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Morse decompositions in the absence of uniqueness

M. C. Carbinatto e K. P. Rybakowski

Resumo

Neste artigo definimos atrator e decomposicao de Morse no contexto abstrato de cur-
vas definidas em um espago métrico. Estabelecemos algumas propriedades basicas
destes conceitos, inclusive a propriedade de estabilidade relativa a perturbacdo. Isso
estende resultados conhecidos para fluxos e semifluxos definidos em espgos métricos
a classes de equacoes diferenciais ordindrias e parciais para as quais possivelmente
a propriedade de unicidade de solugdes para o problema de Cauchy nao é satisfeita.
Como uma, aplicagdo, primeiro demonstramos a equac¢ao de Morse no contexto da
teoria do indice de Conley para problemas com auséncia de unicidade a qual foi
recentemente definida por M. Izydorek e K. P. Rybakowski em On the Conley index
in Hilbert spaces in the absence of uniqueness - Fund. Math., a aparecer - e, entao,
aplicamos esta equc¢do para dar uma demonstragao elementar de dois resultados de
multiplicidade para sistemas elipticos fortemente indefinidos obtidos anteriormente,
com o uso da homologia de Morse-Floer, por S. Angenent e R. van der Vorst em
A superquadratic indefinite elliptic system and its Morse-Conley-Floer homology -
Math. Z. vol. 231, 1999, 203-248.



MORSE DECOMPOSITIONS IN THE ABSENCE OF UNIQUENESS

M. C. CARBINATTO
AND
K. P. RYBAKOWSKI

ABSTRACT. In this paper we define attractors and Morse decompositions in an abstract
framework of curves in a metric space. We establish some basic properties of these con-
cepts including their stability under perturbations. This extends results known for flows and
semiflows on metric spaces to large classes of ordinary or partial differential equations with
possibly nonunique solutions of the Cauchy problem. As an application, we first prove a
Morse equation in the context of a Conley index theory which was recently defined in [9] for
problems without uniqueness, and then apply this equation to give an elementary proof of
two multiplicity results for strongly indefinite elliptic systems previously obtained in 1] using
Morse-Floer homology.

1. INTRODUCTION

Morse decompositions (see e.g. [3, 13, 12, 5, 6]) are a useful tool in the analysis of flows or
semiflows defined by ordinary, functional and evolutionary partial differential equations.
Combined with an appropriate version of the Conley index and a corresponding Morse
equation, they often allow us to obtain multiplicity results for solutions of variational
problems. Through the use of some more refined topological tools like the Conley connec-
tion matrix, Morse decompositions can also be used to detect connections, i.e. heteroclinic
orbits in dynamical systems.

However, in many situations of interest, e.g. in various applications to boundary
value problems in Hilbert spaces, the resulting differential equation does not generate
a (semi)flow simply because the nonlinearity of the equation is not regular enough and, as
a consequence, the uniqueness property of the Cauchy problem is violated.

In such cases concepts like attractors and Morse decompositions, as defined in the above
mentioned works, are not applicable.

Motivated by such applications, we develop in this paper an abstract theory of attractors
and Morse decompositions, which contains as a special case the theory known for flows or
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semiflows but which also applies to various classes of ordinary or evolution equations with
nonunique solutions.

Let us describe the main ideas of our approach. To this end let X be a metric space and
C = C(R — X) be the set of all continuous maps from R to X endowed with the topology
of uniform convergence on compact subsets of R.

Let 7 be a semiflow on X. As usual, we write z7t instead of 7(¢,z). Recall that a full
solution of m is a map o: R — X such that for all ¢ € [0,00[ and s € R o(s)nt = o(s + ).
Recall also that a subset S of X is called invariant relative to 7 if for every x € S there is
a full solution o of 7 lying in S, i.e. o(R) C S, and such that ¢(0) = z.

Now let N be an arbitrary subset of X and let 7 be the set of all full solutions of 7
lying in V.

It then follows that for every S C NN, the set S is invariant relative to 7 if and only if
for every x € S there is a ¢ € T such that o(R) C S and ¢(0) = z. In other words, S is
invariant relative to 7 if and only if S is 7-invariant, by which we mean that S = Invy(S),
where

Invy(S):={y€ X |Jo € T witho(R) C S and y =0(0) }.

Note that 7 is a subset of C. Moreover, note that once 7 is given we do not need the
semiflow m any more in order to define invariance of S C N relative to .

Similarly, if S C N is compact and invariant relative to 7, then in order to define
attractors in S (relative to m) we only need the given set 7 of solutions. In fact, rewording
the usual definition (see e.g. [12]) we see that A C S is an attractor in S relative to « if
and only if A is a T-attractor, by which we mean that there is a neighborhood Y of A
such that A = wr(Y).

Here, wr(Y) is the set of all y € X for which there exist sequences (0y)nen in 7 and
(tn)nen in [0, oo[ such that 0,(0) €Y for alln € N, ¢, — oo and on(tn) = y as n — oo.

We can now proceed abstractly and first take 7 to be an arbitrary subset of C. We can
then define 7-invariant sets and 7 -attractors as above. Similarly as in the semiflow case
we can also define the dual 7-repellers and 7-attractor-repeller pairs.

As we show in Section 2, all the basic properties of attractor-repeller pairs known for
flows or semiflows hold in this abstract situation if we assume that 7 is translation invariant
and compact as a subset of C. Here, translation invariance means, of course, that whenever
o is in 7 then so is every translate o(- + s), s € R.

In particular, if 7 is defined as above in the semiflow case , then 7 is obviously trans-
lation invariant. Moreover, 7 is compact if N is m-admissible in the sense of [12].

In the semiflow case, one can give two definitions of (totally ordered) Morse decomposi-
tions of S (one in terms of attractor filtrations and the other in terms of connecting orbits)
and prove that these two definitions are equivalent.

This can also be done in the present abstract setting, leading to the concepts of 7-
Morse decompositions of the first and second kind. In Section 3 it is proved that these two
definitions are equivalent provided that 7 C C is compact, translation invariant and, in
addition, cut-and-glue invariant. By cut-and-glue invariance of 7" we mean that whenever
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o1 and oy € T with 01(0) = 02(0), then ¢ € T, where the map o:R — X is defined by

. Ul(t) 1ft§0
dﬂ"{aﬂﬂiuzo.

In Sections 2 and 3 we also define convergence of sequences of subsets of C and show that, in
some sense, 7 -attractor-repeller pairs and 7-Morse decompositions are stable with respect
to perturbations of 7.

Now the concept of a (full) solution makes sense not only for flows or semiflows but
also for large classes of ordinary differential equations or evolution equations on a phase
space X with merely continuous nonlinearities, which, in general, do not define a semiflow.
Given a subset IV of X we can then define 7 to be the set of all full solutions of such an
equation lying in N. Then, under very general hypotheses on the set N and the given
equation, the solution set 7 is compact, translation invariant and cut-and-glue invariant.

A specific application of our abstract results is given in Section 4. Using the perturbation
stability result for 7-Morse decompositions we establish a Morse equation for the Galerkin-
type Conley index theory developed in the recent paper [9] for problems with nonunique

solutions.
In Section 5 we finally apply our theory to the strongly indefinite elliptic system

—Au = §yH(u,v,z) in,
(1.1) —Av = 9,H(u,v,z) in Q,
u=0, v=0 in OS2

on a smooth bounded domain 2 in RY, considered in the recent important paper [1] of
Angenent and van der Vorst. Under the growth assumptions on H made in [1] the solutions
of (1.1) turn out to be equilibria of an abstract ordinary differential equation

(1.2) z=f(2)

on a Hilbert space X with the nonlinearity f: X — X being merely continuous but, in
general, not differentiable nor even locally Lipschitzian.

Therefore, in general, Equation (1.2) does not generate a semiflow on X. However, the
index theory of [9] and our abstract Morse decomposition theory are applicable in this
situation.

In particular, using the Morse equation from Section 4 we give new, Conley index based
proofs of two multiplicity results for this system established in [1] by the use of Morse-Floer
homology.

More applications of the abstract theory presented here will be given in the forthcoming
publications [2] and [10].

In this paper we mostly use standard notation. In particular, by R, Z, N and Ny
we denote the set of all real, all integer, all positive integer and all nonnegative integer

numbers, respectively.
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Given a topological space X and Y C X, we write Intx(Y), Clx(Y) and dx(Y) to
denote the interior, the closure and the boundary of Y in X, respectively. Given topological
spaces X; and X, we denote by C(X; — X3) the set of all continuous maps from X; to
Xs.

Finally, for a and b € Z, we write

[a,b] := [a,b] N Z.

This less common notation is used here to replace the somewhat imprecise three dot ...
symbol. In particular, we will write [1,n] instead of {1,...,n} and z;, ¢ € [1,n], instead
Of:L‘l, ooy Tpe

2. T-INVARIANCE AND ATTRACTOR-REPELLER PAIRS

Throughout this paper, unless otherwise specified, let (X, d) be a metric space.
Let C = C(R — X) be the set of all continuous maps from R to X. We endow C with

the metric B B )
d(z,y) = Z 27"dp(z,y)/(dn(z,y) + 1),
neN

where B
dn(z,y) = sup d(z(t),y(t)), =,y€eC.
te[—n,n]
Note that d is indeed a metric on C inducing the topology of uniform convergence on

compact sets in R.
Let 7 be an arbitrary subset of C. To aid intuition, the reader may think of X as a

Hilbert or Banach space and 7 as a specified set of (full) solutions of a given ordinary
differential equation or an evolution equation defined on (an open subset of) X.

In this section we define the concepts of invariance, attractors and repellers relative
to this set 7 of ‘solutions’. We will study some properties of these concepts under the
assumption that 7 is compact in C and translation invariant. In particular, we will estab-
lish extensions of some fundamental results on attractor-repeller pairs known for flows or
semiflows to the present more general case (cf. Theorem 2.11).

In addition, we define perturbations of the solution sets 7 and show that attractor-
repeller pairs have some stability properties with respect to such perturbations (see The-
orem 2.19).

We first need a number of preliminary definitions.

Let o: R — X be an arbitrary function. For every ¢ € R the function

tslho: R = X, tslo(s) =o(s+1t), seER,
is called the t-translate of o and the function

c:R—= X, o (s)=o0(—s), s€ER,
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is called the time inverse of o.
Moreover, let

w(o) = {y € X | Itn)nen in [0, 00|, t, — oo and o(t,) > yasn— oo}

and
a(o) =w(o™).

