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Convolutional neural networks have shown successful results in image classification achieving real-time results
superior to the human level. However, texture images still pose some challenge to these models due, for
example, to the limited availability of data for training in several problems where these images appear, high
inter-class similarity, the absence of a global viewpoint of the object represented, and others. In this context, the
present study is focused on improving the accuracy of convolutional neural networks in texture classification.
This is done by a hierarchical application of deep filter bank modules combined with Fisher vector pooling.
Mid-level local features are extracted from earlier convolutional layers of a pre-trained backbone and combined
with high level ones from the last convolutional layer. All local features are treated as equally important and
aggregated into a single set of features used for pooling by Fisher vectors. No fine tuning is necessary. The
rationale behind this approach is obtaining information that is less domain specific. We verify the effectiveness
of our method in texture classification of benchmark databases, as well as on a practical task of Brazilian plant
species identification. In both scenarios, Fisher vectors calculated on multiple layers show competitive results
with state-of-the-art methods, confirming that early convolutional layers provide important information about
the texture image for classification.

1. Introduction 12]. They leverage mid-level features extracted from earlier layers,
which encode more general and fundamental information about the im-
age and are not application-specific. [13]. However, these approaches
are built for end-to-end training and associating them with very deep
CNN architectures would require large texture datasets. The use of
traditional visual texture encoders, such as Fisher Vectors, is suitable
in this scenario where data availability is limited [14]. But the full po-

tential of very deep CNNs in feature extraction has not been accordingly

Texture recognition is a task that involves extracting information
of the spatial arrangement of the pixel intensities in an image and
classifying it. They play an important role in remote sensing [1],
materials science [2], medicine [3], agriculture [4], and other fields.

Although CNNs have been quite successful for general image clas-
sification, textures are still challenging. This is a consequence of char-
acteristics such as the high inter-class similarity, the lack of a global

viewpoint on the analyzed object and the limited availability of data
for training in several areas of application, such as medicine [5,6], for
example. Training a deep CNN from scratch can lead to overfitting,
given limited availability of data. Even if we consider the fine-tuning
of pre-trained CNN models on large databases, such as ImageNet, there
can be significant domain shift between those large databases and the
field of research interest. In this context, the literature has presented
a growing number of studies combining CNNs with classical texture
descriptors [7-9].

In recent works, transfer learning approaches have been proposed
to use the pre-trained CNN capacity of extracting features. Such ap-
proaches consist of building new modules around a CNN backbone [10-
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explored.

In this context, we propose a method (MultiFisherNet), which aims
to explore feature extraction capability of earlier layers of a CNN. This
is achieved by proposing a method to combine mid-level local features
with high-level ones into a single set of features suitable for traditional
encoders. Although high-level features are domain-specific, some infor-
mation from one domain may be useful in another. With the proposed
scheme, we aim to use features from earlier layers that are less domain-
specific without losing information from later layers that might be
useful. The extracted features are encoded in an orderless manner using
a Fisher vector representation. The aggregated features are finally used
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as input to a Support Vector Machine (SVM) classifier. For the feature
extraction we use an EfficientNet-B5 backbone [15], pre-trained on
ImageNet. This choice takes into consideration the compromise of that
architecture between accuracy and computational cost. No fine tuning
is necessary in the proposed solution. The major contributions of this
study are:

1. We propose a method for hierarchically combining local features
extracted from multiple convolutional layers of a CNN;

2. We investigate strategies to combine multiple features with dif-
ferent dimensions based on projection operators;

3. We improve CNN accuracy in visual texture classification;

4. We improve the state-of-the-art performance on the Flickr Mate-
rial Database (FMD) [16] and the Describable Textures Dataset
(DTD) [17];

5. The proposed model achieves a remarkable accuracy of 97.2%
in a practical task of identifying Brazilian plant species, signifi-
cantly outperforming results previously published in the litera-
ture [18].

In Section 2, we mention and briefly describe some related works.
In Section 3 the theoretical background necessary for the presentation
of the proposed method is described, with Section 3.1 giving a brief
general description of CNNs and Section 3.2 focusing on how Fisher
kernels can be used in texture descriptors. In Section 4 we present
the proposed method for visual texture classification. Section 5 shows
our procedures to test and validate the performance of our method. In
Section 6 we present and discuss the obtained results. Finally, Section 7
presents the general conclusions of our research.

2. Related works

Earlier works on texture recognition were based on using hand-
crafted features that are invariant to scale, illumination and translation.
Scale Invariant Feature Transform (SIFT) [19], Local Binary Patterns
(LBP) [20] and variants [21,22] are prominent examples in this regard
in the literature. On top of those handcrafted feature extractors, an
encoder is needed to combine features into a single descriptor vector
that can be used in a discriminative classifier. Traditional encoders in-
clude Bag-of-Visual-Words and its variations [23-26], Vector of Locally
Aggregated Descriptors (VLAD) [27] and Fisher Vectors (FV) [28,29].

In the last decade, a shift has been made from handcrafted feature
extractors to deep neural networks. Since texture recognition databases
are frequently very small to train deep neural networks from scratch,
most of the proposed methods use pre-trained CNNs on large databases,
like ImageNet. One approach is pooling feature maps extracted from
CNNs with traditional encoders. Such approach is taken by Cimpoi
et al. [14], where VGG architecture [30] is used as feature extractor.
Local features are extracted from the last convolutional layer and
encoded with FV. Such approach is shown to overcome handcrafted
feature extractors in terms of accuracy. Ways to improve FV encoding
of local features extracted from the last convolutional layer are stud-
ied in Song et al. [31]. They proposed the use of a neural network
of locally-connected layers to extract relevant information from FV
descriptors. Classification is later performed by a hinge loss layer. A
hybrid approach combining SIFT FV descriptors and CNN is explored
by Jbene et al. [32]. They propose a neural network composed by
two streams. One extracting handcrafted features and the other using a
CNN as feature extractor. Both features are concatenated using fully-
connected layers. Such approach is evaluated on Xception [33] and
Resnet-50 [34] and it is shown to improve CNN accuracy on visual
texture classification.

