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Abstract. In this paper we discuss a class of spectral partition problems with a measure constraint,

for partitions of a given bounded connected open set. We establish the existence of an optimal open

partition, showing that the corresponding eigenfunctions are locally Lipschitz continuous, and obtain
some qualitative properties for the partition. The proof uses an equivalent weak formulation that

involves a minimization problem of a penalized functional where the variables are functions rather than

domains, suitable deformations, blowup techniques and a monotonicity formula.
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1. Introduction

In this article we study an optimal partition problem with volume and inclusion constraints, for a cost
functional depending on the first Dirichlet eigenvalue of the Laplacian. Let Ω be a bounded connected
open set of RN , for N ≥ 2. For an integer k ≥ 2 and 0 < a < |Ω|, we consider the multiphase shape
optimization problem

(1.1) inf

{
k∑

i=1

λ1(ωi)
∣∣∣ ωi ⊂ Ω are nonempty open sets for all i = 1, . . . , k,

ωi ∩ ωj = ∅ for all i ̸= j and
∑k

i=1 |ωi| = a

}
,

where λ1(·) denotes the first Dirichlet eigenvalue and | · | stands for the Lebesgue measure. The main
goal of this paper is to prove the existence of an optimal open partition to (1.1), showing also that
the corresponding eigenfunctions are locally Lipschitz continuous in Ω (see Theorem 1.2 below). The
proof uses a weak formulation that involves a minimization problem of a penalized functional where the
variables are functions rather than domains.

Fig. 1. An admissible partition (ω1, ω2) in Pa(Ω) for a certain 0 < a < |Ω| and k = 2.

Minimizing a functional with measure constraints appears in electromagnetic casting processes [21, 25].
The study of these functionals is motivated by their applications to industry and has attracted many
mathematicians, physicists, and engineers. In particular, minimization problems with volume constraint
involving the Dirichlet eigenvalues for the Laplace operator have been extensively studied by many
authors; we refer to [10, 11, 13, 14, 15] and the references therein, as well as the books [9, 30, 31, 32, 47].
Another example of an optimization problem with measure constraint, this time appearing in the context
of one-phase free boundary problems, is given by the paper by N. Aguilera-H. Alt and L. Caffarelli [1].
We point out that optimal partition problems with measure constraints can also be motivated considering
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situations where there is a limitation in several different resources; the case of cost functions depending
on Dirichlet eigenvalues is a natural generalization of the classical one phase problem, see (1.2) below.

Problem (1.1) with one phase corresponds to

(1.2) inf{λ1(ω), ω ⊂ Ω, ω open, |ω| = a}.
Let us split the discussion of such a problem between the case when Ω is a bounded domain and when
Ω = RN .

For problem (1.2) with Ω a bounded domain, due to the lack of a suitable topology, the classical
variational techniques are not appropriate to prove the existence and regularity of Dirichlet eigenvalues
problems with measure constraints. One important notion that aids in dealing with this issue is the
γ-convergence, introduced by G. Dal Maso and U. Mosco in [22, 23]. This type of convergence allowed
G. Buttazzo and G. Dal Maso in [15, Example 2.6] to produce the first and classical existence result
(actually, the authors prove it in a very general situation which includes the minimization of λk). The
authors prove that there exists a minimizer to (1.2) in the class of quasi-open sets. Such a class of sets is,
in fact, the largest family for which the Dirichlet eigenvalues of the Laplacian problem is still well-posed
and inherits a strong maximum principle. For more details on quasi-open sets, see [9, Chapter 4].

To obtain open optimal sets is more challenging than having quasi-open ones (actually, there are
even situations where an open solution does not exist; see, for instance, [29, Theorem 3.11]). Then, the
fundamental question is to understand whether and when a solution has additional regularity properties.
In [6], T. Briançon, M. Hayouni and M. Pierre prove the existence of an open solution ω to (1.2) when Ω is
bounded, establishing at the same time locally Lipschitz regularity for the corresponding eigenfunctions.
An important part of the strategy in [6] is to take a solution ū to the problem

inf

{∫
Ω

|∇u|2 : u ∈ H1
0 (Ω),

∫
Ω

u2 = 1, |{u ̸= 0}| ≤ a

}
and show that it is also a minimizer of the penalized functional

(1.3) J(u) =

∫
Ω

|∇u|2 + λa

(
1−

∫
Ω

u2
)+

+m(|{u ̸= 0}| − a)+, where λa :=

∫
Ω

|∇ū|2,

for m sufficiently large. In the end, the authors show the equivalence between these two problems, and
the equivalence between (1.2) and

(1.4) min{λ1(ω) +m(|ω| − a)+, ω ⊂ Ω open}
for large m > 0. Then, T. Briançon and J. Lamboley, in [7], prove that any open solution ω∗ has a locally
finite perimeter and that, up to a negligible set, ∂ω∗ ∩Ω is analytic. Finer results about the singular set
are shown in [37] (which deals with a more general vectorial case).

Remark 1.1. We observe that [6] also deals with Dirichlet energies related to problems of type −∆u = f ,
u ∈ H1

0 (ω). The regularity of the free boundary for such optimization problems is addressed in [5] by
T. Briançon. When the operator is of divergence type, M. Hayouni (see [29]) shows the existence and
Lipschitz continuity under the assumption that the state function is positive by increasing the admissible
set and regularizing the volume constraint, respectively. We observe that, for a problem like (1.2) with
eigenvalues of a divergence-type operator, E. Teixeira and S. Snelson obtain, in [42], Hölder regularity
of the eigenfunctions; they prove this when the diffusion coefficient is close, in a suitable sense, to the
identity. The authors in [29, 42] use different approaches. Finally, E. Russ, B. Trey and B. Velichkov
in [41] perform a complete study of problem (1.2) for eigenvalues of elliptic operators with drift.

The study of the one phase problem (1.2) with Ω = RN corresponds to the problem appearing in the
19th century in the monograph [40]. By the Faber-Krahn inequality [26, 34], it is classical to show that
the ball of volume a is the minimizer of (1.2). For the minimization problem of the second eigenvalue,
it is known that the solution is a union of two disjoint balls with equal measure, by the Hong-Krahn-
Szegö inequality [33, 35]. Using different strategies, D. Bucur in [8] and, more or less simultaneously,
D. Mazzoleni and A. Pratelli in [36] obtain a general existence result in the whole space RN for the
minimization of the k-th eigenvalue with a prescribed measure in the class of quasi-open sets. For more
details on the spectral problem see [31, Chapters 2 & 3].

Concerning now the multiphase case (1.1), our work is, up to our knowledge, the first to treat the case
when Ω is a bounded set. There are, however, related problems, which we now describe. When Ω = RN

it is easy to check, again by Faber-Krahn inequality, that the solution is a union of k disjoint balls (see for

instance the proof of Theorem 1.3 below). If, instead, one is minimizing Lℓ(ω1, . . . , ωk) =
∑k

i=1 λℓ(ωi),
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for ℓ ≥ 3 then, up to our knowledge, nothing is known (for ℓ = 2, the solution is a union of 2k disjoint
balls).

Observe that, by a scaling argument (reasoning, for instance, as in [47, Proposition 6.3]), such problems
are equivalent to

(1.5) min

{
k∑

i=1

λℓ(ωi) +m|ωi| : ωi ⊂ RN , ωi open, ωi ∩ ωj = ∅ for i ̸= j

}
,

for some m > 0. A similar problem but with partitions contained in a bounded domain Ω is studied in
[12] by D. Bucur and B. Velichkov. More precisely, the authors treat the following minimization problem

(1.6) min

{
k∑

i=1

λℓ(ωi) +m|ωi| : ωi ⊂ Ω, ωi quasi-open, ωi ∩ ωj = ∅ for i ̸= j

}
,

where m > 0, Ω is a given bounded open set. Notice that, for m > 0 sufficiently large, the solution
will be a partition of Ω with an empty region and the sets ωi will not cover the whole Ω. Hence, the
geometry of the partitions in [12] is similar to the geometry of the partitions in Pa(Ω). The authors
prove qualitative properties for an optimal partition, such as inner density estimates, finite perimeter
and absence of triple points,among others. For ℓ = 1, 2, they also show the existence of open minimizers.
A complete study of the regularity of the free boundary of optimal sets is obtained for ℓ = 1 in [24,
Corollary 1.3]. For results in the special case N = 2 and numerical simulations, see [4].

We emphasize that, when Ω is bounded, problems (1.1) and (1.6) for ℓ = 1 are not equivalent (scaling
arguments no longer work), and it seems that some deformation arguments used in (1.6) do not provide
directly useful information for (1.1), due to the a > 0 in our measure constraint.

Observe that, when a = |Ω|, problem (1.2) becomes a spectral partition problem without volume
constraint, namely

(1.7) inf

{
k∑

i=1

λ1(ωi)
∣∣∣ ωi ⊂ Ω are nonempty open sets for all i,

ωi ∩ ωj = ∅ for all i ̸= j and Ω = ∪k
i=1ωi

}
.

Combining the results from [17, 19] (see also [45, Section 8]), it is known that optimal partitions exists,
and the free boundary ∪i∂ωi is, up to a singular set of lower dimension, regular. Finer results for
the singular set are proved in the recent paper [2], namely that the (N − 2)–Hausdorff dimension of
the singular set is finite, together with a stratification result. The case of higher eigenvalues has been
addressed in [39] (see also references therein).

To conclude this literature review, we refer to the papers [43, 44], where the authors consider the
same cost functional as (1.1), with a distance constraint between elements of each partition (namely
dist(ωi, ωj) ≥ r for every i ̸= j) instead of a measure constraint.

1.1. Statement of the main results and structure of the paper. As already mentioned, the main
goal of this paper is to prove the existence of (open) minimizers to (1.1), together with the local Lipschitz
continuity of the corresponding eigenfunctions. For that, it is convenient to relax the measure constraint,
dealing with

(1.8) ca = inf
(ω1,...,ωk)∈Pa(Ω)

k∑
i=1

λ1(ωi),

where

Pa(Ω) :=

{
(ω1, . . . , ωk)

∣∣∣ ωi ⊂ Ω are nonempty open sets for all i,

ωi ∩ ωj = ∅ for all i ̸= j and
∑k

i=1 |ωi| ≤ a

}
.

In this paper we do not use the notion of γ-convergence of quasi-open sets; instead, one important
feature to study the existence and regularity of the solutions in this scenario is the equivalence between
optimal partition problems and minimization problems involving a state functional . We introduce a
weak formulation that involves a cost functional, where the variables are functions rather than domains,
namely

(1.9) c̃a = inf
(u1,...,uk)∈Ha

J(u1, . . . , uk),

3



where

J(u1, . . . , uk) :=

k∑
i=1

∫
Ω

|∇ui|2

and

Ha :=
{
(u1, . . . , uk)

∣∣∣ ui ∈ H1
0 (Ω) and

∫
Ω

u2i = 1 for every i, ui · uj ≡ 0 for i ̸= j,

k∑
i=1

|Ωui
| ≤ a

}
,

with Ωui
:= {x ∈ Ω | ui(x) ̸= 0} for all i ∈ {1, . . . , k}.

Our main result is the following.

Theorem 1.2. The problem (1.8) admits a solution. Moreover:

i) Given any optimal partition (ω1, . . . , ωk) ∈ Pa(Ω), then each ωi is connected and
∑k

i=1 |ωi| =
a. Therefore, the problems (1.1) and (1.8) have the same solutions. In addition, if ui is a first
eigenfunction associated with ωi, then ui is locally Lipschitz continuous in Ω.

ii) Problems (1.8) and (1.9) are equivalent in the following sense:
a) ca = c̃a;
b) if (u1, . . . , uk) ∈ Ha is an optimal solution of (1.9) and Ωui := {ui ̸= 0}, then (Ωu1 , . . . ,Ωuk

) ∈
Pa(Ω) solves (1.8);

c) if (ω1, . . . , ωk) ∈ Pa(Ω) is an optimal partition for (1.8) and ui is a first eigenfunction, L2-
normalized, associated to the set ωi, then (u1, . . . , uk) ∈ Ha is a minimizer for (1.9).