GivenY C X, PCR, y € X and ¢ € R we now define the following sets:

(2.1) Sr=J ¢(R).
€T
(2.2) T(YV,P)={y€ X | 30 €T and 3t € P with 5(0) € Y and y = o(t) }.
(2.3) T(y,P)=T{y}, P).
(24) T(Y,t) =T, {e})-
(2.5) T-={o |oeT}
(2.6) wr(Y) = te[(;] [Clx (T, [t,00D)-
(2.7) Yi={yeX|3oeT withw(o) C X\Y and y=0(0)}.
(2.8) Inv(Y) = {y € X | 30 € T with o(R) C Y and y = 5(0) }.

A set S C X is called T-invariant if S = Invy(S), i.e. iff for every y € S thereisaoc € T
such that o(R) C S and y = 7(0).
A point z € X is called a T -equilibrium if there is a o € 7 such that o(t) = z for all

te R
T is called gradient-like with respect to ¢ if p: ST — R is a continuous function such

that for every o € 7 the function ¢ o o: R — R is nonincreasing and if ¢ o o is constant,
then o: R — X is constant.

T is called gradient-like if there exists a function ¢ such that T is gradient-like with
respect to .

A set A C X is called a T -attractor if there is a set Y C X such that A C Intx(Y) and
A=wr(Y).

The set A is called a T -repeller if A is a 7 —-attractor.

The set 7 is called translation invariant if tslio € T for all o € T and all t € R.

In the next propositions we will establish a few elementary properties of the sets and
concepts just introduced.
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Proposition 2.1. For allY C X and y € X the following conditions are equivalent:
(2.9) yewr(Y).

(2.10) There ezist sequences (0n)nen in T and (tn)nen in [0,00[ such that o,(0) €Y for
adln €N, t, = oo and o,(t,) = y as n — oo.

Proof. Suppose y € w7 (Y). Then by (2.6) for every n € N there is a y, € T (Y, [r,0])
such that d(y,y,) < 1/n. Hence there is a 0, € 7 and a t, > n with 6,(0) € Y and
Yn = On(tn). Thus (2.10) is satisfied.

Now assume (2.10) and let (0,)nen and (tn)nen be as in (2.10). Let t € [0,00[ be
arbitrary. Then t,, > t for some ng € N and all n > ng. It follows that o (tn) € T (Y, [¢, o0])
for all n > ng and so y € Clx7 (Y, [t,o0[). This proves (2.9). O

Let o € C be arbitrary. For 7 := {0} and Y := X we see that 7 (Y, [, o0[) = o ([t,00[)
for all ¢ € R and so, using Proposition 2.1, we obtain

(2.11) w@)= [\ Clx(o(lt, o0D).

t€[0,00[

Proposition 2.2. If 7 is compact and translation invariant, then S is compact and
T -invariant. Moreover, for every o € T the sets a(o) and w(o) are nonempty, compact,
connected and T -invariant.
In addition, if T is gradient-like, then a(o) and w(o) consist only of T -equilibria.
Finally, if T is gradient-like with respect to a function ¢ and o € T is not a constant
map, then for all z € a(c) and y € w(o)

p(z) = o p(a(t)) > tigugw(o(t)) = p(y)

s0, in particular, a(o) Nw(o) = 0.

Proof. Let (z,)nen be any sequence in S7. Then there are sequences (0n)nen in 7 and
(tn)nen in R such that on(t,) = z, for every n € N. Let 7, = tsly on. Since 7 is
translation invariant, it follows that 7, € 7 for all n € N. Since 7 is compact, we may
assume, taking a subsequence if necessary, that there is a 7 € 7 such that 7, = 7 in C as
n — oo. Setting £ = 7(0) we see that z, = on(tn) = T(0) = 7(0) = z as n — oo. This
proves compactness of S7. Now let z € Sy be arbitrary. Then there is a ¢ € T and a
¢t € R with () = z. Setting 7 = tsl;o we have that 7 € 7 and 7(0) = z. This proves that
Sr is T-invariant.

Now let o € T be arbitrary and set 7, := tsl,o, n € N. Then by the compactness and
translation invariance of 7~ we have that 7, € 7 for all n € N and there is a subsequence
(Tn,, JmeN Of (Tn)nen converging in C to some 7 € 7. In particular, o(nm) = Tn,,(0) =
z:=7(0) as m — 00, so € w(o) and thus w(o) is nonempty.

To prove that w(c) is compact and connected, note that, by (2.11), the set w(c) is
the intersection of the family Clx (o ([t,o0[)), t € [0,00[, of closed subsets of St which
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is directed by the relation D. Since S is compact and o is continuous it follows that
Clx (o ([t,o0[)) is compact and connected for all ¢ € [0, co[. Now general topological results
(e.g. Theorem 6.1.18 in [4]) imply that w(o) is compact and connected.

Now let y € w(o) be arbitrary. Then there is a sequence (¢,)nen such that ¢, — oo and
o(t,) = y as n — oo. Set 7, = tsl;, 0, n € N. Taking a subsequence, if necessary, we may
assume that 7,, = 7 as n — oo, for some 7 € 7. It follows that for every t € R ¢, + — o0
and o(t, +t) = To(t) = 7(t) as n € N, so 7(t) € w(o). Thus 7(R) C w(o) and y = 7(0),
which shows that w(c) is 7-invariant. Now suppose, in addition, that ¢: S7 — R and 7 is
gradient-like with respect to . Since ¢ is continuous and ¢ o ¢ is nonicreasing, we obtain
that

pE\t)) Saplete)), tek

It follows that ¢ o 7 is constant, so 7 is constant, i.e. y is a 7-equilibrium.
The analogous statements concerning a(c) follow from the fact that the map

C—-C, o—a”

is continuous so 7~ is compact and translation invariant, ¢~ € 7, and so, by what
we have proved so far, a(o) = w(o~) is nonempty, compact, connected and 7 -invariant.
Moreover, if 7 is gradient-like with respect to ¢ then 7~ is gradient-like with respect to
—¢p and so a(o) = w(o~) consists only of 7 -equilibria, i.e. only of 7-equilibria.

The last statement of the proposition is obvious. [l

Proposition 2.3. If T is translation invariant and Y C X, then Invy(Y) is T -invariant
and Inv(Y) is the largest T -invariant set included in Y.

Proof. Let z € Inv(Y) be arbitrary. Then, by (2.8), there is a 0 € 7 with z = o(0) and
o(R) C Y. Let s € R be arbitrary and 7 = tsl;o. Then, by our hypothesis, 7 € 7 and
7(R) = ¢(R) C Y. Thus o(s) = 7(0) € Inv7(Y), so Invy(Y) is T-invariant.

Now let S C Y be T-invariant. Then for every £ € S there is a ¢ € 7 such that
z = 0(0) and o(R) C S C Y. It follows that & € Invy(Y). This proves that S C Invy(Y)
so Invy(Y) is the largest 7-invariant set included in Y. [J

Proposition 2.4. If T is translation invariant andY C X, then Invy(Y) C wr(Y).

Proof. Let y € Invy(Y) be arbitrary. Then there is a ¢ € 7 such that o(R) C Y and
o(0) = y. Forn € Nlet 7, = tsl_,0. Then 7, € T, 7(0) = o(-n) € Y and mp(n) = y.
Proposition 2.1 implies that y € wr(Y). O

Corollary 2.5. wy(0) = 0. Moreover, if T is compact and translation invariant, then
wT(X) = ST-

Proof. 1t is clear that wy(@) = 0. Assume that 7 is compact and translation invariant.
Then S7 C X and so by Propositions 2.2, 2.3 and 2.4 we obtain that

Sr C Ian(X) C wT(X).
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On the other hand, let y € wy(X) be arbitrary. Then there is a sequence (0,)nen in T
and a sequence (tn)nen such that ¢, — oo and o, (tn) = y. Let 7, :=tsl;, 0 for alln € N.
Then 7, € 7 for all n € N and, taking a subsequence, if necessary, we may assume that
Tn — 7 in C for some 7 € T. It follows that 7(R) C S7 so y = 7(0) € S7. Consequently,

wr(X) C St

and the corollary is proved. O

Proposition 2.6. If T is compact and translation invariant, then for every Y C X the
set wy(Y) is compact and T -invariant.

Proof. Let Y C X and y € wy(Y) be arbitrary. Let (0,)nen and (£,)nen be as in (2.10).
By the compactness of 7 we may assume that there is a 7 € 7 such that 7, :=tsl; .0, = 7
in C as n — oo. It follows that for every ¢ € R we have on(tn +t) = 7n(t) — 7(t) and
tn +t — 0o as n — oco. Moreover, 0,(0) € Y for all n € N. By Proposition 2.1 we now
obtain that 7(t) € wy(Y) for all ¢ € R. This proves that wy(Y) is 7-invariant and so
wy(Y) C Sy. Since Sy is compact by Proposition 2.2 and wr(Y) is closed by (2.6), it
follows that wr(Y’) is compact. [

Proposition 2.7. If T is compact and translation invariant and if Y C Y' C X and
wr(Y') CY then wr(Y) = wr(Y’).

Proof. Since Y C Y’ we have wy(Y) C wr(Y”’), by (2.6). By Proposition 2.6 wy(Y’) C
Inv7(Y) and by Proposition 2.4 Invy(Y) Cwr(Y). O

The following result gives a useful characterization of 7-attractors:

Theorem 2.8. Let T be compact and translation invariant and Y C X be closed. Then
for every A C X the following conditions are equivalent:

(2.12) A=wr(Y) CIntx(Y).
(2.13) A =TInvy(Y) and there is at € ]0,00[ such that T (Y,t) C Intx(Y).

Proof. Assume (2.12) and suppose that there is no ¢ € |0, oof such that 7(Y,t) C Intx(Y).
Then there are sequences (t,)nen in ]0,00[ and (yn)nen such that ¢, — oo as n — oo and
yn € T(Y,tn) \ Intx(Y) for all n € N. Thus, for every n € N, there is a on € T with
0n(0) € Y and yn = on(tn). By the compactness of 7 we may assume that there is a
7 € T such that 7, := tsl;, 0, — 7 in C as n — co. It follows that yn, = on(tn) — 7(0) as
n — o0 50 7(0) € wr(Y) \ Intx(Y'), a contradiction.

By Proposition 2.6 the set A = wy(Y) is T-invariant, so by (2.12) and Proposition 2.3
we have that A C Invy(Y). On the other hand, Invy(Y) C wr(Y) by Proposition 2.4.

This proves (2.13).

Now assume (2.13). First we claim that
(2.14) there is an € € ]0, o[ such that T(Y, [t —¢,¢ + ¢]) C Intx(Y).

