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Abstract: The objective was to verify the performance of spectral techniques as well as validation
models in the prediction of nitrogen, total organic carbon, and humic fractions under different
cultivation conditions. Chemical analyses for the determination of nitrate, total nitrogen, total organic
carbon, and the chemical fractionation of soil organic matter were performed, as well as spectral
analyses by Vis-NIR-SWIR and X-ray fluorescence. The results of the spectroscopy were processed
using RStudio v. 4.1.3, and PLSR and support vector machine learning algorithms were applied to
validate the models. The Vis-NIR-SWIR and XRF spectroscopic techniques showed high performance
and are indicated for the prediction of nitrogen, total organic carbon, and humic fractions in Ferralsols
of medium sandy texture. However, it is important to highlight that each technique has its own
characteristic mechanism of action: Vis-NIR-SWIR detects the element based on harmonic tones,
while XRF is based on the atomic number of the element or elemental association. The PLSR and SVM
models showed excellent validation results, allowing them to fit the experimental data, emphasizing
that they are different statistical methods.

Keywords: intercropping systems; machine learning; predictions on sandy soil; ammonium; nitrate;
organic matter; PLSR; SVM

1. Introduction

The use of conservation agriculture systems, such as no-till or intercropping, is one way
to ensure the sustainability of intensive soil management [1]. In tropical and subtropical
regions, soils show a high degree of weathering, as in the case of Ferralsols or Latosols
according to the US soil classification system [2,3]. In these soils, the presence of organic
matter is essential, since organic matter plays a fundamental role in soil properties like
cation exchange capacity, nutrient availability storage, aggregate stability, and high water
retention [4].

Intercropping, or mixed cropping, is an agricultural practice that consists of the si-
multaneous cultivation of two or more crops in the same area with the aim of efficiently
matching crop needs with available resources [5]. This system benefits soil fertility through
biological nitrogen fixation when used with vegetables and increases soil conservation

Remote Sens. 2024, 16, 3009. https://doi.org/10.3390/rs16163009 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs16163009
https://doi.org/10.3390/rs16163009
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0003-4371-9827
https://orcid.org/0000-0001-5328-0323
https://orcid.org/0000-0002-1628-4154
https://orcid.org/0000-0003-4854-2661
https://orcid.org/0000-0002-2343-5045
https://doi.org/10.3390/rs16163009
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs16163009?type=check_update&version=1


Remote Sens. 2024, 16, 3009 2 of 19

through increased coverage and use of space [6]. Another pertinent point is that intercrop-
ping allows nitrogen (N) and carbon (C) to cycle in the system, increasing total organic
carbon (TOC) and organic N available in the soil [7].

The tropical grasses that are commonly used in this system are Urochloa spp. and
Megathyrsus spp., as they have a high potential for the production of dry matter per unit
area [5]. Several cultivars of Megathyrsus maximus exist in Brazil, including Mombasa [8].
The Mombasa cultivar belongs to a group of fodder plants that are considered demanding
for fertile soils [9]. Therefore, fertilization is extremely important for the good development
of this cultivar, highlighting the high nitrogen demand and the importance of appropriate
N application in intercropping systems [10].

Nitrogen is the essential element in the composition of plant cells and an essential
part of the life activity of the plant. It is considered to be the most important nutrient for
the development and growth of crop plants [11]. In intercropping systems, the inclusion
of legumes such as Guandu beans (Cajanus cajan) and Java (Macrotyloma axillare) can
contribute to the increase in C in the soil and improve N efficiency by reducing nitrate loss
due to leaching [12]. In addition, intercropping with legumes can reduce the amount of
nitrogen fertilizer applied, which helps to reduce the environmental damage caused by the
inadequate dosage of the nutrient [12].

In contrast, in addition to the implementation of conservation management practices
that reduce fertilizer use and losses, the intensification of technology for rapid quantification
and determination of nutrients in soil has become a fundamental tool for promoting
sustainability in soil fertility. Normally, the amount of fertilizer applied to the soil is
determined based on the results of soil analysis [13]. These analyses tend to be expensive,
destructive, and require the use of various chemical reagents that, if improperly disposed of,
can exacerbate environmental damage. Thus, proximal remote sensing technologies make
it possible to obtain information on soil properties in a practical, fast, and non-destructive
way without adding chemicals, which has associated them with green soil tools [14].

The X-ray fluorescence (XRF) and Vis-NIR-SWIR spectroscopic techniques are promis-
ing tools for the determination of soil attributes. Both techniques allow soil assessment with
minimal preparation [15]. Although there is abundant literature indicating the potential
for predicting soil attributes using these techniques in temperate regions [16–19], tropical
soils have different characteristics. The high temperature and humidity of the tropics cause
severe changes in the mineralogical and biological properties of tropical soils compared to
temperate soils; for example, temperate soils typically have more complex mineralogy than
tropical soils, and biological activity is significantly higher in tropical soils compared to
temperate soils [20]. In addition, most research is concerned with the prediction of the total
content of elements in the soil [21,22], rather than their ionic forms and humic fractions, as
in this article.