In recent literature, new modules have been built around the pre-
trained CNN backbone in order to allow end-to-end training. Such
methods usually employ Resnet-18 or Resnet-50 [34] as using deeper
CNN backbones would require more data for training. In this context,
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Zhang et al. [35] build an orderless encoding layer on top of feature
maps extracted from the last convolutional layer. Such layer learns a
dictionary through soft-assignment clustering and performs sum pool-
ing. Xue et al. [36] combines an orderless encoding layer with global
average pooling. The orderless encoding is similar to [35]. Features
extracted from both layers are processed through a bilinear model. In
Chen et al. [10] feature maps are extracted from multiple convolutional
blocks. Those feature maps are resized using bilinear interpolation to
a fixed width and height and concatenated on the third dimension,
i.e., number of channels. Differential box-counting dimensions are cal-
culated on the resulting feature map and their histograms are later
concatenated with global average pooling. Classification is performed
by a softmax layer.

Improvements in end-to-end learning are proposed by Mao et al.
[11]. They attempt to obtain faster training by removing dictionary
learning. This is accomplished by using the last convolutional layer
feature map as a dictionary. Feature maps from earlier layers are hard-
assigned by a residual encoding module. Those features are later pooled
using global average pooling. Yang et al. [12] attempt to build a model
more suitable for visual texture, learning both first and second-order
feature information. Feature maps from multiple convolutional layers
are transformed by frequency attention mechanism based on discrete
cosine transform. Extraction is later performed by an attention-based
network. Features are encoded by a layer based on bilinear models. Xu
et al. [37] attempt to learn more robust and discriminative descriptors
by proposing a feature encoding module that combines fractal average
pooling and global average pooling. Fractal average pooling is calcu-
lated by a hierarchical fractal dimension analysis. Both pooled feature
vectors are combined with bilinear pooling.

Other family of works propose not fine-tuning CNN weights. Such
approaches can take advantage of very deep CNN models as done
in Scabini et al. [38]. They build a feature map using the same ap-
proach as in [10]. This feature map is used to train a Randomized
Autoencoder module and its weights are used to compose a single
dimensional feature vector. The CNN backbone used is ConvNext [39]
and they show that their method is suitable for very deep versions
of this architecture. SVM is used to perform classification. Florindo
et al. [40] propose an encoding approach on top of global average
pooling. Visibility graphs are built with the output of the penultimate
CNN layer and transformed into feature vectors by calculating node
degrees. Classification is performed with SVM and linear discriminant
analysis. In another work [41], the input image is transformed calcu-
lating an entropy measure over it. Image descriptors are extracted from
the penultimate CNN layer for both the original and transformed image
and concatenated. They also attempt to perform orderless encoding
in [42]. Feature maps extracted from the last convolutional layer are
clustered using k-means. Encoding is performed with fuzzy equivalence
measures as a way to avoid strong assumptions on the distribution of
local features.

Even though the proposed method employs some elements and ideas
of the aforementioned approaches, such as the use of a pre-trained
backbone with no fine tuning, our approach significantly differs in
its strategy to provide the final texture representation. The multi-level
Fisher vector scheme has not been previously explored in the literature
and ensures significant gains in terms of classification accuracy without
adding relevant computational burden, given that no extra learning
procedure over the CNN backbone is necessary.

3. Background

In this section, we describe the concepts needed to understand the
proposed model. In Section 3.1, we set the basic theory and describe
the functioning of CNNs. In Section 3.2, we present a concise summary
of Fisher Vector.
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3.1. Deep convolutional features

A CNN is a neural network usually developed to handle images.
Nodes in each layer can be organized in a multi-dimensional space.
Using three dimensions, for example, it is possible to explore relations
among neighbor pixels and among color channels.

This type of neural network can be decomposed into two main parts.
The first one is used for extracting features from images. It is usu-
ally composed by convolutional, pooling, activation and normalization
layers. The second part is composed by fully-connected layers whose
purpose is classification.

Given a network layer L, ;, which is a function that takes as input
a tensor and outputs another tensor, a convolutional block B; can be
written as a composition of layers:

B(X)=L, oLy 0 (X). @

CNN architectures for image classification are usually built by compos-
ing convolutional blocks, that is, N = BjoB,o - (X). Normally, two
convolutional blocks B; and By are composed of the same sequence of
layers, that is, if L, ; is a pooling layer, then L, will also be a pooling
layer.

Classical extraction of features is performed by applying convo-
lutional filters to the input image [43]. In this sense, the feature
extraction part of a CNN can be seen as a bank of filters, where
each channel from each convolutional layer is a particular filter. These
features can later be encoded by Fisher Vectors.

3.2. Fisher vector

Let X = {x,t = 1T | x, € RP} denote a sample of T
observations. Assume that the generation process of X can be modeled
by the probability density function u, with parameters 4. Then one can
characterize the observations in X by the following gradient vector

G =V, logu,(X). (2)

The gradient vector given by Eq. (2) can be classified using any
classification algorithm. In [44], the Fisher information matrix F, is
suggested for this purpose and given by
F, =Ey[G}GY'), 3)

where E denotes the mathematical expectation of X. From this obser-
vation, a Fisher Kernel (FK) to measure similarity between two samples
X and Y was proposed. Such kernel is defined by:

Kpx(X,Y)=GY'F;'GY. ©)

As F;‘ is positive semi-definite, so is F,. Using the Cholesky decom-
position F;l = L,'L,, the FK can be re-written as:

Krx(X. V) =¢Y'¢r ()
where
¢¥ =L,GY. (6)

The vector Qf is called Fisher Vector (FV). We have that FV and
Gj‘ have the same dimensionality [45]. Therefore, we can conclude
that performing classification with a linear kernel machine using an
FV as feature vector is equivalent to performing a non-linear kernel
machine using Krx as kernel. More details on Fisher Vectors can be
found in [45].

