb{C}^n$ of the form X(x) = x + H(x) with 3-degree homogeneous H(x) must be injective if $Spec(X) = \{1\}$ (see [2]).

2 Half-Reeb component

2.1 Definition of half-Reeb component

Let $\epsilon > 0$ and let $\beta, \gamma : (-\epsilon, \epsilon) \longrightarrow \mathbb{R}^2$ be injective C^0 -curves such that $\beta(0) = \gamma(0)$. We say that β is transversal (resp. tangent) to γ at $\beta(0) = \gamma(0)$ if there exist local C^0 - coordinates in a neighborhood of $\beta(0) \in \mathbb{R}^2$ such that in these coordinates $\beta(t) = (t, 0)$ and $\gamma(t) = (0, t)$ (resp. $\beta(t) = (0, \beta_2(t))$); with $\beta_2(t) \geq 0$).

Let $h: \mathbb{R}^2 \longrightarrow \mathbb{R}$ be a given continuous function such that the levels of h form a (non-singular) C^0 -foliation F(h). Let $h_0(x,y) = xy$ and consider the set

$$B = \{(x, y) \in [0, 2] \times [0, 2] : 0 < x + y \le 2\} .$$

We will say that $A \subset \mathbb{R}^2$ is a half-Reeb component for F(h) (or simply a hRc for F(h)) if there exists a homeomorphism $H: B \longrightarrow A$ which is a topological equivalence between $F(h)_{|A}$ and $F(h_0)_{|B}$ and is such that

- (1) The segment $\{(x,y) \in B : x+y=2\}$ is sent by H onto a transversal section for the foliation F(h) in the complement of H(1,1); this section is called the compact edge of A.
- (2) Both segments $\{(x,y) \in B : x = 0\}$ and $\{(x,y) \in B : y = 0\}$ are sent by H onto full half-trajectories of F(h). These two semi-trajectories of F(h) are called the non-compact edges of A. Let $X = (f,g) : \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ be a local homeomorphism of \mathbb{R}^2 . For each $\theta \in \mathbb{R}$ let us denote by R_θ the linear rotation $(x,y) \mapsto (x\cos\theta y\sin\theta, x\sin\theta + y\cos\theta)$ and $X_\theta := (f_\theta,g_\theta) = R_\theta \circ X \circ R_{-\theta}$. In other words, $X_\theta = (f_\theta,g_\theta)$ is the representation of X in the linear coordinates of \mathbb{R}^2 associated with the rotation R_θ .

Definition 1. (Half-Reeb component for X). By a half-Reeb component of X we mean a half-Reeb component for the foliation F(h), where $h \in \{f_{\theta}, g_{\theta}\}$ for some $\theta \in \mathbb{R}$.

Let A be a half-Reeb component of $F(f_{\theta})$. While the geometry of A is very simple, it is very useful to examine the behavior of $X_{\theta}|_{A}$ around infinity. We have that,

1. Two non-compact edges of A are subsets of one level of f_{θ} , say $f_{\theta} = c$. The map X_{θ} sends diffeomorphically these two edges onto a pair of disjoint half-open intervals of the line x = c, say $I_1 = \{c\} \times [\alpha, \beta)$ and $I_2 = \{c\} \times [\gamma, \delta], \beta < \gamma$.

- 2. X_{θ} sends diffeomorphically the compact edge of A to a compact path L lying on one-side of the line x=c and intersecting it only at the points (c,α) and (c,δ) .
- 3. The image $X_{\theta}(A)$ is the simple connected domain bounded by $L \cup I_1 \cup I_2 \cup I_3$, where $I_3 := \{c\} \times [\beta, \gamma]$.
- 4. The foliation in \mathbb{R}^2 , by vertical lines, induces in $intX_{\theta}(A)$ (the interior of $X_{\theta}(A)$) a trivial fibration by open-interval-fibers; moreover, $X_{\theta}: intA \longrightarrow intX_{\theta}(A)$ is a homeomorphism giving a topological equivalence between this fibration and the foliation $F(f_{\theta})$ restricted to intA.
- 5. The essential point is that while every level of f_{θ} , restricted to intA, is connected, the intersection of the level $f_{\theta} = c$ with the closure \overline{A} of A must have at least two components contained in the frontier ∂A of A.

2.2 Half-Reeb component and injective map of convex image

In this subsection we shall prove Theorem 5. A result related to the following proposition can be found in [10].

Proposition 1. Suppose $h: \mathbb{R}^2 \longrightarrow \mathbb{R}$ is a continuous function such that the levels of h form a non-singular C^0 -foliation F(h). If h has a disconnected level, then h has a hRc.