The use of supervised machine learning techniques in soil science has also been
growing rapidly due to their use in the creation of statistical models with the goal of
“learning” or “understanding” data collected from the soil [16]. Different types of models
have been used for the calibration of spectral data with soil data. These include the Partial
Least Squares Regression (PLSR) and the Support Vector Machine (SVM) [23].

This research assumes that the Vis-NIR-SWIR and X-ray fluorescence spectroscopy
techniques are capable of identifying nitrogen, total organic carbon, and humic fractions
in Ferralsols and that the calibration models based on machine learning PLSR and SVM
are capable of providing satisfactory values for the attributes under study, considering the
specificities of tropical soils.

The objective was to verify the performance of the spectral techniques as well as
validation models in the prediction of nitrogen, total organic carbon, and humic fractions
under different cultivation conditions.
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2. Materials and Methods
2.1. Description of Site and Soil Sampling Procedures

The study area is situated at the Experimental Farm of the University of Oeste
Paulista—UNOESTE, in Presidente Bernardes—SP Brazil, with geographical coordinates
of South latitude 22◦17′13′′ and West longitude 51◦40′34′′. The experiment was established
in 2014 and consists of a consortium system composed of the forage Megathyrsus maximus
cv. Mombasa and the leguminous plants Guandu bean (Cajanus cajan) and Macrotyloma
axillare cv. Java (Figure 1).
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Figure 1. Map of the experimental area located in Brazil.

The soil is classified as Ferralsols, with 17% clay in the 0–10 cm stratum [24] (Table 1),
and the regional climate, according to the classification of [25], is of the CWA type, with
a mean annual temperature of 25 ◦C and precipitation in two distinct seasons, the rainy
season from October to March and the dry season from April to September.

Table 1. Particle size distribution of soils in the experimental area.

Depth (cm)
Granulometry (g kg−1)

Structure Class
Sandy Silt Clay

0–10 773 48 179 Sandy Middle
10–20 763 68 169 Sandy Middle
20–40 736 41 223 Sandy Middle
40–60 707 63 230 Sandy Middle
60–80 695 55 250 Sandy Middle

80–100 697 56 247 Sandy Middle

2.2. Experiment Design, Management Description and Soil Sampling

The experimental area is structured in a randomized block design with four treatments
and four replications: M. maximus cv. Mombasa with N fertilizer (200 kg N ha−1) (M+N);
M. maximus cv. Mombasa without N fertilizer (M-N); M. maximus cv. Mombasa in intercrop-
ping with Guandu bean (M+G); M. maximus in intercropping with cv. Java (M+J). From
2017 to 2021, soybeans and forage were intercropped, aiming to benefit both and improve
soil quality. From 2021 onward, the management of the area was carried out only with the
maintenance of the Megathyrsus maximus cv. Mombasa pasture in the whole area. It should
be noted that the whole design has been maintained and that the nitrogen fertilization has
been carried out only in the specific areas intended for the mineral fertilization. In the other
areas, the pasture was maintained without fertilization. The remaining legume species
were used to maintain biological N fixation.

Soil samples were collected with an auger at ten different points in each plot. They
were collected at depths of 0–20 and 80–100 cm. A total of 80 samples were collected. Each
sample was divided into two portions: 180 g for spectral analysis and 180 g for nitrogen
and total organic carbon analysis. The soil contents were stored in a freezer at −15 ◦C
for the determination of inorganic and total nitrogen, total organic carbon, and chemical



Remote Sens. 2024, 16, 3009 4 of 19

fractionation of organic matter. Thus, the inorganic nitrogen content was preserved until
the beginning of the laboratory analyses [26].

The plot intended for spectroscopic analysis was dried in a forced ventilated oven at
45 ◦C for 24 h [26]. The soil samples were sieved through a 2.00 mm mesh (9 mesh) for the
Vis-NIR-SWIR spectroradiometer and the XRF spectrometer [27,28].

2.3. Chemical Analysis of the Soil
2.3.1. Determination of Soil Organic Matter and Total Organic C, Chemical Fractionation of
Organic Matter, and Quantification of Carbon in Fractions

For the determination of soil organic matter content, 2 g of soil from each sample was
sieved through a 0.250 mm (60 mesh) sieve. The procedure was in accordance with the
method of [29], adapted from [30]. Humic fractions were extracted using [29] methodology,
adapted from [30].