4. Proposed method

Here we propose an approach to use information from multiple
layers of a CNN and Fisher vector encoding to perform classification.
The current section is divided into two subsections. In Section 4.1, we
show the proposed strategy to build feature vectors. In Section 4.2, we
show the classification process using such feature vectors.
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4.1. Feature extraction

In the first stage of our methodology, we are interested in combining
features extracted from multiple layers of a convolutional neural net-
work. Initially, we take a CNN architecture pre-trained on ImageNet
and use it as a feature extractor. We present the texture image as input
to the pre-trained CNN and collect the outputs of an arbitrary number
of convolutional blocks. All chosen layers contain feature information
about the image. However, features extracted from later layers contain
higher-level information than features extracted from earlier ones.

Definition 1. Let X, = {x,,t=1,2,...,T, | x, € RP»} denote the set of
outputs of the nth convolutional block, where D, and the scalar product
T, =W, - H, are, respectively, the number of channels and number of
pixels of each channel. We call x € X,, a local feature and X,, the set of
local features extracted from the nth convolutional block.

Let n and m denote two convolutional blocks, where D, > D,,. We
denote by X,_,,, the set composed by local features from X, mapped to
the space of local features from X,,, that is,

Xpoom = S um )t =1,2, ...,

where f,,, : RP» » RP» is a dimension reduction function. If the two
convolutional blocks have the same number of channels, that is, D, =
D, the function f,,, is an identity function. Otherwise, if D, > D,,
each component f,f{m in f, , is given by

T,|x €X,}, )

K xS-dim for max pooling,
ot (®)

1 K S-d+m .
st Dm0 X; for average pooling,

max

fn,m (Xt)d =

where x? is the dth component of x, and

S = [ Dn—i J (9)
Dn—k |
K=D, ,—D,_,-S. 10)

Additionally to average and max pooling, we also propose the use of
Principal Component Analysis (PCA) to calculate f, .

Given k + 1 convolutional blocks n,n—1, ...,n—k, the combined set
of local features X is constructed by pooling the sets X,, X,,_;, ..., X,_.
Such pooling is given by Eq. (11). The proposed scheme for feature
extraction is exemplified in Fig. 1, where k = 2.

k
X = U Xn—i—)n—k (11)
i=0
Fisher vectors are calculated with the combined set of local features
X ={x,t=12..,T|x €RP}, whereT = ¥\ T, ,and D = D,_,.
We assume that each local feature x, is independently generated by the
u, distribution. In this case, Eq. (6) becomes:

T
1
¢ = Liz 2 V, logu,(x,). 12)
=1

We choose u, to be a Gaussian Mixture Model (GMM) composed
by K Gaussian distributions, which represent each visual word in the
learned dictionary. In this model, u, is written as

K
u,(x) = Z w;u;(x), 13)
i=1
where A = {w;, py;, Z;,i = 1,...,K} and w;, p;, Z; denote, respectively,
the weight, mean and covariance matrix associated with Gaussian y;.
Let y,(x,) denote the probability of an observation x, to be generated
by the Gaussian u;:
w;u;(X,)
Vi (Xr) — = PN

_ i) as
Zj:l w;u; ()
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‘ Block n ‘
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Dictionary
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Fig. 1. Feature extraction with the proposed method for the particular case of three
sets. Here D, , < min(D,_;,D,), thus, dimensionality reduction needs to be applied
to local features in X, and X, ;. FC Features are extracted from fully-connected
layers after block n. FV Features are built from combined local features and a learned
Dictionary.

We assume that covariance matrices are diagonal given that any
distribution can be approximated with an arbitrary precision by a
weighted sum of Gaussians with diagonal covariances [28]. We denote
o2 = diag(Z,). Using the values of L, and V, logu,(X) derived in [28],
we can rewrite Eq. (6) as:

¢ = Z (ri(x) - (15)

w
i

<|

T
X _ —H;
G = —\/_gl 7i(x,) < - > (16)
T d 2
(xy — ui)
gf{’ = ; [W 1] : a7

Egs. (15), (16), (17) are used to calculate each component of a
Fisher Vector from any set of local features extracted from CNN’s
convolutional layers. This feature vector is here denoted as FV. Ad-
ditionally, we extract information from the last fully-connected layer.
The extraction process is performed by removing the output layer. The
resulting feature vector is here called FC.

4.2. Classification

In order to perform classification, we employ L2 and Power nor-
malization over FV features as proposed in [29]. Although there are
various normalization algorithms applied with different image types,
they may lead to increase in computational costs. Therefore, an ef-
ficient normalization algorithm has been used in this work to obtain
high performance. Additionally, we combine information from FC and
normalized FV features by concatenating the two vectors. The resulting
feature vector is referred as FC+FV.

Classification is performed with Support Vector Machine (SVM),
using the Bhattacharyya coefficient given in Definition 2 as kernel.

Definition 2. Let x,y € RV. The Bhattacharyya coefficient is given
by the following measure of distance:

N
K(x,y)= Y signCey)y/xy,l. 8)

i=1

Note that the Bhattacharyya coefficient can be rewritten as

= p(x)T p(y), 19)

where ¢(x) is a vector whose coordinates are given by

$(x); = sign(x))V/|x;[. (20)

K(x,y)
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Thus, applying the transformation given by Eq. (20) to the feature
vectors, we are able to perform the classification with a linear SVM. As
we are dealing with multi-class problems, we use one-vs-rest strategy
to perform classification.

5. Experimental setup

In this section we describe how we evaluate our proposed method-
ology. Our base model uses the EfficientNet-B5 architecture [15] with
pre-trained ImageNet weights as feature extractor.

The databases used for method evaluation are KTH-TIPS2-b, FMD,
DTD, UIUC, UMD, and GTOS. The database used in our practical task is
1200Tex. All these databases are described in the following paragraphs.

KTH-TIPS2-b [46] consists of 4 samples of images from 11 materials.
Each sample is presented in 9 different scales, 3 poses and 4 lighting
conditions. This represents a total of 108 images with varying sizes per
material per sample. In each round, we use 3 samples for training and
1 sample for testing.

FMD [16] consists of 10 classes containing 100 images each. Each
image has a size of 512 x 384. We run 10 training/testing rounds, each
randomly selecting half of the database for training and using the other
half for testing.