We prove the existence of an optimal partition by exploiting the equivalence between the problems
(1.8) and (1.9), which plays a crucial role in overcoming technical difficulties to treat (1.8) directly.
For instance, by applying the direct method of calculus of variations to (1.9), we can easily prove the
existence of minimizers. Even though the sets Ωui

are quasi-open, we do not use this fact directly in
this paper and the concept of γ-convergence of quasi-open sets; instead, we notice that the continuity
of minimizers is a fundamental property in proving the equivalence between the problems. This is the
content of Proposition 2.1 and Proposition 2.2.

In order to prove the continuity of minimizers, we adapt the techniques presented in [6]. However,
several difficulties appear due to the fact we are dealing with partitions instead of only one set. Firstly,
the generalization of (1.3) that works in our scenario is:

Jµ(u1, . . . , uk) :=

k∑
i=1

∫
Ω

|∇ui|2∫
Ω

u2i

+ µ

[
k∑

i=1

|Ωui
| − a

]+
, for (u1 . . . , uk) ∈ H,

where

H :=
{
(u1, . . . , uk) ∈ H1

0 (Ω;Rk)
∣∣∣ ui ̸= 0 ∀i, ui · uj ≡ 0 ∀i ̸= j

}
.

In fact, any tentative of producing a functional more similar to the one in (1.3) would result in products of

the type Πi ̸=j

∫
Ω
u2i
∫
Ω
|∇uj |2 and

(
1−Πk

i=1

∫
Ω
u2i
)+

, which do not seem easy to deal with. In particular,
the latter product prevents us from concluding ∥ui∥2 = 1, i = 1, . . . , k, for the minimizes of Jµ. To extract
information from this new penalized energy, we rely on some deformation arguments from [18, 19, 20] (see
Appendix A). These were introduced for the study of the spectral partition without volume constraints,
like (1.7) above. In the context of problem (1.7), these deformations provide that any solution should
satisfy a set of inequalities (namely, they should belong to the class Sλ1,...,λk

, see (3.8) below). Due
to the presence of an empty region (related to the fact that a < |Ω|), in our context, we obtain more
involved inequalities, see Proposition 3.2 below, which is the key result in our paper.

Throughout Section 4, where we prove Lipschitz continuity, we use the continuity of the minimizers
proved in Section 3, namely in the proof of Proposition 4.4. For the proof of Lipschitz continuity,
we were not able to apply directly the ideas in [6] to our framework. In our case, we proceed as in
[18, 19, 20] by using powerful tools such as blow-up methods, the Caffarelli-Jerison-Kenig monotonicity
formula, suitable inequalities obtained via deformations (Proposition 3.2), and some properties of the
class Sλ1,...,λk

mentioned before.

In the next result, we characterize the minimizers of (1.1), in the case we have enough space inside Ω.

Theorem 1.3. There exists ā = ā(Ω, N, k) such that, for a < ā, then any solution of (1.1) is a partition
made of k disjoint open balls, all with the same radius.
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Finally, for the case with k = 2, we prove the existence of an optimal partition that inherits some
symmetry from the box Ω.

Theorem 1.4. Consider (1.1) with k = 2, suppose Ω is a ball or an annulus centered at the origin
and fix a unit vector e. Then there exists an optimal partition (ω1, ω2) for (1.1), with corresponding
nonnegative eigenfunctions u1, u2, such that:

a) ω1 and ω2 are axially symmetric with respect to e;
b) u1 and u2 are foliated Schwarz symmetric with respect to e and −e, respectively.

This paper is structured as follows: Section 2 is devoted to the equivalence between the minimization
problems (1.8) and (1.9) under the assumption that minimizers are continuous (which will be proved
later). Also, we prove the existence of the minimizers to (1.8) and (1.9) and define a penalized functional.
In Section 3, we introduce some properties for the class Sλ1,...,λk

and show that the minimizers of (1.9)
are bounded and continuous functions. Section 4 is dedicated to establishing the Lipschitz continuity for
the corresponding eigenfunctions. In Section 5, we introduce the proofs of the main results. In Appendix
A, we present some properties for some classes of deformations and gather some auxiliary results that
are used in the manuscript.

To conclude, we point out that our strategy based on variations is flexible and can be applied in other
contexts; a work regarding the study of (1.1) with eigenvalues associated to divergence type operators
is currently in preparation.

2. Preliminaries and existence of minimizers for the weak formulation

In this part, we show the existence of minimizers to (1.9) and introduce a key step for the proof
of Theorem 1.2, namely the equivalence of problem (1.9) with a penalized version Jµ defined below.
We start by showing the equivalence (assuming that the minimizers are continuous functions) between
problems (1.8) and (1.9). It is worth highlighting that throughout this paper, for an open set ω ⊂ Ω and
a function u : ω → R, we also denote by u its extension to Ω as being zero outside ω.

Proposition 2.1. It holds that c̃a ≤ ca. Moreover, if there exists (ū1, . . . , ūk) ∈ Ha a minimizer to
(1.9) and ū1, . . . , ūk are continuous in Ω, then (Ωū1 , . . . ,Ωūk

) ∈ Pa(Ω) is a minimizer of the functional
in (1.8), each ūi is a first Dirichlet eigenfunction in Ωūi

and c̃a = ca.

Proof. We start by choosing a partition (ω1, . . . , ωk) ∈ Pa(Ω). For each i ∈ {1, . . . , k}, consider ui the first
(positive) Dirichlet eigenfunction corresponding to ωi ⊆ Ω, normalized in L2(ωi). Then (u1, . . . , uk) ∈ Ha

and

c̃a ≤
k∑

i=1

∫
Ω

|∇ui|2 =

k∑
i=1

∫
ωi

|∇ui|2 =

k∑
i=1

λ1(ωi).(2.1)

Applying the infimum in (2.1) over the set Pa(Ω), we get c̃a ≤ ca.
Now, assume there exists (ū1, . . . , ūk) ∈ Ha which solves the minimization problem (1.9), and that

ū1, . . . , ūk are continuous in Ω. Observe that, for each i, Ωūi
= {ūi ̸= 0} is an open set and that∫

Ω
|∇ūi|2 =

∫
Ωūi

|∇ūi|2 ≥ λ1(Ωūi
) and (Ωū1

, . . . ,Ωūk
) ∈ Pa(Ω). Then

c̃a = J(ū1, . . . , ūk) =

k∑
i=1

∫
Ω

|∇ūi|2 ≥
k∑

i=1

λ1(Ωūi
) ≥ ca.

Then c̃a = ca and ca is achieved. □

Therefore, in order to prove the main result of this paper, namely Theorem 1.2, it is sufficient to
prove:

(C1) There exists a minimizer (ū1, . . . , ūk) ∈ Ha to (1.9).

(C2) If (ū1, . . . , ūk) ∈ Ha is a minimizer to (1.9), then each ūi is locally Lipschitz continuous in Ω.

The first condition is proved next in Proposition 2.2, while the second is shown in Sections 3 and 4.

Proposition 2.2. The infimum c̃a is achieved, that is, there exists (ū1, . . . , ūk) ∈ Ha such that

c̃a = J(ū1, . . . , ūk) ≤ J(u1, . . . , uk) for all (u1, . . . , uk) ∈ Ha.
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Proof. It is clear that 0 ≤ c̃a <∞. Let (u1,n, . . . , uk,n)n∈N ⊂ Ha be a minimizing sequence for J and we
may suppose that

(2.2) c̃a + 1 ≥ J(u1,n, . . . , uk,n) =

k∑
i=1

∫
Ω

|∇ui,n|2 for all n.

Therefore, for all i = 1, . . . , k, the sequences (ui,n)n∈N are bounded in H1
0 (Ω) and there exists ūi ∈ H1

0 (Ω)
such that, up to subsequences, as n→ ∞,

ui,n → ūi weakly in H1
0 (Ω), strongly in L2(Ω), a.e. in Ω.

Then∫
Ω

ū2i = lim
n→∞

∫
Ω

u2i,n = 1 for every i, |ūi(x)|2|ūj(x)|2 = lim
n→∞

|ui,n(x)|2|uj,n(x)|2 = 0 a.e. x in Ω, i ̸= j

and, by applying Fatou’s Lemma, we obtain

|Ωūi
| =

∫
Ω

χΩūi
(x) ≤

∫
Ω

lim inf
n→∞

χΩui,n
(x) ≤ lim inf

n→∞

∫
Ω

χΩui,n
(x) = lim inf

n→∞
|Ωui,n

|.

Thus,
k∑

i=1

|Ωūi | ≤ lim inf
n→∞

k∑
i=1

|Ωui,n | ≤ a.

Therefore (ū1, . . . , ūk) belongs to Ha and so

c̃a ≤ J(ū1, . . . , ūk) ≤ lim inf
n→∞

J(u1,n, . . . , uk,n) = c̃a,

which finishes the proof. □

Given µ > 0, define the penalized functional Jµ : H → R by

Jµ(u1, . . . , uk) :=

k∑
i=1

∫
Ω

|∇ui|2∫
Ω

u2i

+ µ

[
k∑

i=1

|Ωui
| − a

]+
, for (u1 . . . , uk) ∈ H,

where

H :=
{
(u1, . . . , uk) ∈ H1

0 (Ω;Rk)
∣∣∣ ui ̸= 0 ∀i, ui · uj ≡ 0 ∀i ̸= j

}
.

Proposition 2.3. Let (ū1, . . . , ūk) ∈ Ha be a minimizer of (1.9) and take µ >

(
2(k−1)/2 c̃a
N |B1|1/N

a
2−N
2N

)2

.

Then

(2.3)

k∑
i=1

∫
Ω

|∇ūi|2 ≤ Jµ(u1, . . . , uk)

for all (u1, . . . , uk) ∈ H. In particular, J and Jµ have a common minimizer.

Proof. Let u1, . . . , uk ∈ H1
0 (Ω)\{0} such that ui ̸= 0 for all i, ui ·uj = 0 for all i ̸= j and

∑k
i=1 |Ωui | ≤ a.

Since
(

u1

∥u1∥2
, . . . , uk

∥uk∥2

)
∈ Ha and (ū1, . . . , ūk) is a minimizer of (1.9),

(2.4)

k∑
i=1

∫
Ω

|∇ūi|2 ≤
k∑

i=1

∫
Ω
|∇ui|2∫
Ω
u2i

.

By the compact embedding of H1
0 (Ω) into L

2(Ω) and reasoning exactly as in the proof of Proposition
2.2, we can find a minimizer (u1,µ, . . . , uk,µ) ∈ H of Jµ. With no loss of generality, we may assume
ui,µ ≥ 0 and ∥ui,µ∥2 = 1 for all i.

Let µ >

(
2(k−1)/2 c̃a
N |B1|1/N

a
2−N
2N

)2

. Suppose, by contradiction, that
∑k

i=1 |Ωui,µ | > a and consider the

auxiliary functions uti := (ui,µ − t)+, for t > 0. Observe that, since (u1,µ, . . . , uk,µ) ∈ H, we also have

(ut1, . . . , u
t
k) ∈ H for t > 0. Since (u1,µ, . . . , uk,µ) is a minimizer of Jµ, we get

Jµ(u1,µ, . . . , uk,µ) ≤ Jµ(u
t
1, . . . , u

t
k).
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Using the fact that
∑k

i=1 |Ωui,µ
| > a, for t > 0 sufficiently small, we obtain

k∑
i=1

∫
Ω

|∇ui,µ|2 + µ

[
k∑

i=1

|Ωui,µ
| − a

]
≤

k∑
i=1

∫
Ω
|∇(ui,µ − t)+|2∫

Ω
|(ui,µ − t)+|2

+ µ

[
k∑

i=1

|Ωut
i
| − a

]
.

By using Lemma A.1, we have

k∑
i=1

∫
Ω

|∇ui,µ|2 + µ

k∑
i=1

|{0 < ui,µ ≤ t}| ≤
k∑

i=1

∫
{ui,µ>t}

|∇ui,µ|2 + 2t

∫
Ω

ui,µ

∫
Ω

|∇(ui,µ − t)+|2 + o(t).

From the fact that ∥ui,µ∥2 = 1 for all i = 1, . . . , k, combined with the Hölder inequality, we infer that

k∑
i=1

∫
{0<ui,µ≤t}

|∇ui,µ|2 + µ

k∑
i=1

|{0 < ui,µ ≤ t}| ≤ 2t

k∑
i=1

|Ωui,µ
|1/2

∫
Ω

|∇(ui,µ − t)+|2 + o(t).

