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INTRODUCAO

Dificid ¢, atualmente, ao engenheiro que se dedigue
& Hidrdulica e suas aplicacbes permanecer fiel & sua
profissdo, quando o extraordindrio desenvolvimento da
Hidromecdnica Tebrica tende a arrastd-lo a questoes
puramente especulativas, prendendo-o aos absorventes
problemas flsico-matemdticos; quando a Técnica Sani-
ldria, em sua vertiginosa evolucio, procura cercd-lo
- cada vez mais no dmbito das coisas eminentemente prd-
ticas, enlacando-o aos interessantes pormenores cons-
trutwos.

Dai a dificuldade que se nos deparou na escolha
de um assunto, o qual, dando margem a estudos tebricos
e aplicagbes prdticas, abrangesse ainda o campo das
duas partes em que se divide, na Escola Politécnica
de Sdo Paulo, a cadeira reunida de “Hidrdulica,
Hidrdulica Urbana e Saneamento”.

Em a nossa vida profissional temos tido a atencio
despertada pelo problema do cdlculo econdmico das
rédes de distribuicio de dgua potavel a um centro
habitado e ousamos acreditar ser essa questio de molde
a gsatisfazer ds condigdes propostas.

Esse 0o motivo da apresentagio “Da condicdo
de minimo custo nos condutos for¢ados. Adplicacio
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ao cdlculo das rédes de distribuicdo de dgua potavel”’,
como tése de concurso ao cargo de Professor Catedrdtico
da Cadeira de “Hidrdulica, Hidrdulica Urbana e
Saneamento” da Escola Politécnica de Sdo Paulo.

Dividimos a tése em sets capitulos.

No primeiro, depois de recordar as principacs
férmulas para a determinagdo da espessura dos tubos
de um conduto forcado, pretendemos fazer uma sintese
de todas elas, considerando-as como méras aplicagbes
das diversas teorias que, na Resisténcia dos Materiats,
tentam relacionar a ruptura de uma peca sujeita a
um estado triplo de tensdo & sua ruplura sob a agio
de um simples esforco normal que possa ser medido
experimentalmente. Terminamos o capltulo, calcu-
lando, pelo método dos minimos quadrados, a partir
dos catdlogos de fabricantes, os coeficientes numéricos
das férmulas de espessura dos tubos das diversas
classes e procedéncias que utilizamos normalmente
em nossas rédes.

No segundo, contestamos a hipbtese, geralmente
acedta, da proporcionalidade entre o custo e o didmetro
de um conduto forcado, sugerindo variagio mais con-
sentdnea com a realidade.

No terceiro capttulo, apoiando-nos na hipdtese
sugerida no segundo, abordamos o problema geral do
minimo custo nos condutos forgcados simples, mos-
trando que o mesmo constitue matéria do Cdleulo das
Variagdes, sendo caso particular das questies isopert-
métricas.

O quarto e quinto capitulos abrangem aplicagbes
da condigio geral de minimo custo a casos particulares,
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de prdtico interesse, nos condutos forcados simples e
complexos. Ao encerrarmos essas aplicagbes pre-
tendemos realear as dificuldades prdticas do cdlculo
rigoroso de uma réde de distribuicio, por intermédio
das condigves de minimo custo dos condutos complexos.

Inicia-se o sexto capittulo com a andlise de um
sistema de distribuicio com os mélodos de tentatwas
dirétas, no qual se inclue o de Hardy Cross, ainda
pouco conhecido entre nds. Depois de recordarmos
os critérios sequidos na prdtica para o secctonamento
dos sistemas malhados, encerramos o trabalho recor-
dando a marcha a sequir para o dimensionamento de
uma réde de distribuicdo de dgua potavel tendo em
vista a condicdo de minimo custo.

Ao finalizar, temos a lamentar que a escassez de
tempo ndo permifisse apresentar trabalho mais digno
do argumento escolhido.
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I — ESPESSURA DOS TUBOS DE UM CON-
DUTO FORCADO

1. Generalidades — As canalizagBes para o
transporte e distribuicio de 4gua potavel, destinada
a atender 3s necessidades de um centro habitado,
formam uma réde de condutos, geralmente enterra-
dos sob as vias piblicas, a profundidades variaveis,
mas relativamente pequenas.

Estio, assim, &sses particulares condutos for-
cados sujeitos A press3o interior, ocasionada pela
carga hidrdulica permanente e pelas eventuais agbes
dinAmicas, e, as forgas externas, representadas, entre
outras, pelo péso da terra de recobrimento e camada
de pavimentagio e pelas cargas transmitidas por
vefculos que se deslocam sbbre a faixa transitavel.

Destarte, o cilculo da espessura das canal-
zacBes, no caso mais geral, deve se fazer tendo em
vista as propriedades fisicas do material de que é
constituido o tubo e as tensdes nele ocasionadas
pela pressio interior e pelas forgas externas.
espessura calculada, deve-se acrescer ainda um termo
adicional, empfrico, para levar em consideragdo
nio apenas os esforcos ndo previstos no céleulo,
como os decorrentes das operagdes de transporte e
assentamento dos tubos, como também a eventual
reduciio de sua espessura, por pequenas imperfeicSes
na fabricagio ou pelos efeitos de corrosdo.
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Umas férmulas, mais precisas, levam em consi-
deragdo as tensBes ocasionadas pela a¢3o simultinea
da pressfo interior e das cargas externas, outras,
menos complexas, dimensionam os condutos tendo
em vista exclusivamente as tensdes dominantes, que,
via de regra, sio devidas 3 pressio interior.

Entre as primeiras, merecem citagio a de Cla-
varino e a da American Standards Association (ASA),
entre as segundas, a da tensio tangencial e as suas
variagdes como as férmulas de Barlow e de Fairchild,
largamente empregadas nos Estados Unidos.

Alguns dos métodos de dimensionamento sio
simplesmente empiricos, outros baseiam-se direta-
mente em considera¢Ges analiticas; uns e outros
sdo contndo suscetiveis de justificagio tedrica,
baseada nas condigBes de resisténcia num estado
triplo de tensdo, e que, a seguir, recapitularemos.

Antes, todavia, desejamos observar que, no
presente trabalho, nos preocuparemos exclusivamente
com os tubos de ferro fundido, os quais, entre nés,
sdo ainda os mais empregados nas rédes de distri-
buigio.

2. CondicGes de resisténcia — A pressio in-
terior e as cargas externas geram na parede da
canalizagio um estado triplo de tensio. Assim, por
exemplo, em um tubo de parede espessa, submetido
a uma pressdo interior p, a face interna esta sujeita
a tensdes:

longitudinais . = p f21—1 (2.1)
radials o = — p (2.2)
tangenciais ot = pr—1 (2.3)

f—1
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em que f>1 € a relagio entre os diAmetros externo e
interno do tubo. (1)

Sabe-se da Resisténcia dos Materiais que diversas
teorias existem tentando relacionar a ruptura de
uma peca sujeita a um estado triplo de tensio a
_sua ruptura, sob a agio de um simples esfor¢o normal,
que possa ser medido experimentalmente. Algumas
das teorias consideram o predominio de uma tens3o
ou deformacdo, outras levam em conta a energia
de deformacgio; qualquer uma delas serve de base
ao dimensionamento da parede de um conduto for-
¢ado. Entre elas, sdo de imediata aplicacdo ao célculo
da espessura de uma canalizagio as seguintes :

a) Teoria da maior tensio normal, também
denominada de Lamé ou Rankine, na qual somente
a tensio tangencial, que é a predominante, (basta,
comparar as férmulas (2.1), (2.2) e (2.3) ) é considerada
na ruptura do tubo, desprezando-se o efeito das
tensdes longitudinais e radiais.

6) Teoria da maior deformagio linear, na qual,
além da tensio tangencial, é também considerada
a longitudinal, o montante da resisténcia do material
dependendo entdo do seu coeficiente de Poisson.

¢) Teoria da maijor tensio de cizalhamento,
estabelecendo que a ruptura depende somente da
maior e menor tensdes existentes. Nos tubos sujeitos
A pressio interior, como a tensdo longitudinal ¢,
em valor, intermedidria entre a tensio tangencial e
a radial, de acdrdo com esta teoria, ela nio deve
afetar o estado de tensfio no qual a ruptura
se d4.

(1) Langendonck — Prof. Telemaco van — “Célculo de concreto
armado — vol. I — pég. 111.
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d) Teoria da energia de distorsdo, pela qual a
ruptura estd ligada a uma relacio dada pela dife-
renca entre as tensdes principais. Esta relagio pbde
ser expressa por

(o1—04) 24 (o5—05) 2+ (05—01) 2 < 201

onde s, o¢: € o, representam as tensSes principais
e o, a tensdo limite medida no ensdio simples de
tragdo.

Deve-se observar que, a menos que a espessura
da paréde seja muito pequena em relagio ao riio
do conduto, as discrepincias entre os valores obtidos
com a aplicagio das diversas teorias s3o conside-

réveis. (2)

3. Ruptura ocasionada por pressido externa
— Quando um trecho de tubo, de pequena dimensio
longitudinal, de diAmetro externo D. estd sujeito
a uma pressio externa p., aparece em sua parede
uma tensio de compressio, medida por

peDe
281

g =

(3.1)

sendo e, a espessura da parede.

Se levarmos em consideragio o efeito da con-
tragio lateral, o valor critico da pressio externa
que causa a ruptura de um tubo de seccdo circular
e de dimensio longitudinal consideravel é dado pela
seguinte expressio

2F (e
Redls Siseers (E_) (3.2),

(2) Langendonck — Prof. Telemaco van — op. cit. pag. 112 — fig. 78.
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pa qual p; = valor critico da pressdo externa
E = mbdulo de elasticidade
y = coeficiente de Poisson
e, = espessura da parede
D. = didmetro externo (3)

Levando a (3.1) o valor de p.: obteremos a
tensio de ruptura

__E (e
G = i < D. ) (3.3)

Inversamente, conhecida a tens3o de ruptura,
a expressio (3.3) permite determinar o valor limite

. €
da relagio —

De'

E de se notar que a ruptura das canalizagGes
sujeitas & pressio exterior é profundamente afetada
quando os tubos n3o sdo rigorosamente crculares ;
daf o aparecimento de férmulas mais aproximadas,
considerando as secgBes como elipticas (4).

Para os tubos de ferro fundido, os desvios entre
as dimensBes reais e o diAmetro especificado, em
uma secgdo, raramente atingem 1% do didmetro
especificado.

4. Férmula de Clavarino — Como direta apli-
cacdo da teoria da maior deformag3o linear, Clava-

(3) Croker and Walker — Piping Handbook — pag. 35.

(4) Timoshenko — S. — Theory of Elastic Stability — 1936 —
pheg. 222. _ ,
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rino obteve a seguinte férmula para o dimensiona-
mento dos tubos sujeitos simultaneamente a uma
pressdo interior p e a uma pressio exterior pe :

D:D:,
(1-2v) (pD*—pcD.?)+1+v) 7ET (p=pe)
= D.—D:> G
na qual
¢ = tens3o correspondente ao riio genérico r
p = pressdo interna

p- = pressido externa

r = raio genérico de 1 ponto qualquer da parede
D = didmetro interno do tubo

D. = didmetro externo do tubo

v = coeficiente de Poisson.

Estudemos separadamente o efeito das press3es
internas e o das externas.

No caso de existir apenas a pressio interna p,
sendo entdo p.=o0, a méxima tensdo 7 que se opéra

na face interior ser4, (para r=—-).

2

D*(1-2y)+D.*(1+v)

T= 4.
p D=0 (4.2)

_ D.—D:
" D:(1-2)+Da(1+) (=2

ou P
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Para facilitar as aplicagdes a expressdo
D.>—D:
D*(1-2v)+D.2(1+v)

escrevendo-se a férmula de Clavarino, no caso,
simplesmente

costuma ser designada por &,

ou p=k 7 (4.4)

=

[

Apliquemo-la ao dimensionamento de tubos de
ferro fundido, nos quais

v = (0,270 e portanto,
_ 100 (D.—D?)

= 4.5
46 D*+127 D.? §)
Sendo a espessura do tubo ¢,= D°;D , elimi-
nando-se ), na expressio (4.5)
obtem-se :
& { £
400D |14+ D 46

464127 {H-?,%} 2

Para as aplicagSes podem ser organizadas tabelas
de dupla entrada fornecendo os valores de k& para

. . e
diversos valores da relagdo ik

Em particular, no problema do cilculo da
espessura de um tubo sujeito apenas a press3o interior,
sio dadas a pressio interior p e a tensio mixima
na face interna 5, de médo que & é imediatamente
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determinado por (4.4). Fixado &, a férmula

(4.6) permitird conhecer o valor de %; isto é o valor
de ¢, para um D predeterminado.

Por exemplo, suponhamos que se queira deter-
minar, pela férmula de Clavarino a espessura estatica-
mente necessiria para resistir & pressdo interna nos
tubos de ferro fundido da classe D da especificagio
da American Standards Association.

Essas normas fixam :

p=300 libras por polegada quadrada ; tens3o
de ruptura 11.000 libras por polegada quadrada ;
coeficiente de seguranga 2,5; logo

o= 112'050 0 =4.400 libras por polegada quadrada.
Portanto,
p 300 :
= =] = 2
k = 1,400 0,0682 ao qual corresponde
€1 9
D 0,03025.

Em geral, para um conduto forgado, fixados
p e T, a espessura estaticamente necessiria para
resistir & pressdo interior, pela fé6rmula de Clavarino
¢é obtida por: :

ex=bD (4.7), na qual

b depende de p e .

Existindo apenas a pressio externa p,, a mixima
tensdo serd :

D(2—y)
* D,>—D:

(o sinal negativo denotando compressio).

?1= =

(4.8)
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Como para o caso da pressdo interior poderfamos
deduzir as seguintes férmulas :

D, —D:

Pe=—01 _D_J(Z——T (4.9)
D.—D:

k.= Do) (4.10)

T —Jz—e ou p.= —k 7 (4.11),

A férmula (4.9) aplicada a tubos de ferro fun-
dido dana :

€1 €1
s
k=l 4.12),

: o 2
[H-ZEJ

permitindo consideragBes anélogas as feitas a partir

da férmula (4.6)

5. Aplicagio da férmula de Clavarino aos
tubos de paredes delgadas — A relagio entre a
espessura ¢; e o diAmetro externo D. de um tubo
serve de base A sua classificagio em uma das duas
classes : parédes espessas ou parédes delgadas.

