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ABSTRACT

In this paper we introduce a flexibilization mechanism for
audio processing that allows the dynamic control of a trade-
off between computational cost and quality of the output.
This mechanism can be used to adapt signal processing al-
gorithms to varying CPU load conditions in critical real-
time applications that require uninterrupted delivery of au-
dio blocks at a fixed rate in the presence of processor over-
load. Flexibilization takes place through the control of
parameters in elementary signal processing modules that
are combined to form more complex processing chains.
We discuss several instances of audio processing tasks that
can be flexibilized along with a discussion of their flexibi-
lization parameters and corresponding impact in costs and
quality, and propose an implementation framework for plu-
gin development that provides the necessary mechanisms
for control of the cost-quality trade-off.

1. INTRODUCTION

Many sound processing applications, such as digital au-
dio workstations (DAW), spatialization environments and
sound synthesis frameworks, use fixed values for internal
algorithmic parameters, such as audio block size, precision
and sample rate. This ensures that their algorithms have
fixed computing costs for processing each audio block. In
real-time mode these applications typically either underuse
or overload their computational platform most of the time.
Underuse implies that some configurations might be im-
proved, such as increasing sample rate or sample size, or
tweaking other internal parameters that would lead to im-
proved audio quality. Overload often lead to unsatisfactory
results, such as audio artifacts (clicks and noise) or worse
(segmentation faults or system halt).

In this paper we present a methodological approach to-
wards flexibilization of sound processing computing costs,
in order to adapt these costs to the available computational
resources of the underlying platform. A key element of this
methodology is the definition of a trade-off between com-
puting costs and user-experienced sound quality, which is
embedded into time-varying flexibilization parameters of
the sound processing algorithms. These parameters allow
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the sound processing algorithm to dynamically tilt the above
trade-off between computing costs and sound quality, in
an attempt to use computational resources more efficiently.
This means that more quality might be obtained whenever
possible, and less computing costs might be demanded when-
ever needed. The same flexibilization parameters could
also be used statically to adapt an application originally
developed for a specific computational platform (e.g. a
high-end desktop computer) to another one with different
computational power (e.g. a smartphone). Another possi-
bility for trade-off exploration would be to trade quality for
better energy consumption (of the involved computations),
which is a great concern in mobile applications.

It should be obvious that not every sound processing ap-
plication could be subjected to such a flexible approach. In
particular, critical audio applications (e.g. in professional
recording studios) that do not allow sound quality to be
lowered under any circumstances will not be considered as
suitable candidates for this methodology. Better examples
of suitable sound processing applications will be readily
found in the contexts of experimental music, mobile- and
network-based music performances, and circuit hacking or
low-fi audio artistic scenes.

1.1 Related Work

Trade-offs are a recurring theme in computer science, and

are found under many guises, usually trying to replace a

short-supplied or expensive resource with another abun-

dant or cheap one. Well-known examples include data

compression (computer time pays for storage space), re-

dundant data transmission (network band usage pays for

transmission reliability or quality) and numerical algorithms
that produce approximate solutions (more iterations reduce

numerical error). In the audio compressing domain, per-

ceptual coding [1] has shown that a trade-off between sound
quality and data size is feasible in many applications.

The term flexible computation [2] refers to real-time ap-
plications that are designed to dynamically control the trade-
off between some measure of quality of the results (e.g.
numerical error) and the resources (e.g. time, memory,
etc.) they require to produce these results. Flexibilization
is achieved by partitioning processing tasks into manda-
tory and optional components, where the latter might be
partially executed or even left aside entirely according to
individual timing constraints.

Feng et al. [3] extend this approach to account for er-
ror propagation in such systems, where imprecise output
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of one processing task contaminates the inputs for subse-
quent tasks. These authors do not consider individual tim-
ing constraints for each task, but rather end-to-end timing
constraints, which make their model better applicable to
audio processing where typically there are several cascad-
ing processing steps (tasks) applied to a single audio block.

