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ABSTRACT. In this paper we discuss a class of spectral partition problems with a measure constraint,
for partitions of a given bounded connected open set. We establish the existence of an optimal open
partition, showing that the corresponding eigenfunctions are locally Lipschitz continuous, and obtain
some qualitative properties for the partition. The proof uses an equivalent weak formulation that
involves a minimization problem of a penalized functional where the variables are functions rather than
domains, suitable deformations, blowup techniques and a monotonicity formula.
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1. INTRODUCTION

In this article we study an optimal partition problem with volume and inclusion constraints, for a cost
functional depending on the first Dirichlet eigenvalue of the Laplacian. Let €2 be a bounded connected
open set of RV, for N > 2. For an integer k > 2 and 0 < a < |Q|, we consider the multiphase shape
optimization problem

k .
w; C ) are nonempty open sets for all i =1,...,k,
(1.1) inf Q> A (w) ] PRy opent ; ,
pt w;Nwj =0foralli#jand > |wi| =a
where A1 (+) denotes the first Dirichlet eigenvalue and | - | stands for the Lebesgue measure. The main

goal of this paper is to prove the existence of an optimal open partition to (1.1), showing also that
the corresponding eigenfunctions are locally Lipschitz continuous in € (see Theorem 1.2 below). The
proof uses a weak formulation that involves a minimization problem of a penalized functional where the
variables are functions rather than domains.

F1G. 1. An admissible partition (wq,ws) in P,(€2) for a certain 0 < a < || and k = 2.

Minimizing a functional with measure constraints appears in electromagnetic casting processes [21, 25].
The study of these functionals is motivated by their applications to industry and has attracted many
mathematicians, physicists, and engineers. In particular, minimization problems with volume constraint
involving the Dirichlet eigenvalues for the Laplace operator have been extensively studied by many
authors; we refer to [10, 11, 13, 14, 15] and the references therein, as well as the books [9, 30, 31, 32, 47].
Another example of an optimization problem with measure constraint, this time appearing in the context
of one-phase free boundary problems, is given by the paper by N. Aguilera-H. Alt and L. Caffarelli [1].
We point out that optimal partition problems with measure constraints can also be motivated considering
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situations where there is a limitation in several different resources; the case of cost functions depending
on Dirichlet eigenvalues is a natural generalization of the classical one phase problem, see (1.2) below.

Problem (1.1) with one phase corresponds to
(1.2) inf{\ (w), w C Q, wopen, |w| = a}.

Let us split the discussion of such a problem between the case when {2 is a bounded domain and when
QO =RN.

For problem (1.2) with © a bounded domain, due to the lack of a suitable topology, the classical
variational techniques are not appropriate to prove the existence and regularity of Dirichlet eigenvalues
problems with measure constraints. One important notion that aids in dealing with this issue is the
~-convergence, introduced by G. Dal Maso and U. Mosco in [22, 23]. This type of convergence allowed
G. Buttazzo and G. Dal Maso in [15, Example 2.6] to produce the first and classical existence result
(actually, the authors prove it in a very general situation which includes the minimization of A\g). The
authors prove that there exists a minimizer to (1.2) in the class of quasi-open sets. Such a class of sets is,
in fact, the largest family for which the Dirichlet eigenvalues of the Laplacian problem is still well-posed
and inherits a strong maximum principle. For more details on quasi-open sets, see [9, Chapter 4].

To obtain open optimal sets is more challenging than having quasi-open ones (actually, there are
even situations where an open solution does not exist; see, for instance, [29, Theorem 3.11]). Then, the
fundamental question is to understand whether and when a solution has additional regularity properties.
In [6], T. Briangon, M. Hayouni and M. Pierre prove the existence of an open solution w to (1.2) when 2 is
bounded, establishing at the same time locally Lipschitz regularity for the corresponding eigenfunctions.
An important part of the strategy in [6] is to take a solution @ to the problem

inf{/Q|Vu|2: u € HHQ), /Qu2:1, [{u # 0} Sa}

and show that it is also a minimizer of the penalized functional

(1.3) J(u):/Q|Vu\2+)\a (1/Quz>++m(|{u;£0}|a)+, where A\, ::/Q|Va|2,

for m sufficiently large. In the end, the authors show the equivalence between these two problems, and
the equivalence between (1.2) and

(1.4) min{\; (w) + m(lw| —a)*, w C Q open}

for large m > 0. Then, T. Briancon and J. Lamboley, in [7], prove that any open solution w* has a locally
finite perimeter and that, up to a negligible set, dw* N is analytic. Finer results about the singular set
are shown in [37] (which deals with a more general vectorial case).

Remark 1.1. We observe that [6] also deals with Dirichlet energies related to problems of type —Au = f,
w € Hi(w). The regularity of the free boundary for such optimization problems is addressed in [5] by
T. Briangon. When the operator is of divergence type, M. Hayouni (see [29]) shows the existence and
Lipschitz continuity under the assumption that the state function is positive by increasing the admissible
set and regularizing the volume constraint, respectively. We observe that, for a problem like (1.2) with
eigenvalues of a divergence-type operator, E. Teizeira and S. Snelson obtain, in [42], Hélder regularity
of the eigenfunctions; they prove this when the diffusion coefficient is close, in a suitable sense, to the
identity. The authors in [29, 42] use different approaches. Finally, E. Russ, B. Trey and B. Velichkov
in [41] perform a complete study of problem (1.2) for eigenvalues of elliptic operators with drift.

The study of the one phase problem (1.2) with Q = RY corresponds to the problem appearing in the
19th century in the monograph [40]. By the Faber-Krahn inequality [26, 34], it is classical to show that
the ball of volume a is the minimizer of (1.2). For the minimization problem of the second eigenvalue,
it is known that the solution is a union of two disjoint balls with equal measure, by the Hong-Krahn-
Szeg6 inequality [33, 35]. Using different strategies, D. Bucur in [8] and, more or less simultaneously,
D. Mazzoleni and A. Pratelli in [36] obtain a general existence result in the whole space RY for the
minimization of the k-th eigenvalue with a prescribed measure in the class of quasi-open sets. For more
details on the spectral problem see [31, Chapters 2 & 3].

Concerning now the multiphase case (1.1), our work is, up to our knowledge, the first to treat the case
when 2 is a bounded set. There are, however, related problems, which we now describe. When = RV
it is easy to check, again by Faber-Krahn inequality, that the solution is a union of k disjoint balls (see for
instance the proof of Theorem 1.3 below). If, instead, one is minimizing Lg(wy, ..., wg) = Zle Ae(w;),
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for £ > 3 then, up to our knowledge, nothing is known (for ¢ = 2, the solution is a union of 2k disjoint
balls).

Observe that, by a scaling argument (reasoning, for instance, as in [47, Proposition 6.3]), such problems
are equivalent to

k

(1.5) min {Z Ae(wi) +m|wi| + w; CRY, w; open, w; Nw; = for i # j} )
i=1

for some m > 0. A similar problem but with partitions contained in a bounded domain € is studied in

[12] by D. Bucur and B. Velichkov. More precisely, the authors treat the following minimization problem

k
(1.6) min {Z Ae(wi) + mlw;| + w; CQ, w; quasi-open, w; Nw; = 0 for i # j} ,

i=1

where m > 0, © is a given bounded open set. Notice that, for m > 0 sufficiently large, the solution
will be a partition of 2 with an empty region and the sets w; will not cover the whole (2. Hence, the
geometry of the partitions in [12] is similar to the geometry of the partitions in P,(2). The authors
prove qualitative properties for an optimal partition, such as inner density estimates, finite perimeter
and absence of triple points,among others. For £ = 1,2, they also show the existence of open minimizers.
A complete study of the regularity of the free boundary of optimal sets is obtained for £ = 1 in [24,
Corollary 1.3]. For results in the special case N = 2 and numerical simulations, see [4].

We emphasize that, when €2 is bounded, problems (1.1) and (1.6) for £ = 1 are not equivalent (scaling
arguments no longer work), and it seems that some deformation arguments used in (1.6) do not provide
directly useful information for (1.1), due to the a > 0 in our measure constraint.

Observe that, when a = ||, problem (1.2) becomes a spectral partition problem without volume
constraint, namely
k .
) w; C £ are nonempty open sets for all i,
1.7 inf A1 (w; ‘ ! o — .
(17) {; 1) w; Nw; = O for alli #j and Q=UF 7

Combining the results from [17, 19] (see also [45, Section 8]), it is known that optimal partitions exists,
and the free boundary U;0w; is, up to a singular set of lower dimension, regular. Finer results for
the singular set are proved in the recent paper [2], namely that the (N — 2)-Hausdorff dimension of
the singular set is finite, together with a stratification result. The case of higher eigenvalues has been
addressed in [39] (see also references therein).

To conclude this literature review, we refer to the papers [43, 44], where the authors consider the
same cost functional as (1.1), with a distance constraint between elements of each partition (namely
dist(w;,w;) > r for every ¢ # j) instead of a measure constraint.