The 1 g of dry soil was placed in 50 mL centrifuge tubes, and 10 mL of NaOH solution
(0.1 mol L−1) was pipetted into each tube. The tubes were then vortexed on a vertical
shaker at 12 rpm for 1 h and allowed to stand for 24 h. The tubes were centrifuged at
3000 rpm for 20 min after 24 h. The supernatant obtained in this way was transferred to
100 mL beakers. Moreover, 10 mL NaOH (0.1 mol L−1) was pipetted into each tube, shaken,
and left for 1 h. Centrifugation at 3000 rpm and removal of the supernatant were repeated.

The alkaline extract contained in the beakers, obtained by removing the supernatant,
contains the humic and fulvic fractions, and its pH was adjusted to 2.0 using a 20% H2SO4
solution. The residue that remains in the tubes after the removal of the supernatant contains
the humine fraction, which is placed in an oven at a temperature of 45 ◦C for a period of
72 h.

After pH adjustment, the extract containing humic and fulvic acids was transferred to
other centrifuge tubes and left for 18 h to completely precipitate the humic fraction. At the
end of this period, they were centrifuged at 3000 rpm for 5 min. The resulting supernatant
contained the fulvic fraction and was transferred to 50 mL volumetric flasks and volume
measured with deionized water. The precipitate at the bottom of the centrifuge tubes, the
humic fraction, was diluted and homogenized with 30 mL of NaOH (0.1 mol L−1). It was
transferred to 50 mL volumetric flasks, and the volume was made up with NaOH solution
(0.1 mol L−1).

(I) Quantify the organic carbon contained in the humic and fulvic fractions:
The 5 mL of humic or fulvic fraction extract was pipetted into 100 mL digestion tubes.

A volumetric pipette was used to add 10 mL of K2Cr2O7 solution (0.033 mol L−1). This was
followed by 10 mL of concentrated H2SO4. The tubes were placed in the digestion block at
170 ◦C. They were kept at this temperature for 30 min.

After cooling to room temperature, 5 drops of ferrous indicator solution were added.
The solution was titrated with ammonium ferrous sulfate solution (0.03 mol L−1). The
turning point of the titration was clear and went from green to purple and possibly to red.

Under the same conditions, 6 blank controls were prepared. Furthermore, 3 of these
were added to the digestion block with the samples, and the other 3 were left unheated at
room temperature. The unheated blank controls are important for the calculation of the
total loss of dichromate by heating in the absence of a sample.

(II) Quantify the organic carbon contained in the humine fraction:
The 0.5 g of the humine fraction was weighed. It was transferred to the digestion tubes.

Moreover, 5 mL of K2Cr2O7 (0.167 mol L−1) was added using a volumetric pipette. This
was followed by 15 mL of concentrated H2SO4. The samples were digested in a digestion
block at a temperature of 170 ◦C and held at this temperature for 30 min. After cooling to
room temperature, the contents of each tube were transferred to a 250 mL Erlenmeyer flask.
Deionized water was added to make the final volume 80 mL. Moreover, 0.3 mL of indicator
solution was added and titrated with ammonia ferrous sulfate (0.1 mol L−1). Blank controls
were prepared using the same procedures.
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2.3.2. Inorganic Nitrogen Determination

To determine the inorganic forms of N (NH4
+ and NO3

−) in soil, 5 cm3 of soil was
taken from each stored sample. Furthermore, 50 mL of 1 mol L−1 KCl solution was
added. The mixture was stirred for 60 min and decanted for an additional 30 min. An
aliquot of 25 mL of the supernatant was transferred to the distillation flask by means of a
volumetric pipette.

(I) Determination of the N-NH4
+ content:

0.2 g of MgO (using a calibrated measure) was added to the flask containing the KCl
extract and distilled for about 4 min, collecting about 30 mL of the distillate in a 50 mL
beaker with volume graduation and containing 5 mL of boric acid indicator solution.

(II) Determination of the N-NO3
− content:

After determining N-NH4
+, 1 mL of the sulfamic acid solution was added to the KCl

extract, and the distilling flask was shaken for a few seconds to destroy the N-NO2
−. The

flask was replaced in the distillation apparatus, the Devarda alloy was added, and the
distillation was continued until approximately 30 mL of the distillate was collected in a
50 mL beaker containing 5 mL of boric acid indicator solution, in accordance with [31].