Fouad et al. [4] applied scheduling algorithms within an
experimental audio server, adapting the audio’s sampling
rate to load conditions. Tsingos [5] proposed a perceptual-
based and scalable approach for filtering and mixing a large
number of audio signals. In his approach signals are pro-
cessed in the frequency domain, where the number of spec-
tral bins processed is optimized based on criteria referring
to audibility and importance of each bin in the final mix.
Tsingos shows that this approach allows certain applica-
tions to speed up significantly; nevertheless, in order to
adapt this approach to existing code, radical changes are
required, especially in audio applications that process the
signal in the time domain, where most filters and process-
ing elements would have to be completely rewritten.

Another approach to parametrize computing costs for mix-

ing sounds was presented by Kleczkowski et al. [6]. The
proposal of selective mixing is based on an analysis in
the frequency domain to determine which input sources
could be discarded, depending on the relative energies of
all contributing sources. They concluded that, depend-
ing on the thresholds used, perceptual quality was not af-
fected, although listeners seemed to perceive selectively
mixed sounds as less noisy.

Sound spatialization applications, which typically use many

virtual sound sources and many output channels (e.g. wave
field synthesis) with high computing costs, could evidently
benefit from a flexible computing approach, especially in
dynamic auditory scenes. Herder [7] and Tsingos et al. [8]
proposed several methods for dynamic resource manage-
ment which are based on a level of detail approach. Both
use psychoacoustic measures such as loudness and percep-
tual salience to dynamically adapt computing costs. Their
proposals concern specific applications, and presuppose the
knowledge of the complete data flow pathways, which is
not always the case in interactive sound processing appli-
cations; on the other hand, spatialization plug-ins are used
as subtasks for many audio processing applications.

The methodology proposed in the sequel naturally re-
quires that existing code should be adapted. For the adap-
tation of existing software we first consider simple and iso-
lated audio processing steps, in order to analyze them and
look for potential flexibilization parameters. Later on we
consider the application audio processing graph to look for
flexibilization parameters referring to process interconnec-
tions and data flow pathways. These case studies are con-
sidered a preliminary step towards defining a protocol for
flexible audio applications that would allow seamless in-
tegration between protocol-abiding applications, and min-
imal intrusion in order to adapt existing code.

1.2 Limits

Applicability Various scenarios in audio processing are
not compatible with our approach. This concerns appli-

cations which do not permit variable quality of the pro-
cessing result because their quality is predefined and fixed,
as is the case of commercial audio CD production or high-
fidelity systems.

Feasibility Our approach to adapt existing applications
and plug-ins in the least invasive way limits certain flexi-
bilization options. This is the case, for example, when the
framework used in an application does not permit sample-
rate changes or adaptation of scheduling.

Quality limits The trade-off between quality and com-
puting costs reaches its limits when the quality degradation
becomes perceptually unacceptable and, at the same time,
the computational overload can not be avoided. This is a
limiting but intrinsic characteristic of the flexible compu-
tation approach.

2. AUDIO PROCESSING STEPS / ELEMENTS

In this section we discuss selected examples of synthesis
algorithms which are commonly used as building blocks
in audio processing software. In these algorithms we aim
at identifying parameters which affect their computational
costs, and at analyzing the theoretical impact of these pa-
rameters on the resulting audio quality. This relationship
between computational cost and resulting quality repre-
sents the main trade-off upon which we would like to have
control.

2.1 FIR filters

FIR filters are used ubiquitously in audio processing appli-
cations, from simple low-pass filtering to auralization and
spatialization.

FIR filtering is defined as the application of a convolution
equation

M-1
Yn = Y GiTn i, @.1)
1=0

where z is the input, y the output and a is the coefficient
vector which characterizes the filter.

For the computation of FIR filters there are two main ap-
proaches: 1. Convolution in the time domain; or 2. Multi-
plication in the frequency domain (including forward and
backward Fourier Transforms).

The first approach is used for filter with few taps (nonzero
coefficients), whereas the second is more efficient for larger-
order filters but requires a delay corresponding to the filter
size (which may be an issue for low-latency systems).