DTD [17] consists of 5640 images with varying sizes divided into
47 categories. This results in 120 images per class, which are divided
into three equal parts: training, validation and testing. The database
contains 10 splits of the data. For each one, we use training and
validation parts for adjusting our model and the remaining part for
testing.

UMD [47] consists of 25 classes containing 40 images each. All
images have a dimension of 1280 x 960. We evaluated our method
following the same protocol as FMD.

UIUC [24], as UMD, consists of 1000 images evenly divided into 25
classes. Each image has resolution of 640 x 480. In order to evaluate
our method in this dataset, we use the same protocol applied to FMD.

1200Tex [18] consists of 1200 leaf surface images of 20 Brazilian
plant species (classes). Each class contains 60 samples. We applied the
same protocol followed in FMD to choose training and testing datasets.

GTOS [48] consists of over 34,243 images divided into 40 material
categories. Each class contains a different amount of images. Each
material sample was taken in 19 viewing angles. The database contains
5 splits. In each split, the dataset is divided in training and testing parts
with a varying ratio. Given computational costs of GMM algorithm, we
undersample the training set, randomly choosing 2 out of 19 viewing
angles from each sample for training purposes.

In order to fairly compare the methodology behavior in all datasets,
we fix image width to obtain a similar number of local features. In
the case of datasets with different image sizes, we also fix height to
the same value as width. The standard value adopted for the image
width is 320. Additionally, we do not apply any denoising methods to
the images.

Fisher Vectors are calculated using 16, 32, 48, and 64 kernels. Unless
otherwise specified, we use 16 kernels. This value corresponds to the
number of components in the GMM. All remaining parameters are left
unaltered. The GMM is initialized using k-means algorithm. We set
the non-negative regularization, a value that is added to the diagonal
covariance, to the local features standard deviation multiplied by 10~4.
The algorithm tolerance is set to 1073,

Local features are extracted from 1 to 4 convolutional layers. Unless
stated otherwise, we use two convolutional layers. The layers are
chosen as the last convolutional layer of each used convolutional block.
Convolutional blocks are selected sequentially starting from the last
block. Thus, for n layers, the last n convolutional blocks are used.
One layer means that the last convolutional layer is used, as proposed
in [14]. We call high-level features those that are extracted from the
last convolutional layer while mid-level features are the ones extracted
from earlier layers.
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Table 1
Comparison of different dimensionality reduction methods with features provided by Fisher Vectors.
Dataset Method Accuracy Precision Recall F1-Score
KTH-TIPS2-b PCA 9235, 936,44 923,55 N T,s9
Avg Pooling 92.3,4% 93.2,44 92.3,4% 917,55
Max Pooling 92.5,52 935,47 925,55 91.8,s9
AutoEncoder 92.6,5 93.5.44 92.6,5 92.0,56
FMD PCA 88.8.05 88.9.05 89.0,08 88.8,03
Avg Pooling 81.0,, 81.0,07 81.3,07 80.7,0
Max Pooling 782,00 78.1,00 785,00 77.8,10
AutoEncoder 90.3.96 90.3,96 90.5.¢7 90.2,96
DTD PCA 80.25 80.3.5 80.2,05 80.0,¢5
Avg Pooling 7115 711,06 77145 76.8,06
Max Pooling 753,07 754,405 753107 751,408
AutoEncoder 80.1,04 802,04 80.1.04 799,04
UMD PCA 99.8,0.1 99.8.0.1 99.8.0.1 99.8.0,
Avg Pooling 99.701 99.7.01 99.7.40,4 99.7,0.1
Max Pooling 99.7.40.1 99.70.1 99.8.0.1 99.7,0.1
AutoEncoder 99.8.0.1 99.8.0.1 99.8.0.1 99.8,0.1
UIuC PCA 99.9,0. 99.9,0.1 99.9,0. 99.9,0.1
Avg Pooling 99.9.0.1 99.9.0.1 99.9.0.1 99.9.0.1
Max Pooling 99.8.0.1 99.8.0.1 99.8.0.1 99.8.0.1
AutoEncoder 99.9,0.1 99.9.0, 99.9.0.1 99.9,0,
GTOS PCA 85.0,,, 84.8,,, 85.1,,, 829,
Avg Pooling 84.1,,, 837,20 84.0,,, 81.8,,,
Max Pooling 84.0,,6 837,55 83.8,19 819,55
AutoEncoder 854, 853,50 853,15 834,

In all experiments, we use EfficientNet-B5 [15] architecture for fea-
ture extraction. We also show the behavior of the model in other CNN
backbones. In these cases, the backbone used is explicitly mentioned.

In all considered backbones, local features of the previous convolu-
tional layers belong to a lower dimensional space than those of the later
layers. Thus, for every experiment using 2 or more convolutional layers
for feature extraction, we use a method for dimensionality reduction.
The standard method used is PCA, using the randomized Singular Value
Decomposition proposed in [49]. We also consider Average pooling,
Max pooling and AutoEncoder. The proposed AutoEncoder consists of
two linear layers, one for encoding, and the other for decoding. No
activation function is applied. Average pooling and Max pooling are
1-dimensional and used exclusively for dimensionality reduction.

For classification purposes, linear SVM is used with regularization
parameter set to 1.0, class weights set to 1.0 and tolerance set to
103, We consider the use of other classifiers, such as SVM with Radial
Basis Function (RBF) kernel, Multi-Layer Perceptron (MLP), and Linear
Discriminant Analysis (LDA). For the SVM with RBF kernel, we use
the same parameters as in the linear SVM. For MLP, we use one
hidden layer with 100 neurons, rectified linear unit (ReLU) as activation
function and Adam [50] for optimization. The learning rate is kept
constant and equal to 0.001. In the specific case of linear SVM, Eq. (20)
is applied to the feature vectors.

We evaluate how the accuracy of Fisher Vectors in describing the
original image is affected by the number of kernels and the number
of local features. In the first case, we change the number of GMM
components. In the second case, we vary the width of the input image.
The image height is changed accordingly to maintain the original aspect
ratio.