Proof. Assume that h has a disconnected level, say h=0. Let C_1 and C_2 be two distinct connected components of the level h=0. Take two points $p_i \in C_i$, i=1,2. Let $\Omega(p_1,p_2)$ be the set of compact arcs of \mathbb{R}^2 whose endpoints are p_1 and p_2 and which meet transversally C_1 and C_2 at $\{p_1,p_2\}$.

(a) Among all elements of $\Omega(p_1, p_2)$, take $\Gamma \in \Omega(p_1, p_2)$ which minimizes the number of tangencies of Γ with (leaves of) F(h).

We claim that:

(b)
$$C_i \cap \Gamma = \{p_i\}, \text{ for } i = 1, 2.$$

If we assume, by contradiction, that $C_1 \cap \Gamma$ contains properly $\{p_1\}$, we may find $q \in \Gamma \setminus \{p_1, p_2\}$ and a closed subinterval C of C_1 , with endpoints p_1, q , such that $C \cap \Gamma = \{p_1, q\}$. We may assume that Γ is transversal to C at q. Let γ denote the connected component of $\Gamma \setminus \{q\}$ containing $\{p_2\}$. We can see that $C \cup \gamma$ is an arc connecting p_1 and p_2 and also that Γ is tangent to F(h) at some point of $\Gamma \setminus (\gamma \cup \{p_1\} \cup \{q\})$. Under these conditions, we may approximate $C \cup \gamma$ by an arc of $\Omega(p_1, p_2)$ which has less number of tangencies, with F(h), than Γ . This contradiction with (a) proves (b).

Since $h(p_1) = h(p_2) = 0$, Γ is tangent to F(h) at some point q different from p_1 and p_2 . By considering the leaves of F(h) around q, we may see that there exist subintervals (p, q], [q, Tp) of Γ with $(p, q) \cap [q, Tp) = \{q\}$, and a homeomorphism $T: (p, q) \to [q, Tp)$ such that,

(c1) Tq = q and, for every $x \in (p, q]$, there is an arc $[x, Tx]_h$ of a leaf of F(h), starting at x, ending at Tx and meeting Γ exactly and transversally at $\{x, Tx\}$,

- (c2) the family $\{[x, Tx]_h : x \in (p, q]\}$ depends continuously on x and tends to $\{q\}$ as $x \to q$. From now on, suppose that
- (d) (p,q] is maximal with respect to properties (c1)-(c2) above.

We claim that

(e) there is no leaf $[p, Tp]_h$ of F(h) connecting p and Tp such that the family $\{[x, Tx]_h : x \in (p, q]\}$ approaches continuously $[p, Tp]_h$ as x tends to p.

In fact, suppose that (e) is false. Then, by using (d) we conclude $[p,Tp]_h$ is tangent to Γ at least at one of the points of $\{p,Tp\}$. Under these circumstances, it is not difficult to approximate the curve, which is the union of $[p,Tp]_h$ with $\Gamma \setminus ((p,q] \cup [q,Tp))$, by a curve $\Gamma_1 \in \Omega(p_1,p_2)$ which has less tangencies with F(h) than Γ . This contradiction with (a) proves (e). Therefore, the subinterval $[p,q] \cup [q,Tp]$ is the compact edge of a half-Reeb component of F(h) made up of two half-leaves of F(h) starting at p and Tp, respectively, together with the union of the arcs $[x,Tx]_h$, with $x \in (p,q]$. This finishes the proof.

We next return to the case of a local homeomorphism $X=(f,g):\mathbb{R}^2\to\mathbb{R}^2$. It is easy to see that if X is not injective, then both f and g must have disconnected levels. So we get

Proposition 2. (Lemma 1 of [10]). A non-injective local homeomorphism $X : \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ must have half-Reeb components.

Proof of Theorem 5.

Let us prove (i), that is: a local homeomorphism $X : \mathbb{R}^2 \to \mathbb{R}^2$ is injective and has convex image if and only if X has no half-Reeb components.

Suppose that X has no half-Reeb components. By Proposition above, X is injective. Let us prove the convexity of $X(\mathbb{R}^2)$. Let $p,q\in X(\mathbb{R}^2)$ and $[p,q]=\{tp+(1-t)q:0\leq t\leq 1\}$. Take $\theta\in\mathbb{R}$ so that $R_{\theta}([p,q])$ is contained in a straight line of the form x=c. Therefore, as (by Proposition 1) the level set $f_{\theta}=c$ is connected, $X_{\theta}(f_{\theta}=c)$ is a connected subset of x=c containing $\{R_{\theta}(p),R_{\theta}(q)\}$; that is $R_{\theta}([p,q])\subset X_{\theta}(\mathbb{R}^2)$, which implies $[p,q]\subset X(\mathbb{R}^2)$ and so $X(\mathbb{R}^2)$ is convex.

