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Abstract: Critical infrastructures are systems present in our society, which interfere in several
ways when they do not operate in their normal conditions. Electric Power Distribution systems
are an example of critical infrastructure, and therefore, the study of the common factors that
affect their performance has great relevance. The concept of time to event (Lifetime Data
Analysis) makes it possible to use survival analyses to estimate the influence of different dangers
on the reliability of systems. A Weibull distribution was used to implement a Weibull regression,
using climate data and information about failures of a Brazilian Electrical Power Distribution
System, allowing verification of how climatic events impact this type of critical infrastructure.
The results presented describes the failure chance given certain climatic conditions, indicating
the effect of such exogenous covariates. With greater awareness of potential threats, the
reliability of the system can be incresead by better planning and for threats mitigation.

Keywords: Electric Power Distribution system; Reliability Analysis; Climatic Events; Weibull

Regression.

1. INTRODUCTION

Electric Power Distribution Systems (DSs) are a critical
infrastructure of our society mainly because different ac-
tivities depend on it (Brem, 2015). As DSs occupy large
areas, they are exposed to various threats. The causes of
failures on DSs (Abedi et al., 2019) are climatic events,
such as high or low temperatures, strong wind, storms
(Burillo et al., 2016), accidents like a collision with ve-
hicles, animals or vegetation (Sahai and Pahwa, 2006;
Radmer et al., 2002), technical errors as devices failures
and load transfer (Gu et al., 2017) and rare events like
terrorism, vandalism and cyber attacks (Ni and Li, 2018).
Protective measures against these threats are an object of
interests for governments around the world (Setola et al.,
2016).

Climatic events impact on DSs are important because of
the significant contribution in the total of failure events
(Ztotecka and Sroka, 2018), and due to the influence of
climate-changing (Sridharan et al., 2019), these events
should increase in both, intensity and occurrence. Another
point of interest is the extreme rare climatic events, that
can generate massive blackouts (Liu and Zhong, 2017).

This study analyzes the influence of three climatic events
in a real Electric Power Distribution system. Maximum
Wind Speed, the number of atmospheric discharges and
rain precipitation (Caswell et al., 2011) are the chosen
events. A way to study the influence of climatic events

on the reliability of DSs is the application of information
about these events together with information about failure
occurrence on statistical methods.

Statistical methods are used to model problems involv-
ing death or failure in different areas, such as Medicine
(Cheng et al., 2018; Ferlay et al., 2015), Engineering (Luo
et al., 2018), Agricultural and Biological Sciences (Shin
et al., 2018) according to the arrange and the distribution
that the data follows. For studies involving covariates, as
climatic events, regressions are an alternative. Regression
models can use different distributions and techniques op-
tions to adjust the best representation of the data intended
to be used (Upadhya and Cheeran, 2018). Survival analysis
is another approach applicable to regression methods, that
usually uses time as the primary variable, and provides
survival and hazard functions that are interesting to be
analyzed. Both ways can be applied in DSs failure data
associated with climatic events as covariates, as in Fanuc-
chi et al. (2016) with a Negative Binomial Regression
for failure rate and Bessani et al. (2016) with Survival
Analysis using mainly non-parametric techniques.

Survival analysis, also known as reliability analysis for
engineering, analyzes data that depend to an occurrence
of an event (death of a patient, failure of equipment) due
to a starting point (Abdelsalam et al., 2018). Survival
analysis grew in importance after World War II, in studies
about the reliability of military equipment (Singh and
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Mukhopadhyay, 2011). The option of Survival analyses
have three main methods, non-parametric, parametric and
semi-parametric, and can be applied in areas such as
Medicine (Moolgavkar et al., 2018), Engineering (Dantas
et al., 2010) and Reliability (Murthy et al., 2004). Para-
metric Statistics needs a type of probability distribution
and can be more accurate than non-parametric techniques
(Zhang, 2016).

On this paper, Weibull Distribution followed by a Weibull
Accelerated Failure Time (AFT) Regression was used to
make reliability analyze. Weibull is a parametric model
that provides excellent results for observe covariates in-
fluence in the occurrence of the event of interest (Zhang,
2016). This distribution generates good results for survival
studies, including life and fatigue testing (Murali et al.,
2017) and can be applied in small samples (Abernethy,
2004). It has the three-parameters (Yang and Jiang, 2019)
and two-parameters form (Hubbard et al., 2011), that it
was the one that was used here.