2.3.3. Determination of Total Nitrogen Content

From each sample, 1 g of soil was collected and transferred to a digestion tube (Folin–
Wu type) for the determination of total soil N. Each set of digestion blocks contains one
standard sample and one blank. One gram of the digestion mixture is added to the digestion
tube. Dispense the mixture using a spoon-type measure. Moreover, 3.0 mL of concentrated
sulfuric acid was added. The tubes were placed in a digester block. The mixture was
carefully heated until it stopped foaming. A small glass funnel (25 mm diameter) was
placed over the tubes. The temperature was increased and left to boil for five hours
(approximately 360 ◦C) until the contents of the flask became clear. The temperature of the
block was adjusted so that H2SO4 condensed to about 1/3 of the digester tube height. The
tubes were removed from the digester block and allowed to cool down to room temperature
according to the procedure described in [31].

2.4. Spectroscopic Analysis of Samples
2.4.1. Visible, Near Infrared, and Shortwave Infrared (Vis-NIR-SWIR)

Analysis was performed according to the method described by [27], where soil samples
were dried in a forced-air oven at 45 ◦C for 24 h. They were then crushed and sieved through
a 2 mm mesh sieve (9 mesh). The samples were placed in Petri dishes in 5 g portions,
with the sample surface flattened to reduce relief. The spectral data were obtained using
a FieldSpec3 spectroradiometer (Analytical Spectral Devices, Boulder, CO, USA) with a
wavelength range of 350 to 2500 nm.

2.4.2. X-ray Fluorescence Analysis (XRF)

Analysis was performed according to the method described by [28], where soil sam-
ples were dried in a forced-air oven at 45 ◦C for 24 h and then sieved through 2 mm
mesh (9 mesh). An Olympus Delta Professional portable X-ray fluorescence spectrometer
(Olympus, Center Valley, PA, USA) with two excitation modes was used for analysis. The
instrument has a 50 keV silver X-ray anode and a 2.048-channel silicon drift detector. There
are two built-in calibration methods, soil and geochemical, which work independently and
read different elements. Soil mode was used to analyze soil samples.

2.5. Analyzing Data

The data were extracted and tabulated in worksheets along with the corresponding
chemical analysis data for the determination of N, TOC, and humic fractions. Partial Least
Squares Regression (PLSR) and Support Vector Machine (SVM) were used as machine
learning algorithms. These algorithms were chosen because of their characteristics in
working with the data. PLSR is a linear regression, and SVM is a nonlinear regression [32].
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Of the 0–20 cm samples, 70% were randomly selected for training and 30% for model vali-
dation. Cross-validation was performed with 5-fold repeatability to avoid overfitting. This
statistical process was repeated 50 times. An average of the metric values was generated.
For the 80–100 cm soil depth dataset, this process was performed. The algorithms were
run using the Caret package and PLS. The method was switched for each algorithm in the
RStudio® v. 4.1.3 software.

The relationship between observed and predicted values was evaluated using the
coefficient of determination (R2), root mean square error (RMSE), and interquartile range
performance ratio (RPIQ). Models were classified based on R2 values in accordance with
the methodology [33]. Models with R2 ≥ 0.75: good models for accurate prediction of soil
properties; R2 0.75 to 0.50: satisfactory models with room for improvement; and R2 ≤ 0.50:
nonsignificant models without prediction ability.

3. Results
3.1. Validation of PLSR and SVM Prediction Models Using Vis-NIR-SWIR and XRF Spectroscopy
on Soil Samples of Mombasa Intercropped with Guandu Beans and Java
3.1.1. Mombasa + Guandu Crop (M+G)

The validation of the PLSR and SVM models for the 0–20 cm soil layers in the M+G
cropplot is shown in Figure 2. Adequate coefficients of determination were obtained in the
Vis-NIR-SWIR spectral region for fulvic acid (R2 0.72) and humic acid (R2 0.83) in the PLSR
model (Figure 2a). At the XRF energy level, coefficients of determination were obtained for
ammonium (R2 0.56) and total organic carbon (R2 0.73) (Figure 2a). For the SVM model
(Figure 2b), the Vis-NIR-SWIR wavelength showed a satisfactory coefficient only for the
fulvic acid (R2 0.54). XRFs gave good results for ammonium (R2 0.66) and total organic
carbon (R2 0.69).

In the 80–100 cm layer (Figure 3), the PLSR model yielded coefficients of determination
in the Vis-NIR-SWIR spectral range for ammonium (R2 0.73), nitrate (R2 0.69), total nitrogen
(R2 0.78), total organic carbon (R2 0.56), fulvic acid (R2 0.65), and humic acid (R2 0.92)
(Figure 3a). For XRF, the coefficients of determination were for nitrate (R2 0.85), total
nitrogen (R2 0.54), total organic carbon (R2 0.88), fulvic acid (R2 0.97), and humic acid
(R2 0.69) (Figure 3a). In the SVM model (Figure 3b), the Vis-NIR-SWIR wavelength showed
satisfactory and reasonable coefficients of determination for ammonium (R2 0.58), nitrate
(R2 0.64), total nitrogen (R2 0.71), total organic carbon (R2 0.70), fulvic acid (R2 0.78) and
humic acid (R2 0.60). In XRF, the model generated coefficients for nitrate (R2 0.86), total
organic carbon (R2 0.88), fulvic acid (R2 0.99), and humic acid (R2 0.60).