In fact, if the claim is not true, then we obtain a sequence (tn)nen in R with ¢, — ¢ as
n — oo and a sequence (0p)nen in 7 with 0,(0) € Y and 0, (tn) ¢ Intx(Y) for every
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n € N. We may assume that o, — o as n — oo for some ¢ € 7. Thus o, (t,) = o(t) as
n— 00, 50 o(t) ¢ Intx(Y) and 0,(0) = o(0) as n — 00,80 0(0) €Y as Y is closed. Thus
o(t) € T(Y,t) \ Intx (Y") which contradicts our assumption. This proves (2.14).
We also claim that

(2.15) the set 7(Y, [t — €, + €]) is compact.

In fact, if (Zn)nen is a sequence in 7 (Y, [t — €, ¢ + €]) then for every n € N there isa o, € T
and t, € [t — €, + €| such that o,(tn) = z,. We may assume, taking a subsequence if
necessary, that o, — o and t,, — o as n — oo, for some o € 7" and some ¢ € [t —€t+¢€].

It follows that z, — o := o(f). This proves compactness of 7 (Y, [t — ¢, +¢]).
By (2.14) and (2.15) we see that there is an open set U such that

(2.16) T(Y,[t—et+e]) CUCClx(U) CIntx(Y) CY.
It easily follows that whenever o € 7 satisfies 0(0) € Y then o(nr) € U for all n € N and
TE[t—¢€t+e

Now let s € [t2 /€, 00 [ be arbitrary. Proposition 2.9 below implies that there is an n € N
and an 7 € ]t — €, ¢[ such that s = nr. Thus, whenever o € 7 satisfies o(0) € Y we obtain
o(s) = o(nr) € U. It follows that T (Y, [t?/e, 00[) C U which implies that
(2.17) wr(Y) C Clx(T (Y, [t*/€,00[)) C Clx(U) C Intx (Y).

In particular, by (2.17) and Propositions 2.4 and 2.6 we have
A=Tov7(Y) Cwr(Y) C Invy(Y)

S0

(2.18) A =wr(Y).

(2.17) and (2.18) imply that (2.12) holds and the proof is complete. [J

Proposition 2.9. For all € andt € |0,00[ and all s € [t2/€, 00| there is ann €N and an
r € |t — €, t[ such that s = nr.

Proof. Given ¢, t €]0,00[ and s € [62/e, oo[ there is an » € N such that
(n—1)t < s < nt.

It follows that t2/e < s < nt so t/e < m ie. ¢ < en. Moreover, 7 := s/n < t. Since

(n — 1)t < s we also have nt <t + s < en+ss0 nft—e¢)<s,ie.r=s/n>t—e [0

Let A C X be a T-attractor and let Y C X be such that A C Intx (Y) and 4 = wr(Y).
If 7 is compact and translation invariant then A is compact by Proposition 2.6 and so we
may choose an open set U such that

AcCUcC Clx(U) C Intx(Y).

Proposition 2.7 implies that A = wr(Clx(U)) and so we can always assume that Y is
closed. We will use this remark implicitly in the sequel.
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Proposition 2.10. Suppose that T is compact and translation invariani. LetY C X be
arbitrary with A := wr(Y) C Intx(Y). Then for every o € T the following statements are
equivalent:

wi@)NA#D < o(R) NIntxY #0 <= sR)NY #0 < w(o) C A.

Proof. Suppose w(c) N A # 0. Since A C Intx(Y), the definition of w(o) implies that
o(R) NIntxY # . Now assume that o(R) N'Y # 0. Then w(o) C A by the definition
of w(o) and the translation invariance of 7. Since w(c) # @ by the compactness and
translation invariance of 7, we conclude that w(o) C A implies that w(o)NA# 0. O

The following result defines 7-attractor-repeller pairs and establishes their main prop-
erties:

Theorem 2.11. Let T be compact and translation invariant and let A be a T -attractor.
Then the set A* := A% is a T -repeller. The sets A and A* are compact, disjoint and
T -invariant. Moreover, for every o € T the following alternatives hold:

(2.19) ifo(R) ¢ A* then w(o) C A.
(2.20) ifo(R) ¢ A, then a(o) C A™.
In particular, either o(R) C A, or o(R) C A* or else (o) C A* and w(o) C A. Finally,

A= (4.

We call the set A% the dual T -repeller of A and the pair (A, A*) a T -attractor-repeller
pair.

Proof. Let y € A* be arbitrary. It follows from the definition of A* that thereisa o € T
such that 0(0) = y and w(s) N A = 0. For every ¢t € R we have oy := tslic € 7 and
w(oy) = w(o) so w(oy) N A = 0. Hence o(t) = 0:(0) € A%, so o(R) C A*. It follows that
A* is T-invariant.

There is a closed set ¥ C X such that A = wr(Y) C Intx(Y). It follows from Proposi-
tion 2.10 that

(2.21) whenever ¢ € T then w(o)NA=0 < o(R) C Y*:= X \Intx(Y).

(2.21) and the compactness of 7' easily imply that A* is compact.

We now show that A* = Invy— (Y*). In fact, obviously Invy— (Y™*) = Invy(Y™*). Since
A* is T-invariant and A* C Y* by (2.21), we obtain A* C Invy(Y™). If y € Invy(Y™)
then there is a ¢ € T with (0) = y and ¢(R) C Y. Thus from (2.21) we conclude that
y € A*.

We finally claim that there is a ¢ € [0, 00[ with 7~ (Y*,¢) C X\Y C Int x(Y™*). Suppose
this claim is not true. Then, since 7(Y*,t) = T~ (Y*,—t), we obtain the existence of a
sequence (tn)nen in ]0,00[ with t, — 0o as n — 0o, and a sequence (0n)nen in 7 such
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that 0,(0) € Y* and o,(—t,) € Y for all n € N. Taking a subsequence if necessary we
may assume that o, — o in C. Let 7, = tsl_; oy, n € N. Then 7,(0) = on(—tn) € Y for
all n € N and 7,(¢5) = 0n(0) = 0(0). Since Y* is closed, we see that

c0)eY* Nwr(Y)=Y"NA=0,

a contradiction, which proves the claim. Altogether, we obtain from Theorem 2.8 that
(2.22) A* =wpr- (V") C Intx (Y™)
so A* is a T -attractor, i.e. a T-repeller. It also follows that AN A* = 0.

Now let ¢ € T be arbitrary. If o(R) ¢ A = Invy(Y) then thereisat € Rwith o(t) ¢ Y,
so o(t) € Y*. This implies that a(s) C wy-(Y™*) = A*.

On the other hand, if 0(R) ¢ A* = Invy(Y*) then there is a ¢ € R with o () ¢ Y™, i.e.
o(t) € Intx (Y). This implies that w(o) C A.

Finally, y € (A%)%-_ iff there is a 7 € 7~ with 7(0) = y and w(7) N A% = 0 iff there is
a o € T with ¢(0) = y and a(o) N A% = 0. Here, 0 = 7~. Now, by what we have proved
so far, a(o) N A% = 0 iff o(R) C A. This clearly implies that

(435 = A

The theorem is proved. [

Theorem 2.11 clearly implies the following corollary:

Corollary 2.12. Let T be compact and translation invariant and (A1, Az) be a pair of
subsets of X.

The pair (A1, A2) is a T-attractor-repeller pair if and only if the pair (A, A1) is a
T~ -attractor-repeller pair. [

We will now discuss perturbations of attractor-repeller pairs with respect to the set
T C C. To this end we need the following convergence concept on the set of all subsets of

€.

Definition 2.13. Let (7:)xen be a sequence of subsets of C and 7 C C be arbitrary. We
say that (7)xen converges to T, and we write 7 — 7 (as k —= 00), if for every sequence
(Kkn)nen in N with £, — 00 as n — oo and every sequence (0n)nen such that o, € Ty,
for all n € N there is a subsequence (on,, )men and a ¢ € 7 such that o, — 0 in C as
m — oo.

The next propositions contain some elementary consequences of the above definition.

Proposition 2.14. Suppose N is closed in X, T, = T and Invy(N) C Intx (N). Assume
also that each T, is translation invariant.
Then there is a kg € N such that Invr, (N) C Intx (V) for all kK > Ko.-

Proof. If the proposition is not true then, by Definition 2.13 and the translation invariance
of 7y, there is a sequence (kn)nen With K, — 00 as m — oo, a sequence (o0n)nen such
that o, € T, for alln € N and a ¢ € 7 such that o, = 0 as n = oo, on(R) C N
and 0,(0) € dx(N) for every n € N. Since N is closed it follows that o(R) C N and
a(0) € 8x(N), a contradiction. U
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Proposition 2.15. Suppose N is closed and U is open in X, Ty = T and Invr(N) C
Invr(U). Assume also that each Ty is translation invariant.
Then there is a ko € N such that Invy_(N) C Invr, (U) for all k > Ko.

Proof. If the proposition is not true, then, by Definition 2.13 and the translation invariance
of 7y, there is a sequence (kn)nen With kK, — 00 as n — o0, a sequence (0n)nen such
that o, € T, for alln € N and a ¢ € 7 such that o, = 0 as n = o9, on(R) C N
and 0,(0) € X \ U for every n € N. We thus obtain that ¢(0) € X \ U. However,
since NV is closed it follows that o(R) C N and so 0(0) € Invy(N) C Invy(U) C U, a
contradiction. [

Proposition 2.16. Suppose N is closed in X, N’ c X is arbitrary, T, — T and
Tnv7(N) C Invy(N') C Intx (N'). Assume also that each Ty is iranslation invariant.
Then there is a ko € N such that Tnvy, (N) C Invr, (N') for all k > ko.

Proof. Let U = Intx(N’). Since Invy(N') C U we obtain that Invy(U) = Invy(N') so
the proposition follows from Proposition 2.15. O

Proposition 2.17. Suppose N and N' are closed in X, T =T,
Invy(N) C Intx (N), Invy(N') C Intx (N') and Invy(N) = Invy(N').

Assume also that each T, is translation invariant.
Then there is a ko € N such that Invy, (N) = Invy, (N') for all K 2 Ko.

Proof. This is an immediate consequence of Proposition 2.16. [

Proposition 2.18. Suppose N is closed in X, T — T, t €]0,00[ and T(N,t) C Intx (V).
Then there is a ko € N such that T.(N,t) C Intx(N) for all k > Ko.

Proof. If the proposition is not true then, by Definition 2.13, there is a sequence (Kn)neN
with k, — 00 as n — 00, a sequence (0n)nen such that on € Te, foralln e Nandao € T
such that o, — o as n = 00, 0, (0) € N and g, (t) & Intx (N) for every n € N. Since N is
closed it follows that o(0) € N and o(t) ¢ Intx (NV), a contradiction. [

We can now state a basic perturbation stability result for attractor-repeller pairs:

Theorem 2.19. Let (7:)xen be a sequence of compact and translation invariant subsets
of C and T C C be compact and translation invariani. Suppose T, — T and let (A, A*) be
o T -attractor-repeller pair. Let V (resp. V*) be closed in X and such that A = Invr(V) C
Intx (V) (resp. A* =Invy-(V*) CIntx (V*)).