1.1. Statement of the main results and structure of the paper. As already mentioned, the main
goal of this paper is to prove the existence of (open) minimizers to (1.1), together with the local Lipschitz
continuity of the corresponding eigenfunctions. For that, it is convenient to relax the measure constraint,
dealing with

(w1,

k
1.8 Cq = inf A Wi ),
( ) .,wk)EPu(Q); 1( )
where

P.(0) = {(wl, ce W)

w; C € are nonempty open sets for all i,
w; Nw; = (for alli # j and Zle lwil <a

In this paper we do not use the notion of ~y-convergence of quasi-open sets; instead, one important
feature to study the existence and regularity of the solutions in this scenario is the equivalence between
optimal partition problems and minimization problems involving a state functional . We introduce a
weak formulation that involves a cost functional, where the variables are functions rather than domains,
namely
(1.9) Co = (ul,...l,rii)eHa J(ug, ..., ug),
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where

k
J(ula"'auk) :Z/ |vu1‘2
i=1 7%

and
k
H, = {(ul, coug) |ug € Hy(Q) and [ uf =1 for every i,u; -u; =0 for i # j, Z |Qy,] < a},
Q i=1
with €, == {z € Q| u;(z) # 0} for all i € {1,...,k}.
Our main result is the following.
Theorem 1.2. The problem (1.8) admits a solution. Moreover:
i) Given any optimal partition (wi,...,wr) € Pu(Y), then each w; is connected and Zle lwi| =

a. Therefore, the problems (1.1) and (1.8) have the same solutions. In addition, if u; is a first
eigenfunction associated with w;, then u; is locally Lipschitz continuous in §2.
i1) Problems (1.8) and (1.9) are equivalent in the following sense:

a) cq = Co;

b) if (u1,...,ur) € Hy is an optimal solution of (1.9) and €, := {u; # 0}, then (Qu,,...,Qy,) €
P.(2) solves (1.8);

c) if (wi,...,wr) € Pu() is an optimal partition for (1.8) and w; is a first eigenfunction, L*-
normalized, associated to the set w;, then (uy,...,u;) € H, is a minimizer for (1.9).

We prove the existence of an optimal partition by exploiting the equivalence between the problems
(1.8) and (1.9), which plays a crucial role in overcoming technical difficulties to treat (1.8) directly.
For instance, by applying the direct method of calculus of variations to (1.9), we can easily prove the
existence of minimizers. Even though the sets (2, are quasi-open, we do not use this fact directly in
this paper and the concept of ~y-convergence of quasi-open sets; instead, we notice that the continuity
of minimizers is a fundamental property in proving the equivalence between the problems. This is the
content of Proposition 2.1 and Proposition 2.2.

In order to prove the continuity of minimizers, we adapt the techniques presented in [6]. However,
several difficulties appear due to the fact we are dealing with partitions instead of only one set. Firstly,
the generalization of (1.3) that works in our scenario is:

A

ui|2
74[_#
|
Q

= {(ul,...,uk)eHg(Q;Rk)] wi £ 0 Vi, ug-uy =0 w;&j}.

In fact, any tentative of producing a functional more similar to the one in (1.3) would result in products of

k
Ju(ut, .. ug) = Z
i=1

where

the type iz; [o u? [, [Vu;|* and (1 —TI%, [, u?)+, which do not seem easy to deal with. In particular,
the latter product prevents us from concluding |lu;||2 = 1,7 = 1,..., k, for the minimizes of J,,. To extract
information from this new penalized energy, we rely on some deformation arguments from [18, 19, 20] (see
Appendix A). These were introduced for the study of the spectral partition without volume constraints,
like (1.7) above. In the context of problem (1.7), these deformations provide that any solution should
satisfy a set of inequalities (namely, they should belong to the class Sy, .. ., see (3.8) below). Due
to the presence of an empty region (related to the fact that a < |©|), in our context, we obtain more
involved inequalities, see Proposition 3.2 below, which is the key result in our paper.

Throughout Section 4, where we prove Lipschitz continuity, we use the continuity of the minimizers
proved in Section 3, namely in the proof of Proposition 4.4. For the proof of Lipschitz continuity,
we were not able to apply directly the ideas in [6] to our framework. In our case, we proceed as in
[18, 19, 20] by using powerful tools such as blow-up methods, the Caffarelli-Jerison-Kenig monotonicity
formula, suitable inequalities obtained via deformations (Proposition 3.2), and some properties of the
class Sy, ...\, mentioned before.

In the next result, we characterize the minimizers of (1.1), in the case we have enough space inside .
Theorem 1.3. There exists a = a(Q, N, k) such that, for a < a, then any solution of (1.1) is a partition

made of k disjoint open balls, all with the same radius.
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Finally, for the case with k = 2, we prove the existence of an optimal partition that inherits some
symmetry from the box .

Theorem 1.4. Consider (1.1) with k = 2, suppose Q is a ball or an annulus centered at the origin
and fix a unit vector e. Then there exists an optimal partition (w1,ws) for (1.1), with corresponding
nonnegative eigenfunctions wui,us, such that:

a) wy and we are axially symmetric with respect to e;
b) w1 and us are foliated Schwarz symmetric with respect to e and —e, respectively.

This paper is structured as follows: Section 2 is devoted to the equivalence between the minimization
problems (1.8) and (1.9) under the assumption that minimizers are continuous (which will be proved
later). Also, we prove the existence of the minimizers to (1.8) and (1.9) and define a penalized functional.
In Section 3, we introduce some properties for the class S, ..., and show that the minimizers of (1.9)
are bounded and continuous functions. Section 4 is dedicated to establishing the Lipschitz continuity for
the corresponding eigenfunctions. In Section 5, we introduce the proofs of the main results. In Appendix
A, we present some properties for some classes of deformations and gather some auxiliary results that
are used in the manuscript.

To conclude, we point out that our strategy based on variations is flexible and can be applied in other
contexts; a work regarding the study of (1.1) with eigenvalues associated to divergence type operators
is currently in preparation.

2. PRELIMINARIES AND EXISTENCE OF MINIMIZERS FOR THE WEAK FORMULATION

In this part, we show the existence of minimizers to (1.9) and introduce a key step for the proof
of Theorem 1.2, namely the equivalence of problem (1.9) with a penalized version J,, defined below.
We start by showing the equivalence (assuming that the minimizers are continuous functions) between
problems (1.8) and (1.9). It is worth highlighting that throughout this paper, for an open set w C € and
a function u : w — R, we also denote by u its extension to ) as being zero outside w.

Proposition 2.1. [t holds that ¢, < c,. Moreover, if there exists (41,...,ur) € Hy a minimizer to
(1.9) and @y, ..., ux are continuous in 2, then (Qa,,...,Qa,) € Pa(Q) is a minimizer of the functional
in (1.8), each @; is a first Dirichlet eigenfunction in Qg, and é, = c4.

Proof. We start by choosing a partition (wy,...,wy) € Pa(Q). Foreachi € {1,...,k}, consider u; the first
(positive) Dirichlet eigenfunction corresponding to w; C €, normalized in L?(w;). Then (uq, ..., u) € H,
and

k k k
(21) 6,1 S Z/ IVU,1|2 = Z/ |Vui\2 = Z}q(wi).
i=1 7% i=1 7 Wi i=1

Applying the infimum in (2.1) over the set P, (), we get &, < cq.

Now, assume there exists (@1, ...,u;) € H, which solves the minimization problem (1.9), and that
U1,...,U are continuous in . Observe that, for each i, Qz, = {@; # 0} is an open set and that
Jo IVa]? = fQﬂ, |V > A\(Qa,) and (Qa,, - .-, Q) € Pa(2). Then

k k
Go = T, ) = Z/ V>3 M) > o
=179 i—1

Then ¢, = ¢, and ¢, is achieved. (]

Therefore, in order to prove the main result of this paper, namely Theorem 1.2, it is sufficient to
prove:

(C1) There exists a minimizer (41, ...,u4x) € H, to (1.9).

(C2) If (4y,...,ux) € H, is a minimizer to (1.9), then each @, is locally Lipschitz continuous in €.
The first condition is proved next in Proposition 2.2, while the second is shown in Sections 3 and 4.
Proposition 2.2. The infimum ¢, is achieved, that is, there exists (Uy,...,ux) € H, such that

Co = J(U1,...,05) < J(uy,...,ux) forall (ui,...,ux) € Hy.
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Proof. Tt is clear that 0 < &, < co. Let (u1,n, ..., Ukn)nen C Hg be a minimizing sequence for J and we
may suppose that

k
(2.2) Cot+1>JT(Uin,y . Ukn) = E / |V1L1-m|2 for all n.
» Q

Therefore, for all i = 1, ..., k, the sequences (u; ,)nen are bounded in H{ () and there exists 4; € HE(Q)
such that, up to subsequences, as n — oo,

Ui —> Uj weakly in Hj(Q), strongly in L*(Q), a.e. in Q.
Then
/ a; = lim [ u}, =1foreveryi, |u;(x)w;(2)]* = lim |u;n,(2)]?|ujn(z)]> =0 ae xinQ, i#j
Q n—oo [o n— 00
and, by applying Fatou’s Lemma, we obtain

|94, | :/XQEI_( ) < /hmlnfxg ( )Sliminf/ X, () = liminf |Q,, ,|.
Q Q Q "

n—oo n—oo n—oo
Thus,
k k

Z |Qz,] < lim infz |, | < a.

i=1 [t
Therefore (ay,...,u) belongs to H, and so

Cqo < J(U1,...,0) <Uminf J(ugp,. .., Ukn) = Cq,
n—oo

which finishes the proof. O

Given p > 0, define the penalized functional J, : H — R by

/ vl
e

"= {(ul,...,uk)eﬂg(sz;w)‘ wi £ 0 Vi, up-u; =0 w;&j}.

k

o2 1] -

+
] , for (uy...,ux) € H,

JM(Uh ..

where

(k—1)/ _
Proposition 2.3. Let (u1,...,ur) € H, be a minimizer of (1.9) and take p > (]\7|B1|1/1\?a22NN> .
Then

k
(2.3) Z/ Va2 < T (urs .. ug)
i=17%

for all (u1,...,u;) € H. In particular, J and Ju have a common minimizer.