Now, we approximate ui,µ by a mollifier and apply the coarea formula with Sard’s Lemma to obtain
the inequality (through the limit) to ui,µ

k∑
i=1

∫ t

0

∫
{ui,µ=s}

(
|∇ui,µ|+

µ

|∇ui,µ|

)
dHN−1ds ≤ 2t

k∑
i=1

|Ωui,µ
|1/2

∫
Ω

|∇(ui,µ − t)+|2 + o(t).

Minimizing the function x→ x+ µx−1 over the set {x > 0} leads to

2
√
µ

k∑
i=1

∫ t

0

∫
{ui,µ=s}

dHN−1ds ≤ 2t

k∑
i=1

|Ωui,µ |1/2
∫
Ω

|∇(ui,µ − t)+|2 + o(t).

At this point, we can use the isoperimetric inequality in the term
∫
{ui,µ=s} dH

N−1 = per({ui,µ > s}),
divide the equation by t, let t→ 0 to conclude that

N |B1|1/N
√
µ

k∑
i=1

|Ωui,µ |
N−1
N ≤

k∑
i=1

|Ωui,µ |1/2
∫
Ω

|∇ui,µ|2.

Now, notice that

k∑
i=1

∫
Ω

|∇ui,µ|2 ≤ Jµ(u1,µ, . . . , uk,µ) ≤ Jµ(ū1, . . . , ūk) = J(ū1, . . . , ūk) = c̃a,

and c̃a does not depend on µ. Hence, by using Jensen’s inequality we obtain

N |B1|1/N
√
µ

(
k∑

i=1

|Ωui,µ
|

)N−1
N

≤ 2(k−1)/2 c̃a

(
k∑

i=1

|Ωui,µ
|

)1/2

.

Therefore

√
µ ≤ 2(k−1)/2 c̃a

N |B1|1/N

(
k∑

i=1

|Ωui,µ
|

) 2−N
2N

≤ 2(k−1)/2 c̃a
N |B1|1/N

a
2−N
2N ,

which contradicts the assumption on the size of µ. Hence,
∑k

i=1 |Ωui,µ | ≤ a.
Finally, we conclude that

Jµ(u1,µ, . . . , uk,µ) ≤ Jµ(ū1, . . . , ūk) =

k∑
i=1

∫
Ω

|∇ūi|2 ≤ Jµ(u1,µ, . . . , uk,µ),

where the last inequality follows from (2.4). □
7



3. Continuity of minimizers

Let (ū1, . . . , ūk) ∈ Ha be a minimizer to (1.9). Up to replacing ūi by |ūi|, we may suppose that ūi ≥ 0
in Ω for all i = 1, . . . , k. This is done throughout this paper. Then, inspired by [18, 19, 20], we set

ûi = ūi −
k∑

j=1,j ̸=i

ūj , λūi =

∫
Ω

|∇ūi|2 i = 1, . . . , k.

We start by showing that minimizers of (1.9) are bounded functions.

Proposition 3.1. Let (ū1, . . . , ūk) ∈ Ha be a (nonnegative) minimizer to (1.9). Then, for each i =
1, . . . , k, ūi satisfies

(3.1) −∆ūi ≤ λūi ūi in Ω,

in the sense of distributions. In particular, for each i = 1, . . . , k:

• ūi is a bounded function;
• ūi is defined at every x ∈ Ω, in the sense that each x is a Lebesgue point.

Proof. Let φ ∈ C∞
c (Ω) with φ ≥ 0 and set ǔt as in (A.2) for small t. Then, from Lemma A.2, ǔt ∈ Ha.

Using the fact that (ū1, . . . , ūk) ∈ Ha is a minimizer to (1.9) and (A.1), we infer that∫
Ω

|∇ū1|2 ≤
∫
Ω
|∇(ū1 − tφ)+|2

∥(ū1 − tφ)+∥22
≤
∫
Ω
|∇(ū1 − tφ)|2

∥(ū1 − tφ)+∥22
=

∫
Ω

|∇(ū1 − tφ)|2
(
1 + 2t

∫
Ω

ū1φ+O(t2)

)
=

∫
Ω

|∇ū1|2 − 2t

∫
Ω

∇ū1 · ∇φ+ 2t

∫
Ω

|∇ū1|2
∫
Ω

ū1φ+O(t2).

Dividing the inequality above by t and letting t→ 0, we obtain

(3.2)

∫
Ω

∇ū1 · ∇φ ≤ λū1

∫
Ω

ū1φ,

which implies (3.1). By classical elliptic estimates, see for instance the proof of [6, Lemma 4.2], we infer
that ū1 ∈ L∞(Ω). Similarly, we can also ensure that ūi ∈ L∞(Ω) for all i = 2, . . . , k. Finally, the
fact that every point is a Lebesgue point for each component ūi is a direct consequence of Proposition
A.5. □

The following result is crucial for everything that follows.

Proposition 3.2. Let (ū1, . . . , ūk) be a minimizer of (1.9). Then, for each i = 1, . . . , k, and for any
nonnegative function φ ∈ H1

0 (Ω) such that supp(φ) ⊆ Br(x0) ⋐ Ω,
(3.3)〈
−∆ûi − λūi ūi +

∑
j ̸=i

λūj ūj , φ

〉
≥ −C

(
rN−1 + ∥φ∥1 + r∥φ∥22 + r∥∇φ∥22 + r∥φ∥1∥∇φ∥22 + r∥φ∥22∥∇φ∥22

)
,

where C > 0 depends only on c̃a, N , ∥ū1∥∞, . . . , ∥ūk∥∞ and a.

Proof. Consider

ũt = (ũ1,t, . . . , ũk,t) =

 (û1 + tφ)
+∥∥∥(û1 + tφ)
+
∥∥∥
2

,
(û2 − tφ)

+∥∥∥(û2 − tφ)
+
∥∥∥
2

, . . . ,
(ûk − tφ)

+∥∥∥(ûk − tφ)
+
∥∥∥
2

 ,

with t ∈ (0, 1) sufficiently small. By using (2.3) and Lemma A.3, we obtain

(3.4)

k∑
i=1

∫
Ω

|∇ūi|2 ≤
∫
Ω
|∇(û1 + tφ)+|2

∥(û1 + tφ)+∥22
+

k∑
i=2

∫
Ω
|∇(ûi − tφ)+|2

∥(ûi − tφ)+∥22
+ µ|Ωφ|.

Since φ ≥ 0, 0 < t < 1, employing Lemma A.1, we get

1

∥(û1 + tφ)+∥22

∫
Ω

|∇(û1 + tφ)+|2 ≤
∫
Ω

|∇(û1 + tφ)+|2
(
1− 2t

∫
Ω

ū1φ+ ct2∥φ∥22
)
,

and
1

∥(ûi − tφ)+∥22

∫
Ω

|∇(ûi − tφ)+|2 =

∫
Ω

|∇(ûi − tφ)+|2
(
1 + 2t

∫
Ω

ūiφ+ ct2∥φ∥22
)
,
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for all i = 2, . . . , k. In addition, since 0 < t ≤ 1, we have that∫
Ω

|∇(û1 + tφ)+|2 ≤
∫
Ω

|∇(û1 + tφ)|2

=

k∑
j=1

∫
Ω

|∇ūj |2 + 2t

∫
Ω

∇ū1 · ∇φ− 2t

k∑
j=2

∫
∇ūj · ∇φ+ t2

∫
Ω

|∇φ|2

≤
k∑

j=1

∫
Ω

|∇ūj |2 + t

∫
Ω

|∇ū1|2 + t

∫
Ω

|∇φ|2 + t

k∑
j=2

∫
Ω

|∇ūj |2 + t

k∑
j=2

∫
Ω

|∇φ|2 + t2
∫
Ω

|∇φ|2

≤
k∑

j=1

∫
Ω

|∇ūj |2 + t

k∑
j=1

∫
Ω

|∇ūj |2 + (k + 1)t

∫
Ω

|∇φ|2,

and, arguing similarly,∫
Ω

|∇(ûi − tφ)+|2 ≤
k∑

j=1

∫
Ω

|∇ūj |2 + t

k∑
j=1

∫
Ω

|∇ūj |2 + (k + 1)t

∫
Ω

|∇φ|2,

for each i = 2, . . . , k. Hence, since
∑k

i=1

∫
Ω
|∇ūi|2 is bounded, λūi

=
∫
Ω
|∇ūi|2, and ū1 is bounded in

L∞ from Proposition 3.1, we obtain

1

∥(û1 + tφ)+∥22

∫
Ω

|∇(û1 + tφ)+|2 ≤
∫
Ω

|∇(û1 + tφ)+|2 +O(t2)∥φ∥22∥∇φ∥22 + ct∥φ∥1

− 2tλū1

∫
Ω

ū1φ+ ct2∥φ∥1∥∇φ∥22 + ct2∥φ∥22,

and

1

∥(ûi − tφ)+∥22

∫
Ω

|∇(ûi − tφ)+|2 ≤
∫
Ω

|∇(ûi − tφ)+|2 +O(t2)∥φ∥22∥∇φ∥22 + ct∥φ∥1

+ 2tλūi

∫
Ω

ūiφ+ ct2∥φ∥1∥∇φ∥22 + ct2∥φ∥22.

It follows from the fact |∇(û1 + tφ)+|2 +
∑k

i=2 |∇(ûi − tφ)+|2 = |∇(û1 + tφ)|2, combined with (3.4),
Lemma A.3 and the estimates above that

0 ≤ 2t

∫
Ω

∇û1 · ∇φ+ t2
∫
Ω

|∇φ|2 − 2tλū1

∫
Ω

ū1φ+ 2t

k∑
i=2

λūi

∫
Ω

ūiφ+ ct2∥φ∥1∥∇φ∥22

+ ct∥φ∥1 + ct2∥φ∥22∥∇φ∥22 + ct2∥φ∥22 + µ|Ωφ|.
Hence, by dividing the inequality above by 2t, we obtain

−
∫
Ω

∇û1 · ∇φ+ λū1

∫
Ω

ū1φ−
k∑

i=2

λūi

∫
Ω

ūiφ ≤ ct∥∇φ∥22 + ct∥φ∥1∥∇φ∥22 + c∥φ∥1

+ ct∥φ∥22∥∇φ∥22 + ct∥φ∥22 + µ
|Ωφ|
t
.

By choosing t = r and using the fact that |Ωφ| ≤ |Br| ≤ crN , we conclude that〈
∆û1 + λū1

ū1 −
k∑

i=2

λūi
ūi, φ

〉
≤ C

(
rN−1 + ∥φ∥1 + r∥φ∥22 + r∥∇φ∥22 + r∥φ∥1∥∇φ∥22 + r∥φ∥22∥∇φ∥22

)
.

Now, we do similar computations with the functions of the form

(ûi + tφ)
+∥∥∥(ûi + tφ)
+
∥∥∥
2

,
(û1 − tφ)

+∥∥∥(û1 − tφ)
+
∥∥∥
2

, . . . ,
(ûi−1 − tφ)

+∥∥∥(ûi−1 − tφ)
+
∥∥∥
2

,
(ûi+1 − tφ)

+∥∥∥(ûi+1 − tφ)
+
∥∥∥
2

, . . . ,
(ûk − tφ)

+∥∥∥(ûk − tφ)
+
∥∥∥
2

,

to obtain〈
∆ûi + λūi ūi −

k∑
j ̸=i

λūj ūj , φ

〉
≤ C

(
rN−1 + r∥φ∥1 + r∥φ∥22 + r∥∇φ∥22 + r∥φ∥1∥∇φ∥22 + r∥φ∥22∥∇φ∥22

)
,

for every i = 1, . . . , k. □
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In what follows, we present a rescaled version of the previous proposition that will be useful later on.

Proposition 3.3. Let (ū1, . . . , ūk) be a minimizer of (1.9). Consider R > 0, x0 ∈ Ω and a sequence
(rn)n∈N such that BrnR(x0) ⋐ Ω. For each i = 1, . . . , k, define

ui,n(x) = ūi(x0 + rnx).