Then there is a kg € N such that (Invy, (V), Invr, (V*)) is a T,.-attractor-repeller pair
for all kK > Ko.

Proof. Let N and N* be closed and such that A = wr(N) C Intx(N) and A* =
wr—(N*) C Intx(N*). Since A and A* are disjoint and closed by Theorem 2.11 we
may use Proposition 2.7 and choose N and N* smaller, if necessary, to ensure that N and
N* are disjoint. For x € N set A, = Invy, (V) and A, = Invy, (N*). By Theorem 2.8



MORSE DECOMPOSITIONS IN THE ABSENCE OF UNIQUENESS 13

there is a to € ]0, 00 such that 7(N,¢) C Intx(IN). Consequently, by Proposition 2.18
there is a Ko € N such that 7 (IV,%9) C Intx(N) for all K > kg. Thus Theorem 2.8 implies
that

(2.23) Ag =wy (N) CIntx(N), &2 Ko,

so A, is a Tg-attractor for all kK > ko. Set Ay = AT. If k > Ko and z € A, then
there is a o € T, with ¢(0) = z and o(R) C N*. Since N* is closed, we conclude that
w(e) € N* ¢ X\ N, so w(s) N Ax = 0. Hence z € A} which proves that A, C Ax.
Now suppose that A} ¢ A, for infinitely many s € N. Then there are sequences (kn)neN
with Kk, — 00 as n — 0o and (Zn)nen such that z, € Ay \ 4, for all n € N. Thus
there is a sequence (0pn)nen With 0n € Tx,, Tn = 0n(0) and w(on) N 4., = 0 for all
n € N. Proposition 2.10 and (2.23) imply that 0,(R) N N = @ for all n € N large
enough. On the other hand, for every n € N we have 0,(R) ¢ N* since otherwise
Tp € Invy, (N*) = fi,en, a contradiction. It follows that for every n € N there is a ¢, € R
with op(t,) ¢ N*. Let 7, = tsl;,0n, n € N. Taking subsequences if necessary we may
assume that there is a 7 € 7 such that 7, — 7 in C. It follows that 7(0) ¢ Intx(N™).
By Theorem 2.11 this implies that w(r) C A so 7(t) € Intx(N) for some ¢ € R. But
m(R) = 0,(R) € X \ N for all n € N so 7(R) C X \ Intx(XV), a contradiction. This
proves that Ay C A, so A% = A, for all k large enough. Thus, for all such &, the
pair (Ax,Ay) is a Te-attractor-repeller pair. Now, since A = Invy(V) C Intx(V) and
A = Invy(N) C Intx(N), Proposition 2.17 implies that Invy, (V) = Invy, (N) = A, for
all k € N large enough. Similarly, Tnv,-(V*) = Inv, - (N*) = A, for all kK € N large
enough. This completes the proof. [l

3. 7-MORSE DECOMPOSITIONS

In this section we again assume that we have a fixed subset 7 of C. We will define
attractor filtrations relative to 7~ (Definitions 3.1) and we will present two definitions of a
Morse decomposition relative to 7~ (Definitions 3.2 and 3.3). If 7 is compact, translation
invariant and satisfies a so-called cut-and-glue invariance property, then, as we will show
in Theorems 3.8 and 3.10 these two definitions are equivalent.

Finally, we establish perturbation stability properties for attractor filtrations and Morse
decompositions (Theorems 3.14 and 3.15).

We begin with the following definitions.

Definition 3.1. A T -attractor filtration (of length m) is a sequence (A)yLq of T-attra-
ctors such that Ag = 0, A, = S7 and A, C A,4, for r € [0,m — 1].

If (A,)™, is a T-attractor filtration then the sequence ((Ar)5)™, is called the dual
T -repeller filtration of (A;)y—g-

Definition 3.2. A finite sequence (M;)™, is called a 7-Morse decomposition of the first
kind if there is a T-attractor filtration (A,)™, such that M, = A,N(A,_1)5 for r € [1,m].
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Definition 3.3. A finite sequence (M,)™; is called a 7-Morse decomposition of the
second kind if the following properties hold:

(3.1) The sets M,., r € [1,m], are closed, 7-invariant and pairwise disjoint.

(3.2) For every o € T either o(R) C Mj, for some k € [1,m] or else there are &, | € [1,m]
with k£ < I, a(o) C M; and w(o) C M.

The following simple result is important for applications:

Proposition 3.4. Let T be compact, translation invariant and gradient-like with respect
to a function p: ST — R. Suppose that the set £ of T -equilibria has m elements for some
m € N. Put all the elements of £ in a sequence (z,)r, with p(z,;) < @(zr41) for all
r € [1,m—1].

Then ({z,})™, is a T-Morse decomposition of the second kind.

Proof. Clearly the sets {z,}, r € [1,m], are closed and pairwise disjoint. Moreover, the
definition of 7-equilibria implies that for every r € [1,m] the set {z,} is 7-invariant.

Let 0 € T be arbitrary. Either o is a constant map so o(t) = z; for some ¢ € [1,m]
and all ¢t € R, or else o is not constant and so, by Proposition 2.2 the sets a(o) and w(o)
are connected and contain only 7-equilibria. Moreover, ¢(z) > ¢(y) for z € a(s) and
y € w(o). It follows that a(o) = {z;} and w(o) = {z} for some k and I € [1, m] with
k<l O

We have the following simple result.

Proposition 3.5. Let T be compact and translation invariant and (M, )7, be a T -Morse
decomposition of the second kind. Moreover, let k1, k2 € [1,m], k1 < k2 and o € T be
arbitrary with a(o) C My, and w(o) C My,. Then k1 = k2 and o(R) C My, = Mp,.

Proof. Since T is compact and translation invariant, it follows that both w(c) and a(o)

are nonempty.
By Definition 3.3 two possible cases can occur:
1. case. There is a k € [1, m] with o(R) C Mj.
Since M, is closed we obtain

(D;éa(a) CMkﬂMkl

and
@?é UJ(O') C MkﬂMk2.
Since the sets M,, r € [1,m], are pairwise disjoint, we obtain k¥ = k1 = k2 and so the
conclusion follows in this case.
2. case. There are k, | € [1,m] with k <, (o) C M; and w(o) C M.

However, this implies
1) 75 01(0') C M, ﬂMkl

and
0 = w(d) C M N M,
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so k1 =1> k= kg > k1, a contradiction. [
We now introduce the following basic concept:

Definition 3.6. Given o; and o3 € C with ¢1(0) = 02(0) the map

o1(t) ift <0;

o1>o:R—= X, (01>02)(t) ::{U (t) ift>0
2 - )

is called the cut-and-glue of (01, 02).

Intuitively, we cut ok, kK =1, 2, into the ‘left’ and ‘right’ parts and glue the left part of
o1 to the right part of 5.

A subset 7 of C is called cut-and-glue invariant if for all o1, o3 € T with 01(0) = g2(0)
it follows that o1 >0 € T.

Proposition 3.7. Suppose that T is translation and cut-and-glue invariant, s € R is
arbitrary and o1, o3 € T are arbitrary such that 01(s) = 02(s). Then o1 >502 € T, where

o1(t) ft<s;
o1bs00:R—> X, (015 02)(t) :={ 1(t) f .

o2(t) ift>s.
Proof. Set 7, = tslyox, k = 1, 2. Then 7, € 7 for ¥ = 1, 2 and 71(0) = 72(0), so
T:=71>72 €7T. Hence o :=tsl_,7 € 7. Now

T1(—s+t)=o01(t) if —s+t<0;
T2(—s+1t) =o02() if—s+t>0.

o(t)=1(—s+1t)= {

Hence 0 = o1 >z 02. U
We can now state the following theorem.

Theorem 3.8. Suppose T is compact, translation and cut-and-glue invariant. Moreover,
let (M,)™, be a T-Morse-decomposition of the first kind.
Then (M,)™, is a T-Morse-decomposition of the second kind.

Proof. Let (A;)™, be a T-attractor filtration with M, = A, N (4r_1)F for r € [1,m].
Since A, and (A,_1)% are closed it follows that M, is closed, for all 7 € [1,7m]. Let
r € [1,m] and z € M, be arbitrary. Since A, is 7-invariant, there is a g1 € T such that
01(0) = z and o1(R) C A,. By the definition of (A,_1)}, there is a o3 € T such that
02(0) = z and w(o2) C X \ A,—1. Let 0 := 01> 03. Then o € 7. Let ¢ € R be arbitrary
and o; := tslyo. Then oy € T, a(o;) = a(o) = a(o1) C A, and w(o) = w(o) = w(o2) C
X\ Ar_1 s0 a(t) = 01(0) € A, N (Ar—1)5. Since ¢ € R is arbitrary, we conclude that
o(R) C A, N (Ar_1)%. Since z € M, is arbitrary, this implies that M, is T -invariant.

Now let k and [ € [1,m] be arbitrary with k # /. We may assume that k£ < [. Hence
k<l—1so (A-1)5 C (Ax)7 so

M N\M; = AN (Ak—l)*’r NA N (Al—l)";' C A N (Ak)";' = (.
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This concludes the proof of property (3.1).

Now let o € 7 be arbitrary. Since w(o) C S7 = Ap, and a(o) C ST = (Ao)7 it follows
that there is a smallest ¥ € [0, m] and a largest [ € [0,m] such that w(os) C Ax and
a(o) C (A;)%. Since St is compact by Proposition 2.2, it follows that w(o) and (o) are
both nonempty so, in particular, k¥ # 0 and | # m (as Ag = 0 = (Am)%). We thus have
w(o) ¢ Ag—1 and a(o) ¢ (Ai41)5 which, by Theorem 2.11, implies that o(R) C (Ax—1)%
and o(R) C Aj41. Thus

(3.3) O'(R) C Al+1 N (Ak—l);‘
If I+ 1 = k then (3.3) implies that
(3.4) o(R) C M.

Suppose that [+1 # k. We claim that k¥ < [+1. In fact, otherwise [+1 < ksol+1< k-1
so (3.3) shows that

o(R) C Aj+1 N (Ak-1)7 C Ag—1 N (Ax—1)7 = 0,

a contradiction, which proves the claim. Using (3.3) and the definition of k¥ and [ we also
have

(3.5) w(o) C Ag N (Ak-1)7 = Mk
and
(36) a(a) C Al+1 N (A{)fr = MH-l'

Now the above claim together with (3.4), (3.5) and (3.6) prove property (3.2). O

The next result shows that a 7-Morse decomposition of the first kind uniquely deter-
mines its 7-attractor filtration.