Proof. Let uy,...,u; € Hj(22)\{0} such that u; # 0 for all 4, u;-u; = 0 for all i # j and Zle Q] < a.
Since ( -

1
lurllz” - Huk\lz

k k 2
Vu;

(2.4) E '/ |vﬁi|2 < E f9|7u2\
i=179 i JaW

By the compact embedding of H}(Q2) into L? ((l) and reasoning exactly as in the proof of Proposition
2.2, we can find a minimizer (u1,,,...,ux,,) € H of J,. With no loss of generality, we may assume

u;,p > 0 and Hui,MHQ =1 for all g

€ H, and (@y,...,ux) is a minimizer of (1.9),

Q(kil)/z Cq 2-N .. k .

Let pu > <N|Bl|1/Na ~ | . Suppose, by contradiction, that » ., [€2,, ,| > a and consider the
auxiliary functions u! := (u;, — t)T, for ¢ > 0. Observe that, since (u1,,...,uk,) € H, we also have
(uf,...,ul) € H for t > 0. Since (u1,,...,uk,,) is a minimizer of J,, we get

Ju(ur gy oy uny,) < J;L(uﬁ, cooub).
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Using the fact that Zle [Qy, ,| > a, for t > 0 sufficiently small, we obtain

k
D1, | -
i=1

Ui, p

k
3 / Vil +
i=179

By using Lemma A.1, we have

+|2

Zf9|v Wiy —
[(wi,p — 1) +|2

me ]

/ Vg +uZ|{0<uw <t} < Z/ \Vui7u|2+2t/9ui7#/ﬂ|V(uL#ft)+|2+o(t).

{wi, >t}

From the fact that |lu; |2 =1 foralli=1,...,k, combined with the Hélder inequality, we infer that

k k
Z ), Vs, 1 0 < e < 61 <203 100, V2 [ V(s = )+ oft).
0<us, <t} i=1 i=1 Q

Now, we approximate u;,, by a mollifier and apply the coarea formula with Sard’s Lemma to obtain
the inequality (through the limit) to w;,

E H N-1 12 o
Vit ¥ >dH ds < 2t Qu, . /Vuz’, -t + o(t).
_//{—} (1w Vue, D16, [ 90 =)+ o)

Minimizing the function  — x + pz~! over the set {x > 0} leads to

k t k
2\//72/0 /{ }dHN*Ids <2t [,
i=1 Ui, p =8 i=1

At this point, we can use the isoperimetric inequality in the term f{uv —) dHN = = per({u;,, > s}),
i =
divide the equation by ¢, let £ — 0 to conclude that

k k
N—1
NBIYN VES [0, 57 <50 (00,12 / Vs 2.
=1 =1

172 / ¥ (i — 1) [+ oft).
Q

Now, notice that

k
Z/ |Vui,,u|2 < J/—t(ul,pn s vuk,/_t) < J;A(ﬂla' .. 7ak) = J(ala s 7ﬂk) = 5(11
Q

>1/2
(h=1)/2 N ok-n/2z
\f—Q Vi Z'Qu SQ 1]0\7a22NN’
N|By|'/ " N|By|Y/

which contradicts the assumption on the size of u. Hence, Zle Q| < a.
Finally, we conclude that

and ¢, does not depend on u. Hence, by using Jensen’s inequality we obtain

k
1/N
NIB VY 7 (zm
=1

=~
) < o(k=1)/ (Z |0, »

Therefore

k
Ju(ul,;u s 7uk>,u) < Ju(ala ey ﬂk) = Z/ ‘Val|2 < Ju(ul,ua s 7uk,M)7
; Q

where the last inequality follows from (2.4). O



3. CONTINUITY OF MINIMIZERS

Let (41, ...,ur) € H, be a minimizer to (1.9). Up to replacing @; by |@;|, we may suppose that @; > 0
inQforalli=1,..., k. This is done throughout this paper. Then, inspired by [18, 19, 20], we set

Z Uj, g, f/\Vu1|2 i=1,...,k

Jj=1,j7#i

We start by showing that minimizers of (1.9) are bounded functions.

Proposition 3.1. Let (41,...,ur) € H, be a (nonnegative) minimizer to (1.9). Then, for each i =
1,...,k, u; satisfies

(3.1) —Au; < Aﬂiai mn €,

in the sense of distributions. In particular, for each i =1,... k:

e u; is a bounded function;
e u; is defined at every x € 2, in the sense that each x is a Lebesgue point.

Proof. Let ¢ € C°(£2) with ¢ > 0 and set u; as in (A.2) for small ¢. Then, from Lemma A.2, u; € H,.

Using the fact that (@, ..., u4x) € H, is a minimizer to (1.9) and (A.1), we infer that
_ fQ |V ul_t(p Jr|2 fQ |V ul_t(p |2 2
|V, |> < < / V(i — tp)|? 1+2t/u14p+0(t )

k (R N [ A

:/ |Vﬂ1|2—2t/Vﬂ1-V<p+2t/ |Vﬁ1|2/ﬂ1<p+0(t2).
Q Q Q Q

Dividing the inequality above by t and letting ¢ — 0, we obtain

(32) / Vﬂ,l . VQD S )\ﬁl / ﬂlgo,
Q Q

which implies (3.1). By classical elliptic estimates, see for instance the proof of [6, Lemma 4.2], we infer
that 47 € L*°(Q). Similarly, we can also ensure that u; € L*(Q) for all ¢ = 2,...,k. Finally, the
fact that every point is a Lebesgue point for each component @; is a direct consequence of Proposition
A5, O

The following result is crucial for everything that follows.

Proposition 3.2. Let (uy,...,u) be a minimizer of (1.9). Then, for each i = 1,...,k, and for any
nonnegative function ¢ € H} () such that supp(¢) C B,.(zo) € £,
(3.3)

—Ad; — Ag, U + Zkujﬂj,</>> > =C (" el +rllells +rlIVells +rliel Vel + el Vel3)
J#i
where C' > 0 depends only on éq, N, ||U1]lccs - - -, |Uk]|co and a.

Proof. Consider

S o arte)t (e —tp)" (@ —tp)"
Ut—(uLt,...,Uk’t)f R n , N n yes ey N n
R N e A "
with ¢t € (0,1) sufficiently small. By using (2.3) and Lemma A.3, we obtain
k 2 + 2
Jo IV (11 + o)™ Jo IV(a )T
3.4 Vi|? < =2 . + 1] Qy |-
(34) B A e e Z [ R

Since ¢ > 0, 0 < t < 1, employing Lemma A.1, we get

: /
[ V(0 +t +2§/Vﬁ +t +2<1—2t/a + ct? 2),
||(U1+tg0)+||§ Q| ( 1 90) | Q| ( 1 QO) | 0 1¥ ||<)0||2

1 / N 9 N 2 _ 2 2
e [V 1) = [ VG- 1)) (1+2t [ s +el13).
(6 — te)*]13 Jo Q Q 2

8
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for all i = 2,...,k. In addition, since 0 < ¢t < 1, we have that

[ 196+t < [ VG + to)
Q Q
k k
:Z/ |Vﬂj\2+2t/Vﬂl-V@—2tZ/Vﬂj~V¢+t2/ |Vl|?
=Je Q = Q
k k k
<> [ vl et [ (Val e [ (9o veY [(VaP ey 1968 e [ Ve
oJe Q Q =/ Pl Q
k k
SZ/ |Vaj\2+t2/ |quj|2+(k+1)t/ V|2,
e = e Q

and, arguing similarly,

k k
/ Vi —te) <Y / Va2 4ty / IV, ? + (k + 1)t / Vol?,
Q =Je =Je Q

for each i = 2,...,k. Hence, since Y%, Jo IV@;|? is bounded, Az, = [, |V;[?, and @ is bounded in
L from Proposition 3.1, we obtain
1

— = [ V(a4 +t +2§/Va +to)T|? + O(t? 2IIVol|2 + et
Tt 2 J, | V@ Tt < |1V + )77+ O@)llelalVell: + ctlell:

“2th, /Q a1 + 2| pll1 | Voll? + el
and

1
= [ V(4 —t +2</vaﬁt 12 + O(t? 21V |2 + et
II(ui—t¢)+|§/Q| ( o))" < Q| ( )7 )l Vella llell

+oth, / i+ ot ol IV |2 + et | 2.

It follows from the fact |V (@ + tp)*|? + Zf:z |V (i; —te)t]? = |V(41 + tp)|?, combined with (3.4),
Lemma A.3 and the estimates above that

k
0§2t/Vﬂ1-V<p+t2/ Vl2 — 26Aa, u1<p+2tZAm/ai<p+ct2||<p\|1||wug
Q Q Q = Q

+etlloll + et llell3IVell3 + et oll3 + ulpl-
Hence, by dividing the inequality above by 2t, we obtain

k
- /Q Vit - Vo + Aa, /Q iy -3 /Q i < ct|Vll2 + ctll ol IVoI2 + cllols
1=2

2|
+etlllBIVel3 + il + 2.