We also evaluate the model robustness by adding noise in the input
signal. We use Gaussian noise with zero mean and variance equal to
the image mean divided by the Signal-to-Noise Ratio (SNR). The noise
is added after resizing and normalizing the input image. We compared
the model accuracy with SNR ranging from 100 to 10.

Additionally, we include ablation studies where we evaluate how
the model behaves when mid-level information is removed and when
high-level information is removed. The default setting is the same as
previous experiments, using two convolutional layers, the last one from

block 6 representing high-level features and the last one from block 5
representing mid-level features.

Finally, we compare our base model with alternative state-of-the-
art approaches. In this comparison, we use optimized parameters for
our model. Such parameters are determined as those that achieve
the best overall performance on the validation sets. We conclude our
experiments by applying our model to a practical task that consists in
the identification of Brazilian plant species based on the scanned image
of the leaf surface.

6. Results and discussion

In this section we present the results obtained using the experi-
mental setup described in Section 5. We show how they accomplished
to verify the effectiveness of the proposed methodology in texture
classification. All results include confidence intervals.

The accuracy of our model depends on how well the proposed
methods for dimensionality reduction of local features perform in
preserving information. We show the effectiveness of each method
across all benchmark databases in Table 1. For both FMD and DTD,
PCA performs better with statistical significance in preserving local
feature information, which is reflected in the FV accuracy. In KTH-
TIPS2-b, UMD, and UIUC, the methods show similar effectiveness in
preserving information. On the remaining datasets, PCA and Autoen-
coder are numerically advantageous over Average and Max Pooling.
In the particular case of FMD, AutoEncoder outperforms all the other
methods. One particular characteristic of this dataset is the presence of
object-like data. This may indicate that AutoEncoder might be suitable
for visual textures “in-the-wild”. An important point that should be
observed, however, is that PCA is significantly less expensive in terms
of computational resources than AutoEncoder, which makes it a natural
choice in practical application.

Our second experiment shows the impact of using mid-level local
features in combination with high-level ones. This is done by increasing
the number of layers for feature extraction. The choice of layers is
done as described in Section 5. The accuracy of our model in ranking
each benchmark database is shown in Fig. 2. For DTD, KTH-TIPS2-
b, UIUC, and GTOS databases the use of mid-level features extracted
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distributions is enough to model the underlying distribution of local features.

from convolutional blocks prior to the last block increased accuracy.
This was expected since such databases have a greater domain shift
from ImageNet. The decrease in accuracy when using 4 layers is a
consequence of the loss of high-level information that dimensionality
reduction causes. The choice of best number of layers to be used de-
pends on the database, therefore for new applications, a small portion
of data should be reserved in order to test for best configuration.

As mentioned in Section 5, the accuracy of our method can be
affected by the number of Gaussian distributions that we choose to
model u,. Those distributions are also called number of kernels or visual
words. We used 16, 32, 48 and 64 kernels in benchmark tests. The
results are shown in Fig. 3. We observed very little variation of accuracy
across all databases. This probably means that 16 Gaussian distributions
are enough to model the underlying distribution that generates local
features for most databases. An exception is observed in the DTD, where
at least 32 Gaussian distributions are needed to achieve the best results.
This might be due to the fact that DTD is the most challenging database
analyzed here.

Continuing with our experimental protocol, we evaluate how in-
creasing the number of local features by varying image size affects
the model. As mentioned in Section 5, we set all images to the same
width in order to compare the model behavior with a similar number
of features for all databases. The results are presented in Fig. 4. As
expected, the increase in image resolution improved accuracy in most
databases. This improvement is not only due to the number of local
features, but also how specific a local feature is. If the image resolution
is too low, information from small regions of the image may be lost. A

condition for the use of generative models to be beneficial for accuracy
is that local features should describe small regions rather than large
ones. In KTH-TIPS2-b, the model seems to have achieved its limit with
image width around 416, making further increases in the number of
local features detrimental.

We proposed to associate the calculated Fisher Vectors with a linear
SVM, but we also evaluated how the model behaves with different
classifiers. In Table 2, we show the performance of four different
classifiers on our benchmark datasets. The parameters used in each
classifier are described in Section 5. The linear SVM with Bhattacharyya
coefficient as kernel numerically outperforms all classifiers considered
on all datasets. This seems to indicate that the proposed classifier is the
optimal choice for the specific task of visual texture classification.

We proceed to evaluate the impact of noise on our model accuracy.
Noise may occur in real-world scenarios and it is important for the
model accuracy to be relatively tolerant to that. The proposed scheme
for adding noise to the images is explained in Section 5. As seen in
Fig. 5, in KTH-TIPS2-b, UIUC, and UMD, the accuracy is not negatively
impacted by noise addition. In the remaining databases, accuracy is not
impacted in a statistically significant way with SNR greater or equal to
60. This shows that the model is robust to noise levels where SNR is
not smaller than 60, which corresponds to the most realistic scenarios
in most applications.

We include an ablation study to verify how the model behaves when
mid-level and high-level features are removed. The results are pre-
sented in Table 3 and were obtained using FC+FV as feature vector. For
all the challenging datasets, we see that removing mid-level features
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Table 2

Comparison of different classifiers when FV is used as feature vector to describe the input image. In

parentheses, we indicate the kernel used in each SVM.