Then, given a nonnegative φ ∈ H1
0 (Ω) with supp(φ) ⊆ BR, we have〈

−∆ûi,n − r2nλūi ūi,n + r2n
∑
j ̸=i

λūj ūj,n, φ

〉
≥ −CrnR

(
RN−2 + rnR

−1∥φ∥1 + r2n∥φ∥22+(3.5)

+∥∇φ∥22 + rNn ∥φ∥1∥∇φ∥22 + rNn ∥φ∥22∥∇φ∥22
)
,

in the distributional sense, where the constant C comes from Proposition 3.2 and does not depend on n.

Proof. Set φ(x) = φ̃(x0 + rnx), so that supp(φ̃) ⊂ BrnR(x0), and

∥φ̃∥1 = rNn ∥φ∥1, ∥φ̃∥22 = rNn ∥φ∥22, ∥∇φ̃∥22 = rN−2
n ∥∇φ∥22.

Now, for y = x0 + rnx we have,∫
BR

∇ûi,n(x) · ∇φ(x)dx = r2n

∫
BR

∇ûi(x0 + rnx) · ∇φ̃(x0 + rnx)dx

=
1

rN−2
n

∫
BrnR(x0)

∇ûi(y) · ∇φ̃(y)dy.

Hence, from Proposition 3.2 we obtain∫
BR

∇ûi,n(x) · ∇φ(x)dx ≥ 1

rN−2
n

∫
BrnR(x0)

λūi
ūiφ̃dy −

1

rN−2
n

∑
j ̸=i

∫
BrnRdy(x0)

λūj
ūjφ̃

− C

rN−2
n

[
(rnR)

N−1 + ∥φ̃∥1 + rnR∥φ̃∥22 + rnR∥∇φ̃∥22
]

− C

rN−2
n

[
rnR∥φ̃∥1∥∇φ̃∥22 + rnR∥φ̃∥22∥∇φ̃∥22

]
=

1

rN−2
n

∫
BrnR(x0)

λūi
ūi,n

(
x− x0
rn

)
φ

(
x− x0
rn

)
dy

− 1

rN−2
n

∑
j ̸=i

∫
BrnR(x0)

λūj
ūj,n

(
x− x0
rn

)
φ

(
x− x0
rn

)
dy

− CrnR
N−1 − C

rN−2
n

(
rNn ∥φ∥1 + rN+1

n R∥φ∥22 + rN−1
n R∥∇φ∥22

)
− C

rN−2
n

(
r2N−1
n R∥φ∥1∥∇φ∥22 + r2N−1

n R∥φ∥22∥∇φ∥22
)

= r2n

∫
BR

λūi ūi,nφdx− r2n
∑
j ̸=i

∫
BR

λūj ūj,nφdx− CrnR
N−1 − Cr2n∥φ∥1

− Cr3nR∥φ∥22 − CrnR∥∇φ∥22 − CrN+1
n R∥φ∥1∥∇φ∥22 − CrN+1

n R∥φ∥22∥∇φ∥22,
which implies (3.5). □

The next proposition shows the intuitive fact that the information provided by deformations is stronger
when the test functions φ do not alter the measure of the positive sets.

Proposition 3.4. Let i ∈ {1, . . . , k} and B ⊂ Ω be an open ball such that |B ∩ {ûi = 0}| = 0. Then

(3.6) −∆ûi ≥ λūi
ūi −

k∑
j=1,j ̸=i

λūj
ūj in B.

Proof. Without loss of generality, we prove (3.6) for i = 1. Let φ ∈ C∞
c (B) be a nonnegative function

and define, once again, the auxiliary deformations

ũt = (ũ1,t, . . . , ũk,t) =

 (û1 + tφ)
+∥∥∥(û1 + tφ)
+
∥∥∥
2

,
(û2 − tφ)

+∥∥∥(û2 − tφ)
+
∥∥∥
2

, . . . ,
(ûk − tφ)

+∥∥∥(ûk − tφ)
+
∥∥∥
2

 ,
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with t ∈ (0, 1) sufficiently small. Unless stated, all the L2 norms are taken in Ω. From Lemma A.1, we
obtain

(3.7)
1

∥(û1 + tφ)+∥22
= 1− 2t

∫
B

ū1φ+ o(t) and
1

∥(ûi − tφ)+∥22
= 1 + 2t

∫
B

ūiφ+ o(t).

By Lemma A.3, it follows ũi,t · ũj,t ≡ 0 for all i ̸= j and, by the assumption |B ∩ {ûi = 0}| = 0, we have∑k
i=1 |Ωūi ∩B| = |B|. Therefore

k∑
i=1

|Ωũi,t | =
k∑

i=1

|Ωũi,t ∩B|+
∑k

i=1
|Ωũi,t ∩ (Ω \B)| ≤ |B|+

k∑
i=1

|Ωūi ∩ (Ω \B)|

=

k∑
i=1

|Ωūi
∩B|+

k∑
i=1

|Ωūi
∩ (Ω \B)| =

k∑
i=1

|Ωūi
| ≤ a.

By combining (3.7), the identity |∇(û1 + tφ)+|2 +
∑k

i=2 |∇(ûi − tφ)+|2 = |∇(û1 + tφ)|2, the fact that
φ is supported in B and (û1 + tφ)+ = ū1 in Ω \B, (ûi − tφ)+ = ūi in Ω \B for i > 1, we obtain

J (ũ1,t, . . . , ũk,t) =

∫
B

|∇(û1 + tφ)|2 +
k∑

i=1

∫
Ω\B

|∇ūi|2 − 2t

∫
B

ū1φ

∫
B

|∇(û1 + tφ)+|2

− 2t

∫
B

ū1φ

∫
Ω\B

|∇ū1|2 + 2t

k∑
i=2

∫
B

ūiφ

∫
B

|∇(ûi − tφ)+|2 + 2t

k∑
i=2

∫
B

ūiφ

∫
Ω\B

|∇ūi|2 + o(t).

Since ∫
B

|∇(û1 + tφ)+|2 →
∫
B

|∇ū1|2 and

∫
B

|∇(ûi − tφ)+|2 →
∫
B

|∇ūi|2 for all i > 1

as t approaches 0, we deduce that

J (ũ1,t, . . . , ũk,t) =2t

∫
B

∇û1 · ∇φ+

k∑
i=1

∫
B

|∇ūi|2 +
k∑

i=1

∫
Ω\B

|∇ūi|2 − 2t

∫
B

ū1φ

∫
B

|∇ū1|2

− 2t

∫
B

ū1φ

∫
Ω\B

|∇ū1|2 + 2t

k∑
i=2

∫
B

ūiφ

∫
B

|∇ūi|2 + 2t

k∑
i=2

∫
B

ūiφ

∫
Ω\B

|∇ūi|2 + o(t)

=2t

∫
B

∇û1 · ∇φ+

k∑
i=1

∫
Ω

|∇ūi|2 − 2t

∫
B

ū1φ

∫
Ω

|∇ū1|2

+ 2t

k∑
i=2

∫
B

ūiφ

∫
Ω

|∇ūi|2 + o(t).

At this point, we use the fact that (ū1, . . . , ūk) is a minimizer of J ; in addition, we denote λūi
:=
∫
Ω
|∇ūi|2.

By passing to the limit as t→ 0, we obtain the following inequality∫
B

∇û1 · ∇φ− λū1

∫
B

ū1φ+

k∑
i=2

λūi

∫
B

ūiφ ≥ 0,

which finishes the proof. □

At this point, we introduce some auxiliary results. For w ∈ H1
0 (Ω), let λw :=

∫
Ω

|∇w|2. Generalizing

the notation given before, for (u1, . . . , uk) ∈ H1
0 (Ω;Rk) define

ûi := ui −
∑
j ̸=i

uj , i = 1, . . . , k.

Then, as in [18, 19, 20], given an open set A ⊂ Ω and λ1, . . . , λk > 0, set

Sλ1,...,λk
(A) :=

{
(w1, . . . , wk) ∈ H1(A;Rk) : wi ≥ 0, wi · wj = 0 if i ̸= j in A(3.8)

−∆wi ≤ λiwi, −∆ŵi ≥ λiwi −
∑
j ̸=i

λjwj in A in the distributional sense
}
.
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Lemma 3.5. Let A ⊂ Ω be an open set and λ1, . . . , λk > 0. Take (u1, . . . , uk) ∈ Sλ1,...,λk
(A) \

{(0, . . . , 0)}. Then ui ∈ C0,1
loc (A), and

−∆ui = λiui in the open set {ui > 0}.

In addition,

|{x ∈ Ω : ui(x) = 0 for i = 1, . . . , k}| = 0.

Proof. The first conclusion follows from [20, Theorem 8.3]. The last sentence is a consequence of [45,
Corollary 8.5], taking therein fi(s) := λis. □

Remark 3.6. For the problem without measure constraint (1.7) (i.e., where the partition exhausts
the whole Ω), minimizers of the associated weak formulation belong to the class Sλ1,...,λk

(Ω) for some
λ1, . . . , λk > 0, see [19, Lemma 2.1]. Therefore, Proposition 3.4 shows that, in a region where the zero
set has null measure, we are in the same situation, whereas Proposition 3.2 covers the general case. The
right hand side in (3.3) can be seen as an error term, and in some sense allows to capture the transition
from the positivity set {ui > 0} to an empty region where ui ≡ 0.

The following is a Liouville type result.

Lemma 3.7. Let (u1, . . . , uk) ∈ H1
loc(RN ) ∩ L∞(RN ) nonnegative functions such that ui · uj ≡ 0 for all

i ̸= j and

−∆uj ≤ 0, −∆ûj ≥ 0 in the distributional sense in RN , ∀ j.
Then there exists c ∈ R and i ∈ {1, . . . , k} such that ui ≡ c and uj ≡ 0 for j ̸= i.

Proof. First of all, observe that (u1, . . . , uk) ∈ S(0,...,0)(BR(0)) for every R > 0. Then, by Lemma
3.5, each ui is a continuous function. By Proposition A.4 in the appendix, since all components are
continuous, belong to H1

loc(RN ), and are bounded, we have that all components except possibly one are
trivial. Without loss of generality, assume that u2 ≡ . . . ≡ uk ≡ 0. Then, from the assumptions,

−∆u1 ≤ 0, 0 ≤ −∆û1 = −∆u1,

hence u1 is harmonic and bounded in RN , thus it is constant. □

We are ready to prove that minimizers of (1.9) are continuous functions. In particular, this shows
that Ωūi

= {ūi > 0}, i = 1, . . . , k, are open sets.

Proposition 3.8. Let U = (ū1, . . . ūk) be a minimizer of (1.9). Then each ūi is a continuous function
in Ω.

Proof. We recall that, by Proposition 3.1, each component ūi is defined at every point. Given x0 ∈ Ω,
we are going to prove the continuity of each ūi at x0. Take a sequence (xn)n∈N ⊂ Ω such that xn → x0
and set rn := |x0 − xn| → 0. We split the proof into two cases:

Case 1: Suppose that, for some n, we have |Brn(x0) ∩ {U = 0}| = 0. Then, from Propositions 3.1 and
3.4,

(ū1, . . . , ūk) ∈ Sλū1
,...,λūk

(Brn(x0)).

Then, by Lemma 3.5, we have ūi ∈ C0,1
loc (Brn(x0)). In particular, ūi is continuous at x0.

Case 2: Suppose that, for all n, |Brn(x0) ∩ {U = 0}| > 0. We introduce the auxiliary functions, for
i = 1, . . . , k,

ūi,n(x) = ūi(x0 + rnx), with x ∈ RN ,

where we are considering the extension of ūi by zero to RN \Ω. In particular, from Proposition 3.1 and
since ūi ∈ H1

0 (Ω) is nonnegative in Ω,

(3.9) −∆ūi,n ≤ λūi
r2nūi,n in RN

in the distributional sense. Note that, since ūi is bounded, we have that ūi,n is uniformly bounded in i
and n. Our aim is to show that ūi,n → 0 in L∞

loc(RN ), which proves the continuity of ūi (and shows that
ūi(x0) = 0). We split the proof of this in several steps.

Step 1. We show that, for each i = 1, . . . , k, there exist constants c1, . . . , ck ∈ R, where at most one
is nonzero, such that

(3.10) ūi,n ⇀ ci weakly in H1
loc(RN ), strongly in L2

loc(RN ) for each i = 1, . . . , k.
12



Given r < R′ < R, take 0 ≤ φ ∈ C∞
c (BR) such that φ ≡ 1 in Br and φ ≡ 0 outside BR′ . From the

definition of weak solution (with the test function ūi,nφ
2 ≥ 0) we get (since ūi,n ∈ H1(RN ))∫

BR

∇ūi,n · ∇(ūi,nφ
2) ≤

∫
BR

λūi
r2nū

2
i,nφ

2 ≤ C.