By choosing ¢ = r and using the fact that |Q,| < |B,| < er?, we conclude that

k
<Aa1 + Aa, Uy — Zkuiui,<p> < C (" el + rllels +7IVels + rlelllVels + rllell3Vells) -

=2

Now, we do similar computations with the functions of the form

(0 + t) " (i1 — to) " (-1 — )" (i1 — )" (i — tp) ™
e R N R (R o I A O R (7 oM
to obtain

k

<Aﬁi + A, Ui — ZAujuj,<p> < C (¥t rllelh +rllells +rIVells + rlielhliVels +rliellvels)
J#i

for every i =1,... k. (I



In what follows, we present a rescaled version of the previous proposition that will be useful later on.

Proposition 3.3. Let (41, ...,uxr) be a minimizer of (1.9). Consider R > 0, zy € Q and a sequence
(rn)nen such that B, g(xo) € Q. For eachi=1,...,k, define

= U;(x0 + ).
Then, given a nonnegative ¢ € H}(Q) wzth supp(p) C Bg, we have

(3.5) <—Aaan—wixmu@n+ri§jAﬁﬂ@m,@>:>—C%nR(RN‘2+rnR‘Ww1+riMA@+
J#i
+IVell3 + i lellVells + ) lleliz I Vel3) ,

in the distributional sense, where the constant C' comes from Proposition 3.2 and does not depend on n.
Proof. Set p(x) = ¢(xo + rnx), so that supp(@) C By, r(zo), and

16l = llells, 18l3 = ra lel3, 1Vel3 =ra =2V ell3.
Now, for y = zg + r,x we have,

Vil () - Vip(z)de = 12 Vi (xg + rpx) - Vo(zg + rpx)de
Br Br

1 N -
= ﬂ/ Viii(y) - Vo(y)dy
Tn B, r(z0)

Hence, from Proposition 3.2 we obtain

. 1 -
Vi n(2) - Vo(x)dr > N 2/ Aa, Ui pdy — N2 Z/ UG
B, R(ﬂﬁo) Tn 71LRdy 130)

BR T’I’L

C _ - - -
= x5 [ RN+ 1@l + raRI]13 + r RIVE3]

Tn

C e 121
TNz [raRIGI1 IV RII3 + ra RIS V23]

n

1 _ xr—x xr—x
- z/ i (150 ) o (5572
Tn BrnR(l’o Tn Tn
1 _ T — X0 T — X0
N QZ/ Auj“jvn( >90( >dy
Tn B, r(z0) Tn Tn

J#i

_ C ,
— Cro RN — Nz (r'llells + ™ Rllel3 + 73 RIVll3)
C

5 (2N LRIl IV ell3 + r2N LRIl 3]V ol13)

N—
/ i ulncpdx—TQZ/ i ujncpdx—CrnRN 1 Crn||g0||1
J#i

= CraR|ll3 = CraR[I V3 — Cry™ RllellIVells — Cra™ Rlol3]Vel3,
which implies (3.5). O

The next proposition shows the intuitive fact that the information provided by deformations is stronger
when the test functions ¢ do not alter the measure of the positive sets.

Proposition 3.4. Leti € {1,...,k} and B C Q be an open ball such that |BN{d4; =0} =0. Then

k
(3.6) —Ad; > Ny Wi — Y Aa,@i; in B.
j=1,j#i
Proof. Without loss of generality, we prove (3.6) for i = 1. Let ¢ € C2°(B) be a nonnegative function
and define, once again, the auxiliary deformations
(i +to)" (i —tp)" (it — 1) "

e A N A
10

Uy = (Urty .- Uky) =




with ¢ € (0, 1) sufficiently small. Unless stated, all the L? norms are taken in Q. From Lemma A.1, we
obtain

L 1—2t/ dptolt) and — 2 - 1+2t/ ip + oft).

(@1 + o)+ 3 B (@i —te) ™3 B

By Lemma A.3, it follows @; ¢ - @+ = 0 for all i # j and, by the assumption |B N {&; = 0}| = 0, we have
Zle |Qz, N B| = |B|. Therefore

k
E Um ,t
i=1

(3.7)

ZIQMQBHZ Qa0 Q\B)|<|B|+2:|Q N(Q\B)|

i=1

k
3 0 B 43 0 @\ B) = 3 [0 <
i=1 =1 =1

By combining (3.7), the identity |V (i 4 t@) |2+ 25, [V (@
¢ is supported in B and (i1 + tp)" =4y in Q\ B, (4; —to)t =

k
J(ﬂ17t7...,’l~lzk,t):/ |V(ﬁ1+tgp)|2+2/ |Vﬂi\2—2t/ a1<p/ |V (@1 + to)T|?
B i—1JO\B B B
k k
—2t/ ﬁlap/ |Vﬁl\2+2t2/ ﬂigo/ |V(ai—w)+|2+2t2/ ﬁiap/ |V |* + o(t).
B Q\B =2 /B B i—2 /B Q\B

/|V(ﬁ1+t<p)+\2—>/ |Va,|>  and /\V(ﬁi—t¢)+|2—>/ |Va,|* for alli > 1
B B B B

as t approaches 0, we deduce that

k k
J Q14,0 :2t/Vﬁ Vo + /vm2+ / Vﬂi2—2t/a /w 2
(1,4 kot) Vi Ve ;B| | ;Q\B| | iy B| 1

k k
—2t/ﬂ1<p/ Vi |? + 2t /ﬂigo/ Vi, |2 + 2t /a,«p/ Vi, |* + o(t
; Q\BI 1 ; : BI | ; ; Q\BI "+ o(t)
k
:2t/ va1~w+2/ \Vai|2—2t/ ﬂlcp/ Vs |?
B o1 /@ B Q
k
+2tZ/ ﬂicp/ Vs + o(t)
i=27B Q

At this point, we use the fact that (@1, ..., @) is a minimizer of J; in addition, we denote g, := [, |V, |?.
By passing to the limit as t — 0, we obtain the following inequality

k
/val-w—Aﬁl/m«HZAm/m«pzo,
B B = B

which finishes the proof. [l

—to)t|? = |V (@1 +tp)|?, the fact that
Us mQ\B for ¢ > 1, we obtain

Since

At this point, we introduce some auxiliary results. For w € H(Q2), let \,, := / |Vwl|?. Generalizing
Q
the notation given before, for (u1,...,u;) € HE(Q;R¥) define
:uz—z:uj7 i=1,...,k.
i#i
Then, as in [18, 19, 20], given an open set A C Q and Ay,..., A\ > 0, set
(3.8) Sx,..a(A) ::{(wl, cwy) € HYARR) jw; >0, w;-w; =0if i # jin A

—Aw; < \w;, —Aw; > \w; — Z Ajw; in A in the distributional sense}.
J#i
11



Lemma 3.5. Let A C Q be an open set and \i,..., A\, > 0. Take (u1,...,ux) € Sx,,.. 2. (A)\
{(0,...,0)}. Then u; € C2HA), and

loc
—Au; = M\u; in the open set {u; > 0}.

In addition,
{xeQ: w(z)=0 fori=1,...,k} =0.

Proof. The first conclusion follows from [20, Theorem 8.3]. The last sentence is a consequence of [45,
Corollary 8.5], taking therein f;(s) := A;s. O

Remark 3.6. For the problem without measure constraint (1.7) (i.e., where the partition erhausts
the whole 1), minimizers of the associated weak formulation belong to the class Sx,,.. () for some
A, .., A > 0, see [19, Lemma 2.1]. Therefore, Proposition 3./ shows that, in a region where the zero
set has null measure, we are in the same situation, whereas Proposition 3.2 covers the general case. The
right hand side in (3.3) can be seen as an error term, and in some sense allows to capture the transition
from the positivity set {u; > 0} to an empty region where u; = 0.

The following is a Liouville type result.

Lemma 3.7. Let (uq,...,u;) € H (RN) N L>®(RY) nonnegative functions such that u; - u; =0 for all
1% j and

—Au; <0, —At; >0 in the distributional sense in RN, V.
Then there exists c € R and i € {1,...,k} such that u; = ¢ and u; =0 for j # 1.

Proof. First of all, observe that (ui,...,ux) € S, .. 0)(Br(0)) for every R > 0. Then, by Lemma
3.5, each wu; is a continuous function. By Proposition A.4 in the appendix, since all components are
continuous, belong to H lloc (RY), and are bounded, we have that all components except possibly one are
trivial. Without loss of generality, assume that us = ... = ux = 0. Then, from the assumptions,

—AU1 S 0, 0 S —Aﬂl = —Aul,
hence u; is harmonic and bounded in RY, thus it is constant. O

We are ready to prove that minimizers of (1.9) are continuous functions. In particular, this shows
that Qz, = {@; > 0},7i=1,...,k, are open sets.

Proposition 3.8. Let U = (41, ...1ux) be a minimizer of (1.9). Then each @; is a continuous function
in Q.
Proof. We recall that, by Proposition 3.1, each component #; is defined at every point. Given xy € €2,

we are going to prove the continuity of each u; at xg. Take a sequence (z,)neny C Q such that z,, — xg
and set y, := |zg — xn| — 0. We split the proof into two cases:

Case 1: Suppose that, for some n, we have | B, (z9) N {U = 0}| = 0. Then, from Propositions 3.1 and
3.4,
(U1, .-, Uk) € Sxgy o hay, (Br, (20))-

Then, by Lemma 3.5, we have u; € C’ZOO’C1 (Br, (z9)). In particular, @; is continuous at xg.