Dataset Classifier Accuracy Precision Recall F1-Score
KTH-TIPS2-b SVM (Linear) 923,5, 93.6,4, 923,5, 917,50
SVM (RBF) 922,56 934,44 922,56 916,65
MLP 9225, 932,46 9225, 915,
LDA 921,55 9344, 92.1,5, 917,55
FMD SVM (Linear) 88.8.03 889,08 89.0,05 88.8,05
SVM (RBF) 854, 86.2,00 85.6,10 855,10
MLP 86.6,10 868,10 86.8,10 86.5,1,
LDA 82.8,,, 83.6.,, 83.0,,, 829,
DTD SVM (Linear) 80.2,45 803,95 80.2,45 80.0,05
SVM (RBF) 793,06 80.2,05 793,06 794,04
MLP 8043 807,03 80.4,03 80.3,93
LDA 52.6,45 597,55 526,45 543,45
UMD SVM (Linear) 99.8.40.1 99.8.0.1 99.8.0.1 99.8.0.1
SVM (RBF) 99.6,9, 99.6,, 99.6,, 99.6,,
MLP 99.5,02 99.6.02 99.6,0, 99.5,0,
LDA 98.8,03 98.9.03 98.9,03 98.8,03
uIuC SVM (Linear) 99.9.01 999,04 999,04 999,04
SVM (RBF) 99.4,9, 99.4,9, 9950, 994,
MLP 995,05 995,09, 99.5,, 99.5,0,
LDA 984,03 98.5.03 98.5403 98.4,03
GTOS SVM (Linear) 85.04, 84.8.4 851414 829,
SVM (RBF) 827,14 833,,, 81.6,,, 799,50
MLP 84.8,,5 848,50 84.6,, 5 82.5,10
LDA 834, 84.9,,, 824, 812,

impact negatively on all measures while removing high-level features
has almost no impact. This later result is probably because high-level
information are being encoded in FC.

The following results were obtained by an optimal configuration
determined over validation sets. The image width is kept at 512,
the number of kernels at 48, the number of layers at 2 and PCA is
used as the method for dimensionality reduction. The SVM and GMM
parameters (except for the number of components) are not changed.
These parameters do not affect the results significantly. Although GMM
using expected-maximization (EM) algorithm is known to be sensitive
to the choice of parameters [51], under certain conditions, even poor
initialization converges to near-globally optimum solution [52]. This
turns out to be the case in our context, as changing the parameters in
GMM did not result in significant changes in accuracy results of our
model.

In the following paragraphs we detail how our method behaves in
the benchmark databases by showing how much confusion is presented

in each database. In UMD and UIUC, no significant confusion can be
observed, therefore such databases are left out of our analysis. All
confusion matrices were obtained using FC+FV as feature vector. In
order to consider all train/test rounds, the presented matrix for each
dataset is the sum of the matrices from each round. We also include
t-SNE visualization of the two most important components of FC+FV.
In this case, we plot the visualization of the worst round in terms of
accuracy.

In KTH-TIPS2-b, most noticeable problems are the classification
of examples from class 5 (cotton) and class 11 (wool), as shown in
Fig. 6(a). In the case of cotton, it is mostly confused with class 8
(linen) and wool. Wool is mostly confused with cotton, but there is also
confusion with linen and class 3 (corduroy). Interestingly, most part of
the confusion is among textile textures, which are indeed challenging to
classify, given that they frequently share fairly similar texture patterns.
In Fig. 6(b), we see a small overlap between classes 5 and 10 (wood).
The most noticeable overlap is between wool and corduroy. Not all
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Table 3

Impact of excluding high and mid level features. Dashes in column Excluded Features represents the basic
case, when both features are used. In the case of high-level features, local features from the last convolutional
block are not used. In the case of mid-level features, local features from the convolutional block previous
to the last one are not used.

Dataset Excluded features Accuracy Precision Recall F1-Score
KTH-TIPS2-b - 92.1,,; 934,40 921, 91.5,5,
High-level 92.1,,, 932, 92.1,,, 915,5,
Mid-level 89.1,54 908, 89.1,56 884,54
FMD - 91.6,03 91.7 03 91.8,04 91.6,43
High-level 91.8,03 91.8 .3 91.9,93 91.8,03
Mid-level 90.5,05 906,05 90.6,05 905,05
DTD - 808, 80.9,, 808,05 80.6,0-
High-level 80.8,06 809,06 80.8.0,6 80.6,0
Mid-level 782,05 783406 782,05 78.0,06
UMD - 99.9,, 99.9,0, 99.9,0, 99.9,,
High-level 99.8,, 998, 99.9,, 9938,
Mid-level 99.8,, 998, 99.8,0, 99.8,,
uIuC - 99.8,0, 99.8,0,1 99.8,0, 99.8,,
High-level 99.8,0.1 99.8.0.1 99.9.0,1 99.8,0.1
Mid-level 99.1,, 99.1,, 99.1,, 99.1,,
GTOS - 853,56 84.8,,¢ 85.1,,, 83.0,,,
High-level 85.1,,, 84.8,,¢ 849, , 8238,,,
Mid-level 834,16 826,26 832,16 81.0,,0

confusion is expected to be seen in t-SNE visualization. Superposition
may not allow seeing overlaps and some confusion may belong to other
rounds of train/test.

In FMD, our model had most problems distinguishing classes 5
(metal) and 6 (paper) from other classes, as shown in Fig. 7. Paper
is mostly confused with class 1 (fabric), while 5 (metal) is confused
with classes 7 (plastic) and 3 (glass). The presence of confusion in
this case could be explained by the fact that underlying objects made
out from these materials can have similar shapes and/or colors. In
Fig. 7(b), the t-SNE visualization shows how much overlap exists among
classes, being almost impossible to distinguish them using only two
components. One of the major sources of confusion, classes 5 and 7,
for example, are completely mixed together and overlap other classes.

In DTD, the most notorious classification problem of our model
is perceived in class 2 (blotchy), where less than 50% of samples
are correctly classified, as shown in Fig. 8. These samples are mostly
mistaken by classes 38 (stained), 43 (veined) and 24 (marbled). The
confusion between blotchy and stained was expected, as images from
both classes are very similar. Confusion with veined images can be
explained by the presence of veins in images of blotched leaves of
the blotchy class. In the case of marbled images, the details in marble
can be interpreted as blotches, justifying confusion between marbled

and blotchy. In t-SNE visualization, we see a significant overlap among
almost all classes. This is expected as some ambiguity exists among
classes. The overlap also indicates that two components are not enough
to successfully distinguish classes.