2.1.1 FIR filtering in the time domain

The execution time for convolution in the time domain, de-
rived directly from the equation above, is

t o< MN, 2.2)

where N is the size of the input vector and M the size of
the filter vector.

Among several alternatives for thinning digital filters, the
proposals from Baran et al. [9], Wu et al. [10] and Ye et
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al. [11] are particularly useful for our flexibilization pur-
poses and do not require cascading FIR design. The au-
thors divide the thinning process in two phases, 1. select
a tap to zero; and 2. re-optimize remaining taps. The re-
optimization step consists in the definition of an objective
criterion (e.g. harmonic distortion) and also the filter de-
sign constraints (e.g. linear phase). It is useful to exper-
iment with different thinning approaches, especially be-
cause we have to account not only for the convolution costs
but also the costs of the re-optimizing step (2).

2.1.2 FIR filtering in the frequency domain

The fast convolution algorithm transforms the input and
the coefficient vectors into the frequency domain, multi-
plies the spectra element-wise and transforms the result
back to time domain (using circular convolution with zero-
padding and overlap-add to compensate for temporal alias-
ing). The execution time when using the Fast Fourier Trans-
form (FFT) is

t < Nlog M, 2.3)

where M is the filter length and N the number of samples
to process.

Parametrizing the filter length for this algorithm does not
lead to expressive computational savings since the costs
depend logarithmically on this quantity, but the number of
samples to process can be flexibilized in the context of pro-
cessing chains (see section 3.1).

Another approach was proposed by Queiroz et al. [12]
which is based on the approximation of FIR filters with
low-order IIR filters in the time and frequency domain. It
is especially useful for large FIR filters as their occur as
room impulse responses or Head-Related Transfer Func-
tions (HRTFs).

2.2 Room simulation

Most of the room simulation algorithms are based on ge-
ometrical acoustics and use mathematical models to de-
scribe the geometry of the room, positions of sound sources
and listeners, sound propagation, etc. Rooms are treated as
LTI systems with acoustic behavior characterized by their
impulse responses [13], according to the equation below:

y(t) = /°° z(T)h(t — 7)dr. (2.4)

—0o0

where z(t) is a source audio signal, h(t) is an impulse re-
sponse and y(n) is the resulting signal. This is again a
convolution filter, where the impulse response depends not
only on room dimensions and acoustic configuration (such
as revesting materials, pieces of furniture, etc) but also on
sound source and listener positions. Accordingly, room
simulation algorithms have to calculate new impulse re-
sponses and new audio convolutions for every change in
sound source or listener positions.

2.2.1 Room models

Room models are derived from CAD representations and
have to consider the simulation goals when modeling acous-
tic configurations, since every additional detail increases

the complexity of the simulation and its computational costs.
Not all details of a room are useful for its acoustic char-
acterization, since geometrical acoustics is based on ab-
sorbing and scattering geometrical elements which inter-
act with soundwaves only when geometrical elements and
sound wavelengths have the same order of magnitude.

One parametrization approach would correspond to work
with different room models with varying degrees of de-
tails. Although certain algorithms require the transforma-
tion of CAD room models into other representations (e.g.
meshes [14] and binary space partitioning [15]) to de-
crease computing costs, the level of detail is critical for
execution time. Thakur et al. show that there are many
open issues in automatic CAD simplification [16], but it is
nevertheless possible to manually derive different complex
models beforehand and later select the appropriate model
for real-time processing, according to load conditions of
the computing platform. There is however no closed form
expression to relate the complexity of the model to com-
puting costs or simulation quality.

The most relevant geometrical algorithms for calculating
the room impulse response from a given room model are
the image source model and ray tracing. Many implemen-
tations use a hybrid approach combining both algorithms.