3.1.2. Mombasa + Java Crop (M+J)

Validation of PLSR and SVM models for 0–20 cm soil layer in M+J plot is shown in
(Figure 4). The PLSR model gave satisfactory results in Vis-NIR-SWIR for ammonium
(R2 0.62), nitrate (R2 0.74), fulvic acid (R2 0.58) and humic acid (R2 0.73) (Figure 4a). In
the XRF analysis, only the humine fraction showed a valid result (R2 0.65) (Figure 4a). For
the SVM model, only the nitrate (R2 0.70) and humic acid (R2 0.67) fractions were valid in
Vis-NIR-SWIR (Figure 4b).

In the 80–100 cm layer (Figure 5), the PLSR model at the Vis-NIR-SWIR wavelength
gave adequate results for ammonium (R2 0.73), nitrate (R2 0.62), total nitrogen (R2 0.60),
total organic carbon (R2 0.73), and humine (R2 0.86) (Figure 5a). In XRF, the results were
satisfactory for ammonium (R2 0.85), nitrate (R2 0.72), total nitrogen (R2 0.59), total organic
carbon (R2 0.99), humic (R2 0.60), and humine (R2 0.99) (Figure 5a). In the SVM model,
Vis-NIR-SWIR spectroscopy showed valid coefficients of determination for ammonium
(R2 0.85), nitrate (R2 0.72), total nitrogen (R2 0.68), total organic carbon (R2 0.74), humic
acid (R2 0.87), and humine (R2 0.94) (Figure 5b). The XRF results were ammonium (R2 0.84),
total nitrogen (R2 0.59), total organic carbon (R2 0.99), fulvic acid (R2 0.50), humic acid
(R2 0.58), and humine (R2 0.51) (Figure 5b).
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3.1.3. Mombasa Crop with Mineral Nitrogen Fertilization (M+N)

The validation of the PLSR and SVM models for the 0–20 cm soil layer in the M+N
is presented in Figure 6. The PLSR model showed satisfactory results at the Vis-NIR-
SWIR wavelength with total organic carbon (R2 0.69), fulvic acid (R2 0.51), and humic acid
(R2 0.64) (Figure 6a). In XRF, ammonium (R2 0.89), total nitrogen (R2 0.72), and humine
(R2 0.75) (Figure 6a). The SVM model (Figure 6b) showed high coefficients of determination
for ammonium (R2 0.68), fulvic (R2 0.73), and humic acids (R2 0.56) with the Vis-NIR-SWIR
spectroscopic technique. The XRF results were excellent for ammonium (R2 0.79), total
nitrogen (R2 0.71), and humine (R2 0.81) (Figure 6b).

For the 80–100 cm layer, in the PLSR model, the Vis-NIR-SWIR wavelength showed
satisfactory results only for nitrate (R2 0.86) and total organic carbon (R2 0.68) (Figure 7a). In
XRF, for ammonium (R2 0.64), nitrate (R2 0.54), and total organic carbon (R2 0.52) (Figure 7a).
Using the SVM model (Figure 7b), Vis-NIR-SWIR showed satisfactory coefficients of deter-
mination only for nitrate (R2 0.73) and total organic carbon (R2 0.58). XRF only ammonium
(R2 0.67) and nitrate (R2 0.56) (Figure 7b).



Remote Sens. 2024, 16, 3009 10 of 19
Remote Sens. 2024, 16, x FOR PEER REVIEW 11 of 21 
 

 

 
Figure 6. Performance metrics of prediction models: (a) PLSR and (b) SVM applied to samples from 
the Mombasa + Nitrogen plot, 0–20 cm soil layer. 

For the 80–100 cm layer, in the PLSR model, the Vis-NIR-SWIR wavelength showed 
satisfactory results only for nitrate (R2 0.86) and total organic carbon (R2 0.68) (Figure 7a). 
In XRF, for ammonium (R2 0.64), nitrate (R2 0.54), and total organic carbon (R2 0.52) (Figure 
7a). Using the SVM model (Figure 7b), Vis-NIR-SWIR showed satisfactory coefficients of 
determination only for nitrate (R2 0.73) and total organic carbon (R2 0.58). XRF only am-
monium (R2 0.67) and nitrate (R2 0.56) (Figure 7b). 

Figure 6. Performance metrics of prediction models: (a) PLSR and (b) SVM applied to samples from
the Mombasa + Nitrogen plot, 0–20 cm soil layer.