Case 2: Suppose that, for all n, | B, (x0) N {U = 0}| > 0. We introduce the auxiliary functions, for
i=1,...,k,

Uin(z) = a;(zo + ), with z € RY,
where we are considering the extension of u; by zero to R \ €. In particular, from Proposition 3.1 and
since @; € H}(Q) is nonnegative in €,

(3.9) ~Ad;, < Ag,720;, in RY

in the distributional sense. Note that, since @, is bounded, we have that u;,, is uniformly bounded in ¢
and n. Our aim is to show that @;, — 0 in L{ (RY), which proves the continuity of %; (and shows that

u;(xg) = 0). We split the proof of this in several steps.

Step 1. We show that, for each i = 1,...,k, there exist constants ci,...,c; € R, where at most one
is nonzero, such that
(3.10) Ui — ¢;  weakly in HE (RY), strongly in L7 (RY) for each i = 1,... k.

12



Given r < R’ < R, take 0 < ¢ € C°(Bg) such that ¢ = 1in B, and ¢ = 0 outside Bg,. From the
definition of weak solution (with the test function ; ,p? > 0) we get (since u;, € H(RY))

Vﬂi,n : V(ﬂz,nsﬁ2) é / )‘7117‘72117‘371902 S C
BR BR '
Thus,
/ |V’Uli’n|2g02 S C - 2/ ﬂiynQDV’L_Liyn . VQO,
BR BR
which implies

1 1
[ Wuare<ovr [ @ vepag [ VPt o [ uape
Br Br Br Br

2

and, therefore,

/ |V’Ui7n|2 <C.

From the bound above and the uniformly boundedness of #;,,, since r is arbitrary there exists i =
(U100 - -+ » Uk 00) € HE (RY) N L®(RY) such that

loc
Uin — Uioo weakly in Hlloc(]RN), strongly in L?OC(RN) foreach:=1,...,k.

Fix R > 0, and let n be large such that B, r(z¢) € Q. Applying Proposition 3.3 to the functions
U;n, and by letting n — oo in (3.5), we conclude that 1, o solves

—Aaimzo in BR.

From the inequality above and (3.9) (by passing the limit as r,, — 0), we can infer that (@1 oo, ..., Uk,00) €
So,...,0(Br). Since R > 0 is arbitrary, we have that (@1, ,. .., Uk,c0) satisfies the assumptions in Lemma
3.7. Therefore, there exist constants cy, ..., c; such that 4; .. = ¢;, at most one constant is nonzero and
(3.10) holds true.

Step 2. We now claim that

(3.11) Uin — c; strongly in  H} (Bgr), Vi=1,... k.
In fact, by setting ¢ as above and using @; ,%? as a test function, we conclude that

/ \Vﬂi,n|2<p2 + 2/ UiV pn - Vi < / /\mr%ﬂ?ngf — 0.
Br Br Br '
On the other hand,
1
/ ﬂi,n(ﬂvai,n -V = / (ﬂi,n — ci)ngﬂm -Vo+ =
Br Br

5 / ciVam . V((pg) —0
Br

by the weak convergence u;,, — ¢; in H'(Bpg) (which is strong in L?(Bg)) and

_ _ 1 1, _ _
[, @i =)oV V| < (GIORITOIR + 51980 i ) 1 oy
R

yields, by the definition of ¢, to

(3.12) / Vi n|> =0, YO<r<R,
and the claim (3.11) is proved.

Step 3. Suppose, without loss of generality, that co = ... = ¢; = 0. We show in this step that also
¢1 = 0. In particular, 4; , — 0 in Lf;’C(RN) for every i = 1,..., k.

From the assumptions, we have @; ,, — 0 in H} .(Bg) for i > 1 and, since @, , also satisfies (3.9),then
Wi — 0 in LS (RN) by [27, Theorem 8.17]. On the other hand, since |B,., (zo) N {@#1 = 0}| > 0, we can
take y, € B, (zo) such that @;(y,) = 0. Write y,, = 2o + rnzn € By, (20), for some z, € Bj.

Now, for each large fixed n, take r < r,. Consider a test function ¢ € C°(Ba,(yn)), such that
0 < ¢ <1with ¢ =1 on B,(yn) and ||V L (B, (y,)) < C/r. By using (3.1) once again, we see that

each o; := Au; + Az, @, defines a positive measure. By Proposition 3.2 we infer that

o1(Br(yn)) < {(o1,¢) = (01 — Zai,@ + Z<Ui7<ﬂ> <orNTl g Z%(Bzr(yn))-



Therefore, since fBr(yn) Aa,il; <OrN foralli=1,...,kand r <1,
Aty (By(yn)) = (Atiy + Ag, U — Ag, 1) (Br(yn))
<orVTl Zai(Bgr(yn)) <N 4 Z AT;(Bayr(yn))-
i>1 i>1

By multiplying the inequality above by r'=" and integrating from 0 to r,,, we obtain

| s B i < O Y [ S B )
0 0

i>1
Now, we apply (A.4) with g = y,, and r = r,, to obtain (recall that @(y,) = 0)
C(N) U = / Tl_NAﬂl(Br(yn))dr < C/rn + Z/ Tl_NA’L_Li(BQT(yn))dT
0 0

0By, (yn) i>1
< Cry + C(N) ][ s,
! ; 0Bar, (yn) '
which leads to
(3.13) ][ U1 (20 + ) < Cryp + C Z][ Ti (20 +2) = 0,
9B,

i>170B2

as n goes to infinity (recall that @;,, — 0 for all i > 1). Up to a subsequence, we have z, — ze € B
and 1 ,, (2, + ) — ¢ in H'(B;) which implies strong convergence in L'(9Bj), and then

][ Urn(2n +2) = c1,
9B,

and hence ¢; = 0, as wanted. The fact that also @, — 0 in Lf(‘jc(]RN) is, again, a consequence of [27,
Theorem 8.17].

Finally, from the the convergence @;,, — 0 in LZOC(RN ), we obtain the continuity of each u; at xq,
since |@y(x) — w1 (20)| < 2||tU1nllLe(By) — 0 for all 2 € By, (z0) (and also U(xo) = 0)). O

4. LIPSCHITZ REGULARITY OF MINIMIZERS

Let U := (uy,...,u;) € H, be a minimizer of (1.9), extended by zero in RY \ Q. Now, we introduce
two quantities related to whether a point x belongs or not to 9€Qyg,, for some ¢ = 1,..., k. Define the
multiplicity of a point x € €2 as being

m(z) := #{i; |Qa, N Br(x)| > 0, for all r > 0},
and
Zo(U) ={x € Q; m(x) > {}.
Consider the function X : Q x (0,00) — R defined as

1 _
S(x,r) = T—N/B » |VU|?, for (x,r) € Qx (0,00),

where |[VU|? = Zle IVi;)?. In order to prove the interior local Lipschitz regularity, it is enough to show
that ¥ is bounded over Q' x (0,00), for every Q' compactly contained in . So, fix such a set Q' and
suppose, by contradiction, that ¥ is unbounded in €’ x (0, 00). Then, there exist sequences (z,)neny C
and r, — 0 such that B, (z,) C 2 and

1
(4.1) lim —/ |VU|? = +o0.
n B
In what follows, we present two technical lemmas that will be applied mainly to the sets Z,. Their
proofs can be found in [20] but, for completeness, we also include them here.

Lemma 4.1. Let (x,,7y,) be as in (4.1). Then, there exists a sequence 7/, — 0 as n — 0o, with (Ty,7],)
satisfying (4.1) and such that

N
(4.2) / IVU]? < — IVU|?  for all neN.
0B, (zn) Tn B, (wn)

14



Proof. First, notice that

d 1/‘ ) 1 / , N ) 1
13) = — VU | = — VU2 - = VU | = —f(@n, 7).
(4.3) dr<rN 34%>| |> N <634%)| F - I%QOI | o/ (@n,7)

Hence, it is enough to find a sequence (7}, ),en such that (4.1) and f(z,, ) < 0 holds true. Define 7/,

inf{r > ry, : f(2,,r) < 0}. Since X(z,,r) = 0 as r — 0o and X(zy, r,) > 0, we infer that L3 (z,,, r ) g 0
for some r sufﬁciently large, hence 7], < oo for all n. Moreover, since X(xy,, 7)) > X(xp, ) — 00, We
then infer that r], — 0. Then, up to a finite number of indices, B, (z,) C Q. Moreover, from the
definition of 77, f(xn, rl) <0, that is, (4.2) is verified. This ﬁmshes the proof. O

From the last lemma, since ¥ is not bounded over Q' x (0, c0), then from now on we may assume the
existence of sequences (zy,)nen C €, 7, — 0 satisfying (4.1) and (4.2).

Lemma 4.2. Let A C Q be such that dist(mn, A) < Cryp, for all n, and assume that (4.1) holds true.
Then, there exist sequences (x;,)nen C A and 7], — 0 such that By, (x,) C Q and (x;,,7;,) satisfies (4.1)
and (4.2).

Proof. By assumption, we can find z,, € A such that dist(z,,z),) < 2Cr,. Now, set 7], := (2C + 1)r,
and observe that B, (z,) C By (z;,) and, for all n sufficiently large, B, (x;,) C 2. Hence

(2C+1)7" / 2 1 2 ro
—_— [VU|* < |VU|* = X(),,7,).
ry B () ()N JB,, ar) v

n
T’!L

Since the left-hand side in the inequality above goes to infinity, the same holds for the right-hand side,
hence (4.1) is satisfied. By eventually changing the radii r/, (recall Lemma 4.1) we may assume without
loss of generality that (4.2) is also true. O

Remark 4.3. Notice that, for £ > 0, if m(mn) = { and dist(x,, Zg_,_l) < ry for all n, then by Lemma 4.2,
we can find sequences (), )nen C Zet1 and ), — 0 such that By, (z;,) C Q for all n, with (x,,7),) satis-
fying (4.1) and (4.2). In particular, m(x}) > €+ 1 for all n and QU U (Upen Br, (le)) U (Unen Bra (z0))
is compactly contained in Q.