The construction of a Weibull model for reliability analysis
for a DSs associated with climatic events is very interesting
for reliability engineering because time to event models
is necessary to estimation of reliability indicators such
as System Average Interruption Duration Index (SAIDI),
System Average Interruption Frequency Index (FAIDI)
(Alvehag and Séder, 2011) and resilience indices (Bessani
et al., 2018; Panteli et al., 2017). This model can be
useful for decision making in the electric power distribution
system management, such as maintenance crew allocation,
reducing risks and costs improving the performance of the
system and studies for contingencies plans (Menon et al.,
2019).

In Section 2, the statistical theory is presented, and in
Section 3, a description of the data used is presented, and
how they were processed to perform the proposed analysis
and describe the computational tools used to analyze
the data and obtain the model. In Section 4 the results
generated by applying survival analyse in the database are
shown. For last, in Section 5, a discussion is made about
the results and its interpretations, and the conclusions and
future improvements are presented.

2. STATISTICAL MODELING

For survival analysis, some concepts are very usual and
should be defined. "Time” can be interpreted as the time
until an event of interest occurs (failure of equipment,
death of a patient). "Event” is the occurrence (or not) of
the event of interest (a failure happened, a patient died).

”Censored observation” is the objects of study that left the
study or did not have the occurrence of the event until the
end of the study. For this type of data, survival time will
not be very accurate, so it’s important to identify them to
make good modeling.

Graphics are the main output of these models, and three
functions are very usual. The ”survival function”, also
known as ’reliability function”, is the probability that a
subject survives longer that time t, "Hazard function” is
the event rate at time t conditional on survival until time t
or later (S(t)=P(T>t)) and "Cumulative hazard function”
is the accumulation of the hazard over time. Cumulative
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hazard is a rate, so it is not restricted to the interval [0;
1].

Generally, with "Pr” as probability, "t” as time and "T” a
random variable denoting the time of death or Failure, the
survival (S(t)) or reliability (R(t)) function can be defined
as:

S(t) = R(t) = Pr(T > t) (1)

The lifetime distribution function (F') is defined as the
complement of the reliability function:

Fit)=Pr(T <t)=1-R(?) (2)
The density function of the lifetime distribution represents
the rate of death or failure events per unit time and is
defined as:

d

1) = S F ()

Making relations of the previous functions:

(3)

R(t) = Pr(T > 1) = /t " flu)du = 1— F(t)

The Hazard function can be described as:

Pr(t <T <t-+dt)
dLR()

hit) = Jim

and the Cumulative Hazard function:

H{(t)

log R(t) = /0 h(u)du

and:

R(t) =exp[-H(t)]=1—-F(¢),t >0 (7)
In this paper, Weibull distribution was used. This distribu-
tion has an important characteristic that is his failure rate.
It can be constant, with a growing or with a decreasing
form. Weibull probability density function for a random
variable T is shown below:

@) = %tp—lexp— (;)p,t >0 (8)

The shape parameter and the scale parameter are respec-
tively p and A.

The reliability function can be obtained as:

R(t) = exp <_ (;)p> A>0,p>0

And the hazard and cumulative hazard function are:

(9)

(10)
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(1)

For AFT models, we have a comparison between two reli-
ability functions, defined as R4(t) and Rp(t) in equation
(12), related by a accelerated failure rate, called A (the
same A present in Weibull Distribution):

Ra(t) = Rp (;)

More generally, we can model A as a function of covariates
b;, being by the intercept:

(12)

Ralt) = o (515 (13)
Az) = exp (bo + z": bixi> (14)

As can be seen in equation (14), the covariates can ac-
celerate or decelerate the failure time. A unit increase in
x; means the average/median survival time changes by a
factor of exp(b;).

Defining reliability function by:

t p(y)
t; = —| — 1
R(t;x,y) = exp (A@:)) (15)
And Cumulative hazard function is given by:
t p(y)
H{t; =— 16
e = (55 ) (16)

A more detailed explanation can be found in survival
analysis books, as Colosimo and Giolo (2006), or in the
documentation of Lifelines Package.