3.1.4. Mombasa Crop without Nitrogen Fertilization (M-N)

Validation of PLSR and SVM models for the 0–20 cm layer in M-N is shown in
(Figure 8). The PLSR model showed satisfactory coefficients at the Vis-NIR-SWIR wave-
length for ammonium (R2 0.54), fulvic acid (R2 0.57), and humic acid (R2 0.74) (Figure 8a).
In the XRF, for ammonium (R2 0.86), total nitrogen (R2 0.76), fulvic acid (R2 0.86), and humic
(R2 0.66) (Figure 8a). In the SVM model (Figure 8b), Vis-NIR-SWIR gave satisfactory values
for total nitrogen (R2 0.63) and humic acid (R2 0.58). By XRF, for ammonium (R2 0.79), total
nitrogen (R2 0.73), fulvic acid (R2 0.83), and humic (R2 0.67) (Figure 8b).

At the 80–100 cm layer (Figure 9a), the PLSR model in Vis-NIR-SWIR exhibited
satisfactory coefficients of determination for ammonium (R2 0.60), total organic carbon
(R2 0.69), and humine (R2 0.61). For XRF, ammonium (R2 0.80), nitrate (R2 0.50), and
total organic carbon (R2 0.62) (Figure 9a). SVM model (Figure 9b), Vis-NIR-SWIR only
satisfactory results for total organic carbon (R2 0.55) and humine (R2 0.67). In XRF, for
ammonium (R2 0.85), nitrate (R2 0.52), and total organic carbon (R2 0.68) (Figure 9b).
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4. Discussion

In the 0–20 cm soil layer of the M+G system (Figure 2a), it was observed that the Vis-
NIR-SWIR spectral response of the PLSR model gave adequate coefficients of determination
for fulvic acid (R2 0.72) and humic acid (R2 0.83). Similar results were found in [34] when
the PLSR model was validated, with R2 0.78 for fulvic acid and R2 0.80 for humic acid.
Changes in soil management are a relevant issue contributing to the increase in carbon
fractions, according to [35].

XRF showed satisfactory results with ammonium (R2 0.56) and total organic carbon
(R2 0.73) (Figure 2a). In a study [36], coefficients of determination of R2 0.60 were obtained
using the XRF spectrum in combination with PLS regression to predict total organic carbon
content. The combined planting of grasses and legumes has shown good results in soil
conservation [37], and it contributes to N storage through biological fixation [38]. This inter-
cropping system is also capable of improving soil total organic carbon accumulation [39].

In the SVM model, the spectral response of Vis-NIR-SWIR and XRF showed slightly
lower determination coefficients for organic attributes fulvic acid and total organic carbon
(Figure 2b) in comparison to the PLSR model. A similar situation was reported by [40].
They used Vis-NIR to predict total organic carbon in the 0–30 cm soil layer. The PLSR model
showed an R2 of 0.63, while the SVM model showed an R2 of 0.30. For the 80–100 cm layer
(Figure 3), practically all attributes were validated. In the PLSR model (Figure 3 a), the
Vis-NIR-SWIR spectrum showed satisfactory and adequate results for ammonium (R2 0.73),
nitrate (R2 0.69), total nitrogen (R2 0.78), total organic carbon (R2 0.56), fulvic acid (R2 0.65),
and humic acid (R2 0.92). The nitrogen compounds ammonium, nitrate, and total nitrogen
stood out. Using Vis-NIR-SWIR in a PLSR model, the authors [41] obtained R2 0.83 for
total nitrogen. Legumes are natural sources of nitrogen [42] through atmospheric nitrogen
fixation to the soil in a symbiotic manner, as a result of the interaction between the legume
and the rhizobium (Bradyrhizobium spp.) [43].

The predictions of ammonium and nitrate were superior to the results obtained
with Vis-NIR-SWIR in the SVM model (Figure 3b). In a study by [44] on the prediction
of ammonium, nitrate, and urea in soil using NIR, they reported that the accuracy of
ammonium and nitrate detection by the PLSR model was superior to that of the SVM
model. In terms of XRF wavelength, both the PLSR model and the SVM model showed
the same validation capability (Figure 3a,b). The exception was the prediction of total
nitrogen in the PLSR model (Figure 3a), which was absent in the SVM (Figure 3b). A similar
result was obtained by [45], validating R2 of 0.50 for total nitrogen using the PLSR model.
Although the XRF spectrometer does not directly determine these attributes, other studies
have reported the ability to determine them by elemental association [46–48]. According
to [49], XRF is highly dependent on the atomic number of the elements. Due to their low
emission energies, light elements, elements with atomic numbers below 12, are difficult
to determine.