Thus, ∫
BR

|∇ūi,n|2φ2 ≤ C − 2

∫
BR

ūi,nφ∇ūi,n · ∇φ,

which implies∫
BR

|∇ūi,n|2φ2 ≤ C + 2

∫
BR

ū2i,n|∇φ|2 +
1

2

∫
BR

|∇ūi,n|2φ2 ≤ C +
1

2

∫
BR

|∇ūi,n|2φ2

and, therefore, ∫
Br

|∇ūi,n|2 ≤ C.

From the bound above and the uniformly boundedness of ūi,n, since r is arbitrary there exists ū∞ =
(ū1,∞, . . . , ūk,∞) ∈ H1

loc(RN ) ∩ L∞(RN ) such that

ūi,n ⇀ ūi,∞ weakly in H1
loc(RN ), strongly in L2

loc(RN ) for each i = 1, . . . , k.

Fix R > 0, and let n be large such that BrnR(x0) ⋐ Ω. Applying Proposition 3.3 to the functions
ūi,n, and by letting n→ ∞ in (3.5), we conclude that ûi,∞ solves

−∆ûi,∞ ≥ 0 in BR.

From the inequality above and (3.9) (by passing the limit as rn → 0), we can infer that (ū1,∞, . . . , ūk,∞) ∈
S0,...,0(BR). Since R > 0 is arbitrary, we have that (ū1,∞, . . . , ūk,∞) satisfies the assumptions in Lemma
3.7. Therefore, there exist constants c1, . . . , ck such that ūi,∞ ≡ ci, at most one constant is nonzero and
(3.10) holds true.

Step 2. We now claim that

(3.11) ūi,n → ci strongly in H1
loc(BR), ∀ i = 1, . . . , k.

In fact, by setting φ as above and using ūi,nφ
2 as a test function, we conclude that∫

BR

|∇ūi,n|2φ2 + 2

∫
BR

ūi,nφ∇ūi,n · ∇φ ≤
∫
BR

λūir
2
nū

2
i,nφ

2 → 0.

On the other hand,∫
BR

ūi,nφ∇ūi,n · ∇φ =

∫
BR

(ūi,n − ci)φ∇ūi,n · ∇φ+
1

2

∫
BR

ci∇ūi,n · ∇(φ2) → 0

by the weak convergence ūi,n ⇀ ci in H
1(BR) (which is strong in L2(BR)) and∣∣∣∣∫

BR

(ūi,n − ci)φ∇ūi,n · ∇φ
∣∣∣∣ ≤ (1

2
∥φ∥2∞∥∇φ∥22 +

1

2
∥∇ūi,n∥2L2(BR)

)
∥ūi,n − ūi,∞∥L2(BR)

yields, by the definition of φ, to

(3.12)

∫
Br

|∇ūi,n|2 → 0, ∀ 0 < r < R,

and the claim (3.11) is proved.
Step 3. Suppose, without loss of generality, that c2 = . . . = ck = 0. We show in this step that also

c1 = 0. In particular, ūi,n → 0 in L∞
loc(RN ) for every i = 1, . . . , k.

From the assumptions, we have ūi,n → 0 in H1
loc(BR) for i > 1 and, since ūi,n also satisfies (3.9),then

ūi,n → 0 in L∞
loc(RN ) by [27, Theorem 8.17]. On the other hand, since |Brn(x0) ∩ {û1 = 0}| > 0, we can

take yn ∈ Brn(x0) such that û1(yn) = 0. Write yn = x0 + rnzn ∈ Brn(x0), for some zn ∈ B1.
Now, for each large fixed n, take r ≤ rn. Consider a test function φ ∈ C∞

c (B2r(yn)), such that
0 ≤ φ ≤ 1 with φ ≡ 1 on Br(yn) and ∥∇φ∥L∞(B2r(yn)) ≤ C/r. By using (3.1) once again, we see that
each σi := ∆ūi + λūi ūi defines a positive measure. By Proposition 3.2 we infer that

σ1(Br(yn)) ≤ ⟨σ1, φ⟩ = ⟨σ1 −
∑
i>1

σi, φ⟩+
∑
i>1

⟨σi, φ⟩ ≤ CrN−1 +
∑
i>1

σi(B2r(yn)).
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Therefore, since
∫
Br(yn)

λūi ūi ≤ CrN , for all i = 1, . . . , k and r ≤ 1,

∆ū1(Br(yn)) = (∆ū1 + λū1 ū1 − λū1 ū1)(Br(yn))

≤ CrN−1 +
∑
i>1

σi(B2r(yn)) ≤ C ′rN−1 +
∑
i>1

∆ūi(B2r(yn)).

By multiplying the inequality above by r1−N and integrating from 0 to rn, we obtain∫ rn

0

r1−N∆ū1(Br(yn))dr ≤ Crn +
∑
i>1

∫ rn

0

r1−N∆ūi(B2r(yn))dr.

Now, we apply (A.4) with x0 = yn and r = rn to obtain (recall that û(yn) = 0)

C(N)−
∫
∂Brn (yn)

ū1 =

∫ rn

0

r1−N∆ū1(Br(yn))dr ≤ Crn +
∑
i>1

∫ rn

0

r1−N∆ūi(B2r(yn))dr

≤ Crn + C(N)
∑
i>1

−
∫
∂B2rn (yn)

ūi,

which leads to

(3.13) −
∫
∂B1

ū1,n(zn + x) ≤ Crn + C
∑
i>1

−
∫
∂B2

ūi,n(zn + x) → 0,

as n goes to infinity (recall that ūi,n → 0 for all i > 1). Up to a subsequence, we have zn → z∞ ∈ B1

and ū1,n(zn + x) → c1 in H1(B1) which implies strong convergence in L1(∂B1), and then

−
∫
∂B1

ū1,n(zn + x) → c1,

and hence c1 = 0, as wanted. The fact that also ū1,n → 0 in L∞
loc(RN ) is, again, a consequence of [27,

Theorem 8.17].

Finally, from the the convergence ūi,n → 0 in L∞
loc(RN ), we obtain the continuity of each ūi at x0,

since |ū1(x)− ū1(x0)| ≤ 2∥ū1,n∥L∞(B2) → 0 for all x ∈ B2rn(x0) (and also U(x0) = 0)). □

4. Lipschitz regularity of minimizers

Let U := (ū1, . . . , ūk) ∈ Ha be a minimizer of (1.9), extended by zero in RN \ Ω. Now, we introduce
two quantities related to whether a point x belongs or not to ∂Ωūi

, for some i = 1, . . . , k. Define the
multiplicity of a point x ∈ Ω as being

m(x) := #{i ; |Ωūi
∩Br(x)| > 0, for all r > 0},

and

Zℓ(U) = {x ∈ Ω ; m(x) ≥ ℓ}.
Consider the function Σ : Ω̄× (0,∞) → R defined as

Σ(x, r) :=
1

rN

∫
Br(x)

|∇U |2, for (x, r) ∈ Ω̄× (0,∞),

where |∇U |2 =
∑k

i=1 |∇ūi|
2
. In order to prove the interior local Lipschitz regularity, it is enough to show

that Σ is bounded over Ω′ × (0,∞), for every Ω′ compactly contained in Ω. So, fix such a set Ω′ and
suppose, by contradiction, that Σ is unbounded in Ω′×(0,∞). Then, there exist sequences (xn)n∈N ⊂ Ω′

and rn → 0 such that Brn(xn) ⊂ Ω and

(4.1) lim
n→∞

1

rNn

∫
Brn (xn)

|∇U |2 = +∞.

In what follows, we present two technical lemmas that will be applied mainly to the sets Zℓ. Their
proofs can be found in [20] but, for completeness, we also include them here.

Lemma 4.1. Let (xn, rn) be as in (4.1). Then, there exists a sequence r′n → 0 as n→ ∞, with (xn, r
′
n)

satisfying (4.1) and such that

(4.2)

∫
∂Br′n

(xn)

|∇U |2 ≤ N

r′n

∫
Br′n

(xn)

|∇U |2 for all n ∈ N.
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Proof. First, notice that

(4.3)
d

dr

(
1

rN

∫
Br(xn)

|∇U |2
)

=
1

rN

(∫
∂Br(xn)

|∇U |2 − N

r

∫
Br(xn)

|∇U |2
)

=:
1

rN
f(xn, r).

Hence, it is enough to find a sequence (r′n)n∈N such that (4.1) and f(xn, r
′
n) ≤ 0 holds true. Define r′n :=

inf{r ≥ rn : f(xn, r) ≤ 0}. Since Σ(xn, r) → 0 as r → ∞ and Σ(xn, rn) > 0, we infer that d
drΣ(xn, r) ≤ 0

for some r sufficiently large, hence r′n < ∞ for all n. Moreover, since Σ(xn, r
′
n) ≥ Σ(xn, rn) → ∞, we

then infer that r′n → 0. Then, up to a finite number of indices, Br′n
(xn) ⊂ Ω. Moreover, from the

definition of r′n, f(xn, r
′
n) ≤ 0, that is, (4.2) is verified. This finishes the proof. □

From the last lemma, since Σ is not bounded over Ω′ × (0,∞), then from now on we may assume the
existence of sequences (xn)n∈N ⊂ Ω′, rn → 0 satisfying (4.1) and (4.2).

Lemma 4.2. Let A ⊂ Ω̄ be such that dist(xn, A) ≤ C rn, for all n, and assume that (4.1) holds true.
Then, there exist sequences (x′n)n∈N ⊂ A and r′n → 0 such that Br′n

(x′n) ⊂ Ω and (x′n, r
′
n) satisfies (4.1)

and (4.2).

Proof. By assumption, we can find x′n ∈ A such that dist(xn, x
′
n) ≤ 2Crn. Now, set r′n := (2C + 1)rn

and observe that Brn(xn) ⊂ Br′n
(x′n) and, for all n sufficiently large, Br′n

(x′n) ⊂ Ω. Hence

(2C + 1)−N

rNn

∫
Brn (xn)

|∇U |2 ≤ 1

(r′n)
N

∫
Br′n

(x′
n)

|∇U |2 = Σ(x′n, r
′
n).

Since the left-hand side in the inequality above goes to infinity, the same holds for the right-hand side,
hence (4.1) is satisfied. By eventually changing the radii r′n (recall Lemma 4.1) we may assume without
loss of generality that (4.2) is also true. □

Remark 4.3. Notice that, for ℓ ≥ 0, if m(xn) = ℓ and dist(xn, Zℓ+1) < rn for all n, then by Lemma 4.2,
we can find sequences (x′n)n∈N ⊂ Zℓ+1 and r′n → 0 such that Br′n

(x′n) ⊂ Ω for all n, with (x′n, r
′
n) satis-

fying (4.1) and (4.2). In particular, m(x′n) ≥ ℓ+1 for all n and Ω′ ∪
(⋃

n∈NBr′n
(x′n)

)
∪
(⋃

n∈NBrn(xn)
)

is compactly contained in Ω.

Now, we aim to get a contradiction from with (4.1). We achieve this by splitting the proof into cases,
based on the quantity m(xn). We first treat the case m(xn) ≥ 2.

Proposition 4.4. Under the conditions above, suppose that, up to a subsequence, m(xn) ≥ 2 for all n.
Then (4.1) cannot hold true.

Proof. We argue by contradiction by assuming that (4.1) is satisfied. It follows from hypothesis m(xn) ≥
2, combined with the continuity of ūi, that ūi(xn) = 0, for every i = 1, . . . , k, and for all n. Set vi := ūi
and wi :=

∑k
j ̸=i ūj . Applying Proposition 3.1, we have that

−∆vi ≤ γ in Brn(xn) and −∆wi ≤ γ in Brn(xn),

in the sense of distributions, where

γ := max

λūi
∥ūi∥L∞(Ω),

k∑
j ̸=i

λūj
∥ūj∥L∞(Ω)

 .