Now, we aim to get a contradiction from with (4.1). We achieve this by splitting the proof into cases,
based on the quantity m(z,). We first treat the case m(z,) > 2.

Proposition 4.4. Under the conditions above, suppose that, up to a subsequence, m(x,) > 2 for all n.
Then (4.1) cannot hold true.

Proof. We argue by contradiction by assuming that (4.1) is satisfied. It follows from hypothesis m(x,) >
2, combined with the continuity of @;, that @;(x,) =0, for every i = 1,... k, and for all n. Set v; := @;
and w; := Zfﬁ uj. Applying Proposition 3.1, we have that

—Av; <% in B, (z,) and —Aw; <% in B, (z,),
in the sense of distributions, where

k

il Lo ()s 3 Ay 1G] e o)
i

v i=max { Ag,

Now, we employ Lemma A.6 in B, (z,) C Q to the pair (v;, w;) to conclude that

2 |2
i/ Vi i/ | Vwi| <,
o B, @ [T =2V )\ B, e [T V2 )T

where C' > 0 is independent of n. Since | — x,,| < r, for z € B, (x,), we obtain

1 1
Tn JB,, (zn) "n JBr, (zn)

From the inequality above and (4.1), we infer the existence of only one component, say @, such that

1
(4.4) 47/’ |V | — oo,
Tilv T (‘Ln)
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and

1
(4.5) —/ |V, > — 0,
Y By, ()

for every i = 2,..., k. For the sake of clarity, we split the proof into five steps.

We introduce the blow-up sequence

Un(z) = T U(zp +rpzx), for z€ By,
where
L2 .= iN |VU|? — oo.
" J B, (xn)
Let us denote U,, = (U1 p, ..., Ukn). As a consequence of the definition of L,
(4.6) /B VU, |* = Li% /B VU (z, + rn)]* = L?llrév/g(x) |VU|? = 1.

Hence, from (4.2), we conclude that faBl |VU,|? is also bounded.
From here, we split the proof into two cases:

Case 1: Suppose that there exists a positive constant C, independent of n such that [|U,|[z2(5,) < C.
In this case, using (4.6), there exists Uy, € H*(By) such that U,, — Uy, in HY(By).

Step 1.1 (Us #0): We denote Uso = (41,00, - - -, Uk,00)- From (4.5), we get that
/ |Vt n|? — 0, forevery i=2,...,k,
B

which implies ||V o | 12(5,) = 0 for every i = 2,... k. Since @; ,,-uj,, = 0 for i # j, the a.e. convergence
implies that at most one component of Uy, is nonzero. In view of the definition of U,, and Proposition
3.1, we obtain
_ T _ T _ _
—ATy g, (x) = Lfn(fAul(z" +rpr)) < L—n)\mul(xn +rpx) = rfl)\ﬂlulm(x), for x € By.
n n

Multiplying the inequality above by #, , and integrating by parts, we conclude

ot

_ 2 — 1,n 2 —2

/ |vu1,n < / Ut,n P + Tn)‘ﬁl UL ns
B dB, v B

where v is an outward unit normal vector. Now, suppose that ;. = 0. Employing the compacts
embeddings of H'(B:) in L?*(B;) and in L?*(0B1), and the fact that ||[VU,|/r2(95,) is bounded, we

obtain that 54
_ Uy, —
/ U1 m 3 n —|—r,21)\ﬁ1/ u?n — 0,
631 v Bl

which implies ||V1,nl/z2(5,) — 0, and so [|[VUy,|r2(B,) — 0, a contradiction with ||[VU,| r2(5,) = 1.
Therefore, 41,00 # 0, which implies Uy = (1,00,0, - ..,0) Z 0.

Step 1.2 (41,00 s a harmonic function): First, we recall that, for every i =1,...,k,
—Al; p(x) < ri)\mmm,(:v) in Bj.

Hence, by passing the limit as n — 0o, we see in particular that

(4.7 —Al oo(x) <0 in Bj.

Now, reasoning as Proposition 3.3 we can infer that for any nonnegative ¢ € H¢ (B;) with supp(¢) C Bas,
25 € (0,1], we have

N _ _ Cs  n_ _
(48) <_Aui7n - T?L)\ﬁiui7n + T?L Z)‘ﬁjujmv (P> > _f (SN 2 + s 1”90”1 + r?LH@H%J’_
J#i "
HIVell3 + 3 lelhIVells + i llel3IVell3) .
in the sense of distributions. Now, taking ¢ € C2°(By), and recalling that r, — 0, L,, — co and @;,, — 0
in HY(B,) for every j = 2,...,k, we conclude
—ATTLLOO = _Aﬁl,oo Z 0 in Bl,
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and combined with (4.7), we infer that

A’lil’oo =0 in Bj.
According to the maximum principle, we have 41,0, > 0 in B; (recall that @1 o > 0 and 21 0 # 0).
Step 1.3 (Contmdzctwn) At this point, we apply Proposition A.5 to the functions ; ,. Denote o; ,, :=
At + rn)\uiuz,n, and recall that o;,, > 0, for every ¢ =1,2,...,k. Notice that, for n sufficiently large,

we have Aw;,, > —1. Moreover, by Proposition 3.1, we have @;,, € L™ (Bl/z). Therefore, by applying
Proposition A.5, we obtain, for all » € (0,1/2), that

]g i = 00 (0)] = (V) /O R { /B S d(Aul,n)] ds = C(N) /O "N Ay (B.)ds
=) [N (Bds - C) [ A ) (B)ds

gC(N)/ s Noy o (Bs)ds.
0

Now, for each fixed s € (0,r), we take a test function ¢ € C2°(Bs,) such that 0 < ¢ <1 with ¢ =1 in
B and ||[Vo| e (B,,) < C/s. Hence,

k k
01 n(B ) < <0'1,n590> = <Ul,n, - Zai,na > Z Oin, P
i=2 i=2
9 9 OSNfl k
< AUy + 1A Ut — T, 22 Mg Ui, ) + 22 Oin(Bas) < L. + 22 Oin(Bas),
1= 1= 1=

where in the last inequality we applied (4.8) and used the fact that r, < 1 and |Ba| < C(N)sY (and
hence we have |||l < C(N)s", [|p]|2 < C(N)s™ and ||V¢||2 < C(N)sN=2). Therefore,

slchan(Bs) < Lg + slfNZai,n(Bgs), for all s € (0,7).

Plugging the inequalities above, we get (recall that @; ,,(0) = 0, as observed in the first line of the proof)

(4.9) ]{DBT U1, < C(N) /OT

Now, we use Proposition A.5 to estimate the last term in (4.9):

/ - Nzo—m B, ds—Z/ N(Atisp + 72 \a, i) (Bas)ds
—Z/ 1= NAu”LBQS ds—i—Z?“ )\ul/ 1= N/ U; p dxds
Bag
Z][ Uzn Z/ Sr?’b o

’I’l

Z][ uzn+z 7" Tn m”“z”Loo Bl)
OB, i—2

c k
— 4N Zai,n(B%) ds.

L
n i=2

’U,zHLoo Bl)

ds

’I’L

Plugging the inequality above into (4.9) and multiplying it by |0B,| yields to

N)r C’ N)rp g, @ Lo N+l
/ Uy g < & Z/ Ui + (V)radu [ill=s,)r , forall r € (0,1/2).
oB Ly, OB, i 2 L,

Now, we integrate the inequality above with respect to r to obtain

C rn Ui
n = C i,n .
/]31/2 UI + Z/B1/2 tin Z

L,
=2 v

u’LHLW(Bl)




Finally, we pass the limit as n — 0, and recalling that L,, — oo, r, = 0, U1, — U100 > 0 and

[%inllLi(B, ) — 0, we get
/
0< / al,oo < 07
Bis

which is a contradiction, and so the result is proved under the assumptions of Case 1.
Case 2: Assume now that ||U,[|z2(p,) — oo, and set V,, := U, - ||U"H221(Bl) = (Vi,n,-..,Vkn). Hence,

”VnHL?(Bl) =1 and ”vvn”L?(Bl) — 0.

Therefore, there exists Voo € H'(Bj) such that V;, = Voo = (V1,005 - -, Uk,00) locally in H'(B;) and
Vool 22(5,) = 1. Since, for every ¢ € H'(By),

/ Vvin-Ve =0 and /va -V — /Vvim -V,
B,

for every i = 1,..., k, we have that [|[VV,| z2(5,) = 0, consequently Vo = (c1,...,¢cx), where 0 < ¢; € R,
for every ¢ = 1,..., k. Moreover, since v; 5, - vj, = 0 for ¢ # j, the a.e. convergence implies that only one
component of V, is nonzero; without loss of generality, we can say Vo, = (c1,0,...,0). In particular, we
have v o0 > 0, and Av; o = 0.