Conversely, suppose now that X is injective and has convex image. As X is injective, by the Invariance of Domain Theorem, $X(\mathbb{R}^2)$ is an open subset of \mathbb{R}^2 and X takes homeomorphically \mathbb{R}^2 onto $X(\mathbb{R}^2)$. If we assume, by contradiction, that for some $\theta \in \mathbb{R}$, $F(f_\theta)$, has a Reeb component A, then there exists $c \in \mathbb{R}$ such that the non-compact edges of A are contained in the level set $f_\theta = c$ and so they are mapped homeomorphically, by X_θ , onto the union of two intervals of the form $\{c\} \times [a,b)$ and $\{c\} \times (d,e]$, with b < d. As $X_\theta(\mathbb{R}^2)$ is convex, the compact interval $\{c\} \times [a,e]$ is contained in the open set $X_\theta(\mathbb{R}^2)$ and therefore $X_\theta^{-1}([a,e])$ is a compact arc containing the non-compact edges of A. This contradiction finishes the proof of (i) of Theorem 5.

Item (ii) is an easy consequence of (i).

3 Half-Reeb component and Condition (*)

In this subsection we will show the essential fact that the Condition (*) ensures the non-existence of half-Reeb components.

First, let us state a kind of stability of a half-Reeb component. Its proof can be found in [7] (see also [10]), where it was used as a technical tool.

Proposition 3. (Lemma 1 of [10]). Let $X = (f,g) \colon \mathbb{R}^2 \to \mathbb{R}^2$ be a non-injective, differentiable map such that $0 \notin \operatorname{Spec}(X)$. Let A be a hRc of F(f) and let $(f_{\theta},g_{\theta}) = R_{\theta} \circ X \circ R_{-\theta}$, $\theta \in \mathbb{R}$. If $\Pi(A)$ is bounded, where $\Pi : \mathbb{R}^2 \to \mathbb{R}$ is given by $\Pi(x,y) = x$, then there is an $\epsilon > 0$ such that, for all $\theta \in (-\epsilon,0) \cup (0,\epsilon)$, $F(f_{\theta})$ has a hRc A_{θ} such that $\Pi(A_{\theta})$ is an interval of infinite length.

An analogous statement to the proposition below was proved in [5], [7], where Conditions (S1-S2) were used instead of Condition (*) (see Section 1). The proof of proposition below can be done in a similar way to that of [7] and so it will be presented in geometrical terms.

Proposition 4. A differentiable local homeomorphism $X : \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ satisfying Condition (*) has no half-Reeb components.

Proof. Suppose by contradiction that X=(f,g) has a hRc. By Proposition 3, we may assume that f has a half-Reeb component \mathcal{A} such that $\Pi(\mathcal{A})$ is an unbounded interval. To simplify matters, let us suppose that $[b,\infty)\subset\Pi(\mathcal{A})$. Then, when a>b is large enough and $x\geq a$, the vertical line $\Pi^{-1}(x)$ intersects exactly one leaf $C_x\subset\mathcal{A}$ of $F(f)|_{\mathcal{A}}$ such that $\Pi(C_x)\cap(x,\infty)=\emptyset$. In other words, x is the maximum for the restriction $\Pi|_{C_x}$. The leaf C_x is a continuous curve and the set $C_x\cap\Pi^{-1}(x)$ is a compact subset of \mathcal{A} . So we can define functions $H:(a,+\infty)\longrightarrow \mathbb{R}$ by

$$H(x) = \sup \left\{ y : (x, y) \in C_x \cap \Pi^{-1}(x) \right\}$$

and $\varphi:(a,+\infty)\longrightarrow \mathcal{A}$ by $\varphi(x):=f(x,H(x))$. As proved in [7], φ is a bounded, strictly monotone function such that, for some full measure subset $M\subset (a,+\infty)$, φ is differentiable on M and, for $x\in M$,

$$DX(x, H(x)) = \begin{pmatrix} \varphi'(x) & 0 \\ g_x(x, H(x)) & g_y(x, H(x)) \end{pmatrix}$$

In the other words, on M the derivative $\varphi'(x)$ exists and it is an eigenvalue of DX(x, H(x)).

Now, for convenience we may assume that φ is strictly increasing. So, we have that $\varphi'(x) \geq 0$ on M. As φ is bounded, there is a constant K > 0 such that for all $c \geq a$, we have $0 \leq \varphi(c) - \varphi(a) \leq K$. Then, we obtain

$$0 \le \int_{a}^{\infty} \varphi'(x) dx = \lim_{c \to \infty} \int_{a}^{c} \varphi'(x) dx \le \lim_{c \to \infty} (\varphi(c) - \varphi(a)) \le K$$

Hence $\liminf_{x\to\infty} \varphi'(x) = 0$. It follows that there exists a sequence $(x_i, H(x_i)) \to \infty$ such that $DX(x_i, H(x_i))$ has an eigenvalue $\varphi'(x_i) \to 0$ and $X(x_i, H(x_i))$ tends to a finite value in the closure $\overline{X(A)}$ (which is compact). This contradicts Condition (*).