Convenciona-se classificar como tubos de parédes

€1

D,

delgadas aqueles para os quais =0,1. Quase to-
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dos os tubos metélicos utilizados na Hidriulica
Aplicada, e, em particular, todos os tubos de ferro
fundidos empregados nas rédes de distribuicio de
4gua potavel, podem ser enquadrados entre os
de parédes delgadas. As férmulas gerais, apresen-
tadas no pardgrafo anterior, sio suscetiveis de
simplificacgio para o caso das parédes delgadas.
Assim, para tubos de ferro fundido, eliminando-se
D na férmula (4.5), podemos escrever

400 = [1— ‘"J

De ‘DB
k= (5.1),

€1
—2— 27
46[1 2D J +1

a qual para —1%1- =0,1, reduz-se a

k=231 % (6.2,
que levado a (4.4) conduz a
. B
a=—;?516 (5.3)
D
e 1= 2""31; (5.4)

(6.4) é a férmula de Clavarino para o dimensiona-
mento de tubos de ferro fundido de parédes delgadas,
sujeitos & pressdo interior. Em funcfo do diAmetro
mterno a férmula se escreve :

p D

1,925 7 (5.5)

Cin=—

— 18 —



6. Formula da tensdo tangencial — Base-
ando-se na teoria da maior tensio normal e admi-
tindo-se tubos de parédes delgadas, nas quais é licito
supor que as tensdes se distribuam uniformemente, a
tens3o tangencial, que é a predominante, ocasiona-
da por uma pressdo interior p em um tubo de dia-
metro interno D) e espessura e, vale:

__pD '
— 1
T = (6.1),
de onde tiramos
D
e = ‘”2? (6.2)

A expressio (6.2) chama-se a férmula da tensio
tangencial e é a que serve de base ao dimensiona-
mento dos condutos forcados em quase todas as
especificacBes europélas e norte-americanas.

de se ressaltar a relativa concordincia entre
as férmulas (5.5) e (6.2) que apresentam discre-
pancias inferiores a 49%,.

Algumas normas técnicas norte-americanas preco-
nizam expressdes, que s3o obtidas, com ligeiras
alteragBes, da férmula da tensio tangencial. Por
exemplo, a chamada férmula de Barlow, indicada
no “Cédigo de construgio de caldeiras” da A.S.M.E,,
€ a prépria férmula da tensido tangencial na qual o
didmetro interno D é substituido pelo externo D,
isto é

~_pPD.
Sl (6.3)

A especificagdo federal norte-americana WW-
P-421 para tubos de ferro fundidos centrifugados,
estipula a determinacio da espessura da parede
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do encanamento pela seguinte férmula desenvolvida

por Fairchild (5).
l‘3=J'(p+p’)D_L 0,28

2 q; ' Do 64
na qual '
p = méxima pressio interna, em lb/pol?
p' = pressio devida aos golpes de ariete, em 1b/pol?
s = coeficiente de seguranca

s, = tensdo limite & tragdo, 1b/pol?
e ¢ D sio expressos em polegadas
A WW-P-421 fixa os seguintes valores :
s =5
o = 25.000 lb/pol?,
de modo que (6.4) transforma-se em :
(p+p) D, 0,28 :
— 6.5
©="10000 ' Do 65
E facil ver que o primeiro termo da férmula
de Fairchild é a prépria férmula da tensdo tangencial,
na qual se acresce a pressio interior p da pressdo
p', ocasionada por eventuais agBes dinimicas.

O termo ¢ empirico e representa o termo

0,28
Dors
adicional para fazer face & resisténcia mecdnica e
aos efeitos de corrosdo. '

S3o aconselhados para p’ os seguintes valores :

DIAMETRO TUBO p’
(pol) (Ib/pol?)
De 3 a 10 120
, 12 a 18 110
20 100
acima de 20 95

(5) Jour. Am. W. W. Assoc. 1926, pag. 208.
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' Relativamente a p os valores adotados nos
Estados Unidos s3o 100, 150, 200 e 250 Ib/pol? para
as quatro classes normais de tubos de ferro fundido,
dando lugar assim aos seguintes valores para (p+p’).

DIAMETRO (p+p) Ib/pol®
TUBO
(pol) crasse 100 | cLasse 150 | cLassE 200 | cLasse 250
De 3al0 220 270 320 370
, 12 a 18 210 260 310 360
20 200 250 300 350
acima de 20 195 245 295 345

Se adotarmos, para cada classe, os maiores valores
da soma p+p’, teremos, as seguintes expressdes, que
fornecem, em polegadas, as espessuras dos tubos de
ferro fundido centrifugados:

classe 100

classe 150

classe 200

classe 250

e=0,022 D+ 228
=007 D+ 25
e=0,032 D+ %38
e=0,037 D+ OD'fi

(6.6)

(6.7)

(6.8)

(6.9)

Exprimindo D em metros, as espessuras, em /m,

serao :

ol



0,0041

classe 100 ¢=0,022 D+ o (6.10)

classe 150  ¢=0,027 D+ L (6.11)
Dors

classe 200 ¢=0,032 D+ Do0-1 (6.12)
. Do-1s

classe 250 ¢=0,087 D+ (6.13)

7. Féormula da American Standards Asso-
ciation (A-21) — O método de dimensionamento
de tubos de ferro fundido, recentemente preconi-
zado pela American Standards Association, leva em
conta as tensGes ocasionadas nas paredes dos canos
pela agio simultinea da pressio interior e das car-
gas externas. O método basela-se em experiéncias
feitas pelo “Sectional Commitee A-21" e pelo “lowa
State College”. As experiéncias do “Iowa State
College” tiveram por principal objetivo determinar
a maneira pela qual as cargas externas eram trans-
mitidas a tubos enterrados a vérias profundidades;
o “Sectional Commitee A-21", estudou, particular-
mente, a influéncia das varlas maneiras de suportar
o tubo relativamente & a¢io simultAnea da pressdo
interna e das cargas externas.

Para tubos de ferro fundido destinados ao trans-
porte de 4gua, quatro métodos comuns de colocago
em valas (“field conditions”) s3o considerados :

A — Vala de fundo plano, terra sem apiloamento
B — Vala de fundo plano, terra apiloada

C — Bergos de apbio, terra sem apiloamento

D — Bergos de apbio, terra apiloada.
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Os estudos do “‘Sectional Commitee A-21"
mostraram que, em um tubo sujeito simultaneamente
) carga externa e 3 pressio interna, uma combinaggo
genérica da pressdo interna e da carga externa capaz
de produzir a ruptura, satisfaz, com suficiente aproxi-
mac¢io, a equagdo

W —
w=—o"VP- 7.1
B P (7.1)
na qual :
P = pressdo interna de ruptura = 25 11)% (Ib/pol?)

JV = carga externa de ruptura (Ib/pé), determi-
nada pelo “three-edge bearing test”.
s, = tensdo limite & tragdo
p e w — representam uma combinagio genérica da
pressdo interna e carga externa, capaz de
produzir a fratura.

W

W & aplicado unjformemente ao
longo db comprimento do fubo.

(F16.7)

A condigio de éarregamento, realizada em labora-
tério, e conhecida por ‘“three edge bearing load”
estid representada na figura 1
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A carga externa de ruptura W (lb/pé) é calculada
pela seguinte férmula :

e? 1 G
= 2 7- i
0,0795 (D+e) &2

na qual

s, =tensdo de ruptura (Ib/pé?) determinada pelo
“three edge bearing test”

e1 e D expressos em polegadas.

A equagdo (7.1) pressupde que a carga externa
se aplique aos tubos nas condigdes do “three edge
bearing test”, o que nfo acontece em nenhum dos
quatro tipos comuns de colocagio dos canos nas
valas. Daf a necessidade da introducio de fatores
que devem afetar as cargas reais para dar lugar a
efeitos . andlogos as condigSes tedricas das experi-
éncias de laboratério. Os coeficientes, pelos quais
as cargas externas devem ser divididas, foram de-
terminados experimentalmente, para os vérios dia-
metros e varios tipos de colocagio e constam da-
tabela seguinte, retirada da A-21-1-1939 — “Manual
for the computation of strenght and thickness of
cast iron pipe”

08 DIAMETRO DO TUBO, pol.

~ g

(82

&1 8 4/’ 6'/ 8// IOII 12!/ 141! 161/ 18” 20// 24”
A|vis |16 1,15 (1,15 1,15 | 1,15 | 1,15 | 1,15 | 1,15 | 1,15
B |1,29(1,32|1,34|1,36 | 1,38 | 1,41 | 1,43 | 1,45 | 1,47 | 1,52
C | 022031040050 060|067 |073|078|081 | 087
D |082]083]|084|086|088/091]09 |098]| 1,01 | 1,07




No método de dimensionamento da A-21-1-1939,
a pressdo interna, que, agindo sosinha causard o
arrebentamento, e, a carga externa, que agindo isola-
damente causard a ruptura, sio figuradas separada-
mente para um didmetro e espessura escolhidos.
Por meio de um método empirico, relativamente
simples, podem ser determinadas combinagBes da
pressdo interna e cargas externas que causem a
ruptura, o que torna possivel achar por tentativas
a espessura necessiria para suportar uma deter-
minada combinacdo de cargas. (6)

Analizando os métodos graficos, Stokes propoz
a seguinte equagdo para a determinagio da espessura

dos tubos : (7)

_s(p+p") D, (0,0795 D 910_“2 Gul
o 4 ) () ()

2 aT Gec [+

na qual :

e, = espessura da paréde do tubo, pol.

s = fator de seguranga, 2.5 segundo a A-21

p = pressio interna, Ib/pol:

p’ = pressdo devida aos golpes de ariéte, 1b/pol?

D = didmetro interno, pol.

or = tensio limite a tragdo

. = tensio de ruptura no “three edge bearing test”

w = carga externa vertical, 1b/pé

c = cocficiente de adatacio das condigBes reais de
assentamento ao ‘“‘three-edge bearing test”.

(ver tabela de pig. 24)

(6) Manual for the computation of strenght and thickeness of cast
iron pipe — A-21 — pég. 16.
(7) Jour. A. W. W. A. — Outubro 1939, pag. 1670.
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Para or e o. sdo aconselhados, pela A-21, os
seguintes valores

ot = 11.000 Ib/pol:
sc = 31.000 1b/pol=.

Em unidades métricas, exprimindo P p ore o
em kg/cm? w em kg/m, D e ¢, em m a férmula (7.3)
se transforma em :

slp+p)D (0,0000945D )2 e\ 1
a="> Z_ +( XJ'?) .1+5 ‘ej:) (7.4)

Ce

8. Observacdes gerais sobre as férmulas
para o cilculo da espessura dos condutos for-
cados. As espessuras calculadas por qualquer das fér-
mulas anteriores (com execdo da de Fairchild) devem
ainda ser adicionados t&rmos empfricos para atender
aos esforgos nfo previstos no dimensionamento, s
tolerincias admitidas na fundigio, aos efeitos de
corrosdo, a seguranga no _ transporte e colocagio
dos tubos, etc..

Nas férmulas mais completas, como a da A.S.A,,
por exemplo, a agdo dinimica dos golpes de ariéte
e a acdo das cargas externas j4 sio levadas em consi-
deragdo no dimensionamento ; nessas, o térmo adi-
cional, empirico, atende apenas aos efeitos de corrosio
e 3s tolerdncias na fundicio; nas férmulas mais
simples, a da tensio tangencial, “verbi-gratia”, o
térmo adicional € estabelecido tendo em vista tam-
bém as agdes, ndo previstas, dos golpes de ariéte e
das cargas externas.

Como quer que seja, designando o térmo adi-’
cional, empirico, por @, a espessura real de um con-
duto forcado serd

e=¢e;+a 8.1),
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na qual e, é calculado por uma das férmulas anterio-
res. Quanto a a, para cada classe de tubos, costumam
as normas fixar-lhe um valor constante (8).

Assim, por exemplo, as especificagdes norte-
americanas da A.S.A., prescrevem para o acréscimo
relativo 3 corrosio 0,08 pol e para as tolerincias
de fundicido também 0,08 pol. (para didmetros
situados no intervalo 2| [20"); as especificagGes
francesas fixam para a o valor global 0,008 m, etc..

Baseando-se em consideragBes anilogas as feitas
na férmula de Clavarino, para diAmetros variando
no intervalo 0,m05 ———]0,m500, todas as férmulas
para o célculo da espessura dos tubos de ferro fun-
dido, podem ser conduzidas 3 forma geral :

e=b D+a (8.2),

sendo o coeficiente 4 funcdo das propriedades fisicas
do material de que é constituido o cano e dos esforgos
a que deveré éle resistir e a aproximadamente cons-
tante, para cada classe de material.

Nas . aplicacBes, assume particular importincia
a determinacdo numérica de 6 e a, para as diversas
classes de tubos de ferro fundido usados nas rédes
de distribuicio. Como variados sdo os critérios de
dimensionamento, conforme esclarecemos, preferimos
determinar 6 e a, partindo diretamente dos valores
efetivos indicados mnos catilogos dos fabricantes,
aplicando o método dos minimos quadrados.

Assim, se supuzermos,

€=f(D)=bD+a,

(8) As vezes, o térmo empirico adicional & apresentado em func¢io
do diametro D, como, por exemplo, na férmula de Fairchild.
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e organizarmos, para uma determinada classe de
tubos, uma tabela abrangendo n didmetros D e as
correspondentes espessuras ¢, os coeficientes 4 e a
poderdo ser tirados das equagdes de condigio :

Ze = na +62D
SDe=aX D+ b2 D2

Fizemos, para D variando no intervalo
0,05m | |0,500m., a determinagdo de 4 e a para
os tubos de ferro fundido de ponta e bolsa mais
empregados em nossas rédes de distribuigio e que
sd0 :

I — Zubos de procedéncia nacional

Dimenstes de acérdo com o “Ante-projeto de

s ~ 22 . i o e
especificagio”” elaborado pela Associagio Brasileira
de Normas Técnicas, seguido pelos produtores nacio-
nais : (9)

a) classe L.A. — pressio de ensaio 15 kg/cm?

b) Iy A- o »” 7] Iy 20 kg/cm2

C) > B - »” » o) 25 kg/Cm’
II — ZTubos de procedéncia européia

Geralmente franceses, com dimensdes de acérdo
com o “Cahier des charges — Ville Paris — 1935”,
seguido no Catdlogo da “S.A. des Hauts Fourneaux
et Fonderies de Pont-A-Mousson”, com pressbes
de ensaio de 25 kg/em? para 0,050=D=0,175 m ;
20 kg/cm?® para 0,200=D=0,300 m; 15 kg/om:
para D=0,325 m..

(9) Catélogos da Companhia Metaldrgica Barbard e Companhia
Ferro Brasileira S/A. ’
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III — Tubos de procedéncia norte-americana

Dimensdes de acérdo com as especificagBes da
American Standards Association (ASA), adotadas
pela American Society for Testing Materials (ASTM)
e American Water Works Association (AWWA) e

seguidas pelos fabricantes norte-americanos :

(300 Ib/pol: .
a) Classe A — J ou 21 kg/em? p* D <0,500 m.

pressio de ensaio | 150 Ib/pol?
| ou 10,5 kg/cm? p* D==0,500 m.