Proposition 3.9. Suppose T is compact, translation and cut-and-glue invariant. Let
(A;)™ be a T-attractor filtration and set M, := A, N (Ar—1)F for r € [1,m].
Then, for every k € [0, m],

(3.7) A ={z | 3o € T with 0(0) =z and ao) C Uf=1 M, }.

Proof. Note that, if k = 0 then U2=1 M, = (0 so the right hand side of (3.7) is the empty
set. Since Ag = @, Formula (3.7) holds in this case.

Let k € [1,m] and z € A be arbitrary. Since Ay is 7-invariant by Theorem 2.11,
there is a ¢ € 7 with ¢(0) = = and o(R) C A;. Thus there is a smallest i € [1, %]
with o(R) C A;. Hence o(R) ¢ Ai_1 so a(o) C A; N (Ai—1)7 = M;. It follows that
a(o) € Uy M.

Conversely, if z is such that there is a ¢ € 7 with 0(0) = z and a(s) C U,’le M,,
then, for some i € [1,k], a(c) C M; = A; N (Ai—1)%, so a(o) C A; C Ag and so, by
Theorem 2.11, o(R) C Ag. Hence z € Ax. [

Proposition 3.9 suggests the following converse of Theorem 3.8:
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Theorem 3.10. Suppose T is compact, translation and cut-and-glue invariant. Moreover,
let (M,)™_, be a T -Morse-decomposition of the second kind. For k € [0,m] define the sets

(3.8) Ay ={z |30 € T with o(0) = = and a(o) c U*_, M, }.

Then (Ax)T, is a T -attractor filtration and My = Ay N (Ag-1)7 for k € [1,m].
In particular, (M,)™, is a T-Morse-decomposition of the first kind.

Proof. Note that, by (3.8) and the translation invariance of 7, the set Ay is 7-invariant
for every k € [0, m].
We first claim that for &, [ € [1,m],

(3.9) MkCA;ifkglandeCX\A;ifk>l.

In fact, suppose first that £ < ! and let z € M}, be arbitrary. Since M} is T-invariant,
there is a 0 € 7 with ¢(0) = z and o(R) C Mj,. Since My is closed and k < I we see that
a(ec) C My C Ui=1 M; and so = € A;, as claimed.

Now assume that k£ > [ and suppose that there is an z € MNA;. Using the definition of
A; and the 7T -invariance of My, we obtain the existence of 01, o2 € T with 01(0) = z = 02(0)
such that a(o;) C Ulr=1 M, and 03(R) C My. Set 0 = o1 >o3. Thus there is an r € [1,/]
with a(¢) = a(01) C M, and, since My, is closed, we also have that w(o) = w(o2) C M.
Now Proposition 3.5 and the fact that 7 < k immediately lead to a contradiction, proving
the claim.

By (3.2) and (3.8) we have that Ag = @ and A, = S7. Thus Corollary 2.5 implies
that Ag and A,, are T-attractors. Let [ € [1,m — 1] be arbitrary and assume that A;4;
is a T-attractor. We will prove that A; is a 7-attractor. This will imply that A is a
T -attractor for all k € [0, m].

We require three lemmas.

Lemma 3.11. Let V be an open set with M1 CV and M C X\V forallk #1+1. Let
z € X, (1,)ven be a sequence in T with 7,(0) = = as v — oo and (Sv)ven be a sequence
in [0, co[ such that 7,(t) € Clx (V) for allv € N and allt € [0,s,]. Assume that there is a
z € My, such that 7,(s,) = z as v — co.

Then there is a 7 € T with

(3.10) 7(0) = z and w(T) C M.

Proof of Lemma 3.11. Taking subsequences if necessary, we may assume that 7, — 7/ for
some 7' € 7. We have two possible cases to consider:

1. case. The sequence (5,),en is unbounded. Then, taking subsequences, we may assume
that s, — oo as ¥ — oo. It then follows that for every ¢ € [0,00[ there is a v(¢) € N
such that ¢ € [0,s,] (and so 7,(¢) € Clx(V)) for v > v(¢). Hence 7/(t) € Clx (V) for all
t € [0, 00 and so our choice of V' imply that 7 := 7' satisfies (3.10).
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2. case. The sequence (s,),en is bounded. Then, taking subsequences, we may assume
that s, = s as ¥ — 0o, for some s € [0,00[. Then 7,(s,) — 7/(s) so 7(s) = z € M.
Since 7 is translation invariant and My, is 7-invariant, we see that there is a 7/ € T
with 7(s) = 7/(s) and 7'(R) C Mj41. Let 7:=7'>, 7. Then 7 € 7 and since 0 < s we
have 7(0) = 7/(0) = = and so 7 satisfies (3.10). O

Lemma 3.12. A; is closed.

Proof of Lemma 3.12. In fact, let (yn)nen be an arbitrary sequence in A; such that y, — y
as m — oo, for some y € X. We want to prove that y € A;. From the definition of 4; we
obtain a sequence (0y)nen in 7 such that 0,(0) = yn and

(3.11) ar(on) € U\_, M, for alln € N.
It clearly follows that
(3.12) O'n(R) CAC Al+la n € N.

By taking subsequences if necessary we may suppose that o, — ¢ in C for some o € i i
Since A;4; is closed, (3.12) implies that o(R) C Ajy; and (o) C Ajq1. There is an
r € [1,m] with a(o) C M,. Hence a(s) C M, N Aj41 which in view of (3.9) implies that
r <1+ 1. If r < then the fact that o(0) = y implies that y € A; and we are done.
Therefore, suppose that = [+ 1. We will show that this leads to a contradiction, proving
the lemma.

Since the sets My, k € [1,m], are closed and pairwise disjoint, there is an open set V
with My41 C V and My C X\ V for all k£ # [ + 1. It follows that there is a sequence
(tv)ven with ¢, — oo and o(—t,) = z as v — oo, for some z € M;11. We can choose
a strictly increasing sequence (n,)yen such that d(on,(—t,),0(=t,)) — 0 as v — oo. It
follows that o, (—t,) — z as ¥ — oo. Since z € V and V is open we may also assume
that op, (—t,) € V for all v € N. Now (3.11) implies that for every » € N there is a t, eR
with —t!, < —t,, such that o, (—t,) € dx(V) and oy, (t) € Clx (V) for all ¢ € [, —t.].
Set s, :=t, —t, and 7, :=tsl_y o, V € N. It follows that, for all v € N, 7, € 7 and,
moreover, that

(3.13) 7,(0) € 8x (V) and 7,,(t) € Clx(V) for all v € Nand all ¢ € [0, 5,].

Taking subsequences if necessary we may assume that 7, — 7’ as v — oo, for some 7’ € T .
Using (3.12) we obtain 7, (R) = o5, (R) C Aj41 so 7'(R) C A4y and thus a(t’) C Aita,
i.e. a(r') C M, for somer € [1,1+1]. Let z = 7'(0). Since T,(8y) = 2z € M1 as v — o0,
Lemma 3.11 implies that there is a 7 € 7 with 7(0) = z and w(7) C Mj41. Let T =l .
Then 7/ € T, o) = a(r') C Aiy1 and w(7") = w(r) C Mi41. Now Proposition 3.5
implies that 7/(R) C M1 s0 z = 7(0) € Ox (V)N My = @ by (3.13), a contradiction. [
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Lemma 3.13. A; is a T -attractor.
Proof of Lemma 3.13. Given Y C X and § € ]0,00[ we denote by Vs(Y) the closed ¢-
neighborhood of Y, i.e.

Vi(Y) = {z € X | inf d(z,y) < 6},

Since A;41 is a T-attractor, there is a closed set IV such that A4y = wr(N) C Intx (V).
Since A41 is T-invariant we have A;41 C S7 and since A;4; is closed and S7 is compact
we conclude that A;,; is compact. Thus there is a ¢ € ]0, o[ such that

VJ(AH.l) C Intx(N), o€ ]0, 5] .
Now the 7-invariance of A; implies that
(3.14) A; c Invyr(Vs(Ar)) C wr(Vs(41)), 9 €]0, 5] .

We claim that

(3.15) wr(Vs(A;)) C A, for some 6 € ]0, d].

This claim, together with (3.14) and the fact that A; C Intx (V5(4;)) implies the lemma.

Suppose (3.15) is not true and let (6, ),en be a sequence in ]0, 6] with §, — 0 as v — oco.
Let v € N be arbitrary. Then there is a y,, € wr(Vs,(A4:)) \ A;. Hence there is a sequence
(6™)nen in 7 and a sequence (t])nen in R such that o7 (0) € Vs, (A1) for all n € N while
" — oo and o7(t%) — y, as n — oo. Taking subsequences if necessary we may assume
that tslyno) — o, for some o, € T. Then, for every ¢t € R, it follows that ¢} +% — oo and
o (th +t) — 0,(t) as n — 00, S0

o, (t) € wr(Vs, (A1) C wr(Vs, (Ai41)) C wr(N) = Ay

It follows that o, (R) C Ai41, 50, as Aj41 18 closed, we conclude that a(o,) C Aj4+1. Hence,
by (3.9), there is an 7 € [1,!+ 1] such that a(oy) C M,. If r <[ then it follows that
Y, = 0,(0) € A;, a contradiction. Therefore,

(3.16) a(o,) C M1, veN

Let V be as in the proof of Lemma 3.12. Since 4; is closed by Lemma 3.12 and disjoint
from M;41, we may assume, by taking V' and 6 smaller, if necessary, that

(317) Clx(V)NVs(4) =0, éd€ 10, 4].

Now (3.16) implies that, for every v € N, there is a 2, € M1 and a sequence (T4),eN
in R with 7# — co as p — oo and d(o,(—7#),2,) < (1/p) for all 4 € N. In particular,
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d(o,(-7Y),2,) < (1/v). Taking subsequences if necessary we may also assume that there
is a z € My such that d(z,,2) < (1/v) for all v € N.

Thus for every » € N there is an n(v) € N with n(v) > v, s, := t2*) — % > 0 and
d(o2™ (s,),0,(~r%)) < (1/v). Putting things together, we thus obtain that

d(o"®)(s,),z) < (3/v) for all v € N.