In GTOS, there are three classes where less than half of samples
are correctly classified: 9 (Dry Grass), 27 (Rusted Cover) and 37 (Stone
Mud), as shown in Fig. 9. Most of images from Dry Grass are classified
as class 12 (Grass). This confusion may be due to fragments of grass
in the middle of the dry grass in those images. In the case of Rusted
Cover images, almost 40% are misclassified as class 2 (Aluminum).
The presence of rust in Aluminum images can explain this confusion.
About one third of Stone Mud samples are misclassified as class 19
(Mud Puddle). The confusion between those classes was expected as
there are stones in some puddle images. In t-SNE visualization, we see
that, although classes do not seem to overlap, most are spreaded in
more than one cluster. Some clusters from different classes are too close
together for a linear SVM to be capable of correctly separating them.

In Table 4, we list the accuracy of several methods in the literature
of texture recognition compared with the proposed approach. We use
three CNN backbones associated with our method in this comparison:
EfficientNet-B5 [15], ConvNeXt-T [39], and RegNetY 6.4G [53]. All
these backbones have a similar number of parameters of around 30
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million. We indicate in parentheses which backbone was used to per-
form feature extraction. We also include the fine-tuning of all network
architectures to show how this straightforward approach can perform in
texture analysis. Parameters for fine-tuning the CNNs were empirically
determined as being the best configuration in benchmark databases.
The proposed method, when associated with EfficientNet, is com-
petitive with state-of-the-art deep learning approaches on all databases
evaluated. When using ConNeXt as backbone, we have superior results

in most databases, except KTH-TIPS2-b, where RAdam is statistically
equivalent. With RegNetY, results are competitive in FMD, DTD, UMD,
and UIUC. In general, EfficientNet seems to be an optimal choice for
local feature extraction. Local features extracted from ConvNeXt or
RegNetY, on the other hand, may not be optimal for visual texture
classification. The dimensions of local features vary among these back-
bones, with RegNetY having the greatest number of dimensions and
EfficientNet having the least. The increase in the number of dimensions
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leads to increased complexity of the GMM optimization, which may
result in poor choices of local minima.

When we compare our method with the fine-tuned CNN backbones,
we see how CNN accuracy in texture classification can be enhanced
by the proposed multilevel pooling scheme. The main improvement
provided by our method can be noticed in RegNetY. In DTD and GTOS,
the application of our method increased accuracy in about 13%. In
DTD and FMD, fine-tuned EfficientNet and ConvNeXt were capable of
achieving competitive results with state-of-the-art. In both datasets, our

method shows significant improvements in CNN accuracy, improving
the state-of-the-art.

In UIUC and UMD, our method with EfficientNet is capable of
correctly classifying all test samples, a result not yet achieved in the
literature. Specifically in UMD, all backbones provided the same result.
In the particular case of GTOS, all compared methods use the entire
training set for training purposes while we use a small portion of
it. Even using less data, our model, using EfficientNet or ConvNeXt,
achieved similar results to CLASSNet and FENet, which are the current

10
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Table 4
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Accuracy comparison with other methods in literature. In the first three rows, we include the fine-tuning performance of the
CNN architectures we are using. All results shown are obtained directly from the original paper of each method. Non-published

results are represented by dashes.

Method KTH-TIPS2-b FMD DTD UMD UIuC GTOS
EfficientNet-B5 87.0.59 87.4,06 776,04 99.9.0, 98.4,04 787420
ConvNeXt-T 87.9,55 884,04 76.3,07 99.8,, 98.8,05 81,0,
RegNetY 6.4G 787,55 789,05 663,06 940, 934,04 70,1,
FV-VGGVD [14] 81.8,,, 798, 723,10 999, 999, -
SIFT-FV [14] 81,5, 822,,, 755,08 999, 999, -
LFV [31] 82.6,06 82,1, 738,10 - - -
DeepTEN [35] 82.0,45 80.2,00 - - - 843,
Xception + SIFT-FV [32] - 86.1,,6 754,10 - - -
DSRNet [54] 859,15 860,05 776,06 - - 853,
VisGraphNet [40] - 77.3 - 98.1 97.6 -
Non-Add Entropy [41] 84.4 77.7 - 98.8 98.5 -
Residual Pooling [11] - 85.7 76.6 - -
FENet [37] 88.2,0, 86.7,0, 742, - - 8570,
CLASSNet [10] 87.7,15 86.2,00 74.0,05 - - 85.6,,,
DFAEN [12] 86.6 87.6 76.1 - - -
RADAM [38] 90.7,40 887,04 77.0,07 - - 842,
Capsule [55] 71.8 80.7 71.0 - 99.3
Ours(EfficientNet)-FV 934,56 914, 83.1,93 99.9.0, 100, 85.9,1,
Ours(EfficientNet)-FV+FC 929,37 93.9,02 83.6,04 100,49 100,49 85.8,14
Ours(ConvNeXt)-FV 87.8,4, 894,06 82.7 04 100,90 99.8.0, 86.1,06
Ours(ConvNeXt)-FV+FC 884,40 90.6,0.4 826,03 100,00 99.8,, 85.6,05
Ours(RegNetY)-FV 868,55 889,06 797404 100, 99.8,, 83.0,,,
Ours(RegNetY)-FV+EC 86.9,5, 89.1,05 797,04 100, 998, 83.1,, 5
1.00 1.00 1.00
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Fig. 10. Accuracy of our model for different values of parameters in 1200Tex database.

state-of-the-art. It is important to reinforce here that the larger confi-
dence intervals in KTH-TIPS2-b is caused by the official train/test split.
It forces the model to work on 4 significantly different tasks, whose
accuracies are averaged out at the end to provide the final classification
score. Methods such as FENet and others do not use the official split
(e.g., FENet employs 10-fold) and this explains their tighter confidence
intervals. Other methods such as FV-VGGVD and LFV use the official
split, however train/test ratio employed is 1:3 while we use 3:1 as done
in RADAM.

Finally, we apply our model to the classification task of Brazilian
plant species based on the scanned leaf texture (1200Tex database
[18]). We first evaluate the impact of parameter change on the database.
In Fig. 10(a), we show that changing the number of kernels does not
significantly affect accuracy. The same observation made for bench-
mark databases applies in this case, i.e. 16 Gaussian distributions are
sufficient to model the underlying probability distribution of local
features. In Fig. 10(b), we show that adding information from mid-
level layers has a significant impact on accuracy. We can also see, in
Fig. 10(c), that increasing the number of local features by changing
image size affects accuracy positively as in all other databases tested.