(300 Ib/pol®
b) Classe B — ou 21 kgfcm? p* D<0,500 m.

pressio de ensalo 1 200 Ib/pol®
| ou 14 kgfcem*® p* D=0,500 m.

(300 Ib/pol:
c) Classe C — ou 21 kg/cm:? p* D <0,500 m.

pressdo de ensaio 1 250 Ib/pol®
| ou 17,6 kg/cm?® p* D=0,500 m.

d) Classe D — pressio de ensaio 300 lb/pol? ou
21 kgl/cm:.

Os quadros seguintes fornecem os elementos
para o cilculo dos coeficientes a e 4 pelo método
dos minimos quadrados, estando os seus valores
indicados para cada classe de tubos.

Na dltima coluna de cada um dos quadros
figuram os valores da espessura ¢ calculados a partir
das férmulas deduzidas pelo método dos minimos
quadrados. ’
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TUBOS DA CLASSE L. A. (A.B.N.T.)

DIAMETRO | ESPESSURA
NOMﬁNAL DA PA:REDE De D? ecaIC.

(m) (m)

0,050 0,0070 | 0,00035 | 0,002500 | 0,0067
0,075 0,0075 | 0,00056 | 0,005625 |  0,0071
0,100 0,0075 | 0,00075 | 0,010000 | 0,0075
0,125 0,0075 | 0.00094 | 0,015625 | 0,0079
0,150 0.0080 | 0,00120 | 0,022500 0,0083
0,175 0,0085 | 0000149 | 0,030625 | 0,0087
0,200 0,000 | 0,00180 | 0,040000 | 0,001
0,225 0,0095 | 000214 | 0050625 | 0,0095
0,250 0,0100 | 000250 | 0,062500 |  0,0100
0,300 0,0110 | 0000330 | 0,090000 | 0,0108
0,350 0,0120 | 000420 | 0122500 | o0,0116
0,400 0,0125 | 0,00500 | 0,160000 | 0,0124
0,450 0,0130 | 0,00585 | 0202500 | 0,0132
0,500 0,0140 | 000700 | 0,250000 | 0,0140

b 3,350 01570 | 0,035708 | 1,065000
Equagdes de condigdo
{ 14 a+3,35 6=0,13700
3,35 a+1,065 6=0,03708
2 =0,0059
6=0,0163
e=0,0163 D+0,0059

(8.3)




TUBOS DA CLASSE A (A.B.N.T.)

DIAMETRO | ESPESSURA
NOMINAL DA PAeREDE D.e D2 eca]c_

(m) {m)
0,050 0,0075 0,00037 0,002500 0,0075
0,075 0,0080 0,00060 0,005625 0,0079
0,100 0,0080 0,00080 0,010000 0,0083
0,125 0,0085 0,00106 0,015625 0,0087
0,150 0,0090 0,00135 0,022500 0,0091
0,175 0,0095 0,00166 0,030625 0,0095
0,200 0,0100 0,00200 0,040000 0.0099
0,225 0,0105 0,00236 0,050625 0,0103
0,250 0,0110 0,00275 0,062500 0,0107
0,300 0,0115 0,00345 0,090000 0,0115
0,350 0,0125 0,00438 0,122500 0,0122
0,400 0,0130 0,00520 0,160000 0,0130
0,450 0,0135 0,00607 0,202500 0,0138

i 0,500 0,0145 0,00725 0,250000 0,0146

[

b} ‘ 3,350 0,1470 0,03930 1,065000
Equag¢des de condigdo :
14 443,35 6=0,1470
3,35 a+1,065 6=0,0393
a=0,0067
6=0,0157
e=0,0157 D+0,0067 (8.4)
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TUBOS DA CLASSE B. (A.B.N.T.)

E Tipo UNIVERSAL-PONT-A-MOUSSON

DIAMETRO | ESPESSURA
NOMINAL | DA PAeREDE De D2 ecalc.
(m) (m)
0,050 0,0080 0,00040 0,002500 0,0082
0,075 0,0085 0,00064 0,005625 0,0087
0,100 0,0090 0,00090 0,010000 0,0091
0,125 0,0095 0,00119 0,015625 0,0096
0,150 0,0100 0,00150 0,022500 0,0100
0,175 0,0105 0,00184 0,030625 0,0105
0,200 0,0110 0,00220 0,040000 0,0109
0,225 0,0115 0,00259 0,050625 0,0114
0,250 0,0120 0,00300 0,062500 0,0118
0,300 0,0130 0,00390 0,090000 0,0127
0,350 0,0140 0,00490 0,122500 0,0136
0,400 0,0145 0,00580 0.160000 0,0145
0,450 0,0150 0,00675 0,202500 0,0154
0,500 0,0160 0,00800 0,250000 0,0162
3,350 0,1625 0,04361 1,065000
Equa¢des de condigio :
{ 14 a+43,35 6=0,16250
3,35 a+1,065 6=0,04361
a=0,0073
6=0,0179
¢=0,0179 D+0,0073 (8.5)
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TUBOS DA CLASSE A. (AS.A)

DIAMETRO | ESPESSURA
NOMII)NAL DA PAREDE D.e Dz e
e calc.
(pol.) (pol.)

3 0,39 1,17 9 0,39

4 0,42 1,68 16 0,41

6 0,44 2,64 36 0,44

8 0,46 3,68 64 0,47

10 0,50 5,00 100 0,51

12 0,54 6,48 144 0,54

T 14 0,57 7,98 196 0,57

16 0,60 9,60 * 256 0,61

18 0,64 11,52 324 0,64

20 0,67 13,40 400 0,68

24 0,76 18,24 576 0,74

135 5,99 81,39 2121
Equag8es de condigdo :
11 a+ 135 b= 5,99
135 a+2121 $=81,39
a=0,336
5=0,0170

¢=0,0170 D+0,336, em polegadas (8.6)
e=0,0170 D+0,0085, em metros (8.7)
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TUBOS DA CLASSE B. (A.S.A)

DIAMETRO | ESPESSURA .
No»%NAL DA PZREDE De D? ecalc.
(pol.) (pol.)
3 0,4'2 Sk 1,26 9 0,42
4 0,45 1,80 16 0,44
6 0,48 2,88 36 0,48
8 0,51 4,08 64 0,53
10 0,57 5,70 100 0,57
12 0,62 7,44 144 0,62
14 0,66 9,24 196 0,66
16 0,70 11,20 256 0,71
18 0,756 13,50 324 0,75
20 0,80 16,00 400 0,80
24 0,89 21,36 576 0,89
135 6,85 94,46 2121

Equages de condigio :

11 a4+ 135 6= 6,85
135 a+2121 6-=94,46

a=0,348
- 5=0,0224
e=0,0224 D+0,348, em polegadas (8.8)
e=0,0224 D+0,0088, em metros (8.9)



TUBOS DA CLASSE C (AS.A.)

DIAMETRO | ESPESSURA
NOI\%NAL DA PAREDE D.e D2 e
e calc.
(pol.) (pol.)
3 0,45 1,35 9 0,43
4 0,48 1,92 16 0,46
6 0,51 3,06 i 36 0,52
8 0,56 4,48 64 0,58
10 0,62 6,20 100 0,63
12 0,68 8,16 144 0,69
14 0,74 10,36 196 0,75
16 0,80 12,80 256 0,80
18 0,87 15,66 324 0,86
20 f 0,92 18,40 400 0,92
24 1,04 24,96 576 1,03
135 7,67 107,35 S 2121
EquagBes de condigdo :
11 a4+ 135 b= 7,67
135 a+2121 $=107,35
a=0,348
6=0,0285
e=0,0285 D-+0,348, em polegadas  (8.10)
e=0,0285 D+-0,0088, em metros (8.11)
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TUBOS DA CLASSE D. (AS.A.)

DIAMETRO | ESPESSURA
NOMINAL DA PAeRED E De D 2 ecalc '
(pol.) (pol.)
3 0,48 1,44 9 0,46
4 0,52 2,08 16 0,49
6 0.55 3,30 36 0,56
8 0,60 4,80 64 0,63
10 0,68 6,80 100 0,69
12 0,75 9,00 144 0,76
14 0,82 11,48 196 0,82
16 0,89 14,24 256 0,89
18 0,96 17.28 324 0,96
20 1,03 20,60 400 1,02
24 1,16 27,84 576 1,15
135 8,44 118,86 ©2121

EquagSes de condigdo :

11 a4 135 6= 8,44
135 a+2121 $=118,86

a=0,363
6=0,0329

¢=0,0329 D+40,363, em polegadas (8.12)
€¢=0,0329 D+0,0092, em metros (8.13)
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I — CUSTO DE UM CONDUTO FORCADO.

9. Peso por metro linear de um conduto for-
cado. O peso por unidade de comprimento de um
tubo de diAmetro interno D e espessura e é dado

por Pi=yx(D+e) e 9.1),

sendo v, o peso especifico do material de que ¢ feito
o conduto. No capitulo anterior vimos que, fixadas
as condi¢gdes de trabalho do conduto, resulta
e=a+b6D (82), e portanto :

Pi=vyx(D+a+6D) (a+6D)=
= T,'n:(d-}-BD-I— CD?), 9.2)
na qual

A=a?, B=a(l428), C=6(1+5), (9.3)

sdo coeficientes que dependem das condigdes de
trabalho da tubulacio.

O peso de um trecho de conduto de comprimento
L e diAmetro D variavel seri :

L L L
P= Pds= v Ads+ BDds+
(4] 0 (4]
7 s
+ CD2ds

[7]

(9.4)
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e, no caso do diAmetro D ser constante ao longo

de L :

P=P.L=vx(d+BD+CD?)L=
=[a+ 8D+ DL 9.5)

E de se observar que as férmulas (9.4) e (9.5)
nio levam em conta a variagio da espessura corres-
pondente as bolsas dos tubos. Sabendo-se que,
comercialmente, o peso por unidade de comprimento
de um tubo se obtem dividindo o seu peso total
(incluindo a bolsa) pelo seu comprimento util, os
valores efetivos de 4, B e C e, consequentemente,
os de « 8 e y, para as aplicag3es, serdo obtidos dos
valores teéricos, por assim dizer, dados pela formula
(9.3), multiplicando-os por oportunos coeficientes,
dependentes das caracteristicas das bolsas. Para
a determinacio numérica dos valores efetivos de
o, 8 e y das diversas classes de tubos de ferro fun-
dido usados nas rédes de distribuigdo, julgamos
preferivel basearmo-nos diretamente nos valores de
P, indicados nas diversas normas e repetidos nos
catslogos de fabricantes. Aplicando-se o método
dos mfnimos quadrados, sendo n o nimero de didme-
tros tabelados, as equag¢des de condigdo serdo, mo
caso,

na+ 82 D+yZD2=3P,
«XD+ 82D+ +y2D3=3P,D
«Z D+ X D*+vy2D+=3P D=

Fizemos a determinagio numérica de o, 8 e v
para cada uma das classes L4, 4 e B do “Ante pro-
jeto de especificagdo” da Associagdo Brasileira de
Normas Técnicas e das classse 4, B, C e D da especifi-
cacio da American Standards Association.
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As tabelas de pag. 40 a 46 indicam os valo-
res obtidos e patenteiam a validade da férmula
(9.5) no intervalo 0,05 | | 0,500m. de variagdo
de D, pois os desvios entre os valores de P. por °
ela calculados e os constantes de catilogos de
fabricantes estdo, com rarissimas exegdes, indicadas
nas tabelas com asteriscos, abaixo de cinco por
cento, méxima tolerAncia na variagio do peso por
metro linear, permitida pela especificago da A.S.A.
e pelo “Ante-projeto de especificagio’” da A.B.N.T..
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TUBOS DA CLASSE L. A. (A.BN.T.)

DIAM. | PESO
NOMIN. | POR M 2 9 3 4 Pl
D Pl P1D D P ]_D D D CalC.
(m} | (kg/m)
0,050 [ 10,00 0,500 | 0,002500 0,0250 | 0,000125 | 0,00000625 9,50
0,075 | 16,00 1,200 | 0,005625 0,0900 | 0,000421 | 0,00003165 14,80*
0,100 | 20,00 2,000 0,010000 0,2000 | 0,001000 | 0,00010000 20,40
0,125 | 25,00 3,125 | 0,015625 0,3906 | 0,001955 | 0,00024420 | 26,25
0,150 | 32,00 4,800 | 0,022500 0,7200 | 0,003375 | 0,00050625 33,20
0,175 | 39,00 6,825 | 0,030625 1,1944 | 0,005360 | 0,00093800 | 41,50
0,200 | 47,00 9,400 | 0,040000 1,8800 | 0,008000 | 0,00160000 | 47,80
0,225 | 55,00 | 12,375 | 0,050625 2,7844 | 0,011390 | 0,00256000 | 55,80
0,250 [ 64,00 [ 16,000 0,062500 4,0000 | 0,015625 | 0,00390600 | 64,30
0,300 | 84,00 [ 25,200 | 0,090000 7,5600 | 0,027000 | 0,00810000 | 82,70
0,350 | 106,00 | 37,100 | 0,122500 12,9850 | 0,042900 | 0,01500000 | 103,00
0,400 [ 125,00 | 50,000 | 0,160000 | 20,0000 | 0,064000 0,02560000 | 124,70
0,450 | 146,00 | 65,700 | 0,202500 29,5650 | 0,091250 | 0,04100000 | 148,00
0,500 | 174,00 87,000 | 0,250000 | 43,5000 | 0,125000 0,06250000 | 174,00
3,350 | 943,00 | 321,225 | 1,065000 | 124,8944 | 0,397401 0,16209235
Equacses de condigio
( 14 «+43,350 ¢+1,065 v=943,000
3,350 «+1,065 840,397 y=321,225
{ 1,065 «+0,397 840,162 = 124,894
«=0,25; 8=16500; +=36500
P,=0,25+ D(165,00+365,00D) (9.6)
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TUBOS DA CLASSE A. (A.B.N.T.)
DIAM. | PESO
NOMIN. POF M| pp D? P,D? D? D¢ Py |
1 cale.
(m) | (kg/m)