Following the general lines of Step 1.3 of Case 1, we define G, ,, 1= Av; p, + 2 Mg, v;n > 0, and apply
Proposition A.5 to v, and we obtain that for all r € (0,1/2),

][8& [v1. — v1.,(0)] = C(N) /O st=N UB d(Aan)} ds = C(N) /O s' N Aty . (By)ds

s

SC(N)/ s N5 (B,)ds.
0

Once again, for each fixed s € (0,7), we take a test function ¢ € C2°(Bss) such that 0 < ¢ < 1 with
¢ =11in B, and ||V@|[p(B,,) < C/s. Hence,

k
5—1,n(B )§<01n7<)0 <Uln Zo—znacp> Z O—’LTHSD
=2
<A’U1n+’f' )\ulvln T Z)\ulvznvcp>+zo—zn BQs)_ ”(]C’L Zazn BZS
i=2 i=2 L?(B1) -
where in the last inequality we applied (4.8) (just multiply the inequality (4.8) by ||Un||221( Bl))' Therefore,
1-N C 1-N k ~
S Ul,n(Bs) < W +s ;Ui,n(BQS)a

for all s € (0,7). Plugging the inequalities above, we get (recall that vy ,(0) = 0)

r C
4.10 ]l vin < C(N / — + VN5, (B
( ) 0B, 1n ( ) o ||Un||L2(Bl)Ln Z Z,n( 23)

Now, we use again the Proposition A.5 to estimate the last term in the inequality above:

/ o NZUZ n B2s dS - Z/ AULn + 1 Auzvi,n)(BQS)dS
—Z/ 1N vy (Bay ds+Zr o [ (B ds
N)srpAa, ||1_Lz'||Loo B1)
< C(N ][ Vim + / - ~ds
Z 0B, Z 1UnllL2(5,)L

C(N)TZTn U ”ulHLOO(B)
= O(N in : L.
( ’E]ﬁ Yt D s L

ds.




Plugging the inequality above into (4.10), and multiplying it by |0B,| yields to

)TN+1

C(N)T’N 7qn U u7.||L°°(B1
U17n§7+C(N / vzn+ - )
/63r 1Unl|2(B1) Ln Z 1Unllz2(By) L

for all r € (0,1/2). Now, we integrate the inequality above with respect to r to obtain

C(N) N " O(N)rAa,
[ e [, s

Vin S
HUnHLZ(Bl)Ln Bi/2 i—2 ||UnHL2(Bl)Ln

Uil oo (By)

Finally, we pass the limit as n — 0, and recalling that ||U, || z2(p,) — 00, L, — 00, 7y — 0, 01, — 1 >0
and ||vi,n||L1(Bl/2) — 0, for i =2,...,k, we get,

0< / c1 < 0,
By /o

which is a contradiction. O

It remains to deal with the case m(z,) = 1. This is the content of the next proposition.

Proposition 4.5. Under the conditions above, suppose that, up to a subsequence, m(x,) =1 for all n.
Then (4.1) cannot hold true.

Proof. Define I := {x € Q : @;(x) = 0}. We analyse two cases:

dlSt(mn T) . dlSt (zn,

Case 1: Suppose that L) > 1 for large n. In
this scenario, we can conclude that B, (x,) C Qg,, for all n. Hence, by Prop051t10n 2.1 and Proposition
3.8 (or by combining Propositions 3.1 and 3.4), @; solves

is unbounded. Then, up to a subsequence

—Atuy = Mg, u;  in B, (zp).

Hence, by applying Proposition 3.1 and by elliptic regularity theory, we get that 4y € C°°(B,.,), which
is a contradiction with (4.1).

Case 2: On the other hand, if M < C, for some C > 0, it follows from Lemma 4.2 that we can
also assume without loss of generahty that z,, € ', for all n. In view of Proposition 4.4 and Remark 4.3,

dist(z,,
T

we can assume also that Z2) > 1. In this case, only one component, say 1, is nonidentically zero

in By, ().
The proof then follows the general lines of Proposition 4.4, but we do not need to use the Lemma A6,
since (4.1) is equivalent to

1
—N/ |V > — oo.
T" BTn (xn)

We perform again the blow-up analysis. Define

(4.11)

wp () = mﬂl(wn +rpx), for x € By,
where
1
L?l = 7]\7 |V'EL1|2
L B, (zn)

As before, we have

/ |Vw,|* =
By

which implies the boundness of f@Bl |Vw,|? by Lemma 4.1.
For simplicity, we divide the proof of this case into four steps:
Step 1 (Convergence of wy,): As in Proposition 4.4, either there exists wo, € H'(Bj), such that up to a
subsequence, w,, — wq locally in H'(By), or the sequence v, := w,, - lwn||L2(B,) such that v, — ¢ >0
locally in H'(By).
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Step 2 (weo Z 0): It follows from the definition of w,, and Proposition 3.1 that
—Awy (z) < 72 X\g, wn (),

for z € B;. Multiplying the inequality above by w,, and integrating by parts, we conclude

ow
/ \an|2§/ wna—" —Hﬂﬁ)\ﬂl/ w?.
Bl BB1 v Bl

Assume that we, = 0. Since ||Vwy|[12(98,) is bounded, the right-hand side of the inequality above goes
to zero, which is a contradiction.

Step 8 (weo s a harmonic function): As in Proposition 4.4, we can show that
Cle)
L,
By taking the limit as n — oo yields —Awy, > 0 in By. Moreover, recall that —Aw,, < r2\z, w,, in B,
we obtain —Aws, = 0. Therefore, by the maximum principle, wo, > 0 in Bj.

(4.12) (—Awp — riAa, wn, ) > —

Step 4 (Contradiction): Now, we argue exactly as in Proposition 4.4 to conclude that

C(N)rN b O(NYraAag, [ poe 3y Y
/E)B Wn = L, W) /é)B Wt Z L, ’
s s 1=2

for all € (0,1/2). Finally, we integrate the inequality above and pass to the limit as n — oo to conclude

that
0< / Weo <0,
B2

which is a contradiction. This finishes the proof. O

Proposition 4.6. Under the conditions above, suppose that, up to a subsequence, m(xz,) = 0 for all n.
Then (4.1) cannot hold true.

Proof. From Remark 4.3, Propositions 4.5 and 4.4, we can assume that dist(x,, Z1) > r,. In this case, it
follows from the definition of m(z,) that @; =0 in B, (z,) for all i = 1,...,k, which is a contradiction
with (4.1). O

5. CONCLUSION OF THE PROOF OF THE MAIN RESULTS

Lemma 5.1. Assume that problem (1.8) is achieved by an optimal partition (w1, ...,wg) € Pa(Q). Then

k
Z |wi| = a.
i=1

Proof. Let (wi,...,wr) € P,(2) be an optimal partition, and let (u1,...,ux) be an L?-normalized
sequence of associated positive first eigenfunctions, which minimizes J in H, by Proposition 2.1. Assume
.. k
by contradiction that )", |w;| < a.
Claim. (ul, e ,uk) S S/\uu“")‘uk (Q)
From (3.1), we have
—Au; < Ay, u; in Q for every 1.
Now we prove that
—Ady > Ayyur — > Ay in Q.

i#1
The latter inequality has analogous proof for ¢ = 2,... k. Let & be such that
k
(5.1) [Bel <a=)_|wil-
i=1

Take zg € 2 and € < & such that B.(xzg) C Q. We now check that —Ady > A\, u; — 2#1 Ay, uj in
B:(zp). Given ¢ € C°(B.(x0)) nonnegative, for small ¢ > 0, we consider the deformation

(i +tp)" (I —te)” (ix — tip)*
O A N A O

20
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Take ¢ > 0 small such that:

k
Z|wj| + |B€| <a
j=1
(recall the contradiction assumption (5.1) and that w; = €, for all j = 1,...,k). Then, by Lemma
A.3, we have @; € H,. We now argue exactly as in the proof of [19, Lemma 2.1]:

/ |Vuz t|

k

Z/|VU¢|2=J(U1,...,U1€)SJ(leyt,.. ukt

i=17¢ - / z,t
Q

/ IV (s + ) / V(@ — o)+
_Jo +Z Q .
/ (i 1) A / [(a, — to) ]2

Q Q

Ast — 0T, we have by Lemma A.1

/ |V (i +to)t

T
Q
:/Q‘v(al +t<p)+’27225/QU1<,0/Q‘VU1|2+0(0

/Q| (Ai_:))]: /Q’ (4; =) ‘2<1 Qt/guj O(t)>
— by ?
/Q‘ 8~ t0) ‘2 2t/Quj /Q| il + olt)

Therefore, using the fact that u;u; = 0 for i # j, and (4 + te) "t + 2o (U — to)t = |ty + ty| , we

have
/|Vul|2<2/\Vu +tp) 2 — 2t//\u1u1<p+2t2/)\ ;w0 +o(t)

j=2

and, for j > 2,

k
zz:/Q\Vui|2—|—2t/Q Vi - Vo — )\ulul—Z)\ujuj o | +o(t)
i=1

Jj=z2

as t — 07, and hence

/ Vi - Ve — | Ay — Y Aug | @ | >0.
Q

i>2
Therefore the claim holds true.
Conclusion of the proof. Since (u1,...,ux) € Sx, ... x,, (), then I'y := {z € Q : u;(x) =0 fori =

1,...,k} has zero measure by Lemma 3.5. Therefore |Q| = |Q\T',| = |UF_, Q.| = Zle Q4] <a< |9,
a contradiction. O

ug

Remark 5.2. An alternative proof of Lemma 5.3 would be to:

o first, prove the existence of a one phase point, that is, the existence of i, xo € 0§, and § > 0,
such that Bs(xo) Ny, =0 for every j # i;

e then, argue by contradiction and consider the partition (Qy,, ..., L, U Bs(xo),...,Q, ), which
lowers the shape functional.