3. METHODS
3.1 Data description

Two datasets are used in this paper. The first one describes
events of failure on a power distribution system composed
of 24 distribution feeders, from 01/01/2012 to 31/12/2014,
which include the date and hour of each failure. Failures
can be defined as a power interruption of any duration. In
this dataset, 323 different causes of failure are identified,
with causes associated with maintenance of the network,
accidents with animals such as insects and birds, climatic
events or faults with a not identified cause. The second
database provides daily information about climate events
for the same period, such as the daily maximum wind
speed in kilometer per hour, amount of rain (volume of
precipitation) by millimeter and number of atmospheric
discharges.

The system of this work, presented in Fig. 1, are from a
midsize Brazilian city, founded just over 80 years ago. So,
is expected that the Distribution System is relatively new,
and, therefore, is robust against most common threats.

For each failure, it was considered that the system goes
back to work fully instantly, as in his initial state, that
is, failures are assumed to be independent of each other
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Figure 1. Graph representation of a brazilian Electric
Power Distribution System, composed of 3536 nodes,
3254 edges.

Table 1. Example of how Survival Time was
obtained

Failure Date/Hour

Initial Date/Hour Survival Time (Min)

01-01-2012 00:00:00 02-01-2012 07:31:00 1891
02-01-2012 07:31:00 02-01-2012 14:29:00 418
02-01-2012 14:29:00 03-01-2012 15:34:00 1505

(Xiaohui et al., 2016). So, making a parallel with med-
ical applications, the time-to-failure (time to event) is
the lifetime, and each event (failure occurrence) can be
interpreted as the death of a subject. The minimum value
registered of a lifetime in the database was 1 minute, and
the maximum was 8782 minutes (a little more than six
days).

Making ’01/01/2012 00:00:00’ as the starting time, the
lifetime of our system until each failure was calculated.
After a failure, the failure time will be the new initial time.
For easy understanding, the survival time can be obtained
as in Tab. 1. The number of 2261 failures was observed
in the proposed period. Fig. 2 shows a histogram of the
survival duration times, in logarithmic scale.
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Figure 2. Histogram of the survival time of the system

A new database was created with information of the time
to failure (how much time the system have not failed) in
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the scale of minutes, related with the values for the climatic
events in the day that each failure happened, as in Tab. 2.

3.2 Computational environment

For this study, with Ubuntu version 18.04.2 LTS, Python
version 3.6.7 was used on Jupyter Notebook version 5.6.0.
Pandas Package version 0.24.2 was used to open and
manage the databases, Lifelines Package version 0.20.1 was
used for the statistics, Matplotlib Package version 3.0.3
was used to figure plotting and Networkx Package version
2.2 for analyze the size of the used system.

4. RESULTS

Using the database illustrated in Tab. 2, we set the
columns (main variables) that represents "Duration” and
"Event”. In this table, the columns "Survival Time (Min-
utes)” and "Event” represent these two variables, respec-
tively. As the focus of this study is power systems failures,
for the "Event” column, there is no presence of censored
observations (so, for all observations, the system failed).

First, a Weibull fitting was used, utilizing Time and Event
as variables. The estimated parameters that defines the
distribution are shown on Tab. 3.

With the distribution defined, the three principal graphs
from this method can be obtained. In Fig. 3 and 4,
Reliability, Hazard and Cumulative Hazard functions and
the confidences intervals of each one are presented.

10 A — Weibull_estimate

2000 3000 4000 5000 G000 7000 8000

Time (min}

0 1000

Figure 3. Reliability Function (R(t)) with Weibull Fitting

— Weibull_estimate — Weibull_estimate

1000 2000 3000 4000 5000 €000 7000 BOOO
Time (min)

(b)

1000 2000 3000 4000 5000 €000 7000 BO0O
Time (min)

(a)

Figure 4. Weibull Fitting: a) Hazard Function and b)
Cumulative Hazard Function.

To include covariates, Weibull Regression (Weibull AFT
Model) were used, and the obtained parameters are pre-
sented in Tab. 4. In Fig. 5 and 6, reliability functions with
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Figure 5. Reliability Function (R(t)) of the power system
for different values of atmospheric discharges (AD)
and Amount of Rain (AR, in Millimeters)
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Figure 6. Reliability Function (R(t)) of the power system
for different values of maximum wind speed in kilo-
meter /hour

different values for each variable (Number of thunders,
Maximum Wind Speed and amount of Rain) are plotted
with the baseline reliability function curve (from the AFT
model).