The PLSR model showed satisfactory and adequate results in the 0–20 cm soil layer of
the M+J crop (Figure 4). The authors [44] obtained an R2 of 0.88 for ammonium. This result
is superior to the SVM model. Another study [50] obtained a coefficient of determination
of 0.82 using the PLSR model to evaluate the nitrate content in the soil. Organic matter
derived from cultivated crops not only contributes to N accumulation in plant biomass [51].
It consists of 80–90% humic fractions [52], called fulvic acids, humic acids, and the humine
fraction [53]. These fractions have a high capacity to store carbon in the soil [54] and reflect
the ability of the soil to remain healthy and productive in the long term [53].

In the SVM model, only Vis-NIR-SWIR spectroscopy produced results (Figure 4b).
This model has often been applied to Vis-NIR spectral datasets [55]. In some studies, it
has produced more accurate calibration results than the PLSR method [32]. However,
the estimation capacity and computational efficiency of the SVM model can be reduced
by possible redundancies in the data, such as collinearity between them, and sometimes
by the noise contained in the spectral data [56]. This information may explain the poor
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performance of the SVM model on Vis-NIR-SWIR and even XRF spectral responses over
PLSR model results (Figure 4b).

In the 80–100 cm layer, the PLSR model at the Vis-NIR-SWIR wavelength showed
satisfactory results for ammonium (R2 0.73), nitrate (R2 0.62), total nitrogen (R2 0.60), total
organic carbon (R2 0.73), and humine (R2 0.86) (Figure 5a). Legume cropping systems
have many benefits for soil fertility. They increase organic carbon, humic fractions, and the
availability of nitrogen and phosphorus [57].

XRF spectral response showed satisfactory determination coefficients for ammonium
(R2 0.85), nitrate (R2 0.62), total nitrogen (R2 0.59), and especially total organic carbon
(R2 0.99) and humine (R2 0.99) (Figure 5a). In addition, fluorescence spectroscopy can be
a complementary method to reflectance spectroscopy [58]. The fluorescence technique
is the measurement of the photoluminescence of molecules that emit light when they
absorb electromagnetic energy [59]. This may be the reason for the high performance of the
validation results for total organic carbon and humic fractions.

The SVM model in the 80–100 cm layer (Figure 5b) showed slightly better predictive
results for Vis-NIR-SWIR and XRF than the PLSR model. The authors [60] obtained SVM
results that were superior to the PLSR model, with ammonium showing an R2 of 0.70,
nitrate (R2 0.82), and total nitrogen (R2 0.94). Because it successfully models the linear
relationship between spectral data and chemical data, the PLSR method developed by [61]
has become the most widely used calibration method for estimating organic carbon and
organic matter compounds [62]. However, nonlinearity between spectral and chemical data
is common. It is usually caused by variations in the instruments used for spectral measure-
ments, such as lamp fading or sensor sensitivity [63], and especially by heterogeneous soil
characteristics [64]. Therefore, nonlinear methods such as support vector machine (SVM)
regression can sometimes provide better results than linear methods [65].

In the 0–20 cm soil layer of the M+N crop, the Vis-NIR-SWIR spectral response in the
PLSR model was for total organic carbon (R2 0.69) and fulvic (R2 0.51) and humic (R2 0.64)
acid (Figure 6a). In a study by [66] that modeled total organic carbon using Vis-NIR in
the 0–30 cm soil layer, they found total organic carbon (R2 0.86) and recalcitrant carbon
(more stable carbon fraction with low decomposability such as fulvic and humic acids) of
(R2 0.82) in the PLSR, which outperformed the other models. Quantifying the soil organic
carbon compartments helps us understand how stable forms of C are being conserved or
lost in the soil, given current climate variability [66].

XRF gave good results for ammonium (R2 0.89), total nitrogen (R2 0.72), and humine
(R2 0.75) (Figure 6a). Satisfactory results were also obtained by [67] with total nitrogen
(R2 0.50) and soil organic matter (R2 0.56), using the random forest model. The application
of mineral nitrogen fertilizers is one of the most important management tools for the
maintenance and the increase in the productivity of the agricultural systems [68].

In the SVM model, the Vis-NIR-SWIR spectral response was satisfactory for ammo-
nium (R2 0.68), fulvic acid (R2 0.73), and humic acid (R2 0.56) (Figure 6b). In a study
by [69] evaluating forest soil properties for studying humus using Vis-NIR, they found
R2 0.71 for total nitrogen and R2 0.72 for total organic carbon in the SVM model. In XRF,
humine (R2 0.81) stood out (Figure 6b). For the development of management strategies, the
availability of nutrients in the soil is the basis for making confident decisions. Therefore, it
is necessary to update and complement the current methods for the quantification of the
humic properties of soils [69].