- 0,050 | 10,70 0,535 | 0,002500 0,0268 | 0,000125 | 0,00000625 10,30
0,075 | 17,00 1,275 | 0,005625 0,0956 | 0,000421 | 0,00003165 | 16,00*
0,100 | 21,00 2,100 | 0,010000 0,2100 | 0,001000 | 0,00010000 22,65
0,125 | 27,00 3,375 | 0,015625 0,4220 | 0,001955 | 0,00024420 | 28,70%
0,150 | 35,00 5,250 | 0,022500 0,7875 | 0,003375 | 0,00050625 | 35,80
0,175 | 43,00 7,525 | 0,030625 1,3169 | 0,005360 | 0,00093800 | 43,40
0,200 | 51,00 | 10,200 | 0,040000 2,0400 | 0,008000 | 0,00160000 | 51,00
0,225 | 60,00 | 13,500 | 0,050625 3,0375 | 0,011390 | 0,00256000 | 59,30
0,250 | 69,00 | 17,250 | 0,062500 4,3125 | 0,015625 | 0,00390600 | 67,90
0,300 | 86,00 25,800 0,090000 7,7400 | 0,027000 | 0,00810000 | 86,40
0,350 | 109,00 | 38,150 | 0,122500 | 13,2525 | 0,042900 | 0,01500000 | 106,80
0,400 | 129,00 | 51,600 | 0,160000 | 20,6400 | 0,064000 | 0,02560000 | 128,40
0,450 | 150,00 | 67,500 | 0,202500 | 30,3750 | 0,091250 | 0,04100000 | 151,60
0,500 | 178,00 | 89,000 | 0,250000 | 44,5000 | 0,125000 | 0,06250000 | 177,00
3,350 | 985,70 | 333,060 | 1,065000 | 128,7563 | 0,397401 | 0,16209235

Equaces de condigio
[ 14 «+3,350 ¢+1,065 y=985,700
1 3,350 «+1,065 +0,397 = 333,060
{ 1,065 «+0,397 3+0,162 y=128,756
«=0,10; g=189,00; y=330,00
P,=0,104 D(189,004 330,00 D) 9.7)




TUBOS DA CLASSE B. (A.B.N.T.)
DIAM. | PESO
NOMIN. | POR M. 2 2 3 4 Pl

D Py P.D D PiD D D s
(m) | (kg/m)
0,050 | 12,00 | 0,600 | 0,002500 | 0,030 | 0,000125 | 0,00000625 | 13,30%
0,075 | 18,00 | 1,350 | 0,005625 | 0,1013 | 0,000421 | 0,00003165 | 18,90
0,100 | 24,00 | 2400 |0,010000 | 0,240 | 0,001000 | 0,00010000 | 25,10
0,125 | 31,00 3,875 | 0,015625 0,4844 | 0,001955 | 0,00024420 | 32,40
0,150 | 39,00 5,850 | 0,022500 0,8775 |0,003375 | 0,00050625 | 39,10
0,175 | 47,00 8,225 | 0,030625 1,4394 | 0,005360 | 0,00093800 | 47,00
0,200 | 56,00 | 11,200 | 0,040000 2,2400 | 0,008000 | 0,00160000 [ 55,50
0,225 [ 66,00 | 14,850 | 0,050625 3,3412 | 0,011390 | 0,00256000 | 64,70
0,250 | 76,00 | 19,000 | 0,062500 4,7500 | 0,015625 | 0,00390600 | 74,20
0,500 | 98,00 | 29,400 | 0,090000 8,8200 | 0,027000 | 0,00810000 | 95,10
0,350 | 123,00 | 43,050 | 0,122500 | 15,0675 | 0,042900 | 0,01500000 | 118,50
0,400 | 145,00 [ 58,000 0,160000 | 23,2000 | 0,064000 | 0,02560000 | 144,00
0,450 168,00 75, 600 0,202500 | 34,0200 | 0,091250 | 0,04100000 | 172,50
0,500 | 199,00 | 99,500 | 0,250000 | 49,7500 |'0,125000 | 0,06250000 | 202,10
3,350 [1102,00 [ 372,900 | 1,065000 | 144,3613 | 0,397401 | 0,16209235

Equagtes de condigdo.
( 14 «+3,350 g+1,065 y=1102,000
3,350 «+1,065 840,397 y=2372,900
{ 1,065 «+0,397 ¢+0,162 +=144,361
«a=4,00; B=16500; 1=462,00
P,=4,00+ D(165,004+462,00D) (9.8)




TUBOS DA CLASSE A. (A.S.A)

piiM. | PESO
N%M. POR M. P1D D2 P1D2 D3 D4 Pl

P, calc.
(m) | (kg/m)

0,075 21,50 1,613 | 0,005625 0,1210 | 0,000421 | 0,00003165 21,60
0,100 29,70 2,970 | 0,010000 0,2970 | 0,001000 | 0,00010000 | 28,90
0,150 45,60 6,840 | 0,022500 1,0250 | 0,003375 | 0,00050625 | 44,90
0,200 63,50 | 12,700 | 0,040000 2,5400 | 0,008000 | 0,00160000 | 63,40
0,250 84,80 | 21,200 | 0,062500 5,3000 | 0,015625 | 0,00390000 | 84,40
0,300 | 107,40 | 32,220 | 0,090000 9,6660 | 0,027000 | 0,00810000 | 107,80
0,350 . 133,00 | 46,550 | 0,122500 | 16,3000 | 0,042900 | 0,01500000 | 133,60
0,400 | 161,00 | 64,400 | 0,160000 | 25,8000 | 0,064000 | 0,02560000 | 162,00
0,450 | 192,00 | 86,400 | 0,202500 | 38,9500 | 0,091250 | 0,04160000 192,60
0,500 | 222,50 | 111,250 | 0,250000 | 55,6250 | 0,125000 | 0,06250000 226,00
0,600 | 304,00 | 182,400 | 0,360000 | 109,2500 | 0,216000 | 0,12960000 299,90

3,375 | 1365,00 | 568,543 | 1,525625 | 264,8740 | 0,594571 | 0,28793790

Equagies de condigio :
11 «+3,375 ¢-+1,326 v=1365,000
3,375 «+1,326 8+0,595 y= 568,543
1,326 «+0,595 8+0,288 y= 264,874
«=4,00; 8=199,00; y=490,00
P,=4,00+D(199,004-490,00D) 9.9)
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TUBOS DA CLASSE B.(A.S.A.)

DIAM. PESO
NOM. | POR M. 9 2 3
D P, P;D D P,D D

(m) | (kg/m)

cale.

0,075 24,10 1,808 | 0,005625 0,1356 | 0,000421 | 0,00003165 24,30
0,100 32,20 3,220 | 0,010000 0,3220 | 0,001000 | 0,00010000 32,00
0,150 49,50 7,425 | 0,022500 1,1138 | 0,003375 | 0,00050625 49,60
0,200 70,50 | 14,100 | 0,040000 2,8200 | 0,008000 | 0,00160000 70,30
0,250 95,00 | 23,750 | 0,062500 5,9375 | 0,015625 | 0,00390000 94,20
0,300 | 122,00 .36, 600 | 0,090000 | 10,9800 | 0,027000 _0500810000 121,00
0,350 [ 152,00 | 53,200 | 0,122500 | 18,6000 | 0,042900 (;;0] 500000 | 150,80
0,400 | 185,50 | 74,200 | 0,160000 | 29,6800 | 0,064000 | 0,02560000 | 184,10
0,450 | 222,50 | 160,125 | 0,202500 | 45,0562 | 0,091250 | 0,04100000 | 220,00
0,500 | 260,00 | 130,000 | 0,250000 | 65,0000 | 0,125000 | 0,06250000 | 259,50
0,600 | 346,00 | 207,600 | 0,360000 | 124,5600 | 0,216000 | 0,12960000 | 347,30

3,375 | 1559,30 | 652,028 | 1,325625 | 304,2051 | 0,594571 | 0,28793790

Equagées de condigao:

11 «+3,375 641,326 =1559,300
3,375 o+1,326 640,595 v= 652,028
1,326 o-+0,595 40,288 y= 304,205

«=6,20; 8=198,00; y=618,00

P,=6,20+ D(198,00+618,00D) 9.10)

=l




TUBOS DA CLASSE C. (A.S.A)

DIAM. | PESO p
NOM. | POR M. 2 2 3 4 1
D P, P:D D PD D D calc.
(m) | (kg/m)
0,075 25,40 1,905 | 0,005625 0,1429 | 0,000421 | 0,00003165 | 28,30%
0,100 34,60 3,460 | 0,010000 0,3460 | 0,001000 | 0,00010000 | 35,70
0,150 53,10 7,965 | 0,022500 1,1948 | 0,003375 | 0,00050625 | 53,80
0,200 77,20 | 15,440 | 0,040000 3,0880 | 0,008000 | 0,00160000 | 76,50
0,250 | 105,10 | 26,275 | 0,062500 6,5688 | 0,015625 | 0,00390000 | 103,70
0,300 1 136,10 | 40,830 | 0,090000 | 12,2490 | 0,027000 | 0,00810000 | 135,20
0,350 | 173,50 | 60,725 | 0,122500 | 21,2538 | 0,042900 | 0,01500000 | 171,30
0,400 | 214,00 | 85,600 | 0,160000 | 34,2400 | 0,064000 | 0,02560000 | 212,20
0,450 | 260,00 | 117,000 | 0,202500 | 52,6500 | 0,091250 | 0,04100000 | 257,00
0,500 | 310,00 | 155,000 | 0,250000 | 77,5000 | 0,125000 | 0,06250000 | 307,00
0,600 | 415,00 | 249,000 | 0,360000 | 149,4000 | 0,216000 | 0,12960000 | 419,90
3,375 | 1804,00 | 763,200 | 1,325625 | 358,6333 | 0,594571 | 0,28793790
Egquagdes de condicdo :
11 243,375 8+1,326 y=1804,000
3,375 «+41,326 g+0,595 y= 763,200
1,326 «+40,595 840,288 y= 358,633
x=13,00; 8=137,00; +=902,00
P,=13,00+ D(137,00+902,00D) (9.11)
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TUBOS DA CLASSE D. (A.S.A)
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DIAM. | PESO
1 NOM. POR M. P]D D2 P1D2 D3 D4 Pl 1

1 cale.
(m) | (kg/m)
{0,075 | 26,80 | 2010]0,005625 | 0,1510 | 0,000421 | 0,00003165 | 28,40*
0,100 | 37,10 3,710|0,010000 | 0,3710 | 0,001000 | 0,00010000 | 36,80
0,150 56,80 8,520 | 0,022500 1,2800 | 0,003375 | 0,00050625 | 57,00
0,200 82,80 | 16,560 | 0,040000 3,3120 | 0,008000 | 0,00160000 | 82,30
0,250 | 114,00 |. 28,500 | 0,062500 7,1250 | 0,015625 | 0,00390000 | 112,40
0,300 [ 148,50 | 44,550 | 0,090000 | 13,3650 | 0,027000 | 0,00810000 | 147,50
0,350 | 192,00 | 67,200 | 0,122500 | 23,5200 | 0,042900 | 0,01500000 | 188,00
0,400 | 236,00 | 94,400 | 0,160000 | 37,7600 | 0,064000 | 0,02560000 | 232,40
0,450 | 285,00 | 128,250 | 0,202500 | 57,7130 | 0,091250 | 0,04100000 | 283,00
0,500 | 341,00 | 170,500 | 0,250000 | 85,2500 | 0,125000 | 0,06250000 | 337,00
0,600 | 456,00 | 273,600 | 0,360000 | 164,1600 | 0,216000 | 0,12960000 | 461,30
3,375 | 1976,00 | 837,800 | 1,325625 | 394,0070 | 0,594571 | 0,28793790

Equacies de condigdo :
11 «+3,375 8+1,326 +=1976,000
3,375 a+1,326 $+0,595 y= 837,800
1,326 «+40,595 3+0,288 y= 394,007
«=11,00; 8=159,00; +=986,00
P,=11,00+ D(159,004986,00.D) 9.12)




10. Critica a hipbétese da proporcionalidade
entre o custo e o diametro de um conduto
forcado. — As despesas a serem efetuadas na execugio
de um conduto forgado, trabalhando por gravidade,
podem ser agrupadas em duas categorias :

a) despesas com a aquisigdo e colocagdo propria-
mente dita da tubulacio, dependentes essencialmente
do peso do conduto, e, portanto, do seu didmetro ;

b) despesas com a excavagio e recobrimento
das valas, consolidacio do terreno, obras de arte,
desapropriagdes, etc.,, que dependem principalmente
do tragado planimétrico e altimétrico do conduto,
mas podem ser consideradas como independentes
do didmetro do tubo, desde, evidentemente, que
éle nio varie em um intervalo muito amplo.

Fixado em planta e perfil o tragado do conduto,
para a determinagio econdmica de seu didmetro,
basta pois, levar em consideragio as despesas do
item a.

Assim, sendo ¢ o prego da unidade de peso do
tubo, o custo de aquisi¢io da canalizagdo, por unidade
de comprimento, serd

Cl=CP1=CYf‘7L'(A+BD+ C.Dz), (10.1)

e, para um trecho de comprimento L

I I 7
Adds+ | BDds+ | CD2|(10.2)
[4] [¢} [¢]

No caso de D constante ao longo de Z,

C= CP= YywC

C=cP,L=cLle+3D++D? (10.3)
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Por outro lado, como

P=P.L=vx(D+é) ¢ L,

vem
C=cyr(D+e) e L=

=c7,w<,1+_5) e DL (10.4)

Fazendo-se u=cy,w(l+%) e, (10.5)

C=uDL (10.6)

O produto cyx pode ser tomado como cons-

tante para cada material ; 1+% ¢, para uma

determinada classe de tubos é fungfo exclusiva de
D, pois e varia' com D.

Na férmula (10.6), u representa o custo da
unidade de comprimento da canaliza¢io de diAmetro
unitério.

Admitem alguns autores, que, em primeira
5 - 5 e
aproximagdo, se possa considerar 1+T €, como

constante, isto é, na férmula (10.6), w=const. (10) e
(11). Admitida esta hipbtese, o custo de um conduto
forcado varia linearmente com o didmetro D e com
o comprimento L.

(10) De Marchi — Giulio — Idrdulica (1930).
(11) Eydoux — Denis — Hydraulique générale et appliquée (1921).
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Ora, identificando as expressSes (10.3) e (10.6),

resulta

w=c 1;‘ (10.7)

e, para que u fosse constante, necessario seria que

P,

também o fosse.

No entanto, mesmo para [ variando apenas
no intervalo 0,05 | | 0,500m, que mais de perto
nos interessa nas rédes de distribuicdo, é notavel

e —r
a variagio da relagdo ——.

D
Com efeito, das férmulas (9.6), (9.7), (9.8), (9.9),
(9.10), (9.11) e (9.12), resultam para I;‘ =% os
c

valores constantes do quadro da pégina seguinte.
As expressdes desse quadro nos mostram que,

no intervalo 0,05 [7[ 0,500m, -lp"—pode variar na
c

razio de um para dois, o que, mais sugestivamente,
esta indicado no grafico da figura 2.

Quer isto dizer que, mesmo em primeira aproxi-
macdo, a hipdtese da proporcionalidade entre o custo
e o didmetro de um conduto for¢ado nio deve ser
admitida, a menos que o diAmetro varie em intervalo
de amplitude muito pequena, abrangendo, por
exemplo, até trés diAmetros consecutivos das bitdlas
comerciais.