2.2.2 Image source model

The image source model derives virtual sources by itera-
tively mirroring sound sources through each reflective sur-
face. The impulse response is then obtained considering
the distances of the mirrored sources to the listener and
also the attenuations the sound ray undergoes after each re-
flection. As reflections occur in 3-dimensional space, com-
puting costs will increase cubically with the length of the
desired impulse response [17]:

toctd. (2.5)

2.2.3 Ray tracing

Ray tracing is a stochastic method based on simulating the
trajectory of a large number of independent sound rays,
which propagate linearly away from the sound source. For
each ray, reflections, absorption and scattering are calcu-
lated until either the ray is absorbed completely or the max-
imum simulation time is reached. Vorldnder [13] deter-
mines the execution time of the algorithm as

t < Nt;.nt 2.6)

where N is the number of simulated rays, t;. the size of
the desired impulse response, 7 the mean number of reflec-
tions. The necessary time for reflection and detection test
is 7 = 1y, logy Ny + tqlogy ng when using binary space
partitioning, where n,, and ng4 are the number of reflection
and detections tests (point-in-polygon) and ¢,, and ¢4 their
executions times.

There are several options to parametrize room simula-
tion algorithms. Besides controlling the complexity of the
room model, the most critical parameter to affect comput-
ing costs is the size of the desired impulse response. Any
flexibilization of this parameter has to consider its strong
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influence on psychoacoustic properties such as intelligibil-
ity, spacial impression, and envelopment. For hybrid algo-
rithms, which use the image source model for the first part
of the impulse response and ray tracing for the later part,
it is possible to reduce the very time-consuming first part
at the cost of calculating a longer ray tracing part which
is less costly. Additionally, it is possible to control the
number of simulated rays, which affects the resolution and
robustness of the obtained impulse response, but not the
precision of the result.

2.3 Spatialization
2.3.1 Wave field synthesis

Wave field synthesis was formulated by Berkhout [18] in
1988 and was employed in many installations once the
necessary computing power for real-time processing was
available (from the 1990s on, see for example Baalman et
al. [19]). This method is based on the interference of a
large number of loudspeakers to synthesize a sound wave
field in a certain environment. The signal attenuation and
delay has to be computed separately for every loudspeaker,
leading to a huge amount of computations.
The execution time for WES is

L o< napcy,s, f 2.7

where n is the number of samples, a the number of loud-
speakers, p the number of virtual sources and c, s, ; repre-
sents the costs for attenuation, superposition and filtering
for each loudspeaker. Herder [7] proposes an approach to
reduce the number of virtual sources by estimating each
source’s audibility in the final mix, thus deciding whether
it is rendered at all. Furthermore, distant virtual sources
are grouped into clusters dependent on their localization
and distance, that are going to be processed as a single vir-
tual source.

Spatial aliasing, which produces spatial artifacts, comes
into effect only for virtual sources with spectral content
above f,; = ¢/2Ax, where c is the speed of sound and Az
the distance between neighboring loudspeakers. Corre-
spondingly, virtual sources with, for example, spectral con-
tent below f,;/2 have to be computed only for every other
loudspeaker without introducing spatial artifacts. There-
fore, it is possible to parametrize the number of loudspeak-
ers in the execution time equation above by dynamically
deciding which source has to be rendered for which loud-
speaker.

Although the flexibilization approaches proposed by Tsin-
gos [5] are not applicable as a whole, because they require
completely rewriting existing WFS software, it should be
possible to use auditory culling and clustering, as proposed
by earlier papers from Tsingos et al. [8] and Herder [7], to
parametrize the number of virtual sources that have to be
rendered.

2.3.2 Binaural synthesis

In binaural synthesis, complete acoustic scenes are ren-
dered for two channels, and all virtual sources have to be
convolved with an impulse response that corresponds to the

position of the source and listener (room characteristics,

LTI system) and also depends on the physical characteris-

tics of the listener (Head related transfer function (HRTF)).
The execution time is

t o< npca,s, fs (2.8)

where n is the number of samples, p the number of virtual
sources and ¢, s, are the constant costs to apply attenua-
tion, source superposition and HRTF filtering to one sam-
ple. The number of virtual sources can be parametrized by
adapting auditory culling and clustering sources. In mov-
ing scenes, extra costs appear from mixing signals with dif-
ferent impulse responses for different localizations or from
applying transition functions. The angular resolution de-
fines the rate in which impulse responses switch when the
incident angle changes, and can therefore be parametrized
to control switching and mixing costs.