Since z € V we may thus assume that o *(s,) € V and o0®(0) ¢ V for all v € N.
Therefore for every v € N there is a §, € ]0, s, such that oy @) (3,) € 0x (V) and oy ) (¢t) €
Clx (V) for all t € [§,, s,]. Let 7, := tslz, o7 ™, v € N. Then, for all ¥ € N, 7,,(0) € 9x (V)
and 7,(t) € Clx(V) for all ¢ € [0,s, —5,]. Taking subsequences, if necessary, we may
assume that 7,(0) — = as v — oo, for some z € dx(V). Since 7,(sy — 8,) = 2 € M1
as v — 00, an application of Lemma 3.11 shows that there is a 7 € 7 with 7(0) = z and
LU(T) C MH.]_.
Now we have two possible cases:

1. case. The sequence (5,)yen is unbounded.

We may then assume that 5, — 0o as v — oco. Since g/ ®)(0) € N for all v € N, it follows
that £ € wr(N) = A1, so there is a 7 € T with 7/(0) = z and a(r’) C M, for some
r € [1,l+ 1]. Defining 7" := 7/ > 7 we see that 7"/ € T, a(7"") C M, and w(7") C M4,
which by Proposition 3.5 implies that 7/(R) C M4, and this is a contradiction since
7 (0) =z € Ix(V).

2. case. The sequence (3,),en is bounded.

We may then assume that §, — s for some s € [0,00[, 7, = 7' and o2 (0) - w as
v — o0, for some 7 € T and w € A4;. Thus 7,(—3,) = w so 7'(—s) = w and 7/(0) = z.
The definition of A; and the translation invariance of 7" imply that there is a 7"/ € 7 with
7 (—s) = w and a(r") C M, for some 7 € [1,I]. Set 7" = 7 >_g7. Then 7" € T,
a(r"") C M, and, since —s < 0, we also have that 7/(0) = 7/(0) = z. Set Pt = e i
Then 7" € T, a(r'"") C M, and w(r") C M4, which contradicts Proposition 3.5, as
r < 1+ 1. The lemma is proved. [

Lemma 3.13 and obvious induction shows that Ay, is a 7-attractor for all k € [0, m].

Now let k € [1,7n] be arbitrary. Let £ € My be arbitrary. Since My is 7-invariant,
there is a o € T with 0(0) = z and o(R) C M. Since Mj, is closed we have a(o) C My 0
by the definition of Ay we have z € Ag. If (R) ¢ (Ag-1)7 then (3.9) and Theorem 2.11
imply that § # w(c) C Mg N Ak_1 = 0, a contradiction. Thus o(R) C (Ag=1)% so
z € AgN(Ag—-1)%. This proves that My C AgN(Ag—1)7. Conversely, let z € AN (Ag-1)7
be arbitrary. Then, by the definition of A and Definition 3.3 there is a o1 € 7 with
01(0) = z and an 7 € [1,k] such that a(o1) C M. Moreover, there is a o3 € T such that
02(0) = z and w(oz) N Ag—1 = 0, which, in view of (3.9) implies that w(o2) N M; = O for
all | € [1,k — 1]. It follows that w(oz) C M, for some n € [k, m]. Setting o = o1>0o2 €T
we see that a(d) C M,, w(s) C M, and r < n. Proposition 3.5 implies r = n = k and
o(R) C My, so z € M. This proves that Ay N (Ak—1)% C My, and completes the proof of
the theorem. [
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In the sequel, if 7 is compact, translation and cut-and-glue invariant, then, in view
of Theorems 3.8 and 3.10 we have a well-defined concept of a 7-Morse decomposition,
meaning a 7-Morse decomposition of the first kind or, equivalently, of the second kind.

We will now state and prove two perturbation stability results for attractor filtrations
and Morse decompositions.

Theorem 3.14. Suppose that T. — T, where T and T, k € N, are compact, translation
and cut-and-glue invariant subsets of C. Let (A,)" be a T -attractor filtration. For every
r € [0,m] let V, and V;* be closed sets with A, = Invy(V;) C Intx(V;) and (A,)F =
Invy- (V;*) C Intx(V;").

For k € N and r € [0,m] set

AR =Tovy (V;), AF= Inv.— (V7).

Then there is a Ko € N such that, for all k € N with kK > ko, the sequence (AR, is a
T -attractor filtration and (AF)™., is its dual T, -repeller filtration.

Proof. An application of Theorem 2.19 shows that (A¥, fif) is a T.-attractor-repeller pair
for all r € [0,m] and all k € N large enough. Furthermore, we conclude from Proposi-
tion 2.16 that AF C Af , for all 7 € [0,m — 1] and all k € N large enough. Thus we
only have to show that A5 = 0 and A%, = Sz, for all K € N large enough. If there is a
sequence (Kn)nen in N with k, — oo and A§™ # 0, then there is a sequence (o )nen such
that o, € 7x, and 0,(R) C Vp for all n € N. Then, taking a subsequence if necessary, we
may assume that o, — o for some o € 7. Hence o(R) C Vj so Ag = Invy(Vp) # 0, a
contradiction. Now clearly A, C S, for every k € N. Consequently, if there is a sequence
(Kn)nen in N with x, — oo and A% # Sy, , then there is a sequence (0 )nen such that
on € T, and 0,(0) ¢ Vp, for all n € N. Taking a subsequence if necessary, we may assume
that o, — o for some o € 7. Hence o(0) ¢ Intx (Vy,) so o(R) ¢ A, and thus A, # ST,
a contradiction. [l

Theorem 3.15. Suppose that T, — T, where T and T, & € N, are compact, translation
and cut-and-glue invariant subsets of C. Let (M,)"-, be a T-Morse decomposition. Let
(W, )™, be a finite sequence of closed sets such that

M, = Invy(W,) C Intx(W,), r€[l,m].
For k € N and r € [1,m] set
(3.18) M} =TIovy, (W,).

Then there is a kK, € N such that for all k € N with k > k1 the sequence (M), is a
T.-Morse decomposition.

Proof. Choose a T-attractor filtration (A;);, such that

M, = AN (Ar—l)";"y e [[1, m] "
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For every r € [0,m] let V; and V,* be closed sets with A, = Invy(V;) C Intx(V,) and
(Ar)5 = Invy—(V;¥) C Intx(V;*). Let r € [1,m] be arbitrary. Since M, is 7T-invariant
and M, C V., NV}’ ,, we see that

M, C Invy(V, N V) C Invy(V;) NInvr (V)
=Invy (Vz) NInvy- (V) = A N (Ar—1)7 = M,y
S0

M, =Tnvy (V. N V) = Invy (V) NInvy- (V;2,)

3.19
( ) C Intx(v;) N Intx(V;.*_l) C IntX(V, n Vr*—l)'

For r € [0,m] and k € N define
AF =Tavr (W), A% = Tov,— (V).

By Theorem 3.14 there is a kg € N such that, for all Kk € N with K > kg, the sequence
(AF)™, is a Tr-attractor filtration and (Ay);L, is its dual 7,-repeller filtration. It follows
that, for all K € N with s > Ko, the sequence (MF)™, is a T,-Morse decomposition, where

MF=ANAr_,, re[l,m].
Proceeding as in the proof of Formula (3.19) we see that

MF =Invy, (V. NV ) =Invr, (V;) NInv - (V2 ;)
C Intx(Vr) N Intx(V,.*_l) C Intx(Vr N Vr*—l)'

Now (3.18), (3.19), and Proposition 2.17 imply that there is a k1 € N, K1 > Ko, such that
ME =Tnvy (V, NV2) =Invy, (W) = M, re[l,m], s> k.
The theorem is proved. [l

4. APPLICATIONS TO A GALERKIN-TYPE CONLEY INDEX

In this section we will apply the abstract results obtained before to certain classes of
ordinary differential equations on Banach spaces, considered in the paper [9], which do not
necessarily satisfy the uniqueness property of the Cauchy problem. In [9] a Galerkin-type
Conley index is defined for such equations, generalizing an index previously defined in [7].

We will establish a Morse equation for this Conley index theory (Theorems 4.7 and 4.16).
This Morse equation can be used to prove multiplicity results for strongly indefinite prob-
lems in Hilbert spaces. An example of such an application will be given in the next section.
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We assume the reader’s familiarity with the paper [9] and only review some basic no-
tation and those results from that paper which we require to prove the results of this
section.

In this section let (E, || - ||) be a Banach space and we set X = E and d(z,y) = ||z — y/|
forz, ye X. Given N CU C F and f:U — FE an arbitrary function, we set

|fln = o [1f (@)l € [0, 00].

If U C X is open and f € C(U — X) then by a solution of f we mean a differentiable
function o:R — E with ¢(R) C U and such that

o' (t) = f(o(2)), for all t € R.

Note that any translate of a solution of f is again a solution of f.

Furthermore, if o; and oy are two solutions of f with o1(0) = 02(0), then ¢ := o1 > 0
is easily seen to be a solution of f.

By Sol(f) we denote the set of all solutions of f. Moreover, given Y C U we denote by
Sol(f,Y) the set of all solutions o of f such that o(R) C Y. It follows that Sol(f,Y) is
translation and cut-and-glue invariant.

Define Inv(f,Y) to be the set of all y € E for which there is a ¢ € Sol(f,Y) with
0(0) = y. Note that

Inv(f,Y) = Invy(Y), where 7 = Sol(f).

A set S C U is called invariant relative to f if Inv(f,S) = S. Thus S is invariant relative
to f if and only if S is 7-invariant, where 7 = Sol(f).
Now let S C U be invariant relative to f. Set

7—(f,5) = SOl(f, S)

Note that
S= S(T(f,S)) = U O'(R),

o€T(s,s)

since S is invariant relative to f.

We say that a set A is an attractor (resp. a repeller) in S if A is a 7(y s)-attractor (resp.
a T, s)-repeller). Analogously, attractor filtrations in S, resp. Morse decompositions (of
first /second kind) of .S are simply 7(s g)-attractor filtrations, resp. 7s,s)-Morse decompo-
sitions (of first/second kind). If 75 s) is compact then in view of Theorems 3.8 and 3.10
we may simply speak of Morse-decompositions of S.

A bounded set N C U is called an isolating neighborhood relative to f if IV is closed
in X and Inv(f, N) C Intx (V). The set Inv(f, N) is then called an isolated invariant set
relative to f.

The following result is obvious:
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Proposition 4.1. IfU C E is open, f:U — E is continuous, andY CY' C U then
Sol(f,Y) = Sol(f, S), where S =Inv(f,Y)

and
Inv(f,Y) =Invy(Y), where T = Sol(f,Y’). O

We also have the following result:

Proposition 4.2. Suppose E is finite dimensional, U is open in E, N is bounded and
closed in E and |f — fly — 0 as kK — 0o where (fi)cen 5 a sequence in C(U — E) and
f € C(U — E) is arbitrary. Define T := Sol(f, N) and T := Sol(fx, N), € N.

Then the sets T, Tr, & €N, are compact and T, = T.