Baseando-nos em valores do guadro seguinte e
no grafico da figura 2, sugerimos, em primeira aproxi-
macdo, e, para D compreendido no intervalo
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CLASSE DOS TUBOS Pi_ v
D c
0,25
ABN.T. — Classe LA, 225 + 16500 + 365,00 D
0,10 _
ABNT. — . A =0 + 189,00 + 330,00 D
ABNT. — , B 4'_80 + 165,00 + 462,00 D
ASA. — , A ii_g(.) +, 199,00 + 490,00 D
ASA. — , B _Gi)ﬂ + 198,00 + 618,00 D
ASA. — , C % + 137,00 4+ 902,00 D
ASA. — , 'D % 159,00 + 986,00 D
0,05 ——] 0,500m, a variagdo linear de w com D,
1isto é
w=p1+ w0 (10.8)

Com esta hipbétese, mais consentinea com a
realidade, a férmula (10.6) se escreverd

C=(w+w.D)DL (10.9)

e, no caso mais geral, em que D é varidvel ao longo

de Z,

L
C= (w14 weD)D ds (10.10)
0
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Os valores de u; e w; dependem da classe do
tubo e de ¢, custo da unidade de peso da canalizag3o.

Assim, por exemplo, para os tubos das classes
LA e A do Ante-projeto de especificagdes da A.B.N.T.

\ 2 - -
os valores de *- e 2 seriam, respectivamente 165,

c C

365 e 189, 330, aproximadamente. (12)

Resumindo, para as canalizagdes de ferro fun-
dido destinadas 3s rédes de distribuicdo, a hipbtese
da proporcionalidade entre o custo e o didmetro
s6 pode ser aceita quando o didmetro varia em um
intervalo de amplitude muito pequena; para o
intervalo 0,05 | —]| 0,50m, no qual se situam quase
todos os problemas das rédes de distribuigdo, pode-se
admitir, com suficiente aproximagio

L
C= (“‘1+F"2D)D d‘f’

o

sendo w, e p» coeficientes que dependem das con-
digSes de trabalho do conduto e do custo da unidade
de peso do material de que é confecionado o cano.

(12) Nas atuais condi¢es ¢ ¢ da ordem de Cr§ 2,40/kg. dando lugar
aos seguintes valores numéricos :

Classe L.A. — (.;=396, Ww2=876
Classe A. — =454, p,2=792.



III — A CONDICAO GERAL DE MINIMO
CUSTO NOS CONDUTOS FORCADOS
SIMPLES.

11. Perda de carga no regimen gradualmen-
te variado. — A condicio geral de minimo custo nos
condutos forcados simples é estabelecida para uma
tubulagio com didmetro gradualmente variavel ; a
este casc, como veremos posteriormente, podem
ser conduzidos todos os problemas de interesse

oy, 4 G A e T
pratico nas rédes de distribuigdo.

Feita a extensio do teoréma de Bernouilli as
correntes de seccio finita, aplicando-o a duas sec¢Bes
separadas pelo comprimento L de um conduto em
regimem gradualmente variado, se designarmos por
J a perda de carga unitdria (no caso, varidvel ao
longo do conduto) e por ds o comprimento do ele-
mento genérico de canalizacdo, a perda de carga
total, por atrito externo, entre as duas secgdes

sera :
L
H = J ds, (11.1)

(4]

sabendo-se que nas tubula¢Bes de consideravel com-
primento L, a diferenca entre as alturas cinéticas
das duas secgdes consideradas é despresivel em face
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de H. Isto corresponde a afirmar que no regimer
gradualmente variado, como no uniforme, a carge
hidrdulica disponivel é igual a perda de carga total
por atrito externo (13).

Como o intervalo de variagio do didmetro que
estd nos interessando é o 0,05 | [0,500m, podere-
mos, pois, no cédlculo de j, adotar qualquer das
férmulas praticas de encanamentos, a ‘de Darcy,
- a de Flamant, a de Willhams e Hazen, etc. (14).
Daremos preferéncia, pela maior facilidade nos desen-
volvimentos analiticos, & férmula de Darcy, na qual

. 644, Q
T g2 ﬁb—’

(11.2)

sendo. by=a+ %( « = 0,000507; ¢ = 0,00001294, p*

tubos de ferro fundido com alguma incrustagdo).

A férmula (11.1) passard a:

I
64 :
= ; —gs ds (11.3)

2
o

12. A condigdo geral de minimo custo nos
condutos forgados simples : um problema de
calculo das variacdes. — A condigdo geral de mi-
nimo custo em um conduto forgado em regimen gra-
dualmente variado serd obtida com a solugdo do se-
guinte problema :

(13) Fischer — Eugenio — Corso di Idrdulica — pag. 189 e 190.

(14) Babbit and Doland — Water Supply Engineering — pég. 395
e Bonnet — “Traité pratique des distribution d’eau et des égouts” —

12 ed. — pég. 560.
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Entre todos os condutos forgados de comprimento
L, dispondo da mesma carga hidrdulica H, e em
igualdade de condi¢ces no que se refere & vasdo, (con-
dutos equivalentes) determinar o de custo minimo.

Ora, no segundo capitulo,” estabelecemos (fér-
mula (10.10). o custo de um conduto for¢ado, no
caso mais geral possivel,

L
C = (witwD)D ds (10-10)

(]

De acbrdo com o enunciado acima, H e ( sdo
dados fisicos do problema ; H constante para cada
caso, () constante ou varlavel com lei conhecida
ao longo de L.

Portanto, a variavel incégnita, no caso o dia-
metro D, deve ser tal que, levada A integral defimida
(11.3) d& lugar a um valor constante H, e, introduzida
na integral definida (10.10) ocasione um valor minimo
para

determinagio dos didmetros, devendo satis-
fazer As condigdes (11.3) e (10.10), pertence assim
ds cléssicas questdes conhecidas como ‘“‘problemas
isoperimétricos’’, onde o calculo das varia¢Ges encontra
uma das suas mais fecundas aplicagBes.

Julgamos interessante dar um sucinto apanhado
do aspecto puramente mateméitico do problema,
nio apenas para mostrar que as condigdes hidriulicas
se adatam perfeitamente as restri¢Bes analiticas
impostas pelo cilculo das variagBes, como, porque,
diversos autores tratam a questio com insuficiente
rigor (15). :

(15) Para citar apenas um, haja vista Bonnet — “Traité Practique
des distributions d’eau et des égouts — 1.* ed. — pég. 749, onde a chamada

condicio de Euler é estabelecida apenas “d’aprés la lol des variations de
y fonction de x”
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13. Aspecto puramente matematico do pro-
blema. — Deixando de lado as particularidades
hidr4ulicas, o problema que deve ser resolvido, enca-
rado pelo seu aspecto puramente matemético é o se-
gumte :

Entre tddas as fungSes y=f(x) continuas e
admitindo derivadas continuas em wum intervalo
X |x;, para as quals a integral

X1
I =[ G(x, y)dx,

Xo

adquire um valor dado H, determinar (caso ex1sta)
a que torna minima a integral

X1
I =f F(x, y)dx,

X,

sendo & e F' fungdes conhecidas dos dois argumentos
xey.

Supondo-se as fungdes F' e G definidas e continuas
em todos os pontos (x, y) de uma regifio R, se as
suas derivadas parciais relativamente a y e x forem
‘também admitidas continuas, é possivel a existéncia
de um extremante de I (16).

Os problemas isoperimétricos reduzem-se ao pro-
blema fundamental do calculo das variagSes isto é,
as pesquisas dos valores extremantes de uma integral
definida, substituindo-se essa integral por uma opor-

(16) Tonelli — Leonida — ‘“Fondamenti di calcolo delle variazioni
— vol. IT — pég. 552.
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tuna expressio em que ela figure associada 2 integral
que deve tomar um valor prefixado.

No caso em aprego, a procura dos extremantes
da integral I, de modo que a integral [, permaneca
constante, equivale & pesquisa dos extremantes da
integral

I+,

onde ¢ exprime uma constante (17).

A condi¢io necessdria para que y= f(x) torne
a integral / minima e /,=H=constante é que a
primeira variagdo de I+ I, seja nula, sendo a
sua segunda variagio ndo negativa, isto é,

s U+ el)=0
2 + <I) =0 (18)

A primeira imposigio conduz a equagdo de Euler,
que no caso particular em exame seré :

3 3F 3G
?‘y—(F-l-sG)—?y'-Fs-S?—o (13.1)

A segunda imposigdo d4 lugar a chamada con-
digio de Legendre :

82
_(F+ :G)=0 (13.2)
Sy
(17) Vivanti — Giulio — “Fezioni di analisi matematica — 3.* ed.
— vol. II — phg. 434.
(18) Goursat E. — “Cours d’Analyse Mathématique” Tome I —
pag. 584.
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No problema que estamos abordando, a cons-
tante ¢ é definida por

3F
e :{; . (13.3)

8y

e a condicdo de Legendre ser4 pois expressa por :

3F
3 5y 3G
= > 13.4
5y * 3G 52y 3 i)
3y

Em resumo para que y=f(x) torne minimo / e
ocasione um valor constante H para 7, é necessério
que as condigSes (13.1) e (13.4) sejam verificadas
para qualquer x no intervalo x| [ a1

14. Aplicacio das condicdes de Euler e de
Legendre ao problema geral do minimo custo
de condutos forcados. — Fazendo a aplicacio das
conclusdes do ndmero anterior ao nosso problema
particular, teremos

L
64 2
11 =H= _7:2_ bl%

(2]

ds

L
I=C=/ (P-1+L12D)Dal"'
0
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A funcdo incbgnita serd y= D(s).

No regimen gradualmente variado, que estd
nos preocupando, a fungdo y=D(s) serd continua e
admitird derivada continua em todo o intervalo

ol | L.
As funcBes F e G terdo aqui as seguintes expres-
soes : 0 0
2 @ 2
G=b13 = (I_a+7)7)—5 a4

com « e @ constantes para cada material,
F=(u+w D)D, (14.2)

com g; € p, constantes para cada classe de tubos ;
ambas as funcBes satisfazem portanto 3s condi¢Bes
impostas no niémero anterior para a existéncia de
um extremante de 7 ou C.

Passemos pois as condi¢des de Euler e de Le-

gendre. i
B .
——=U-1+2 {LzD
3y
32k
E‘yz—z‘“
G & Se
oy D .__5“+ D}
32 G— 6Q2 ﬂ
';y? D7 \‘50("' D l
F .
. 3y _ D iJ-1+2(J-2D
=— { e ‘ (14.3)
3y



Condigdo de Legendre :

D7 [ wt2uD ] 60:
Q| 6g+5«D D7

29-2+ {5a+7_1;ﬂ=

6(9«1‘|‘29«21)) (5 i D+75)>0
D(5«D+6p) ’

=2U«2+

isto é, trata-se efetivamente de um minimo.
Da férmula (14.3), tira-se,

68+5xD

J))= |t
[ P-1+2U-20

]1/7 e O (14.4)

17

68+54D
P-1+2LJ-2-D_

, para 1) variando no

A expressio [

mtervalo 0,05 | 10,50m, pode em primeira apro-
ximag3o ser considerada constante (19).
Designando-se por A o produto

177
- [%J R (14.5)

vem finalmente,

D= JO (14.6)

Levando-se ésse valor 4 equagdo (11.3), teremos,

= |
H- 64/ [ Q4”+76Q2”l ds, (14.7)

T 2N
0

»

(19) Com efeito, para tubos da classe L. A. da A.B.N.T., por exemplo,
o valor da expressdo varia de 0,123 p* D=0,05 m. até 0,140 p* D =0,500 m,
podendo-se adotar, para todo o intervalo, o valor médio 0,130.
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expressio que permitiria a determinagdo da cons-
tante A.

15. Férmula aproximada para a determina-
¢do de 1. — Entretanto o cilculo de 2 pela férmula
(14.7) é extremamente trabalhoso, exigindo a resolu-
¢io de uma equagio do 6.* grdu, o que torna dificil a
sua utilizagio nos casos préticos.

Com o objetivo de facilitar a aplicagdo aos casos
correntes, procuremos uma expressio aproximada
mais simples. Isto & conseguido atribuindo-se a

b= cz—i--% um valor constante, média dos valores

efetivos no intervalo 0,05 ——— 0,500m, o que encon-
tra justificativa no fato da variagio de 4, ndo ser
muito grande nesse intervalo. A tabela seguinte
patenteia a afirmagio :

piAmMeTrRO D e DIAMETRO D

bi=a+— by=at—
(m) D (m) D
0,050 0,000765 0,250 0,000558
0,075 0,000679 0,300 0,000550
0,100 0,000636 0,350 0,000543
0,125 0,000610 0,400 0,000539
0,150 . 0,000593 0,450 0,000535
0,200 0,000571 0,500 0,00055..")

Em primeira aproximagio pode-se admitir
para b, o valor constante 0,0006 no intervalo

0,05 ———0,50.
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Isto posto, substituindo-se D por (0?7 na fér-
mula (11.3), obteremos

L
H=——~64bl / o ds

T 200
0
e chamando

646,

TS

=k, (15.1)

L
H=k / Q" ds, de onde tiramos
0

H

- L
f oY ds

(/]

k (15.2)

Determinado o valor de & pela férmula (15.2),
admite-se para 4, o valor médio 0,0006 e por (15.1)
calcula-se o valor de .

Com o » obtido, a férmula (14.6) fornece um
primeiro valor para o didmetro D, com o qual se
podera escolher um 4, mais aproximado, e, em conse-
quéncia um valor mais conveniente para A e assim
sucessivamente.

E uma solugio por aproximacdes sucessivas, t30
frequente nos problemas de Hidr4ulica aplicada.

Convém acentuar que, via de regra, pode-se
contentar com o valor de 1 obtido por (15.1), visto
como a oscilagdo de 4, é pequena no intervalo

0,05 |

b
10,500 e ainda » varia com /..
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E interessante ressaltar o andamento da linha
piezométrica no conduto de minimo custo.

Para isso, basta identificar (11.1) e (14.7)
64

TN

, ou

J=

[a QT+

em fungio do diAmetro :

—— apz+w} | (15.3)
e, com a introducio de novas constantes
64 643
re— € =
J=D(rD+) (15.4)

Portanto, na canaliza¢gio mais conveniente, sob
o ponto de vista econdmico, a perda de carga unitiria
deve variar segundo o produto D{(rD+S§), com re «
constantes. .

E curioso observar que, aceita a hipbtese da
proporcionalidade entre o custo e o didmetro,
(w=constante, na férmula (10.6)), e admitindo

b= a—l—% invaridvel, Mannes chegou as seguintes
férmulas (20)
D=u0Q"”

/=c0", com u e c constantes; nessas
condigdes a canalizagdo mais conveniente sob o

(20) Bonnet L. — op. cit. pag. 750.
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ponto de vista econdmico € tal que a perda de carga
unitiria mantem-se proporcional ao didmetro.