5. DISCUSSION AND CONCLUSION

Studies in reliability engineering, applied in power systems,
have a strong correlation with climatic events and the
concept of resilience, and both are very related with time.
So, the development of a model using time, as in survival
analyses, can be more interesting than the approach using
count data, due to a more explicit link with those crucial
concepts.

The Weibull distribution was chosen due to its flexibility
and because this is one of the most used distributions in
survival analysis. Regression makes it possible to evaluate
the baseline survival and the influence of covariates in a
real distribution power system.

Our three variables, number of thunders, maximum wind
speed in kilometer /hour and amount of rain in millimeters,
as the intercept, that is the intrinsic coefficient for the
lifetime of the system (presented in Tab. 4), can be com-
pared by the coefficient values and "p-value”. Generally,
if p < 0.05, we can say our result is not statistically
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Table 2. Samples of the Database used to apply both Weibull Fitter and Weibull AFT Fitter,
that describes the values of the climate events and the survival time of the system of each failure

event
Date Number of Thunders Wind Speed (Km/h) Rain (mm) Survival Time (Minutes) Event
2012-01-01 1.0 30.0 0.0 1891 1
2012-01-02 23.0 45.0 34.0 418 1
2012-01-02 23.0 45.0 34.0 1505 1
Table 3. Weibull Fitting Coeficients The knowledge of which hazard is more dangerous helps
reliability engineer to search for improvements for a spe-
Coef. Lower 0.95 Upper 0.95 p-value cific characteristic, for the different equipment’s that make
A 369.23272  336.78244 JULGEE <5e-06 up the system, to amplify robustness. Another applica-
P 0.49446 0.47810 0.51082 <5e-06

Table 4. Weibull AFT Regression Coeficients

Coef. Lower 0.95 Upper 0.95 p-value

A Intercept  6.78231 6.55330 7.01131 <5e-06
Thunder  -0.00048 -0.00097 0.00002 0.05870
Wind -0.02409 -0.03048 -0.01770 <b5e-06
Rain 0.00061 -0.00569 0.00691 0.84956

p  Intercept -0.68937 -0.72234 -0.65640 <5e-06

significant. So, from our results, we can analyze the three
climate events:

First, rain, with a positive value of 0.00061, that could be
interpreted as more amount of rain could help the system
survive more time (but his confidence interval varies from
a negative value to a positive value), has a small coefficient
and an p > 0.05, that could demonstrate a minor influence
in the survival time.

A coefficient of —0.00048 was obtained for thunder.
Analysing p-value and the confidence interval, the num-
ber of atmospheric discharges has a low influence on the
developed failure model, but may be considered.

For last, wind covariate has a coefficient of —0.02409, the
confidence interval is only negative and has a p < 0.05.
So, from the three covariates included in this model, the
wind was the most impacting climate variable and the only
one which resulted in a statistically significant regression
coefficient.

Comparing Fig. 5 and 6, we could see the influence of
each variable. Analyzing Rain and Thunder covariates,
by the p-values > 0.05 and the confidence interval passes
through 0, we can conclude that those covariates do not
present statistical significance. For those figures, we used
the variation range present in the database, excluding
isolated events (for example, a day with 2267 atmospheric
discharges or a day with a maximum wind speed of
104 Km/h). The baseline survival curve is equal to the
predicted survival curve at all average values (the mean
values for the number of atmospheric discharges, the
maximum wind speed and the amount of rain are 75.1415,
35.6850 and 7.0623, respectively), and has a survival time
of 172 minutes for survival function equal to 0.5.

With the results of this paper, we estimate the relevance
of different climatic events on the occurrence of failures of
Electric Power Distribution systems. Using a parametric
model as Weibull with a good fitting to the data and
estimate the impact of three of the main factors associ-
ated to failure events in DSs are the improvements when
comparing with others researches.

tion is to use climate forecasting together with the model
proposed to simulation frameworks, making possible con-
tingencies plans and an optimal maintenance crew allo-
cation to areas more vulnerable to the occurrence of a
failure event. For future implementations, we can add more
feeders (making a model with a database from a more
significant area), that should change the coefficients and
the statistical significance of each climate event, creating
a better model. More variables can be used, such as other
climatic events. Another point could be to use multiplica-
tive effects of covariates.
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