Proof. This follows from Proposition 3.10 in [9]. The proof is an application of Kamke’s
Theorem for finite dimensional ordinary differential equations. [1

We now obtain the following

Proposition 4.3. Suppose E is finite dimensional, U is open in E, N is bounded and
closed in E and |f; — f|v — 0 as kK = oo where (fx)xen 15 a sequence in C(U — E) and
f € C(U — E) is arbitrary. Suppose that N is an isolating neighborhood relative to f.

Then there is a kg € N such that for every kK € N with kK > kg, N 18 an isolating
neighborhood relative to f.

Proof. Using Proposition 4.1 we obtain Inv(f, N) = Invy (V) and
Inv(fs,N) =Invy,(N), k€N,

where 7 := Sol(f, N) and 7, := Sol(fs, N), & € N. Our hypothesis is that Inv(f,N) C
Intx (N). Thus Invy(N) C Intx(N) and so, by Proposition 2.14, Invy, C Intx (V) for
some kg € N and all K > k. Thus

Inv(fe, N)(N) CIntx(N), &> Ko.

O
The last result obviously implies the following corollary.

Corollary 4.4. Suppose E is finite dimensional, U is open in E, N is bounded and closed
in E and f € C(U — E) is arbitrary. If N is an isolating neighborhood relative to f then
there is an € > 0 such that whenever g € C(U — E) is such that |g — f|nv < € then N is
an isolating neighborhood relative to g. We define e(f, N) > 0 to be the supremum of such
numbers e. [

In the situation of the above corollary, if f is locally Lipschitzian, then the classical
Conley index of Sy := Inv(f, N) relative to the local flow 7y generated by the ordinary
differential equation

& = f(z)
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is defined, and we write i(f, S¢) to denote this index. Actually, since the set N uniquely
determines the invariant set Sy we also write h(f, N) instead of Sy and call h(f, N) the
Conley index of the isolating neighborhood N relative to f. If f is merely continuous, then
there is a locally Lipschitzian map g with

lg — flv <e(f,N).

Following [9] we now define the Conley index h(f,NN) of the isolating neighborhood N
relative to f as
h(f,N) := h(g,N).

It is shown in [9] that the index just defined only depends on the isolated invariant set Sy
and not on the particular choice of the isolating neighborhood. Moreover, this index enjoys
all the properties of the classical Conley index like nontriviality or homotopy invariance.

We can now specialize the perturbation stability result for Morse decompositions, The-
orem 3.15, to the present finite dimensional situation:

Theorem 4.5. Suppose E is finite dimensional, U is open in E, N is bounded and closed
in E and |fx — fly = 0 as & = oo where (fi)sen 5 a sequence in C(U — E) and
f € C(U — E) is arbitrary. Suppose that N is an isolating neighborhood relative to
f. Moreover, for every v € [1,m] let W, C N be a closed set which is an isolating
neighborhood relative to f and suppose that (Inv(f, W;))r~, is a Morse decomposition of
Inv(f, N) relative to f.

Then there is a ko € N such that for all Kk € N with kK > Ko, the set N is an isolating
neighborhood relative to fi, for every v € [1,m] the set W, C N is an isolating neighbor-
hood relative to fr and (Inv(fs, W,))™, is a Morse decomposition of Inv(fi, N) relative

to fi-

Proof. Let 7 and 7., x € N be as in of Proposition 4.2. By Proposition 4.1 we have
Inv(f,N) = Invy(N) C Intx(N), Inv(f,W,) = Invy(W,) C Int x (W,.), Inv(fi,N) =
Invy. (N) and Inv(f., W) = Invy, (W;), r € [1,m], s € N.

Since 7 and 7., & € N are compact, translation and cut-and-glue invariant, an ap-
plication of Proposition 4.2, Proposition 2.14 and Theorem 3.15 shows that there is a
ko € N such that for all & > ko, Inv(fi, N) = Invy, (N) C Intx(N) and Inv(fi, W,) =
Invr, (W) C Intx (W,.), r € [1,m], and (Inv(fx, W))7Z, is a T.-Morse decomposition, i.e.
(Inv(f,, Wy))™, is a Morse decomposition of Inv(f, V) relative to f,. [

The last result clearly implies the following theorem.

Theorem 4.6. Suppose that E is finite dimensional, U C E is open, N C E 1is bounded
and closed and N C U, f:U — E is continuous. Suppose that N is an isolating neigh-
borhood relative to f. Moreover, for every r € [1,m] let W, C N be a closed set which
is an isolating neighborhood relative to f and suppose that (Inv(f, W,))L, is a Morse
decomposition of Inv(f, N) relative to f.
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Then there is an € € |0, 00| such that whenever g:U — E is continuous and |f — g|n < €
then N s an isolating neighborhood relative to g, W, is an isolating neighborhood relative
to g, r € [1,m], and (Inv(g, W,.))™, is a Morse decomposition of Inv(g, N) relative to g.

By e(f, N, (W,)".,) we denote the supremum of all such numberse. 0O

We will now state and prove the Morse equation for the version of the Conley index
defined above. To this end, let (Hy)qez (resp. (H?)4ez) be an arbitrary homology (resp.
cohomology) theory with coefficients in an R-module M, where R is an integral domain.
If (Y, yo) is a pointed space then we define the Betti numbers

Bq(Y,yo) :=rank Hy(Y, {yo}) € No U {0}, ¢ €Z,

resp.
BUY, yo) :=rank HY(Y,{yo}) € Ny U {o0}, ¢qe€Z.

We also define the formal Poincaré polynomial

p(t, (V,90)) = > By(Y,0)t?, tER,
g=0

resp.

p(t, (V,00)) = ) BU(Y,50)t%, tER
g=0

In particular, whenever defined, the Conley index h(f, N) is an equivalence class of homo-
topy equivalent pointed spaces, so the polynomial p(¢, h(f,N)) is defined.
We now obtain the following Morse equation:

Theorem 4.7. Let U, f, N and (W;)™, be as in Theorem 4.6. Then
> o p(t,h(f, Wy)) =p(t, h(f,N) + (1 +6)Q(t), t€R
r=1

where Q(t) = Y oo akt®, t € R, is a formal power series with coefficients ax € No U {oo},
keNg.

Proof. Let g € C(U — E) be a locally Lipschitzian map such that
1.9_le < e(faNa(Wr r=1)-

Then from Theorem II1.3.5 in [12] we obtain the usual Morse equation

@) 3 p(t, g, W) = pit, h(g, M) + (L+5Q(H), teR
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where Q(t) = Y 7o axt*, t € R, is a formal power series with coefficients aj € Ny U {0},
k€ Np.
Since, clearly, e(f, N, (W;)m,) < e(f,N) and €(f,N,(W,)™ ;) < e(f,W,) for all r €

[1,m] we see that h(f,N) = h(g,N) and h(f,W,) = h(g,W,) for all 7 € [1,m]. This
together with (4.1) implies the assertion of the theorem. [

We will now treat certain classes of ordinary differential equations on infinite dimensional
Banach space.
We begin with the following useful definition.

Definition 4.8. The quadruple (L, E_1, Fy, E;) is called a trichotomy on the Banach
space E if the following properties are satisfied:

1. L: E — E is a bounded linear operator;

2. Ej, j € [-1,1], are closed L-invariant subspaces of E with E = E_; @ Ey @ E; and
Ey is finite dimensional. For j € [-1,1] we denote by L;: E; — E; the restriction of L to
E;.

3. There are constants M € [0,00[ and a € ]0, oo[ such that

”eL_lt”l:(E—l,E—ﬂ < Me—at’ te [O? OO[

and
1" | () < Me®, & €]-00,0].

The triple (L, E_,, E1) is called a dichotomy on E if (L, E_,,{0}, E,) is a trichotomy
on E.

For the rest of this section assume that (£, ||-||) is an infinite dimensional Banach space.
Assume the following hypothesis:

Hypothesis 4.9.
1. (L, E_1, Eo, E1) is a given trichotomy on E;
2. (P%en is a sequence of bounded linear operators on E such that P4(zx) — = as

£— o0, forallz € E.
3. For every £ € N the subspace E* := P*(E) is finite dimensional (hence closed in E)

and L-invariant. By L E* — E* we denote the restriction of L to Et LeN.

Remark 4.10. In view of the Uniform Boundedness Principle, item 2. of the above hy-
pothesis is equivalent to the requirement that Pt — Idg as £ — oo, uniformly on compact
subsets of E.

We have the following result:

Proposition 4.11. Suppose U is open in E, N is bounded and closed in E with N C U,
and K € C(U — E) is such that K(N) is relatively compact in E.
Define
f:U—=E, zw— Lz+ K(z),
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and
fQUNE* -5 EY zw L'z+P'K(z),LeN.
Let
T :=Sol(f,N) c C(R — E)
and

Tt :=Sol(f, NNE") cC(R— E*) cC(R— E), L€ N.
Then T and Ty, £ € N are compact in C :==C(R — E) and Tg = T inC, as £ — co.
Proof. The proof follows from Proposition 4.3 and the proof of Proposition 4.7 in [9]. O

Now we obtain the following

Corollary 4.12. Assume the hypotheses of Proposition 4.11. In addition, suppose that N

is an isolating neighborhood relative to f.
Then there is an £y € N such that for all £ € N with £ > £y the set NN E* is an isolating
neighborhood relative to f¢. By £o(K, N) we denote the smallest of such numbers £y.

Proof. Proposition 4.1 implies that Inv(f, N) = Invy(N) and Inv(f%, NNE*) = Invy, (N),
£ € N. Now Proposition 4.11 together with Proposition 2.14 imply the existence of an ¢y €
N such that whenever £ > £y, then Inv7, (V) C Int x (N). Since X = E and Inv,(N) C E*
for all £ € N it follows that Invy,(N) C Intge(N N E?) for all £ € N with £ > £,. O

Now assume all hypotheses of Corollary 4.12. Following [9] we define the LS-Conley
indez h(f, N) of the isolating neighborhood N relative to f as

h(f,N) := (h(f, N)t)e>eo(k,N)>

where
h(f,N)e=h(f\, NN EY, £>4(K,N).

Here, of course, h(f%, NN E*) is the finite dimensional Conley index defined earlier in this

section.
It is proved in [9] that whenever IV and IV’ are two isolating neighborhoods of the same

isolated invariant set S (relative to f) with K (IN) and K (IN’) relatively compact in E then
h(f,N)e = h(f, N')s, for all £ € N large enough.

Consequently, given an isolated invariant set relative to f we may write h(f,S) instead
of h(f,N), where N is an arbitrary isolating neighborhood of S relative to f with K (V)
relatively compact in F.