Now, we employ Lemma A.6 in Brn(xn) ⊂ Ω to the pair (vi, wi) to conclude that(
1

r2n

∫
Brn (xn)

|∇vi|2

|x− xn|N−2

)(
1

r2n

∫
Brn (xn)

|∇wi|2

|x− xn|N−2

)
≤ C,

where C > 0 is independent of n. Since |x− xn| ≤ rn for x ∈ Brn(xn), we obtain(
1

rNn

∫
Brn (xn)

|∇vi|2
)(

1

rNn

∫
Brn (xn)

|∇wi|2
)

≤ C.

From the inequality above and (4.1), we infer the existence of only one component, say ū1, such that

(4.4)
1

rNn

∫
Brn (xn)

|∇ū1|2 → ∞,
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and

(4.5)
1

rNn

∫
Brn (xn)

|∇ūi|2 → 0,

for every i = 2, . . . , k. For the sake of clarity, we split the proof into five steps.

We introduce the blow-up sequence

Un(x) =
1

Lnrn
U(xn + rnx), for x ∈ B1,

where

L2
n :=

1

rNn

∫
Brn (xn)

|∇U |2 → ∞.

Let us denote Un = (ū1,n, . . . , ūk,n). As a consequence of the definition of Ln,∫
B1

|∇Un|2 =
1

L2
n

∫
B1

|∇U(xn + rnx)|2 =
1

L2
nr

N
n

∫
Brn (xn)

|∇U |2 = 1.(4.6)

Hence, from (4.2), we conclude that
∫
∂B1

|∇Un|2 is also bounded.

From here, we split the proof into two cases:

Case 1: Suppose that there exists a positive constant C, independent of n such that ∥Un∥L2(B1) ≤ C.

In this case, using (4.6), there exists U∞ ∈ H1(B1) such that Un ⇀ U∞ in H1(B1).

Step 1.1 (U∞ ̸≡ 0): We denote U∞ = (ū1,∞, . . . , ūk,∞). From (4.5), we get that∫
B1

|∇ūi,n|2 → 0, for every i = 2, . . . , k,

which implies ∥∇ūi,∞∥L2(B1) = 0 for every i = 2, . . . , k. Since ūi,n ·ūj,n = 0 for i ̸= j, the a.e. convergence
implies that at most one component of U∞ is nonzero. In view of the definition of Un and Proposition
3.1, we obtain

−∆ū1,n(x) =
rn
Ln

(−∆ū1(xn + rnx)) ≤
rn
Ln

λū1
ū1(xn + rnx) = r2nλū1

ū1,n(x), for x ∈ B1.

Multiplying the inequality above by ū1,n and integrating by parts, we conclude∫
B1

|∇ū1,n|2 ≤
∫
∂B1

ū1,n
∂ū1,n
∂ν

+ r2nλū1

∫
B1

ū21,n,

where ν is an outward unit normal vector. Now, suppose that ū1,∞ ≡ 0. Employing the compacts
embeddings of H1(B1) in L2(B1) and in L2(∂B1), and the fact that ∥∇Un∥L2(∂B1) is bounded, we
obtain that ∫

∂B1

ū1,n
∂ū1,n
∂ν

+ r2nλū1

∫
B1

ū21,n → 0,

which implies ∥∇ū1,n∥L2(B1) → 0, and so ∥∇Un∥L2(B1) → 0, a contradiction with ∥∇Un∥L2(B1) = 1.
Therefore, ū1,∞ ̸≡ 0, which implies U∞ = (ū1,∞, 0, . . . , 0) ̸≡ 0.

Step 1.2 (ū1,∞ is a harmonic function): First, we recall that, for every i = 1, . . . , k,

−∆ūi,n(x) ≤ r2nλūi
ūi,n(x) in B1.

Hence, by passing the limit as n→ ∞, we see in particular that

(4.7) −∆ū1,∞(x) ≤ 0 in B1.

Now, reasoning as Proposition 3.3 we can infer that for any nonnegative φ ∈ H1
0 (B1) with supp(φ) ⊆ B2s,

2s ∈ (0, 1], we have〈
−∆ûi,n − r2nλūi

ūi,n + r2n
∑
j ̸=i

λūj
ūj,n, φ

〉
≥ −Cs

Ln

(
sN−2 + rns

−1∥φ∥1 + r2n∥φ∥22+(4.8)

+∥∇φ∥22 + rNn ∥φ∥1∥∇φ∥22 + rNn ∥φ∥22∥∇φ∥22
)
,

in the sense of distributions. Now, taking φ ∈ C∞
c (B1), and recalling that rn → 0, Ln → ∞ and ūj,n → 0

in H1(B1) for every j = 2, . . . , k, we conclude

−∆ū1,∞ = −∆û1,∞ ≥ 0 in B1,
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and combined with (4.7), we infer that

∆ū1,∞ = 0 in B1.

According to the maximum principle, we have ū1,∞ > 0 in B1 (recall that ū1,∞ ≥ 0 and ū1,∞ ̸≡ 0).

Step 1.3 (Contradiction): At this point, we apply Proposition A.5 to the functions ūi,n. Denote σi,n :=
∆ūi,n + r2nλūi

ūi,n, and recall that σi,n ≥ 0, for every i = 1, 2, . . . , k. Notice that, for n sufficiently large,
we have ∆ūi,n ≥ −1. Moreover, by Proposition 3.1, we have ūi,n ∈ L∞(B1/2). Therefore, by applying
Proposition A.5, we obtain, for all r ∈ (0, 1/2), that

−
∫
∂Br

[ū1,n − ū1,n(0)] = C(N)

∫ r

0

s1−N

[∫
Bs

d(∆ū1,n)

]
ds = C(N)

∫ r

0

s1−N∆ū1,n(Bs)ds

= C(N)

∫ r

0

s1−Nσ1,n(Bs)ds− C(N)

∫ r

0

s1−N (r2nλū1
ū1,n)(Bs)ds

≤ C(N)

∫ r

0

s1−Nσ1,n(Bs)ds.

Now, for each fixed s ∈ (0, r), we take a test function φ ∈ C∞
c (B2s) such that 0 ≤ φ ≤ 1 with φ ≡ 1 in

Bs and ∥∇φ∥L∞(B2s) ≤ C/s. Hence,

σ1,n(Bs) ≤ ⟨σ1,n, φ⟩ =

〈
σ1,n −

k∑
i=2

σi,n, φ

〉
+

k∑
i=2

⟨σi,n, φ⟩

≤

〈
∆û1,n + r2nλū1

ū1,n − r2n

k∑
i=2

λūi
ūi,n, φ

〉
+

k∑
i=2

σi,n(B2s) ≤
CsN−1

Ln
+

k∑
i=2

σi,n(B2s),

where in the last inequality we applied (4.8) and used the fact that rn ≤ 1 and |B2s| ≤ C(N)sN (and
hence we have ∥φ∥1 ≤ C(N)sN , ∥φ∥22 ≤ C(N)sN and ∥∇φ∥22 ≤ C(N)sN−2). Therefore,

s1−Nσ1,n(Bs) ≤
C

Ln
+ s1−N

k∑
i=2

σi,n(B2s), for all s ∈ (0, r).

Plugging the inequalities above, we get (recall that ū1,n(0) = 0, as observed in the first line of the proof)

(4.9) −
∫
∂Br

ū1,n ≤ C(N)

∫ r

0

[
C

Ln
+ s1−N

k∑
i=2

σi,n(B2s)

]
ds.

Now, we use Proposition A.5 to estimate the last term in (4.9):∫ r

0

s1−N
k∑

i=2

σi,n(B2s)ds =

k∑
i=2

∫ r

0

s1−N (∆ūi,n + r2nλūi
ūi,n)(B2s)ds

=

k∑
i=2

∫ r

0

s1−N∆ūi,n(B2s)ds+

k∑
i=2

r2nλūi

∫ r

0

s1−N

∫
B2s

ūi,n dxds

≤ C(N)

k∑
i=2

−
∫
∂Br

ūi,n +

k∑
i=2

∫ r

0

C(N)srnλūi
∥ūi∥L∞(B1)

Ln
ds

= C(N)

k∑
i=2

−
∫
∂Br

ūi,n +

k∑
i=2

C(N)r2rnλūi∥ūi∥L∞(B1)

2Ln
.

Plugging the inequality above into (4.9) and multiplying it by |∂Br| yields to∫
∂Br

ū1,n ≤ C(N)rN

Ln
+ C(N)

k∑
i=2

∫
∂Br

ūi,n +

k∑
i=2

C(N)rnλūi
∥ūi∥L∞(B1)r

N+1

Ln
, for all r ∈ (0, 1/2).

Now, we integrate the inequality above with respect to r to obtain∫
B1/2

ū1,n ≤ C(N)

Ln
+ C(N)

k∑
i=2

∫
B1/2

ūi,n +

k∑
i=2

C(N)rnλūi
∥ūi∥L∞(B1)

Ln
.
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Finally, we pass the limit as n → 0, and recalling that Ln → ∞, rn → 0, ū1,n → ū1,∞ > 0 and
∥ūi,n∥L1(B1/2) → 0, we get

0 <

∫
B1/2

ū1,∞ ≤ 0,

which is a contradiction, and so the result is proved under the assumptions of Case 1.
Case 2: Assume now that ∥Un∥L2(B1) → ∞, and set Vn := Un · ∥Un∥−1

L2(B1)
= (v1,n, . . . , vk,n). Hence,

∥Vn∥L2(B1) = 1 and ∥∇Vn∥L2(B1) → 0.

Therefore, there exists V∞ ∈ H1(B1) such that Vn ⇀ V∞ = (v1,∞, . . . , vk,∞) locally in H1(B1) and
∥V∞∥L2(B1) = 1. Since, for every φ ∈ H1(B1),∫

B1

∇vi,n · ∇φ→ 0 and

∫
∇vi,n · ∇φ→

∫
∇vi,∞ · ∇φ,

for every i = 1, . . . , k, we have that ∥∇V∞∥L2(B1) = 0, consequently V∞ = (c1, . . . , ck), where 0 ≤ ci ∈ R,
for every i = 1, . . . , k. Moreover, since vi,n · vj,n = 0 for i ̸= j, the a.e. convergence implies that only one
component of V∞ is nonzero; without loss of generality, we can say V∞ = (c1, 0, . . . , 0). In particular, we
have v1,∞ > 0, and ∆v1,∞ = 0.

Following the general lines of Step 1.3 of Case 1, we define σ̃i,n := ∆vi,n + r2nλūi
vi,n ≥ 0, and apply

Proposition A.5 to vn and we obtain that for all r ∈ (0, 1/2),

−
∫
∂Br

[v1,n − v1,n(0)] = C(N)

∫ r

0

s1−N

[∫
Bs

d(∆v1,n)

]
ds = C(N)

∫ r

0

s1−N∆ū1,n(Bs)ds

≤ C(N)

∫ r

0

s1−N σ̃1,n(Bs)ds.

Once again, for each fixed s ∈ (0, r), we take a test function φ ∈ C∞
c (B2s) such that 0 ≤ φ ≤ 1 with

φ ≡ 1 in Bs and ∥∇φ∥L∞(B2s) ≤ C/s. Hence,

σ̃1,n(Bs) ≤ ⟨σ̃1,n, φ⟩ =

〈
σ̃1,n −

k∑
i=2

σ̃i,n, φ

〉
+

k∑
i=2

⟨σ̃i,n, φ⟩

≤

〈
∆v1,n + r2nλū1v1,n − r2n

k∑
i=2

λūivi,n, φ

〉
+

k∑
i=2

σ̃i,n(B2s) ≤
CsN−1

∥Un∥L2(B1)Ln
+

k∑
i=2

σ̃i,n(B2s),

where in the last inequality we applied (4.8) (just multiply the inequality (4.8) by ∥Un∥−1
L2(B1)

). Therefore,

s1−Nσ1,n(Bs) ≤
C

∥Un∥L2(B1)Ln
+ s1−N

k∑
i=2

σ̃i,n(B2s),

for all s ∈ (0, r). Plugging the inequalities above, we get (recall that v1,n(0) = 0)

(4.10) −
∫
∂Br

v1,n ≤ C(N)

∫ r

0

[
C

∥Un∥L2(B1)Ln
+ s1−N

k∑
i=2

σ̃i,n(B2s)

]
ds.