3. FLEXIBLE AUDIO PROCESSING
3.1 Processing chain

Most audio applications combine several processing steps
to produce the desired output; therefore, they can be de-
scribed with directed graphs, where vertices represent each
processing step, and arcs the digital audio data stream.
This approach facilitates the investigation of flexibiliza-
tion parameters both for subgraphs or for the application
as a whole. Such parameters can be the sampling rate, the
number of (virtual) sources or the resolution (bandwidth)
of the audio stream. This approach enables the investiga-
tion of parametrizations that would not have a cost benefit
when applied to a single processing step, but whose advan-
tage would appear in longer processing chains.

Sample rate changes, for example, have their own extra
computing costs, which in many cases can be amortized
when the converted audio is subject to more than one pro-
cessing step. An analysis of this layer permits to identify
processing subgraphs with band-limited signal flux, where
processing at lower sampling rates is sufficient and intro-
duces only minimal errors. As the computational costs for
all processing elements depend heavily on the sample rate,
multi-rate implementation of signal processing elements
clearly leads to flexible computing costs [20].

3.2 Real time constraints and flexible management

The approach we propose uses the graph-analytical view of
the DSP processing chain to discover the flexibilization po-
tential of each processing step and of the chain as a whole,
which enables the control of the overall processing costs.
For this approach to be effective, such a flexible system has
to obtain information about platform conditions and about
the running plugins and their specific behavior, in order
to generate a priority queue of flexibilization steps. When
system load conditions require, such steps can be applied
in constant time, and since they can be reversed, a flexible
system can move along paths of different computational
costs, making the audio processing adaptive and flexible.
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The fundamental relation that a decision-making instance
has to uphold is given by the inequality below,

K
> " 6r(n) +o(n) < B(n), (3.9)
k=1

where K is the number of processing elements, each with
processing time ¢y, o(n) is an additional overall process-
ing time for the flexible system, and ®(n) represents the
time budget allowed for the computation of n samples.
A flexible audio system has to contend with situations in
which this inequality does not hold. Reducing the time
conceded to each processing element can reduce overall
costs, but will introduce differences or imprecisions in the
resulting audio signal.

To mitigate this problem, the so called flexible manager
considers these differences and tries to minimize them. With
a priori knowledge on how parameter configurations relate
to these imprecisions and to computing costs, paths with
the best quality-cost-ratio can be found and used during
application execution. In real time audio processing ap-
plications without this a priori knowledge, the decisions to
adapt costs to resource availability have to be based on ad
hoc data and heuristic rules.

4. A FRAMEWORK FOR FLEXIBLE AUDIO
PROCESSING

4.1 Flex protocol

We propose an architecture for experimentation and pro-
totyping which consists of a server (flexible audio man-
ager) and clients for each processing element. The server
works as central monitoring and controlling instance which
communicates with clients through a protocol that allows
the server to request static and dynamic data from clients.
Static element specific data enclose information about con-
trol parameter options, their range, and mappings describ-
ing computing costs as a function of parameter values. Dy-
namic data provided by the clients upon request are im-
precision measures, actual parameter values and execution
time statistics.

Moreover, control messages allow the server to instruct
clients to change their processing parameters. As these
parameters control the computing costs of the elements,
the established mechanism can be understood as an im-
plementation of the multiple version method described by
Liu [21]: each parameter set represents another version.
Correspondingly, the flexible audio manager does not in-
terfere with task scheduling already established by the au-
dio framework or by the operating system, but controls the
execution time of each processing step through parametriza-
tion.