Resumindo as nossas considerag¢Bes destecapitulo,
sugerimos as seguintes férmulas gerais para a reso-
lugio das questdes de minimo custo :

H
S=oTE
0 ds
(]
J=k Q"
5 —
)\=l/64b1
=k
=

No capitulo seguinte, faremos a aplicagdo dessas
expressdes aos casos que, com maijor frequéncia, se
apresentam na pratica.
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IV — APLICACOES DA CONDICAO DE MI-
NIMO CUSTO AOS CONDUTOS FOR-
CADOS SIMPLES.

16. Canalizacdo com vasao constante. —
Sendo (=const.,
D =10% =const. (16.1)
J=kQ" =const.

A constante k é prontamente obtida :

H H
/C = L = Q a7 L
Q4/7 d £
]

valor que substituido na expressdo anterior conduz a

. H

Y= A

resultado que alids poderia ser diretamente calculado,

sabendo -se que a carga hidr4ulica disponivel é igual
3 perda de carga total por atrito externo.

As férmulas (16.1), (16.2) e (16.3), juntamente

com a relacio que exprime A em fungio de £

- 6456,
7\_I/ w2k

resolvem éste caso particular.

(16.2)

(16.3)
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17. Canalizacdo constituida de varios tre-
chos, cada um deles com vasio constante. —
Sejam n trechos de comprimentos L,, Ly, Ls. . . . .. L,
e vasOes respectivamente iguais a @5, (s, Os. . . . .. 0..

Designemos por H a perda de carga total ao
longo dos n trechos.

A constante k£ é aqui:

L e 17.1)

f ‘v Y oo,

im]

0o

As perdas de carga por unidade de compri-
mento serao :

IElCO S = e , Jn=kQ,Y (17.2)
e os diAmetros
Di=2n072, Do=202.. ... . .. , D.=20% (17.3)

As férmulas (17.1), (17.2) e 17.3) solucionam o
problema. Os coeficientes A foram designados com
indices diferentes para os diversos trechos para
lembrar que &les dependem de 4,, isto é do didmetro,
sendo determinados por aproximac¢Bes sucessivas a

partir do A obtido de

1V eas,
)\=‘/ =tk

onde se adota, em primeira tentativa, para 6, o
valor médio 0,0006, correspondente ao intervalo

0,m05 | |0,m50 de D. (21)

(21) Conforme )\obst;\rvagﬁo do némero 15, nos casos correntes,
A=A =T 0 L n=A.
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As aplicagdes numéricas poderiam ser enorme-
mente facilitadas com a organizagio de uma tabela

das poténcias — das vasSes em um intervalo conve-

7

niente.

18. Canalizacdo com vasdo uniformemente
distribuida e vasio nula a juzante. — Sendo L a
extensio total da tubulagdo e 4 a vasdo uniforme-
mente distribuida por unidade de comprimento, a
vasio ( em uma sec¢io genérica situada & distincia
s da extremidade montante serd:

O=q (I—) (18.1)
A constante k£ tem aqui a forma

H H

=i o
O ds g | (L—o)"ds
o

(o]

L 7
(L-0)¥ds = 1 L' vem

/]

€ como

11 H 1

= ',—7— L_ (_qL)T (18.2)

k

A perda de carga por unidade de comprimento,
na secgio genérica considerada serd :

h 11 H (LT
j=k@ =77 (F)

= (18.3)
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A férmula (18.3) demonstra que as perdas de
carga por unidade de comprimento e, portanto, a
perda de carga total ao longo de um trecho qualquer,
sob a condi¢io de méaxima economia, sio indepen-
dentes da vas3o uniformemente distribuida.

A expressio D=210% evidencia que no caso
em apréco a condigio de minimo custo conduz a
diAmetros variaveis. Na pratica faz-se sempre o
diAmetro constante, mesmo afastando-se do minimo
custo tedrico.

- Para a determinagio do didmetro constante,
nesse caso e no seguinte, convém recordar que uma
canalizagio de servigo misto, distribuindo uniforme-
mente, na unidade de comprimento, a vasdo q e
de vasio (; de extremidade (no caso em aprégo
0;=0) pode ser considerada como canalizagio de
servico simples de extremidade, com vasdo cons-
tante Q= (0;+0,56 ¢L. Ainda, com suficiente

aproximagdo pode-se fazer

0=0,+0,50 4L= % (18.4)

pois Q;+g¢L = Q,=vasdo & montante do trecho de
comprimento L.

Fazendo-se no caso D =const. resulta

- 646, %: (L-9)* e a perda de carga

W2

total até a secgio genérica considerada :
6462 [ ¢ _ 64b.g° L L\

H= = f(L == T
a i

— )=

(18.5)




e a perda de carga total ao longo de todo o trecho
de comprimento L :

L s
p=toto,, f C-yds=202 L (15

z2Ds z2Ds 3

o

Confrontando-se (18.5) e (18.6) :

H=H { 1{%)] (18.7),

expressio que fornece o valor da perda de carga
total em cada seccdo genérica, em fungdo da perda
de carga total ao longo de todo o trecho.

19. Canalizagio com vasdo uniformemente
distribuida ao longo do conduto e vasdo cons-
tante na extremidade. — Em um conduto de
comprimento L sejam :

(0, =a vasio na extremidade montante

Qj =a ’ 17 I )uzante

Q =a ,, em uma secgdo genérica distante
s da extremidade montante

g =a vasio uniformemente distribuida por
unidade de comprimento.

0= 0i+g(L-). 19.1)
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A constante k£ tem aqui por express3o :

H
= T_“_'“——l'l H o —or Qllﬂ iy 11/7 (19.2)
f QY ds

o

k

L
pois f [Q49(L-) |"ds=—— (Q“” Q') devido

0
a ser Oi+¢L=0.,

A perda de carga por unidade de comprimento
na sec¢do genérica em que a vasdio é 0= Q;+¢(L—s) é

. 11 A
J=kQ" =gy Qa9 17 (193)

e a perda de carga total:

- T [gar—gpn (19.4)
q

A condigdo de minimo custo, ainda neste caso,
como no anterior, conduz a diAmetro variavel ao
longo da canalizagdo.

Sendo D o diimetro constante do conduto equi-
valente ao tedrico de minimo custo, podemos escrever

_ 644,

= D5 [Q;+¢9(L-5)]* e a perda de carga

total até A secgdo genérica considerada :
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_ 646, |7 \1age 646
HB_Wf [Qit+4q(L-) ] 2ds= —2])s X

[¢]

_x%{Qi—[Q,-Jrq(L—w)]s = S Lie—01099)

a perda de carga total ao longo de todo o trecho de
comprimento Z,

646y L1
H=2 0t X2 (G ) 19.6)

Comparando (19.5) e (19.6) vem

@0
H=H=F = 19.7
o0 nH

expressio da perda de carga total na secgio genérica,
quando se faz D constante, e que difere da teérica

de minimo custo, relativa & D variivel, cuja f6rmula
obtida A partir de (19.3) é:

&, 11 H b .
H1=deJ= 7(Q}'3./7___5]1‘1/7) fO[QH‘q(L“J')] Mds=

(2]

_g &= 0" (19.8)

Q11/7____ 177
m J

20. Canaliza¢io constituida de trechos de
vasio uniformemente distribuida ao longo dos
condutos e de trechos de vasiao constante. —
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E o caso mais geral, combinagio dos anteriormente
tratados no presente capitulo.

Seja uma canalizagio de comprimento total L
constituida por n trechos de comprimentos I,,

Y O e L, e vasbes constantes respectxvamente
iguais a @1, Qs ....... 0, e p trechos de compri-
mentos L, ., Lyi....... .. L,., com vasdes uni-
formemente distribuidas, ¢,11, Gug2. . ... ... oy
vasGes a montante, (,,.i1 Omapte .- - ... Qoilins
vasOes a juzante O 11, Qingo. - - - .. Q;n+p respecti-
vamente. :

As férmulas gerais

- H

L
f QY ds

(]

Y=k Q“/7 aplicadas ao problema, tendo em
vista os ndmeros anteriores, conduzem Aas seguintes

expressoes :
k= i (20.1)
Z Q4/7L + Z (Qllﬁ Qllﬂ
im1 lemnt1
_/.1 = kQ14I7 _/‘2 = /CQ24/7 ........ _/n = k!Q:ﬁ
Jnt1= k[Q./'Jn+1+qﬂ+1(Ln+1—J) JIee
............................. (20.2)

./'n+zJ = /C‘[QJ.:n+p+qn+p(Ln+p_J‘) ]4/7
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As perdas de carga globais, em cada um dos
trechos, serdo :

H1=k.'Q14”L1, .......... Hn——"kQ:”Ln
7

Hn+1=-117k [ 11"1’/n7+1_ 31.’21]
Fut1

(20.3)

7k :
H,.,= [Oni+s— il
1lqn+p |

A perda de carga global H, no fim do compri-
mento I da canalizacio ser4 evidentemente

n+p

H=)H,. (20.4)

Os didmetros dos diversos condutos serdo calcu-
lados pela expressdo

D;=%0%, observando-se que mnos trechos de
vasio uniformemente distribuida,

= Qm.i+ QJ'.i
Q===

, com

suficiente aproximac3o.

21. Aplicagio numeérica. — Com o objetivo de
mostrar que o cdlculo numérico ndo apresenta difi-
culdades de grande monta, faremos uma aplicagdo
numérica do caso mais geral estudado neste capi-
tulo. De maneira a poder confrontar os valores
obtidos pelas férmulas que propuzémos com as
deduzidas, admitida a hipétese da proporcionalidade
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entre o custo e o didmetro, escolbhemos o exemplo
apresentado a p4g. 49 do ‘Il calcolo economico delle

tubazioni di acqua potabile e delle reti di distribu-
zioni cittadine’” de Mario Foltz.

~ Os dados s3o :

1.° trecho .

@1=const=0,0090 m3/s; comprimento L,=800 m.

2.° trecho
Onz=0,0058 m?¥s (@,,=0,0055 m3s
¢:=0,0000041 m3/s; comprimento L,=72 m.
3.° trecho
Q.3 =0,0042 m?¥s (@;;=0,0035 m?¥s.
¢3=0,0000041 m3/s; comprimento L;=170 m.
4.° trecho
Q.= const=0,0020 m?/s ; comprimento L,=250 m.

Perda de carga total H=11,0 m.
As férmulas a empregar serdo (20.1), (20.2) e (20.3).

a) Cdlculos auxiliares
0. =0,009
Q14/7 =0,06776
0. L, =0,06776 X800=54,208
Q. =0,002
047 =0,02869
0¥ L, =0,02869X250="7,172
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11/7
mn,2

0.2 =0,0058
QL7 =0,0003058

Ons =0,0042
U7 —(,0001841

Qj.2 = 0,0055
Y =0,0002813

0, =0,0035
0¥ =0,0001383

= Q1 =0,0000245

1 1 q (Qnﬂ—Q}.lzﬂ) =3,803
2

Q11/7

llq (Qnf—

17— 0,0000458

0;¥") =7,109

b) Cdlculo de k

=

. H

/7L +&4HL4 11 (QIIIT Qllﬂ)+ 11 (Qllﬂ Qllﬂ

11,000

" 54,208+3,

803+7,109+7,172

c) Cdlculo de H,;

_/.1 = lem =

0,1522X0,06776 =0,01031
H,=/,L,=0,01031X800~8,25 m.
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7
H2=/CX

i, (QUF—0H)=01522X5,805=0,58 m.
2

Hy= kX (QBI— QU7 =0,1522X7,109=1,08 m.

114

3
Ja=k Q" =0,1522X0,02869 = 0,004365
H4 =_/.4L4 = 0,004365 ><250 = 1,09 m.

'd) Cdlculo de

646
A= —zkl, adotando-se para 6, o valor médio
T
0,0006,
= 64 0,0006 0,481
z2X0,1522

e) Cdlculo dos diametros

Os trechos intermedidrios serdo calculados com
as vasdes fhcticias :

= 2"%& — 0,5(0,0058+0,0055) = 0,00565m s

0= _Q%Q_* — 0,5 (0,0042+0,0035) =0,00385 m s

Portanto,
v= 102" =0,481 X0,2603=0,125m. (~5")
,= 107" =0,481X0,2279=0,109m. (~4")
D;=20:" =0,481X0,2042=0,097m. (~4")
D,=31Q2 =0,481 X0,1700=0,082m. (~3")
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A tabela de pag. 61 mostra ser desnecessirio
o célculo dos novos coeficientes %, de vez que os
valores efetivos de 6, para os didmetros obtidos
muito pouco diferem do valor médio _adotado.

Qs valores indicados por Foltz s3o os seguintes :
H.=760 H;=1.21

H,=0,58 H,=1,42 aos quais corresponderiam
pela férmula de Darcy os seguintes didmetros aproxi-
mados :

D.=0,127m, D,=0,110m, D;=0,100m, D =0,080m,

os quais praticamente coincidem com os calculados
pelas férmulas que preconizamos.

Alids essa concordincia, no presente exemplo
numérico era de se esperar, tendo em vista que
aqui os didmetros variam em um intervalo de ampli-
tude muito pequena, no caso, abrangendo apenas
trés didmetros consecutivos das bitblas comerciais
(3", 47 e 5'). S3o validas, pois, as consideracdes
expendidas no numero 10.
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V — APLICACOES DA CONDICAO DE MI-
NIMO CUSTO AOS CONDUTOS FOR-
CADOS COMPLEXOS.

22. Condutos complexos. — Nas rédes de dis-
tribuicdo de 4gua potavel as canalizagBes sdo geral-
mente ligadas entre si, constituindo o que se denomina
um conduto complexo.

A 4gua é levada a cada nb ou vértice do conduto
complexo por tubos adutores e dai é veiculada por
tubos distribuidores.

Antes de se aplicar a condi¢do de minimo custo
aos condutos forgados complexos, é conveniente
recordar, sucintamente, os dois problemas gerais
cléssicos, que a Eles se referem.

O primeiro, relativo & verificagio de um con-
duto existente, pdéde ser assim enunciado: (22)

1.°) Dado o plano cotado de um conduto com-
plexo e conhecidos os diAmetros dos tubos e as cotas
plezométricas nas segdes extremas das canalizagOes,
determinar a vasdo de cada trecho e as cotas piezomé-
tricas nos vértices.

Admitamos m vértices Vi, V,,....V, e ncanali-
zagdes. Em um vértice genérico V), sejam Q,

(22) Fischer — Eugénio — op. cit. pag. 193.
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D;, L; respectivamente a vasdo, o diAmetro e o
comprimento de uma canalizagio adutora genérica
€ gy di U 0s mesmos elementos de uma canalizagio
distribuidora genérica partindo de V. (fig. 3).