Now, we use again the Proposition A.5 to estimate the last term in the inequality above:∫ r

0

s1−N
k∑

i=2

σ̃i,n(B2s)ds =

k∑
i=2

∫ r

0

s1−N (∆vi,n + r2nλūivi,n)(B2s)ds

=

k∑
i=2

∫ r

0

s1−N∆vi,n(B2s)ds+

k∑
i=2

r2nλūi

∫ r

0

s1−Nvi,n(B2s)ds

≤ C(N)

k∑
i=2

−
∫
∂Br

vi,n +

k∑
i=2

∫ r

0

C(N)srnλūi
∥ūi∥L∞(B1)

∥Un∥L2(B1)Ln
ds

= C(N)

k∑
i=2

−
∫
∂Br

vi,n +

k∑
i=2

C(N)r2rnλūi
∥ūi∥L∞(B1)

2∥Un∥L2(B1)Ln
.
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Plugging the inequality above into (4.10), and multiplying it by |∂Br| yields to∫
∂Br

v1,n ≤ C(N)rN

∥Un∥L2(B1)Ln
+ C(N)

∫
∂Br

vi,n +

k∑
i=2

C(N)rnλūi∥ūi∥L∞(B1)r
N+1

∥Un∥L2(B1)Ln
,

for all r ∈ (0, 1/2). Now, we integrate the inequality above with respect to r to obtain∫
B1/2

v1,n ≤ C(N)

∥Un∥L2(B1)Ln
+ C(N)

∫
B1/2

vi,n +

k∑
i=2

C(N)rnλūi
∥ūi∥L∞(B1)

∥Un∥L2(B1)Ln
.

Finally, we pass the limit as n→ 0, and recalling that ∥Un∥L2(B1) → ∞, Ln → ∞, rn → 0, v1,n → c1 > 0
and ∥vi,n∥L1(B1/2) → 0, for i = 2, . . . , k, we get,

0 <

∫
B1/2

c1 ≤ 0,

which is a contradiction. □

It remains to deal with the case m(xn) = 1. This is the content of the next proposition.

Proposition 4.5. Under the conditions above, suppose that, up to a subsequence, m(xn) = 1 for all n.
Then (4.1) cannot hold true.

Proof. Define Γ := {x ∈ Ω : ū1(x) = 0}. We analyse two cases:

Case 1: Suppose that dist(xn,Γ)
rn

is unbounded. Then, up to a subsequence dist(xn,Γ)
rn

≥ 1 for large n. In

this scenario, we can conclude that Brn(xn) ⊂ Ωū1 , for all n. Hence, by Proposition 2.1 and Proposition
3.8 (or by combining Propositions 3.1 and 3.4), ū1 solves

−∆ū1 = λū1
ū1 in Brn(xn).

Hence, by applying Proposition 3.1 and by elliptic regularity theory, we get that ū1 ∈ C∞(Brn), which
is a contradiction with (4.1).

Case 2: On the other hand, if dist(xn,Γ)
rn

< C, for some C > 0, it follows from Lemma 4.2 that we can
also assume without loss of generality that xn ∈ Γ, for all n. In view of Proposition 4.4 and Remark 4.3,

we can assume also that dist(xn,Z2)
rn

≥ 1. In this case, only one component, say ū1, is nonidentically zero

in Brn(xn).
The proof then follows the general lines of Proposition 4.4, but we do not need to use the Lemma A.6,

since (4.1) is equivalent to

(4.11)
1

rNn

∫
Brn (xn)

|∇ū1|2 → ∞.

We perform again the blow-up analysis. Define

wn(x) =
1

Lnrn
ū1(xn + rnx), for x ∈ B1,

where

L2
n :=

1

rNn

∫
Brn (xn)

|∇ū1|2.

As before, we have ∫
B1

|∇wn|2 = 1,

which implies the boundness of
∫
∂B1

|∇wn|2 by Lemma 4.1.

For simplicity, we divide the proof of this case into four steps:

Step 1 (Convergence of wn): As in Proposition 4.4, either there exists w∞ ∈ H1(B1), such that up to a
subsequence, wn ⇀ w∞ locally in H1(B1), or the sequence vn := wn · ∥wn∥L2(B1) such that vn → c > 0

locally in H1(B1).
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Step 2 (w∞ ̸≡ 0): It follows from the definition of wn and Proposition 3.1 that

−∆wn(x) ≤ r2nλū1
wn(x),

for x ∈ B1. Multiplying the inequality above by wn and integrating by parts, we conclude∫
B1

|∇wn|2 ≤
∫
∂B1

wn
∂wn

∂ν
+ r2nλū1

∫
B1

w2
n.

Assume that w∞ ≡ 0. Since ∥∇wn∥L2(∂B1) is bounded, the right-hand side of the inequality above goes
to zero, which is a contradiction.

Step 3 (w∞ is a harmonic function): As in Proposition 4.4, we can show that

(4.12)
〈
−∆wn − r2nλū1wn, φ

〉
≥ −C(φ)

Ln
.

By taking the limit as n→ ∞ yields −∆w∞ ≥ 0 in B1. Moreover, recall that −∆wn ≤ r2nλū1
wn in B1,

we obtain −∆w∞ = 0. Therefore, by the maximum principle, w∞ > 0 in B1.

Step 4 (Contradiction): Now, we argue exactly as in Proposition 4.4 to conclude that∫
∂Br

wn ≤ C(N)rN

Ln
+ C(N)

∫
∂Br

wn +

k∑
i=2

C(N)rnλūi
∥ūi∥L∞(B1)r

N+1

Ln
,

for all r ∈ (0, 1/2). Finally, we integrate the inequality above and pass to the limit as n→ ∞ to conclude
that

0 <

∫
B1/2

w∞ ≤ 0,

which is a contradiction. This finishes the proof. □

Proposition 4.6. Under the conditions above, suppose that, up to a subsequence, m(xn) = 0 for all n.
Then (4.1) cannot hold true.

Proof. From Remark 4.3, Propositions 4.5 and 4.4, we can assume that dist(xn, Z1) ≥ rn. In this case, it
follows from the definition of m(xn) that ūi ≡ 0 in Brn(xn) for all i = 1, . . . , k, which is a contradiction
with (4.1). □

5. Conclusion of the proof of the main results

Lemma 5.1. Assume that problem (1.8) is achieved by an optimal partition (ω1, . . . , ωk) ∈ Pa(Ω). Then

k∑
i=1

|ωi| = a.

Proof. Let (ω1, . . . , ωk) ∈ Pa(Ω) be an optimal partition, and let (u1, . . . , uk) be an L2-normalized
sequence of associated positive first eigenfunctions, which minimizes J in Ha by Proposition 2.1. Assume

by contradiction that
∑k

i=1 |ωi| < a.

Claim. (u1, . . . , uk) ∈ Sλu1
,...,λuk

(Ω).

From (3.1), we have

−∆ui ≤ λui
ui in Ω for every i.

Now we prove that

−∆û1 ≥ λu1
u1 −

∑
j ̸=1

λuj
uj in Ω.

The latter inequality has analogous proof for i = 2, . . . , k. Let ε̄ be such that

(5.1) |Bε̄| < a−
k∑

i=1

|ωi|.

Take x0 ∈ Ω and ε < ε̄ such that Bε(x0) ⊂ Ω. We now check that −∆û1 ≥ λu1
u1 −

∑
j ̸=1 λuj

uj in

Bε(x0). Given φ ∈ C∞
c (Bε(x0)) nonnegative, for small t > 0, we consider the deformation

ũt = (ũ1,t, . . . , ũk,t) =

 (û1 + tφ)
+∥∥∥(û1 + tφ)
+
∥∥∥
2

,
(û2 − tφ)

+∥∥∥(û2 − tφ)
+
∥∥∥
2

, . . . ,
(ûk − tφ)

+∥∥∥(ûk − tφ)
+
∥∥∥
2

 .
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Take ε > 0 small such that:
k∑

j=1

|ωj |+ |Bε| < a

(recall the contradiction assumption (5.1) and that ωj = Ωuj
, for all j = 1, . . . , k). Then, by Lemma

A.3, we have ũt ∈ Ha. We now argue exactly as in the proof of [19, Lemma 2.1]:

k∑
i=1

∫
Ω

|∇ui|2 = J(u1, . . . , uk) ≤ J(ũ1,t, . . . , ũk,t) =

k∑
i=1

∫
Ω

|∇ũi,t|2∫
Ω

ũ2i,t

=

∫
Ω

|∇(û1 + tφ)+|2∫
Ω

[(û1 + tφ)+]2
+
∑
j ̸=1

∫
Ω

|∇(ûj − tφ)+|2∫
Ω

[(ûj − tφ)+]2
.

As t→ 0+, we have by Lemma A.1∫
Ω

|∇(û1 + tφ)+|2∫
Ω

[(û1 + tφ)+]2
=

∫
Ω

∣∣∣∇ (û1 + tφ)
+
∣∣∣2(1− 2t

∫
Ω

u1φ+ o(t)

)

=

∫
Ω

∣∣∣∇ (û1 + tφ)
+
∣∣∣2 − 2t

∫
Ω

u1φ

∫
Ω

|∇u1|2 + o(t)

and, for j ≥ 2, ∫
Ω

|∇(ûi − tφ)+|2∫
Ω

[(ûi − tφ)+]2
=

∫
Ω

∣∣∣∇ (ûj − tφ)
+
∣∣∣2(1 + 2t

∫
Ω

ujφ+ o(t)

)

=

∫
Ω

∣∣∣∇ (ûj − tφ)
+
∣∣∣2 + 2t

∫
Ω

ujφ

∫
Ω

|∇uj |2 + o(t).

Therefore, using the fact that uiuj ≡ 0 for i ̸= j, and (û1 + tφ)
+
+
∑

j⩾2 (ûj − tφ)
+

= |û1 + tφ| , we
have

k∑
i=1

∫
Ω

|∇ui|2 ≤
k∑

i=1

∫
Ω

|∇(ûi + tφ)+|2 − 2t

∫
Ω

λu1u1φ+ 2t
∑
j⩾2

∫
Ω

λujujφ+ o(t)

=

k∑
i=1

∫
Ω

|∇ui|2 + 2t

∫
Ω

∇û1 · ∇φ−

λu1u1 −
∑
j⩾2

λujuj

φ

+ o(t)

as t→ 0+, and hence ∫
Ω

∇û1 · ∇φ−

λu1
u1 −

∑
j⩾2

λuj
uj

φ

 ≥ 0.

Therefore the claim holds true.

Conclusion of the proof. Since (u1, . . . , uk) ∈ Sλu1
,...,λuk

(Ω), then ΓU := {x ∈ Ω : ui(x) = 0 for i =

1, . . . , k} has zero measure by Lemma 3.5. Therefore |Ω| = |Ω\Γu| = |∪k
i=1Ωui

| =
∑k

i=1 |Ωui
| ≤ a < |Ω|,

a contradiction. □

Remark 5.2. An alternative proof of Lemma 5.3 would be to:

• first, prove the existence of a one phase point, that is, the existence of i, x0 ∈ ∂Ωui and δ > 0,
such that Bδ(x0) ∩ Ωuj

= ∅ for every j ̸= i;
• then, argue by contradiction and consider the partition (Ωu1

, . . . ,Ωui
∪ Bδ(x0), . . . ,Ωuk

), which
lowers the shape functional.

Lemma 5.3. Assume that problem (1.8) is achieved by an optimal partition (ω1, . . . , ωk) ∈ Pa(Ω). Then:

ωi is connected for every i = 1, . . . , k.
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Proof. Assume by contradiction that ω1 is not connected, and let A1 be a connected component of ω1

such that λ1(ω1) = λ1(A1). Observe that ω1 \A1 is open and nonempty. Then (A1, ω2, . . . , ωk) ∈ Pa(Ω)
satisfies

λ1(A1) +

k∑
i=2

λ1(ωi) = ca,

i.e. it is an optimal partition. On the other hand,

|A1|+
k∑

i=2

|ωi| <
k∑

i=1

|ωi| = a,

which contradicts the previous lemma. □

Proof of Theorem 1.2 completed. By Proposition 2.2, we have the existence of (u1, . . . , uk) ∈ Ha which
minimizes J over the set Ha, that is, the level c̃a is achieved. As it is proved in Section 4, each ūi is
locally Lipschitz continuous. Therefore, by Proposition 2.1, (1.8) has a solution, and problems (1.8) and
(1.9) are equivalent. Moreover, from Lemma 5.1, we have that solutions to (1.8) are also minimizers to
(1.1), and these levels coincide. □

Proof of Theorem 1.3. The proof is a consequence of the Faber-Krahn inequality: given an open set
ω ⊂ RN , then λ1(ω) ≥ λ1(ω

∗), where ω∗ is an open ball such that |ω∗| = |ω|; moreover, equality is
achieved if and only if ω is a ball.