Proof of Theorem 3. By Proposition 4, Condition (*) ensures that X does not have any half-Reeb component. Then, the conclusion is immediate from Theorem 5.

References

- [1] S. PINCHUCK, A counterexample to the strong Jacobian conjecture, Math. Z. 217 (1994), 1-4.
- [2] H. Bass, E. Connell and D. Wright, The Jacobian conjecture: reduction of degree and formal expansion of the inverse, Bull. Amer. Math. Soc. (N.S.) 7 (1982), 287-330.
- [3] M. CHAMBERLAND AND G. MEISTERS, A mountain pass to the Jacobian Conjecture, Canadian Math. Bull. 41 (1998), 442–451.
- [4] A. CIMA, A. VAN DEN ESSEN, A. GASULL, E. HUBBERS, AND F. MAÑOSAS, A Polynomial Counterexample to the Markus-Yamabe Conjecture, Advances in Mathematics, 131 (1997), 453-457.
- [5] M. COBO, C. GUTIERREZ, J. LLIBRE, On the injectivity of C¹ maps of the real plane, Canadian Journal of Mathematics 54 (2002), No 6, 1187–1201.
- [6] A. FERNANDES, C. GUTIERREZ AND R. RABANAL, On local diffeomorphisms of \mathbb{R}^n that are injective. Qualitative Theory of Dynamical Systems. 5,(2004), Article No 63, 129–136.
- [7] A.FERNANDES, C. GUTIERREZ AND R. RABANAL, Global asymptotic stability for differentiable vector fields of \mathbb{R}^2 . Journal of Differential Equations. 206, (2004), 470–482.
- [8] R. Fessler, A proof of the two dimensional Markus-Yamabe Stability Conjecture and a generalization, Annales Polonici Math. LXII (1995), 45-74.
- [9] Kurdyka, Krzysztof, Injective endomorphisms of real algebraic sets are surjective. Math. Ann. 313 (1999), no. 1, 69–82.
- [10] C. Gutierrez, A solution to the bidimensional global asymptotic stability conjecture. Ann. Inst. H. Poincaré. Analyse non linearaire 12 (1995) 627-671.
- [11] L. MARKUS AND H. YAMABE, Global stability criteria for differential systems, Osaka Math. J. 12 (1960), 305–317.
- [12] G.H. MEISTER AND C. OLECH Solution of the Global Asymptotic Stability Jacobian conjecture for the Polynomial case, Analyse Mathematicque et Application, Gauthier-Villar, Paris, 1988, pp. 373-381.
- [13] C. Olech On the global stability of an autonomous system on the plane, Cont. to Diff. Eq., 1, (1963), 389-400.
- [14] Parusiński, Adam Topology of injective endomorphisms of real algebraic sets. Math. Ann. 328 (2004), no. 1-2, 353-372.
- [15] B. SMYTH, F. XAVIER, Injectivity of local diffeomorphisms from nearly spectral conditions,
 J. Diff. Equations 130, (1996), 406-414.

NOTAS DO ICMC

SÉRIE MATEMÁTICA

- 223/2005 PERETZ, R.; CHAU, N.V.; GUTIERREZ, C.; CAMPBELL, L.A. Iterated images and the plane Jacobian conjecture.
- 222/2005 ALARCÓN, B.; GUÍÑEZ, V.; GUTIERREZ, C. Hopf bifurcation at infinity for planar vector fields.
- 221/2005 GUTIERREZ, C.; JARQUE, X.; LLIBRE, J.; TEIXEIRA, M.A. Global injectivity of C¹ maps of the real plane inseparable leaves and the palaissmale condition.
- 220/2005 NASCIMENTO, A.S.; CREMA, J. A geometric sufficient condition for existence of stable transition layers for some reaction-diffusion equations.
- 219/2005 GIMENES, L.P.; FEDERSON, M. Existence and impulsive stability for second order retarded differential equations.
- 218/2005 SOLÍS, E.A.; KUSHNER, L. Finite Determination, finite relative determination and the Artin-Rees Lemma.
- 217/2005 MENEGATTO, V.A.; PIANTELLA, A.C. Approximation by weighted spherical harmonics expansions.
- 216/2005 MOREIRA, G.G.; SMANIA,D. Metric stability for random walks with applications in renormalization theory.
- 215/2005 KUSHNER, L.; BULAJICH, R.; MEDRANO, S.L. The space of quasi-homogeneous maps in two variables.
- 214/2005 HERNÁNDEZ, E. M.; PROKOPCZYK, A.C.; LADEIRA, L.A.C. A note on partial functional differential equations with state-dependent delay.surface.