\

AV
\ \ [
\\‘-f?-r%-

1 \"jlfn

(F16.3)

Sejam ainda Y, Y,...... JRY, ) as perdas‘aze
carga totals até cada um dos vértices V,, V,,......
V., abaixamentos &sses, incognitos. Finalmente, seja
Y 0 abaixamento piezométrico conhecido na secgdo
extrema de uma canalizagio derivadora.

O problema contém m+-n incdgnitas (m abaixa-
mentos piezométricos Y; e n vasSes ().

Facil € mostrar ser éste problema hidraulica-
mente determinado, isto é, as equagBes que a Hidr4u-
lica fornece sio aqui em nidmero suficiente para a
determinagdo das incgnitas.

Com efeito, no vértice genérico V,, como em
cada um dos m vértices, péde ser escrita uma equa-

¢do do tipo :
E st_ E 17123 (22-1)

gl
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sendo r o nimero de encanamentos adutores e s o
de distribuidores ; ao todo m equagBes (22.1).

Para cada um dos » trechos subsistird a equagio
de escoamento ; por exemplo, para os trechos con-
correntes em V.

2
Yy, = % Qu g
w2 4
ik
1 ...................... (22.2)
646,
ln— Yo = — =% L
© ik

Ao todo n equagdes (22.2).
O problema é pois determinado.

O segundo problema, relativo ao projeto de
um conduto complexo, consiste no seguinte :

2.°) Dadas as vasBes e os comprimentos de
todos os encanamentos e as cotas piezométricas
nas secgBes extremas das canalizagBes distribuidoras,
determinar as cotas piezométricas nos vértices e
os diAmetros de todos os tubos de um conduto com-
plexo.

O problema compreende ainda m+n incdgnitas,
a saber :

m cotas piezométricas nos vértices
n didmetros dos tubos.

O nimero de equacdes distintas se reduz, porém,
nesse segundo problema a n (as equagBes de escoa-
mento (22.2) ), de vez que as m relagBes (22.1), agora
representam apenas condi¢des a que estdo subor-
dinadas as vasBes dadas.
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Em linguagem abreviada poderemos dizer que
o problema & hidraulicamente indeterminado, sendo
m o griu de indeterminagio.

Para levantar a indeterminagio, obviamente,
dois caminhos pédem ser seguidos :

a) diminuir o ndmero de incégnitas, que seria
conseguido, por exemplo, atribuindo, arbi-
trariamente ou com um critério pré-fixado,
valores 3s cotas piezométricas nos vértices ;
feito isso as n equagdes (22.2) permitiriam
o chlculo dos diAmetros ; :

b) aumentar o nimero de equagles distintas,
introduzindo novas relagdes que deverdo entdo
se basear em condigSes ndo diretamente
ligadas ao escoamento dos liquidos.

O primeiro caminho, mais facil e porisso mesmo
mais tentador para as aplicagBes, representa, nio
obstante, um simples rectio ante as dificuldades
analiticas, si o encararmos sob o ponto de vista
puramente matemético. No préximo capitulo, serdo
indicados os critérios aconselhados para a conve-
niente fixacdo dos valores das incdgnitas, de modo
a tornar minima a repeticio das operagdes, nessas
solucdes por tentativas. ,

O segundo caminho, muito mais trabalhoso, ¢
verdade, porém mais racional, afasta a indeterminagdo
procurando entre todas as solugBes possiveis do
problema aquela que corresponde ao “optimum”’
econdmico.

E o que focalizaremos a seguir.

23. Determinag¢do do problema geral de um
conduto complexo projetado, pela condigdo de
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minimo custo. — Designado por C o custo total
dos tubos que convergem em um genérico vértice
Vi do conduto complexo tratado no nimero 22,
tendo em vista a férmula (10.9), poderemos escrever :

C=) (tusDa)DaLot ) itusdddnle’  (23.1)

=l J=1

Das equagBes de escoamento para um tubo
adutor e um distribuidor genéricos do wértice V,
(férmulas 22.2), deduzimos :

64b 1 1kL1k:
Ik = ch ch—l
64[] 1 q]k
e —‘/ ‘/ Y~ Y. (23.2

Substituindo em (23.1) D, e d;, pelos valores
obtidos em (23.2), teremos : '

646, 64611 / QiLli
1+
i ‘“‘/ VYk 50 V VY,C 7
7 5 3
644 ?ljc 646.) /| 4
+Z[m+ml/ = ll/yii;{’k l/ l/ i - ,(23.3)
J=1 '
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Escolhida como vari4vel independente o abaixa-
mento piezométrico Incognito X, mno vértice V,
a condicdo de minimo custo serd expressa por

dc
dY,

=0

Derivando e transformando o primeiro termo
do segundo membro de (23.3), obter-se-a, depois da
substituicio de Y,-Y,, pelo seu valor tirado da
expressdo (23.2),

]. 1'!.'2 Dﬁ'k
e =) e 1y, 4-20,D,
5 64b1 ; fk [“‘: {'1'2 ’Lk]

De modo anilogo, a expressdo final da derivada
do segundo termo do segundo membro de (23.3)
sera :

1 'J'C2 dﬁk
Lo m )G [t 2,
- 64512 Do ot 20

i=1

A condicio de minimo custo conduzird pois a

8

: ;
Z‘D?zk w1t 2u:Dal= Z djgk loe 2 200 o] (23.4)

i=1 ik j=1 q:k:

Para cada vértice V) poderfamos escrever uma
equagio (23.4), tendo-se pois, a0 todo, m equagdes,
que, juntamente com as 2 equagdes de escoamento
(23.2) determinariam o problema geral de um con-
duto complexo projetado.
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24. Casos particulares da condi¢io de mi-
nimo custo nos condutos forcados complexos., —
Um primeiro caso particular do problema geral abor-
dado no tépico anterior, de interesse pratico, é aquele
em que todos os tubos adutores de F; t&m vasdes e
didmetros iguais, isto &

o mesmo acontecendo aos tubos distribuidores do
vértice V,,

D=9 = - -+ Toe = s
dlk=d2k= ...... dak=dk'

A equac@io (23.4) passa a ser

8
r—Dz»?c[F’-l‘f‘zMsz]: J;izk [P-l‘f‘zilzdk],
k p

¢, s1 ainda o nimero de tubos adutores coincidir com
o de distribuidores, isto &, r=u,

6 3
D, _1/#t+2ud ]/ O,
a’k _‘/Hl‘i‘zuzl)k 7 ; (24'”
;]

Tt |
O coeficiente l/p%l—?-__Z‘:_zD_k pouco difére da
¥ ;

unidade, para didmetros variando no intervalo
0,05| |0,500. Com efeito, admitindo por exemplo,
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tubos da classe LA das especificagdes da A.B.N.T,,
para 0s quais, atualmenfe ;=396 e w.=876, (ver
nota ao pé da pag. 52) e, supondo o caso mais desva-
voravel, de 4,=0,m050 e D,=0,m500, o coefiicente
adquiriria o valor 0,851. E bem de ver que na pratica,
sse valor minimo dificilmente seria possivel, a menos
que a diferenga entre as vasGes 0, e g, fosse de grande
monta, pois a limitagdo das velocidades médias de
escoamento da Agua nos condutos forcados, feita
em um intervalo de amplitude pequena, (23) tem
como consequéncia,’quando o ndmero de encana-
mentos adutores é igual ao de distribuidores, a
quase impossibilidade da coexisténcia de valores
extremos para os didmetros.

Nessas condicBes, a equagdo (24.1) pbde ser
escrita, em primeira aproximagdo, na forma muito

mais simples :
3

D, [0
T (24.2)

isto &, a relago entre os didmetros dos encan amentos
adutores e distribuidores deve ser igual & raiz cidbica
da relacio entre as vasBes correspondentes.

E interessante observar que a equagdo (24.2)
é a expressio da condigdo genérica de minimo custo
nos condutos radiais de igual ndmero de encana-
mentos adutores e distribuidores, quando se admite
a hipbtese da proporcionalidade entre o custo e o
dismetro de uma tubulagio forgada. (24)

(23) Segundo Bonpet L — op. cit. pig. 584, para os didmetros
indicados a velocidade deve estar entre 0,60 e 1,50 m/seg.

(24) Fischer — op. cit. — pag. 207.
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Com as hipbteses s6bre o custo, mais de acérdo
com a realidade, conforme introduzimos no Capitulo
II, a expressdo (24.2) passa a ser um caso particular

de (24.1).
E 6bvio que si Or=gq,, a condicio de mimmo
custo conduziria a D,=d,.

25. Condi¢do de minimo custo para uma ca-
nalizacdo alimentada por um ponto intermedia-
rio. — Nos particulares condutos complexos que sdo
as rédes de distribuigio de 4gua potavel, no sistema
conhecido como ramificado, o conduto principal
allmenta sucessivamente os encanamentos secun-
dérios. Nesse sistema é interessante determinar os
pontos de alimentagio do conduto principal de modo
a tornar minimo o custo dos condutos secundirios.
Trata-se de um problema cldssico, resolvido na
maior parte dos compéndios de Hidr4ulica, mas as
férmulas s3o deduzidas na suposigio da propor-
cionalidade entre o custo e o didmetro.

Resolvamos a questdo partindo das expressdes
por nbés obtidas no Capitulo II.

Seja 4BC um conduto de comprimento Lt ali-
mentado pelo ponto intermedidrio B, cuja localizacio
sobre 4C se quer determinar de modo a tornar
minimo o custo de 4BC. Suponhamos que a vasio
a ser conduzida ao ponto 4 seja Q e ¢ a relativa ao
ponto C. D e L representardo o didmetro e o compri-
mento do trecho B4 e d e / os correspondentes
elementos de BC; Y, y. e y, os abaixamentos piezo-
métricos correspondentes aos pontos B, A e C respec-
tivamente. (fig. 4).

O custo do conduto 4BC serd

C=(w1FueD)DL+ (o1 +w.0d)dl (25.1)
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e das equacdes de escoamento nos dois trechos B4
e BC, deduzimos,

5 5

1/ 642 1/ QL

D=

5 5 (25.2)

C
() ( F16.4)

Tomando-se como varidvel independente um
dos comprimentos dos trechos, por exemplo /, "a
condicio de minimo custo exige que

dC
dl
Substituindo-se em (25.1), D e d pelos valores

=0

obtidos em (25.2) e igualando dc a zero, obteremos

— % D(611-4-7uD)+ —}; d(6u14-Tusd) =0
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(os sinais contririos provém de que sendo

Lr=L+[=const, =—1), ou
6‘).1.D+7[.L2D2 .
=) = 25,
o 7o 1, o que exige D=d (25.3)

Isto ¢, a condi¢do de minimo custo para o con-
duto 4B é verificada quando os didmetros dos dois
trechos B4 e BC forem iguais, o que coincide ali4s
com o resultado obtido quando se admite a hipbtese
da proporcionalidade entre o custo e o didmetro.

Como imediata consequéncia de (25.3) resulta
que as perdas de carga por unidade de comprimento
nos trechos B4 e BC estio entre si na razio do
quadrado das respectivas vasBes.

Ainda, si as cotas piezométricas nas secgBes
extremas forem iguais, y;=y, entdo

q*
Qz

vasSes () e g forem também iguais, L=/ isto é B
dividir4 o segmento 4C em dois segmentos iguais.

b
]

e, finalmente, s1 as

26. Impraticabilidade do dimensionamento
das rédes de distribui¢do de 4gua potavel com
as condi¢des de minimo custo dos condutos
complexos. — O dimensionamento de uma réde de
distribuigdo de 4gua potavel por intermédio das equa-
¢oes deduzidas nos niémeros 22 e 23 do presente
Capitulo apresenta dificuldades de cilculo verdadei-
ramente insuperaveis.
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Mesmo no caso das rédes chamadas ramificadas,
menos frequente na pratica, em que se conhece
préviamente o trajeto da 4gua em cada trecho e
portanto, em um vértice qualquer sio separavels
os encanamentos adutores dos distribuidores, o cilculo
pelas férmulas dos condutos complexos ndo seria
praticamente possivel. Além das dificuldades pura-
mente matemAticas na resolugdo de um sistema de
m-+n equagdes, sendo m e n consideraveis mesmo
no caso de pequenas rédes, dificuldades essas que
fo acrescidas pela natureza das equagBes (22.2) e
(22.4), outros impecilhos existem e ésses ligados as
condices de bom funcionamento das rédes.

Assim, nem sempre as solucSes do sistema (22.2)
e (22.4) sdo aceitaveils na pratica, visto como os
didmetros, as velocidades e as cargas disponiveis
tém variacbes limitadas nas aplicagGes.

Nas rédes malbadas, as dificuldades s3o ainda
muito maiores, 4 que “a priori” sdo desconhecidos
os trajetos da 4dgua, nao se podendo, como no caso
dos sistemas ramificados, predeterminar os encana-
mentos adutores e distribuidores, em cada vértice.
E verdade que, baseando-se em certas suposigoes,
que recordaremos sucintamente no proximo capitulo,
& possivel transformar os sistemas malhados em
ramificados, mediante o seccionamento ficticio das
malhas em pontos convenientemente escolhidos.

Deixando de parte as dificuldades puramente
matematicas no calculo rigoroso de uma réde de
distribuicio, convém recordar as incertezas sobre
os préprios dados do problema e as limitacSes que
a técnica sanitiria impde aos valores dos elementos
hidrulicos. |

No abastecimento de 4gua de um centro habi-
tado a primeira grande incerteza refere-se 3 quanti-
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dade de 4gua necessiria aos diversos usos, de vez
que o consumo € essencialmente variavel segundo
a populagdo e seus h4bitos, o clima, o carater indus-
trial, o sistema de suprimento 3 domicflio, etc.. Sem
entrar nas discussSes técnico-sanitérias para a estima-
tiva das quantidades necessérias a cada uso, o simples
enunciado dos diversos fatores que intervém é sufi-
ciente para mostrar ser indtil pensar em se obter
normas gerais que permitam a fixacio de dados
rigorosos. Mas, mesmo que se admita fixado, de
um modo mais ou menos preciso, o volume por
habitante e por dia, como o consumo apresenta
variagSes periédicas, nova causa de indeterminagio
€ introduzida : — a relaco entre a demanda méxima
€ o consumo médio, relacio essa que, maximé entre
nos, onde sio ainda inexistentes os dados estatisticos
da distribuigdo de 4gua potavel, ndo péde ser fixada
com precisio.

Outros motivos de dividas, e, nio pequenas,
surgem quando se tem de passar da quota di4ria “per-
capita” admitida 3 vazio ficticia por unidade de
comprimento ou de 4rea, o que exige o conhecimento
do cadastro imobilisrio e demogrifico e que, na
falta de dados estatisticos, sio As vezes admitidos,
nem sempre com suficiente aproximacgo.

Sem fazer mencio a outras causas de incerteza,
¢ sdo muitas, os simples argumentos acima, demons-
tram a saciedade, que, num projeto,de réde de distri-
bui¢do, a vasio em cada trecho nio & um dado
matematicamente rigoroso, mas um elemento estima-
tivo, mais ou menos arbitrério, e como tal deve ser
entendido.