Let (ω1 . . . , ωk) ∈ Pa(Ω) be an optimal partition for problem (1.8) (which exists, by Theorem 1.2).
Let Bri be an open ball such that |Bri | = |ωi|, for each i. If a is sufficiently small, then we can assume
that

Bri ∩Brj = ∅ ∀i ̸= j, and ∪k
i=1 Bri ⊂ Ω.

By the Faber-Krahn inequality we have that (Br1 , . . . , Brk) is an optimal partition and, up to translation
of the center, we may assume that ωi = Bri .

We now claim that r1 = . . . = rk, which finishes the proof. But this is a consequence of the fact that
the function:

(r1, . . . , rk) ∈ (R+)k 7→
k∑

i=1

λ1(Bri) = λ1(B1)

k∑
i=1

1

r2i

admits a unique minimizer on the set{
(r1, . . . , rk) ∈ Rk :

k∑
i=1

|Bri | = a

}
=

{
(r1, . . . , rk) ∈ Rk : |B1|

k∑
i=1

ri
N = a

}
precisely at a point where r1 = . . . = rk, by the Lagrange multipliers rule. □

In what follows, we present the proof of Theorem 1.4. Recall that a function u ∈ C(Ω) is foliated
Schwarz symmetric with respect to p ∈ SN−1, if u is axially symmetric with respect to the axis pR and

nonincreasing in the polar angle θ := arccos

(
x

|x|
· p
)

∈ [0, π].

Proof of Theorem 1.4. Let (ω1, ω2) be a solution of (1.1) with corresponding eigenfunctions u1, u2. Then,
consider ω∗

1 and ω∗
2 the cap symmetrization of ω1 and ω2, with respect e and −e, respectively. Then

(ω∗
1 , ω

∗
2) ∈ Pa(Ω) and, since λ1(ω

∗
i ) ≤ λ1(ωi), for i = 1, 2, see [3, Section 7.5], then (ω∗

1 , ω
∗
2) solves (1.1).

Moreover, the positive first eigenfunctions in ω∗
1 and ω∗

2 are foliated Schwarz symmetric with respect to
e and −e, respectively. □

A. Auxiliary results

A.1. Deformations. Here we collect some results regarding the deformations used in the paper. This
type of deformation appears in the context of multiphase optimal shape problems without the volume
constraints. We refer the reader to [18, 19, 20]. Recall the notation Ωu := {x ∈ Ω | u(x) ̸= 0}.

Lemma A.1. Let u ∈ L2(Ω) with u+ ̸≡ 0. Then, for all φ ∈ L2(Ω),

(A.1)
1

∥(u± tφ)+∥22
=

1

∥u+∥22
∓ 2t

∥u+∥42

∫
Ω

u+φ+ ct2 ∥φ∥22 as t→ 0+,

where c > 0 depends only on ∥u+∥2, as t→ 0+.
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Proof. Observe that

1

∥(u± tφ)+∥22
− 1

∥u+∥22
=

∫
{u>0}∩Ωφ

u2 −
∫
{u±tφ>0}∩Ωφ

u2 ± 2tuφ+ t2φ2

∥(u± tφ)+∥22 ∥u+∥22

=

∫
{u>0}∩Ωφ

u2 −
∫
{u±tφ>0}∩Ωφ

u2 ∓ 2t
∫
{u±tφ>0}∩Ωφ

uφ− t2
∫
{u±tφ>0}∩Ωφ

φ2

∥(u± tφ)+∥22 ∥u+∥22

=

∫
{0<u≤∓tφ}∩{±φ<0} u

2 −
∫
{∓tφ<u<0}∩{±φ>0} u

2 − t2
∫
{u±tφ>0}∩Ωφ

φ2

∥(u± tφ)+∥22 ∥u+∥22

∓ 2t

∫
{u±tφ>0}∩Ωφ

uφ

∥(u± tφ)+∥22 ∥u+∥22

= ∓2t

∫
{u>0}∩Ωφ

uφ

∥(u± tφ)+∥22 ∥u+∥22
∓ 2t

∫
{u±tφ>0}∩Ωφ

uφ−
∫
{u>0}∩Ωφ

uφ

∥(u± tφ)+∥22 ∥u+∥22
+ ct2 ∥φ∥22

= ∓ 2t

∥u+∥42

∫
Ω

u+φ+ ct2 ∥φ∥22 as t→ 0+. □

Lemma A.2. Let u1, . . . , uk ∈ L2(Ω) be nonnegative functions such that ui · uj ≡ 0 for all i ̸= j,
∥ui∥L2 = 1 for all i = 1, . . . , k, and φ ∈ C∞

c (Ω) be a nonnegative function. Consider, for t > 0 small,
the deformation

(A.2) ǔt = (ǔ1,t, ǔ2,t, . . . , ǔk,t) =

(
(u1 − tφ)+

∥(u1 − tφ)+∥2
, u2, . . . , uk

)
.

Then:

i)

∫
Ω

ǔ2i,t = 1 for every i;

ii) Ωǔi,t ⊆ Ωui for all i ≥ 1;
iii) ǔi,t · ǔj,t ≡ 0 for i ̸= j.

Proof. It is obvious that i) holds and iii) is a consequence of ii). Regarding ii), observe that

x /∈ Ωu1
=⇒ ǔ1,t(x) = 0. □

Recall that, for u1, . . . , uk such that ui · uj ≡ 0 for all i ̸= j, we denote:

ûi = ui −
∑
j ̸=i

uj .

Lemma A.3. Let u1, . . . , uk ∈ L2(Ω) be such that ui · uj ≡ 0 for all i ̸= j, and ui ≥ 0 and ∥ui∥L2 = 1
for every i. Take A ⋐ Ω, and let φ ∈ C∞

c (A) be a nonnegative function. Consider, for t > 0 small, the
deformation

ũt = (ũ1,t, . . . , ũk,t) =

 (û1 + tφ)
+∥∥∥(û1 + tφ)
+
∥∥∥
2

,
(û2 − tφ)

+∥∥∥(û2 − tφ)
+
∥∥∥
2

, . . . ,
(ûk − tφ)

+∥∥∥(ûk − tφ)
+
∥∥∥
2

 .

Then:

i)

∫
Ω

ũ2i,t = 1 for every i;

ii) Ωũ1,t
⊆ Ωu1

∪ A, and Ωũi,t
⊆ Ωui

for i > 1.
iii) ũi,t · ũj,t ≡ 0 for i ̸= j.

Proof. The statement i) is obviously true. Regarding ii), we have

û1(x) + tφ(x) > 0 =⇒ u1(x) + tφ(x) >
∑
j ̸=1

uj(x) ≥ 0 =⇒ u1(x) > 0 or φ(x) > 0.

For i > 1,

ûi(x)− tφ(x) > 0 =⇒ ui(x) >
∑
j ̸=i

uj(x) + tφ(x) ≥ 0 =⇒ ui(x) > 0.

Finally, for iii), since ui · uj ≡ 0 for i ̸= j, it is obvious that ũi,t · ũj,t ≡ 0 for i ̸= j with i, j ≥ 2. Now,
by contradiction, suppose that there exists x ∈ Ωũ1,t ∩ Ωũi,t ̸= ∅, for some i > 1. Then
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û1(x) + tφ(x) > 0 and ûi(x)− tφ(x) > 0 ⇐⇒
∑
j ̸=1

uj(x) < u1(x) + tφ(x) < ui(x)−
∑
j ̸=1,i

uj(x)

=⇒ ui(x) > ui(x) + 2
∑
j ̸=1,i

uj(x) = ui(x),

a contradiction. Notice that for the last equality we have used that ui · uj ≡ 0 for i ̸= j and ui ≥ 0 for
every i.

□

A.2. Auxiliary lemmas. We recall the following Liouville type theorem for subharmonic functions.

Proposition A.4. Assume that u1, . . . , uk ∈ H1
loc(RN )∩C(RN ) are nonnegative subharmonic functions

such that ui · uj ≡ 0 in RN . Assume moreover that u1, . . . , uk are bounded. Then all functions but
possibly one function are trivial.

Proof. The result follows directly from [38, Proposition 2.2] applied with α = 0. We observe that, even
though this case is not stated in the proposition, the proof is exactly the same. □

The next useful inequality is used to prove the continuity of the solutions and its proof can be found
in [27, 28].

Proposition A.5. Let Br0(x0) ⊂ Ω, u ∈ H1(Br0(x0)) and suppose ∆u is a measure satisfying

(A.3)

∫ r

0

s1−N

[∫
Bs(x0)

d|∆u|

]
ds < +∞,

for all r ∈ (0, r0). Then, the limit lim
ρ

−
∫
∂Bρ(x0)

u exists, and we can define

u(x0) = lim
ρ

−
∫
∂Bρ(x0)

u.

In addition, for all r ∈ (0, r0)

(A.4) −
∫
∂Br(x0)

[u− u(x0)] = C(N)

∫ r

0

s1−N

[∫
Bs(x0)

d∆u

]
ds.

The inequality in (A.3) is also true in the case where u ∈ L∞(Br0(x0)), and there exists f ∈ L∞(Br0(x0))
such that −∆u+ ≤ f and −∆u− ≤ f .

In the proof of Lipschitz regularity, we make use of the Caffarelli-Jerison-Kenig Monotonicity Lemma
that we state next. For a proof of this result, we refer the reader to [16] (see also [20, 46]).

Lemma A.6 (Caffarelli-Jerison-Kenig monotonicity lemma). Let u1, u2 ∈ H1
0 (Br0(x0)) ∩ L∞(Br0(x0))

with u1 · u2 = 0 a.e. in Ω. Suppose that, for some constant γ ≥ 0,

∆u1 ≥ −γ and ∆u2 ≥ −γ in Br0(x0).

Set

ψ(r) :=

(
1

r2

∫
Br(x0)

|∇u1|2

|x− x0|N−2

)(
1

r2

∫
Br(x0)

|∇u2|2

|x− x0|N−2

)
.

Then, there exists a constant C > 0 such that ψ(r) ≤ C for all r ∈ (0, r0/2).

Acknowledgements: Pêdra D. S. Andrade is partially supported by CAPES-INCTMat - Brazil and
by the Portuguese government through FCT - Fundação para a Ciência e a Tecnologia, I.P., under the
projects UID/MAT/04459/2020. Hugo Tavares is partially supported by the Portuguese government
through FCT - Fundação para a Ciência e a Tecnologia, I.P., under the projects UID/MAT/04459/2020
and PTDC/MAT-PUR/1788/2020. Ederson Moreira dos Santos is partially supported by CNPq grant
309006/2019-8. Makson S. Santos is partially supported by FAPESP grant 2021/04524-0 and by the
Portuguese government through FCT- Fundação para a Ciência e a Tecnologia, I.P., under the projects
UID/MAT/04459/2020 and PTDC/MAT-PUR/1788/2020. This study was financed in part by the
Coordenação de Aperfeiçoamento de Pessoal de Nı́vel Superior - Brazil (CAPES) - Finance Code 001.

24



The authors would like to thank the anonymous referees for their useful remarks on a previous version
of the paper. The authors would also like to thank Dario Mazzoleni for some interesting discussions and
for pointing out some references.

References

[1] N. Aguilera, H. W. Alt, and L. A. Caffarelli. An optimization problem with volume constraint. SIAM J. Control
Optim., 24(2):191–198, 1986.

[2] Onur Alper. On the singular set of free interface in an optimal partition problem. Comm. Pure Appl. Math., 73(4):855–

915, 2020.
[3] Albert Baernstein, II. Symmetrization in analysis, volume 36 of New Mathematical Monographs. Cambridge University

Press, Cambridge, 2019. With David Drasin and Richard S. Laugesen, With a foreword by Walter Hayman.

[4] Beniamin Bogosel and Bozhidar Velichkov. A multiphase shape optimization problem for eigenvalues: qualitative study
and numerical results. SIAM J. Numer. Anal., 54(1):210–241, 2016.
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