Collected information from the clients allows the server
on one hand to make decisions about client parameters to
meet the above time budget inequality constraint and, on
the other hand, to minimize audible effects. Clients in this
architecture establish an interface between the flexible au-
dio manager and the audio processing elements (or plug-
ins in most contemporary software parlance). The neces-

Flexible Audic Manager
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|
|
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|
t
|
|
|
|
|
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|
|
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|
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Figure 1. UML2 Sequence diagram of the interaction be-
tween the components of a flexibilized audio processing
application

sary functions for communication, data collection and con-
trol are added to existing plugins through libraries. Code
changes inside the plugins are necessary for the parametriza-
tion and parameter transition mechanisms.

4.2 Plugins

To adapt an existing plugin to our flexible approach, first
the potential for a cost-imprecision trade-off must be inves-
tigated. To parametrize the plugin, the relations between
parameters and execution time costs and imprecision mea-
sures have to be described as mappings/functions.

The adaptation of software to our proposed flexibiliza-
tion approach depends fundamentally on how easily and
how exactly existing code can be adapted. Consequently,
the necessary code changes should be as small and less in-
trusive as possible. As depicted in Figure 1, each plugin
has to implement 3 functions:

e a request response sign in - to inform the manager
of the flexible plugin availability and to send static
descriptive data about its characteristics and proper-
ties;

e a request response to send dynamic data about run
time statistics to the manager;

e arequest response to change processing parameters
(reconfiguration).

The getPlugins function identifies all flexible plugins avail-
able, i.e. all plugins abiding to the Flex protocol defined.
The signIn function, issued by a flexible plugin, allows the
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manager to control the plugin through scheduling actions
within its main loop (the box in Figure 1) and also to learn
from the plugin how its flexibilization parameters affect
both the quality and the computational processing costs as
a function of the parameters. Such static description is sup-
posed to have been mapped through previous experiments
with the plugin, and it is used by the manager as a model to
define a preliminary policy on how to dynamically adjust
this plugin’s settings.

Inside the loop in Figure 1 there is also a two-way in-
teraction (getLoad/reportLoad) with a sensor, who is re-
sponsible for measuring the load of the processing hard-
ware, allowing the manager to estimate the computational
headroom for adding flexible plugins to the DSP chain and
increasing the quality of the produced signal without de-
grading quality. This measurement is made once per DSP
processing block.

The getStatus/reportStatus functions will establish the cur-
rent computational cost of the plugin and its estimated qual-
ity, which are used to update the model of this plugin’s
behavior (in terms of its empirical cost-quality trade-off),
and to decide on possible reconfigurations, performed by
the setParameters function, given the current system load.
This last function does not return data to the manager, but
requires a transition of the plugin towards the new set of
flexible parameters, while avoiding audible artifacts (this
is a responsability of the plugin). The manager can see
these parameter changes with its next getStatus request.

4.3 Application: Flexible Mixer

To experiment with a reference implementation of the de-
scribed protocol, we developed the Flexmix prototype ap-
plication; a virtual mixer which processes a number of
sound sources and mixes them down into a mono mix in
real time. Each audio source passes through various pro-
cessing steps: pre-amplification, an equalizer and a spatial-
ization plugin, while after the mix down the audio stream

passes through a 10-band-equalizer and a compressor/limiter.

The prototype serves as a proof of concept of some aspects
of our approach and is inspired by typical audio processing
workflow for many musicians and audio professionals.
Flexmix is implemented using the Gstreamer ! library as
audio framework. Gstreamer is a library for construct-
ing graphs of media-handling components that offers many
characteristics which facilitate the implementation of a flex-
ible system, such as a communication channel between
plugins and application, and foremost a dynamic pipeline
autoreconfiguration mechanism. There are many native
gstreamer plugins, and also other compatible audio plugin
formats like LV2, which are available for immediate use,
and many of which are open-source, and thus modifiable.
Many of the already existing audio plugins have properties
which relate to trade-offs between execution time costs and
imprecision, which can be easily adapted for the flexmix
application. Furthermore, the Gstreamer library already
provides a mechanism to measure and propagate messages
about quality-of-service events. The downside of these

Uhttps://gstreamer.freedesktop.org/

otherwise convenient properties of Gstreamer is its rela-
tive complexity for implementation and testing in certain
scenarios.