For the 80–100 cm layer, in the PLSR model, the Vis-NIR-SWIR spectral response was
only present for nitrate (R2 0.86) and total organic carbon (R2 0.68) (Figure 7a). Authors [70]
obtained R2 0.89 for total nitrogen and R2 0.75 for soil organic matter using the PLSR
model. The process of nitrogen mineralization in the soil is considered a critical point of
fertility. It is relevant for the supply and evaluation of the content of N readily assimilable
by plants. However, if not carefully managed, the mineral N content in the soil can exceed
the crop needs, and then the remaining nitrate will lead to increased leaching along the soil
profile [71]. XRF values were obtained for ammonium (R2 0.64), nitrate (R2 0.54) and total
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organic carbon (R2 0.52) (Figure 7a). Sandy soils are more susceptible to NO3
− leaching

than clay soils [72]. Therefore, determining the different types of N present in soils is of
great value for agricultural production [44].

The SVM model results (Figure 7b) were not very different from those obtained with
the PLSR model (Figure 7a). In a recent study by [73], where carbonates and organics
were characterized by reflected energy, they obtained good results with the PLSR and
SVM models, with R2 0.84 and R2 0.85 for organics and R2 0.77 and R2 0.78 for carbonates,
respectively. However, the strategic use of nitrogen fertilizer in precision agriculture can
be guided by the effective and accurate quantification of N and organic matter content in
agricultural soils [44].

In the 0–20 cm layer of the M-N crop, the Vis-NIR-SWIR wavelength of the PLSR
model showed satisfactory coefficients for ammonium (R2 0.54), fulvic acid (R2 0.57),
and humic acid (R2 0.74) (Figure 8a). The authors [74] measured the carbon content of
microbial biomass using NIR spectroscopy and obtained an R2 of 0.57 using the PLSR
model. Nitrogen is one of the most limiting nutrients for the growth and development
of plants. In systems where this nutrient is lacking, the native soil microorganisms take
over this role and make the nutrients available through mineralization processes [75]. XRF
validation results were satisfactory for ammonium (R2 0.86), total nitrogen (R2 0.76), fulvic
acid (R2 0.86), and humic acid (R2 0.66) (Figure 8a). Fulvic and humic acid fractions are
important components of soil. They improve aggregates and soil fertility and reduce soil
acidity and alkalinity [76].

In the SVM model, Vis-NIR-SWIR showed satisfactory results for total nitrogen
(R2 0.63) and humic acid (R2 0.58) (Figure 8b). XRF showed good results for ammonium
(R2 0.79), total nitrogen (R2 0.73), fulvic acid (R2 0.83), and humic acid (R2 0.67) (Figure 8b).
Properly managed pasture systems can promote soil benefits such as organic matter accu-
mulation, water retention, nutrient cycling, and increases in total soil carbon stocks [77].
Quantification of soil carbon stock and nitrogen content, which are important compo-
nents of organic matter, allows understanding of the effects of management on cropping
systems [78].

For the 80–100 cm soil layer, the PLSR model showed satisfactory coefficients of
determination for the Vis-NIR-SWIR wavelength, with ammonium (R2 0.60), total organic
carbon (R2 0.69), and humine (R2 0.61) (Figure 9a). XRF values were ammonium (R2 0.80),
nitrate (R2 0.50), and total organic carbon (R2 0.62) (Figure 9a). Belowground biomass is
of great importance for carbon and nutrient cycling [79], accounting for more than 80%
of the total biomass in pastures. According to [80], the root biomass expresses positive
correlations with the stable fractions of organic C (fulvic acid, humic acid, and humine) in
the Brazilian pasture soil.

In the SVM model, good results were obtained both for Vis-NIR-SWIR, with satisfac-
tory results for total organic carbon (R2 0.55) and humine (R2 0.67) (Figure 9b), and for XRF,
with ammonium (R2 0.85) and nitrate (R2 0.52) (Figure 9b). Tropical grass cultivation con-
tributes to widening soil pathways by increasing root biomass production, which facilitates
carbon uptake and benefits soil carbon cycling [81].

Good soil quality is not only a question of the vitality and productivity of plants but
also of the integrity of the agroecosystem as a whole. Healthy soil is the basis for biological
communities that support biological diversity, which benefits both the agricultural land
and the environment [82].

5. Conclusions

The Vis-NIR-SWIR and XRF spectroscopic techniques showed high performance and
are indicated for the prediction of nitrogen, total organic carbon, and humic fractions
in Ferralsols of medium sandy texture. However, it is important to highlight that each
technique has its own characteristic mechanism of action: Vis-NIR-SWIR detects the element
based on harmonic tones, while XRF is based on the atomic number of the element or
elemental association.
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The PLSR and SVM models showed excellent validation results, allowing them to fit
the experimental data, emphasizing that they are different statistical methods.
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