Por outro lado, a técnica sanitéria impde limi-
tagdes aos elementos hidr4ulicos, limitagSes essas,
nem sempre compativeis com as condigBes 1mpostas
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pelas férmulas dos condutos complexos. Assim é
que, por exemplo, a carga hidriulica disponivel em
um ponto qualquer da réde deve ser tal que garanta
nos prédios, a alimentacdo dos reservatérios e apa-
relhos sanitarios situados acima do rez do chio, e,
possibilite, dentro de um limite razoavel os servigos
publicos de irrigacido e protegdo a incéndios.

Entretanto, si as cargas ultrapassassem deter-
minados limites, sérios inconvenientes apareceriam,
tais como, entre outros, o aumento das fugas pelas
juntas e aparelhos.

Identicamente, os diAmetros, mesmo nos ramais
extremos e de pequena importincia, ndo devem descer
abaixo de um certo limite, tendo em vista a possibili-
dade de incrustagdes, a facilidade das ligagBes dos
ramais domicilidrios & réde piblica e a bbda circulagio
nos sistemas malhados.

Outros argumentos quanto 3 limitagdo prética
dos elementos hidrdulicos poderiam ser ainda aduzidos
em complemento as observacdes acima. Julgamos
desnecessiria maior extensio, terminando o capitulo
com a seguinte conclusio, que o resume :

As dificuldades de indole matemaética, as incer-
tezas na fixagdo dos dados do problema e as limi-
tagdes impostas pela técnica sanitdria & variagdo
dos elementos hidriulicos a serem determinados,
nio justificam o cilculo mateméatico rigoroso mas
laboriosfssimo das rédes de distribuicio de 4gua
potavel pelas térmulas dos condutos complexos.
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¥

VI — A CONDICAO DE MINIMO CUSTO NAS
REDES DE DISTRIBUICAO.

27. Analise de um sistema de distribuicao.
No capitulo precedente pusemos em evidéncia as
dificuldades de cAlculo, verdadeiramente insuperiveis,
que surgem ao se pretender dimensionar analitica-
mente uma réde de distribuicdo de &gua potavel,
considerando-a como um conduto complexo.

Nas aplicagBes, ou se admite um conjunto de
condigBes ligadas ao bom funcionamento da réde,
fazendo-se a determinagdo dos elementos incognitos
restantes por tentativas diretas, ou se considera o
conduto complexo, malhado, seccionado, por oportunos
pontos de separagdo, em condutos ramificados, os
quais sio entdo dimensionados com maior facilidade.

O critério das tentativas dirétas é geralmente
adotado pelos autores norte-americanos ; o da decom-
posicio das malhas em ramificagBes pelos europeus.
A apilise hidriulica de uma réde de distribuigdo
no critério das tentativas diretas pode ser feita por
diversos métodos, entre os quais merecem citagio o

. das tentativas arbitrarias, o do analizador elétrico

e o de Hardy Cross. Em todos eles admite-se, em
primeira tentativa, uma certa distribuicio das vasBes
ou das perdas de carga em todo o sistema, calculando-
se por uma das férmulas dos condutos forcados as
perdas de carga ou as vasGes nos diversos trechos,
ajustando-se por tentativas seguintes as distribuigGes
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dos valores até que sejam verificadas as equagBes

@2.1) e (22.2).

No método das tentativas arbitrarias, os valores
admitidos s3o ajustados arbitrariamente, de modo
que a convergéncia dos erros é demorada e incerta,
tornando esse método pouco prético.

No método do analizador elétrico aproveita-se
a analogia existente entre uma réde de distribuicdo
de 4gua potavel e uma de condutores elétricos, (que
obedece a lei de Kirchhoff), para se construir um
modelo elétrico da réde, no qual cada trecho é repre-
sentado por uma resisténcia. Nesse modelo elétrico,
as tensBes representam as perdas de carga e as
intensidades das correntes as vasSes, escolhidas
convenientemente as escalas. Deve-se observar ndo
ser o sistema elétrico perfeitamente andlogo ao
hidriulico, pois no primeiro, as tensdes sio propor-
cionais as intensidades das correntes, ao passo que
no segundo, as perdas de carga variam aproximada-
mente com a segunda poténcia das vasBes. Por
esse motivo, ndo € possivel representar cada elemento
da réde hidriulica por uma resisténcia elétrica cons-
tante ; a resisténcia deve variar com a intensidade
da corrente de modo que, para cada condigio de
carga, a relagio entre a tens3o e a intensidade da
corrente seja tal que as correspondentes perda de
carga e vasio satisfagam a equaciio de escoamento
em condutos forcados que tiver sido adotada. Para
facilitar o ajustamento do modelo elétrico, Hazen
tem substituido as resisténcias por lAmpadas com
filamentos especiais que, aquecidos, permitem alterar
automaticamente a resisténcia, em u’a maneira prede-
terminada (25).

(25) Davis-Handbook of Applied Hydraulics — pag. 727.
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O Prof. Hardy Cross desenvolveu recentemente
um método de aproximagSes sucessivas, no qual a
convergéncia dos erros é rdpida, podendo se obter
resultados suficientemente precisos com um ndmero
pequeno de tentativas. Resumidamente o método
consiste no seguinte : (26)

1)
2)

3)

4)

5)

Adotar uma certa distribuicio das vasdes.

Calcular em cada trecho a perda de carga
por uma das férmulas de resisténcia; se, por
exemplo, for adotada a de Darcy, determinar,
em cada trecho,

6461 7+ o
H=—"4 1.0:=r 0"

Levando em consideracio o sinal, calcular a
perda de carga total ao longo de cada malha
ou circuito fechado:

ZH=ErQ2

Calcular também para cada uma das malhas
a somatéria 22rQ, sem se levar em conta o
sinal.

Para o equilibrio da perda de carga em cada
malha (ZrQ?=0), adotar uma vasdo de ajusta-
mento igual a

SrQt
22rQ

AQ= —

(26) Analysis of Flow in Networks of Conduits and Conductors”,
Univ. Il. Exp. Sta., Bull. 286, 1936.
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6) Calcular as novas vasdes, ajustadas, e, repetir
o processo até que a aproximagido desejada

tenha sido obtida.

A justificagio do método € imediata. Com
efeito, si a distribuigdo de vasBes, adotada inicial-
mente, estivesse correta, em cada uma das malhas
SrQ?=o0, e o problema estaria resolvido. Si, em
um dos circuitos fechados isso nio se desse, terlamos
uma perda de carga residual Zr(Q?, positiva ou
negativa, o sinal dependendo das diregdes prefixadas
para o escoamento.

Representando por (J, a vasdo corrigida, em
~um trecho qualquer, por ( a vasi3o inicialmente
adotada e por AQ a correcdo a ser feita,

0:=0+AQ0

A perda de carga, feito o primeiro ajustamento
das vasdes, seri :

H,=rQi=r(Q+ AQ):=r[Q*+20.(A0)+(A0)]

Quando AQ for pequeno face & vasdo inicial-
mente adotada @, o Ultimo termo do segundo membro
péde ser desprezado; nesse caso, para um circuito
fechado, no qual

Srli=o,

2rQ+-2(AQ)=rQ=0

__  zQ:
AQ= 23rQ

Si AQ n3o for suficientemente pequeno em
relagio a (J, a equagdo anterior ndo fornece um
valor bastante aproximado para A(Q, em virtude de
se ter desprezado o termo (A():  Entretanto,



usualmente, a convergéncia dos erros é rdpida, sendo
raros os casos em que o numero de tentativas ultra-
passa trés.

O método, que est4 se generalizando rapidamente
nos Estados Unidos, péde ter a sua aplicagdo ainda
grandemente facilitada, com o emprego de tabelas
que fornecem, para uma determinada férmula de
condutos forgados, o valor de r para cada valor do

didmetro D (27).

28. Seccionamento dos circuitos fechados.
Transformacao dos sistemas malhados em rami-
ficados. — Para o dimensionamento das rédes ma-
lhadas de abastecimento de 4gua potavel, preferem,
outros autores, principalmente os europeus, seccionar,
com um critério determinado, os circuitos fechados,
transformando a réde malhada em um sistema
ramificado, no qual “a priori” se péde estabelecer o
sentido do movimento da 4gua. Substituem-se,
assim, as tentativas dirétas, de que tratimos no
ntimero anterior, pelas pesquisas das localizagSes
mais convenientes dos pontos de separagdo das
malhas ; tudo se resume, pois, em fixar o trajecto
que a Agua deverd seguir para atingir um ponto
qualquer da réde.

Dois sdo os principais critérios para a fixagio
desse trajecto : — o de Friihling e o de Liiger —
Mannes. (28)

No critério de Friihling, as canalizagSes sdo
consideradas como condutos livres que devem irrigar
toda a regifo da cidade a ser abastecida, aprovei-
tando-se destarte os desniveis disponiveis do melhor
modo possivel. Como imediato resultado, as canali-

(27) Babbit and Doland-Water Supply Engineering, pag. 386.
(28) Foltz, M. — Calcolo Economico delle Tubazioni — pag. 60 e 61.
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zagBes mais 1mportantes devem alimentar os pontos,
que sendo mais elevados, podem suportar as menores
perdas de carga.

No que se refere ao custo da réde, pode-se
apontar, de infcio, o principal inconveniente do
critério de Frithling: — a 4gua, cujo trajecto &
estabelecido em fungfo exclusiva das condicSes altimé-
tricas, percorre geralmente um caminho indireto,
mais longo, afastando-se assim das condigBes de
minima despesa.

O critério de Liiger-Mannes funda-se na hipétese
de que a 4gua, para atingir um determinado ponto
da réde, deve percorrer o trajecto mais curto possivel.

Apesar das criticas de Thiem e Rother (29),
tem a prética mostrado que o critério de Liiger-
Mannes, além de dar lugar a um método simples
para determinar a distribuico das vasBes, fornece
ainda resultados os mais préximos do “optimum”’
econémico. Na pesquisa do minimo custo é porisso
este critério usado quase que com exclusividade,
guardando-se do de Friihling apenas o conceito de
que as zonas mais elevadas da alimentacio devem,
quando possfvel, ser abastecidas por um conduto
principal. :

O critério de Liiger-Mannes, fixando, em todos
os trechos, o sentido de movimento da 4gua, produz
o seccionamento das malhas em sistemas ramificados,
decompondo a réde em condutos principais, secun-
darios, etc.. Muitas vezes, para melhorar a distri-
buicdo, e, “ex-vi” das particulares condigdes topo-
graficas, é-se obrigado a alterar a posi¢io dos pontos
de separagdo, obtidos com o critério de Liiger-Mannes,
isto é, feita a decomposi¢io da réde malhada e antes
de se passar ao seu célculo, deve-se atentar para as

(29) “Journal fiir Gasbeleuchtung sowie fiir Wasserversorgung” n.°
40 e 41 de 1911, apud Bonnet, op. cit., pag. 752.
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condicBes locais, que podem indicar vantajosas mu-
dancas nas localizagSes dos pontos de separagdo.
Nota-se ainda que, em um ponto de separagdo,
as cotas piezométricas, a juzante, dos trechos al
terminados devem ter valores bastante préximos
(30) ; frequentemente, dada a diversidade dos dia-
metros na réde, esse fato obriga também o desloca-
mento dos pontos divisérios, dando lugar ao estabele-
cimento de novos sentidos de escoamento da 4gua.

29, Dimensionamento de uma réde de dis-
tribui¢do de 4gua potavel tendo em vista a con-
dicio de minimo custo. — As observagSes feitas
nos ndimeros 27 e 28, permitem-nos indicar o método
pratico seguinte para o dimensionamento de uma
réde de distribuicdo de 4gua potavel tendo em vista
a condicdo de minimo custo, de vez que o método
rigoroso, nio pbéde ser empregado, pelos motivos
expostos no numero 26.

Estabelecido em planta o tracado da réde, faz-se
inicialmente a andlise do sistema de distribuigdo
com a finalidade de fixar o sentido de escoamento
da 4gua em todos os trechos. A anélise é simpli-
ficada bastante quando adotado o critério de Liiger-
Mannes, do trajecto minimo.

Calculam-se depois as vasdes em cada um dos
trechos, partindo dos elementos basicos do projecto :
quota didria “‘per-capita”’, coeficientes de flutuag3o
na demanda, némero de habitantes por unidade de
4rea ou de comprimento, servico de proteg3o a incén-
dios, etc.. Cada trecho poderd, assim, ser consi-
derado como uma canalizagio com vasdo uniforme-

(30) E’ praxe generalizada, entre nés, admitir como toleraveis, em
um ponto de separa¢go, diferengas de cétas piezométricas ndo ultrapassando
dez por cento da carga média dispenivel no ponto.
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mente distribuida ao longo do trecho e vasdo cons-
tante na extremidade. Totalizando-se as vas3es,
de juzante para montante, ficam caracterizados os
diversos condutos, tercidrios, secundarios, primarios
ou principais.

A seguir, tendo em wista outro elemento basico
de projecto — a carga disponfivel minima (31) —
sio determinadas as cbtas piezométricas dos pontos
criticos da réde, pontos esses caracterizados ou pelas
distincias ao reservatério de distribuicdo, ou pelas
posicBes altimétricas.

O conduto ligando o reservatério de distribuigio
a um desses pontos criticos serd, pois, constituido
de trechos de vasio uniformemente distribuida ao
longo das canalizagSes e vasdo constante na extremi-
dade, tendo uma perda de carga global igual a
diferenca das cbtas piezométricas do nivel digua no
reservatério e do ponto critico considerado. Nesse
conduto a pesquiza do minimo custo pbde, assim
ser feita pelas férmulas deduzidas no 4.° capitulo,
ntmero 19. Identicamente opera-se para os outros
condutos principais, secundarios, etc.. Deve-se notar,
por tltimo que a exigéncia de um didmetro minimo
na réde de distribuicio (32), didmetro esse que a
prética de dimensionamento tem mostrado ocupar
geralmente, cerca de trés quartas partes dos trechos
de toda a réde, reduz a um ndmero, relativamente
pequeno, os condutos em que se faz a pesquiza do
minimo custo.

(31) Diversos orgiios técnicos do pais t&m )& normas fixando a carga
disponivel minima, em distritos de residéncias individuais, como por exemplo
a Diretoria de Engenharia do Departamento das Municipalidades de S.
Paulo — Caderneta n.° 1 (1934), que prescreve quinze metros.

(32) Relativamente & fixacio do diAimetro minimo n&o ha ainda
norma adotada em nosso pajs. O ‘Inquerito sobre tubos de ferro
fundido centrifugados”. publicado em 1943 pela A.B.N.T., contém interes-
santes debates entre os partidirios de 50mm. e os de 75 mm..
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