Figure 2 shows the Flexmix data flow graph with com-
puting time measurements for each element and size of
audio data flow for one execution of a sample run. Each
source is obtained from FLAC audio files (filesrcN) which
passes through a number of non-flexible Gstreamer ele-
ments (GstFlacParse, GstFlacDec and GstAudioConvert)
before it enters the flexible DSP chain, represented by a
shaded rectangle. In this flexible chain, each audio chan-
nel is separately processed by the flexible Gstreamer plu-
gins GstAudioAmplify (a pre-amplifier), Gst/IREqualizer
(a 3-band equalizer based on recursive filters) and GstAu-
dioFIRFilter (a spatialization plugin). After that, all chan-
nels are mixed down to a single channel by GstAudioMixer
(a flexible mixing plugin), and this mono signal is further
processed by a flexible 10-band equalizer (Gst/IREqual-
izer) and a flexible compressor/limiter (GstAudioDynamic;
the remaining two elements in the chain are format modi-
fiers).

In this experiment, the main qualitative concern was to
ensure that all elements would produce an uninterrupted
data flow (i.e. no x-runs in Linux audio jargon), despite
variations on CPU load. This was so designed in order to
have an objectively measurable way of verifying that the
system policy and parameter reconfigurations was work-
ing within prescribed limits. The Flexmix application re-
acts on CPU stress and adapts accordingly decreasing com-
puting costs and ensuring audio stream processing with-
out glitches in many settings. This allows testing several
components of our approach, especially through gathering
of statistics to develop heuristics for trade-off decisions.
Imprecision is currently measured as frequency weighted
spectral distortion, a design choice which aims at allowing
objective experiments to be carried out before subjecting
the system to human evaluation.

In future experiments with this application we aim to ac-
quire specific experimental knowledge about plugin imple-
mentations and their parametrizability, and to gain more
insight into the following questions:

e what is the implementational effort and what are the
computational costs for the manager;

e what type of information is needed by the manager
to reasonably control the overall processing.

A first step towards a fully subjective evaluation of the
system is to work with automatic perceptual models? that
could be inquired in a timely fashion and provide quality
evaluations for each DSP block (something humanly infea-
sible). After these new experiments, a more realistic model
of obtaining human feedback may be designed, e.g. by se-
lecting portions of audio output for which the automatic
evaluation is not very trustworthy and presenting them to
human listeners for a detailed qualitative feedback.

2 Such as PEAQ (Perceptual Evaluation of Audio Quality), a ITU-
R standard described in http://www.itu.int/rec/R-REC-BS.
1387/en
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Figure 2. Pipelines and plugins of the flexmix application and measured execution times

5. CONCLUSION AND FUTURE WORK

This paper proposes a framework for flexible real time au-
dio processing, which dynamically adapts computing costs
of a DSP chain according to a varying CPU load, by man-
aging a complex chain of plugins through communication
channels, status reports and reconfiguration messages. Our
parametrization approach is applicable to many common
elementary processing steps (plugins) with different poten-
tial trade-off parameters, and also to the paths that connect
such elements within a sound processing graph. In order
to lower the implementation burden, we propose a mod-
ification on the communication and control mechanisms
on existing audio processing software, instead of having to
completely rewrite both plugins and DSP host.

The implemented prototype is currently being subjected
to experiments in different scenarios, in order to explore
the relationship between parameter settings and perceived
quality and to experiment with different kind of impreci-
sion measures. In order to ensure that flexible sound pro-
cessing entails no or minimal impact on the audible re-
sult, we are exploring perceptual representation spaces in
which audio signal modifications can be quantitatively as-
sessed. We also intend to develop other parametrization
strategies, especially for processing elements that appear
in these practical scenarios.

Another focus of future work is to investigate error prop-
agation through processing pipelines to discover practical
patterns for controlling execution times through parameter
settings with minimal impact on the audible result. One
approach will be to use the auto tuning techniques [22] to
explore valid parameter spaces and parameter settings with
less imprecision.
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