Lemma 5.3. Assume that problem (1.8) is achieved by an optimal partition (w1, ...,wk) € Pa(2). Then:

w; is connected for everyi=1,... k.
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Proof. Assume by contradiction that w; is not connected, and let A; be a connected component of wy
such that Aj(w1) = A1(A1). Observe that wy \ 4; is open and nonempty. Then (A1, ws, ..., wk) € Pa()

satisfies
k

A1(A1) + E A1(wi) = ca,
i=2
i.e. it is an optimal partition. On the other hand,

k k
[Ar]+ D Jwil < Jwil = a,
=2 i=1

which contradicts the previous lemma. O

Proof of Theorem 1.2 completed. By Proposition 2.2, we have the existence of (uy,...,ux) € H, which
minimizes J over the set H,, that is, the level ¢, is achieved. As it is proved in Section 4, each u; is
locally Lipschitz continuous. Therefore, by Proposition 2.1, (1.8) has a solution, and problems (1.8) and
(1.9) are equivalent. Moreover, from Lemma 5.1, we have that solutions to (1.8) are also minimizers to
(1.1), and these levels coincide. O

Proof of Theorem 1.53. The proof is a consequence of the Faber-Krahn inequality: given an open set
w C RY then \;(w) > Ai(w*), where w* is an open ball such that |w*| = |w|; moreover, equality is
achieved if and only if w is a ball.

Let (wy...,wk) € Pu(2) be an optimal partition for problem (1.8) (which exists, by Theorem 1.2).

Let B,, be an open ball such that |B,,| = |w;], for each i. If a is sufficiently small, then we can assume
that
B,,NB,, =0 Vi#j, and Ut B,, C Q.
By the Faber-Krahn inequality we have that (B,,, ..., By,) is an optimal partition and, up to translation
of the center, we may assume that w; = B,,.
We now claim that r; = ... = rg, which finishes the proof. But this is a consequence of the fact that
the function: .
r,.ore) € (ROF =S N (B,,) =\ (B 1
(r1 k) € (RT) ; 1(Br,) = Au( 1);@2

admits a unique minimizer on the set

k k
{(rl,...,rk) ER’C:Z|BH\ a} = {(rl,...,rk) cR¥: |Bl|ZTiNa}
i=1 i=1

precisely at a point where r; = ... = rg, by the Lagrange multipliers rule. O

In what follows, we present the proof of Theorem 1.4. Recall that a function u € C(Q) is foliated
Schwarz symmetric with respect to p € SV1, if u is axially symmetric with respect to the axis pR and

nonincreasing in the polar angle 6 := arccos <|x| . p> € [0, 7].
x

Proof of Theorem 1.4. Let (w1, ws) be a solution of (1.1) with corresponding eigenfunctions uy, us. Then,
consider wj and w; the cap symmetrization of w; and we, with respect e and —e, respectively. Then
(Wi, w3) € Pu(2) and, since A\ (w]) < Aq(w;), for i = 1,2, see [3, Section 7.5], then (w},w;) solves (1.1).
Moreover, the positive first eigenfunctions in wj and w3 are foliated Schwarz symmetric with respect to
e and —e, respectively. O

A. AUXILIARY RESULTS

A.1. Deformations. Here we collect some results regarding the deformations used in the paper. This
type of deformation appears in the context of multiphase optimal shape problems without the volume
constraints. We refer the reader to [18, 19, 20]. Recall the notation Q, := {x € Q| u(x) # 0}.

Lemma A.1. Let u € L*(Q) with ut # 0. Then, for all p € L*(2),

1 1 2t
/u+so+ct2 el ast— o0t
Q

(A1) = F
lwEte)*l3  llutlz ot

where ¢ > 0 depends only on |[u™||2, as t — 0F.
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Proof. Observe that
u? % 2tup + 22
I(utto)tll5  lut]3 1w £ to) H3 lut |3

2
1 I f{u>0}ﬁQ¢ ur = f{uits&>0}ﬂﬂ¢

2 2 2 2
B f{u>0}ﬁﬂ¢ = f{uitwo}mm, u”F 2t f{uitga>0}ﬂﬂ¢, up —1 f{uiw>o}mm ®
a [[(u £ o) 13 lut]3

2 2 2 2
_ f{0<ugzpw}m{i¢<o} un = f{q:tga<u<0}ﬁ{j:<p>0} u®—t f{uit4p>0}ﬂQ¢, ¥
l[(w = to) * I3 lut]3

f{uittp>0}ﬁQ¢ up

F 2t
[I(w = t0) T3 lut |3
Y f{u>0}ﬁQ¥, u ot f{uit@o}nm up — f{u>O}F‘IQ¢ up o2 o2
[[(u = ) 713 3 [[(w = o) 713 [lut]3
2t / ¥ 2112 +
=F—— [ uT o+t e ast—07. O
lutl2 Jo ?
Lemma A.2. Let uy,...,ur, € L*(Q) be nonnegative functions such that u; - u; = 0 for all i # j,
luillce =1 for alli = 1,...,k, and ¢ € C(Q) be a nonnegative function. Consider, for t > 0 small,
the deformation
y S . (ur —tp)*
A2 = = —— .
(A.2) Ut (Ul,taUQ,ta ,Uk,t) <||(U1 _ tap)+||2’u2’ ) Uk
Then:

i) / fa;{t =1 for every i;
Q
i) Qa,, C Qu, foralli>1;
W) Uiy - U =0 fori # j.

Proof. Tt is obvious that i) holds and iii) is a consequence of ii). Regarding ii), observe that

x ¢ Qy, = Ure(x)=0. O
Recall that, for uq,...,uy such that u; - u; = 0 for all ¢ # j, we denote:
U; = U; — Z uj.
J#i

Lemma A.3. Let ui,...,u; € L*(Q) be such that u; -uj =0 for all i # j, and u; > 0 and |||z = 1
for every i. Take A € Q, and let ¢ € C°(A) be a nonnegative function. Consider, for t > 0 small, the
deformation

(i +te)" (Ga—te)” (i —tp)”
e N (ol A (o

Up = (Ut,py .- Ukyt) =

Then:

i) / a?)t =1 for every i;
Q
i1) Qa,, € Qu, UA, and Qg, , € Qy, fori>1.
i40) Uy - Ujr =0 fori # j.
Proof. The statement i) is obviously true. Regarding ii), we have

U1 (x) +to(x) >0 = uy(x) + to(z >Zuj >0 = wui(x) >0or ¢(x)>0.
J#1
Fori>1,
U (x) —tp(z) >0 = u(z >Zu] x) +tp(x) >0 = u;(z) > 0.
J#i
Finally, for iii), since u; - u; = 0 for ¢ # j, it is obvious that @, - %;, = 0 for ¢ # j with ¢, j > 2. Now,
by contradiction, suppose that there exists x € Qg, , N Qq, , # 0, for some 7 > 1. Then
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G1(z) + te(z) > 0 and 4, (x) — to(x) > 0 <~ Zuj(x) <uy(z) +te(r) < ui(z) — Z uj(x)
j#1 J#1,i
= u;(x) > ui(x) + 2 Z uj(x) = u;i(z),
J#Li
a contradiction. Notice that for the last equality we have used that u; - u; = 0 for ¢ # j and u; > 0 for
every 4.
O

A.2. Auxiliary lemmas. We recall the following Liouville type theorem for subharmonic functions.

Proposition A.4. Assume that u,...,u, € HL (RN)NC(RYN) are nonnegative subharmonic functions
such that u; - u; = 0 in RN, Assume moreover that u,...,u; are bounded. Then all functions but
possibly one function are trivial.

Proof. The result follows directly from [38, Proposition 2.2] applied with a = 0. We observe that, even
though this case is not stated in the proposition, the proof is exactly the same. (I

The next useful inequality is used to prove the continuity of the solutions and its proof can be found
in [27, 28].

Proposition A.5. Let B, (79) C Q, u € HY(B,,(z0)) and suppose Au is a measure satisfying

(A.3) / stV / d|Au|| ds < +o0,
0 Bs(z0)
for all v € (0,rg). Then, the limit lim u exists, and we can define
P BBP(IO)
u(xo) = lim u.
P JoB,(z0)

In addition, for all r € (0,79)

ds.

(A4) ]gBT(wo)[u —u(xzg)] = C(N) /OT st=N /Bs(xo) dAu

The inequality in (A.3) is also true in the case where w € L (B, (x0)), and there exists f € L (By,(x0))
such that —Au™ < f and —Au~ < f.

In the proof of Lipschitz regularity, we make use of the Caffarelli-Jerison-Kenig Monotonicity Lemma
that we state next. For a proof of this result, we refer the reader to [16] (see also [20, 46]).

Lemma A.6 (Caffarelli-Jerison-Kenig monotonicity lemma). Let uy,uy € H} (B, (20)) N L>®(B,, (z0))
with uy - ug = 0 a.e. in Q. Suppose that, for some constant v > 0,

Auy > —y and Aug > —vy in Bpy(xo).

W(r) = i/ _VmP i/ [Vus|?
' r? B..(z0) |z — 20N 72 72 B, (z0) |z —ao|N 72 )

Then, there exists a constant C > 0 such that ¥ (r) < C for all r € (0,79/2).

Set
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