For the particular task of evaluating and comparing the behavior
of our model in 1200Tex database, we use the same parameters we
used for benchmark databases. We generate the confusion matrix for
FC+FV feature vector using PCA as dimensionality reduction method
and EfficientNet as backbone. It is presented in Fig. 11. We note that
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there is not much confusion when classifying the plant species. The
classes that our model has most problems classifying are 8, wrongly
labeling around 11.7% of samples, and 6, where 12.4% of samples
are confused with other classes. Class 8, which presents a green leaf
mostly dotted with few veins, is confused with classes 6, which is also
veined, and 18, which is dotted and veined. Confusion in this case
can be generated when examples from 8 have more veined areas than
dotted, being wrongly labeled according to the proportions between
those areas. Class 6 is mostly confused with class 8, which could be
due to image or leaf imperfection in some examples from class 6, which
are interpreted as dotted regions. In t-SNE visualization, we see all
mentioned classes overlapping each other. We also see classes 14 and
17 as distinguishable from others using only the two main components.

In Table 5 we list the accuracy of the best previous results on
1200Tex database published in the literature, in comparison with our
proposal. Here, the usage of our methodology made a huge difference
in accuracy, scoring an accuracy from 5% to 9% better than the second
best method (Non-Add Entropy), depending on the backbone used.
Backbones are explicitly indicated in parentheses. In fact, up to our
knowledge, our method outperforms state-of-the-art accuracy on this
database.

In terms of computational complexity, our model depends on the
complexity of the CNN backbone, PCA, GMM, Fisher Vector encoding
and SVM. The CNN backbone is not learned, no time is associated
with training it, so we perform our analysis on the learned parts. The
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Fig. 11. On top: confusion matrix for 1200Tex and t-SNE visualization of the worst train/test round in terms of accuracy. On bottom: from left to right, examples of classes 5, 6,

8, and 18.

Table 5

Comparison of accuracy in 1200Tex database with other methods
in the literature. All results were obtained directly from the
literature. When results were not found in the original paper,
additional reference was given to where the result was taken from.

Method

Accuracy (%)

SIFT+BOVW [14] 86.0 [56]
FV-VGGVD [14] 87.1 [41]
Fractal [56] 86.3
VisGraphNet [40] 87.4
Non-Add Entropy [41] 88.5
BoFF [42] 87.2
Ours(EfficientNet)-FV 97.4,04
Ours(EfficientNet)-FV+FC 97.2,05
Ours(ConvNeXt)-FV 964,06
Ours(ConvNeXt)-FV+FC 96.4.,04
Ours(RegNetY)-FV 93.8.05
Ours(RegNetY)-FV+FC 938405

number of local features T increases quadratically as we increase the
number of layers / and image width w. Each function f,, learned
through PCA using randomized SVD depends linearly on 7, and D, and
logarithmically on D,, [49]. As D,, < D,, we estimate PCA complexity
to be O(*w’dlogd) where d = D,. The GMM algorithm depends
linearly on T and d and quadratically on the number of kernels K. The
SVM depends quadratically on the number of components of FV, which
depends linearly on k and d. Thus, we estimate the complexity of our
method as O(%w?k>d?).

When no training is performed, PCA, GMM and SVM depend lin-
early on the parameters T, k and d. As T depends quadratically on /
and w, our model has estimated complexity of @(/>w?kd). In previous
paragraphs, we show how the model behaves well using 2 layers and 16
kernels in all tested datasets. This configuration should work for most
applications. Thus, the main impact of using our model for evaluation
purposes is image resolution and the choice of the CNN backbone.

In this section, we have shown that, for both benchmark databases
and for the proposed application, extracting local features from earlier
convolutional layers adds crucial information for texture classification.
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In fact, both FC and FC+FV accuracy was improved with the addition
of one layer to the method proposed in [14] in most databases. When
comparing our approach to more recent methods that also use infor-
mation from earlier layers [11,12,37], the performance improvements
may indicate that Fisher Vector remains a suitable method for encoding
local features in the domain of visual textures.

Additionally, we verified that increasing the input image resolution
has positive impact on accuracy. Such impact can be explained by
the fact that changing the image resolution affects the number of
local features and how representative a local feature is of a given
area. Although expected, no significant impact was seen in changing
the number of kernels in GMM, indicating that 16 kernels is enough
to model the underlying distribution of local features. Furthermore,
adding noise to images had small impact on accuracy in all tested
databases, what shows robustness of our model.

7. Conclusions

In this work, we proposed and investigated the use of local features
extracted from multiple convolutional layers and how this improves
texture classification using Fisher Vector. More precisely, we com-
puted the Fisher Vector on local features extracted from one to four
convolutional layers and used them as texture descriptors.

We evaluated the performance of our method in visual texture
classification, both in benchmark databases and in a practical problem
of identifying plant species. In both situations, our method presented
a significant improvement over other methods in the literature and
reached competitive accuracy with the state-of-the-art.

One limiting factor of our proposed approach is the use of Gaussian
Mixture Model algorithm for calculating Fisher Vectors. This algorithm
is known to be dependent on the availability of memory, given that
learning stage requires providing the full set of training local features.
This fact was noticeable in the case of GTOS database, where it was nec-
essary undersampling the training set. More efficient alternatives are
intended to be investigated in future works. One possible approach is
modifying the model for batch learning. This approach can be achieved
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using incremental GMM and incremental SVM algorithms based on
works such as [57,58].

Overall, our model enhances accuracy of CNNs in visual texture
classification. The method is suitable for integration with very deep
CNN architectures. It is also appropriate for applications with limited
availability of labeled data for training as, in this case, besides the high
classification accuracy, the computational burden is also reduced. An
example of such application is image-based medical diagnostic. In fact,
data scarcity is a pretty common scenario in texture analysis, either in
benchmark datasets or in real-world applications.
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