As it is shown in [9] this version of Conley index again satisfies all the properties of the

classical Conley index.
Now consider the following additional hypothesis.
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Hypothesis 4.13. For every sufficiently large £ € N there are linear L-invariant subspaces
Ft, Ft, and Ft of E such that B¢t = F* @ E* and the triple

(LIF"FflvFle)

is a dichotomy on F*. By i, we denote the dimension of Ff.
We now have the following

Proposition 4.14. Assume Hypothesis 4.13, In addition, assume the hypotheses of Corol-
lary 4.12.
Then there is an £; > £o(K, N) such that

h(f,N)e+1 = SAR(f,N), £ 4.

Here, of course, * is the homotopy type of a pointed k-dimensional sphere, k € Ny.
Proof. This is just Proposition 4.18 in [9]. [
We can now state the following perturbation stability result for Morse decompositions:

Theorem 4.15. Assume the hypotheses of Corollary 4.12. In addition, for every r €

[1,m] let W, C N be closed with Inv(f, W,) C Intg(W;) and suppose that (Inv(f, W;))7,

is a Morse decomposition of Inv(f, N) relative to f. Let f* be as in Proposition 4.11.
Then there is an £y € Ny such that whenever £ > £y then

Inv(f¢, N N E%) C Intge (N N EY),

Inv(f¢, W, N E%) C Intge (W, N EY) for all 7 € [1,m]

and (Inv(f%, W, N E%))™, is a Morse decomposition of Inv(f%, N N E*) relative to f*.
By 4(f, N, (W,)™.,) we denote the minimum of all such numbers £o.

Proof. Let T and Tz, £ € N be as in Proposition 4.11. By Proposition 4.1 we have
Inv(f,N) = Invy(N) C Intx(N), Inv(f,W,) = Invy(W,) C Intx(W;), Inv( ft.N) =
Invy,(N) and Inv(fé, W,) = Invy, (W;), r € [1,m], L€ N.

Since 7 and Tz, £ € N are compact, translation and cut-and-glue invariant, an appli-
cation of Proposition 2.14 and Theorem 3.15 shows that there is an £p € N such that for
all £ > £o, Inv(f%, N) = Invy,(N) C Intx(N) and Inv(f¢, W,) = Invy, (W) C Intx (W),
r € [1,m], and (Inv(f% W,))m, is a T;-Morse decomposition, i.e. (Inv(fé,W,))™, is a
Morse decomposition of Inv(f¢, N) relative to f*. Since Invy,(N) C E* and Invy,(W,) C
Et ¢ € N, r € [1,m], it follows that Inv(f¢, N) = Invy,(N) C Intge(N N E*) and
Tnv(f¢, W,) = Invy, (W) C Intge(W, N E*), r € [1,m], £ > 4. O

We now obtain the following Morse equation:
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Theorem 4.16. Assume all the hypotheses of Theorem 4.15.
Then, for every £ > Lo(f, N, (W,)7%1),

> ot h(f, We)e) = p(t B(f,N)e) + (1+1)Qe(t), teER

where Qu(t) = Y nep aekt®, t € R, is a formal power series with coefficients ag € No U
{OO}, k€ No.

Proof. This is an application of Theorems 4.7 and 4.15. [

5. AN INDEFINITE ELLIPTIC SYSTEM

We will now apply the results of the preceding section to give Conley index proofs of
two multiplicity results for a strongly indefinite elliptic system previously proved in [1]
using the Morse-Floer homology.

Let Q be a bounded domain in RY with smooth boundary. Consider the following

elliptic system

—Au = 8yH(u,v,z) in Q,
(5.1) —Av =9,H(u,v,z) in 2,
u=90, =0 indlL

Throughout this section we make the following assumptions:

(5.2) p and g € ]1,00[ are such that

(1/p) > (1/2) — (2/N),
(1/q) > (1/2) — (2/N),
(1/p) + (1/g) > 1 — (2/N).

(5.3) The function H:R x R x Q = R, (¢,7,z) — H(E,n, ), is of class G2
(5.4) There is a constant c; € |0,00[ such that for all (§,7,z) ERxRx Q
0cH (E,7,2)| < e (j€P~ + n|®=D9/P 41
0nH (,m,2)| < 1 (Inl?~ + [€]@7/7 1)
(5.5) There are constants cz and 6 € |0, 00[ such that for all (§,n,z) € R xR x Q

B¢ H (&, m, )€ — OnH (€, m, z)n 2 —cz + 6 (I€I° + [n]%) -
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Following [10] we will now briefly describe how to use Conley index to obtain solutions
of (5.1). For more details, the reader is referred to [10] and the references contained there.
First of all, it is well-known that the linear operator

B:W22(Q)nW,%(Q) = L3(Q), u+— —Au,

is positive self-adjoint and, consequently, sectorial in X = L?(£2). Thus B generates a
family X®, a € [0,00[, of fractional power spaces (cf e.g. [8]). We write A := BY/2.
Moreover, for o € [0,00[ let E* := X%/2 and E~ := E** be the dual of E*. Note that
for a € [0, 00| the formula

('u'a v)a = (AauaAa'U)Lza u,v € B

defines a Hilbert product in E* and A® is an isometry between the Hilbert spaces £ and
L%(Q). Endow E~® := E®* with the dual product. We write

A% = (A% L2(Q) - E“.

Whenever A > 0 and B¢ = \¢ then AP¢ = \B/2¢ for every B € R.
It is also well-known that for every 8 € R the operator A? can be uniquely extended to

a map
AP | ) E* > | E°
a€R a€eR
such that whenever o € R then A?(E®) = E~# and Af "zt E® = E®~P is an isometry.
Moreover, Hypothesis (5.2) is easily seen to be equivalent to the following condition:
(5.6) pand g € ]1,00[ and there are s, ¢ € |0, oof such that s +¢ =2 and

(1/p) > (1/2) - (s/N),
(1/9) > (1/2) = (¢/N).

From now on choose s and ¢ as in (5.6).

Define the product Hilbert space E := E* X Et with the Hilbert product
(z,2) = (u,u')s + (v,0')s, 2z=(u,v), 2 = (u,v)€EE.

We write | - |z to denote the Hilbert space norm on E.
Moreover, given z = (u,v) we write Z := (u, —v).
Now set
L(u,v) := (A"*Alv, A7*"A%u), (u,v) € E.

This defines a bounded (E, (-, -))-symmetric linear operator L: E — E. L has two eigen-
values, A = —1 and )\ = 1 with the corresponding eigenspaces denoted by E_; and Ej,
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respectively. The spaces E_; and E; are E-orthogonal complements to each other, and
so, in particular,
E=FE_10E;.

Thus the triple (L, E_;, E1) is a dichotomy on E. Let (Ax)xen be the repeated nondecreas-
ing sequence of eigenvalues of B and (¢x)ken, be a corresponding L2-orthogonal sequence
of eigenvectors such that |¢x|2. = 1/2 for every k € N. For every k € N let

Xk = (A™°¢r, A™"y) .

Then (Xk)ken, is an E-orthonormal basis of E;, while (%} )xen, is an E-orthonormal basis
of E_]_ .

For every £ € N let E¢ be the linear subspace spanned by Ui=1{xk,7k}. Moreover, let
F%,, resp. F{, be the one-dimensional linear subspace of E spanned by X, , resp. Xe41
and set F¢ = F*, @ Ff. Let P%: E — E be the E-orthogonal projector of E onto E*.

It follows that Ptz — z as £ — oo, for every = € E.

Altogether, we see that Hypotheses 4.9 and 4.13 are satisfied with 7, = 1 for all £ € N.

Now let us note that, in view of (5.4), for v € LP(2) and v € L%(Q) the function
0 H (u(-),v("),-) lies in LP/®=1(Q) so we may regard d¢H (u(-),v(-),-) as an element of
the dual space of LP(2). Since our choice of s implies that E* C LP(Q2) with compact
inclusion induced map, we can thus regard d¢ H (u(-),v(-),) as an element of E~*. Hence
A=289¢H (u(-),v(-), ) is a well-defined element of E°. Similarly, we may regard the function
Oy H (u(-),v(-),") as an element of E~* so A=2¢9, H (u(-),v(-), -) is a well-defined element of
E*. We thus obtain a well-defined map

(5.7) K:E— E, (u,v)+— (Ki(u,v),Ka(u,v))
where

K, (ua 'U) = "A—288£H(u(‘)7'u(')’ )
(5.8) Ko (u,v) = —A—Zta,,H('u,(-),'U(-), oY
Set

f=fxk=L+K.

The map K: E — E is continuous and whenever N C E is bounded, then the set K (V) is
relatively compact in E. Moreover,

K =-Vi

where
W:E > R, (u,v)r—)/QH(u(m),v(z:),z)da:.
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Here, and in the sequel, the symbol V denotes the gradient (of a given function on E) with
respect to the inner product on E.
Since L is F-symmetric, we thus obtain

(5.9) f=fk=V2

where
©:E—-R, zm (1/2)(Lz,z) — 9(2).

By using important bootstrapping arguments established in [1] it is proved that z = (u, v)
is a classical solution of (5.1) if and only if z € F and fx(z) = 0.

Thus the study of solutions of system (5.1) is reduced to the study of equilibria of the
gradient-like ordinary differential equation

(5.10) z = fx(2)

on F.
However, note that we do not impose any growth restrictions on the second partial

derivatives of H with respect to the variables (£,7). Therefore, no matter how smooth
the function H is, the map fx:E — FE, in general, is not differentiable nor even locally
Lipschitzian, and so the Cauchy problem for Equation (5.10) may have nonunique solutions.
This is where the Conley index developed in [9] and the results on Morse decompositions
presented in the first part of this paper come into play.

We first need the following useful

Definition 5.1. Suppose zp = (ug,vg) € E is an equilibrium of (5.10), i.e.
fx(z0) = 0.
Define the linear map Kiip »,: £ — E by
Kiin 2 (u,v) = (A% (—a(-)u+ c(-)v), A7 (c(-)u — b(-)v)).
Here, the continuous functions a, b and c: @ — R are defined, for z € Q, by

a(z) = 9¢e H (20(x), )
b(z) = OnnH (20(x), )
—c(z) = OgnH (20(2), 2) = OyeH (20(), o).

We call the equilibrium zo hyperbolic if the linear operator L + Kiin z, is injective.

Remark. Note that the operator L + Kjin ., is the ‘formal’ Fréchet derivative of fx at 2.

In general, the true Fréchet derivative D fx (zo) does not exist.
We now state the following fundamental Linearization Principle.
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Theorem 5.2. Let z = (ug, v) € E be a hyperbolic equilibrium of (5.10). Then {z} is
an isolated invariant set for fix and there is an integer v = y(z), called the renormalized
Morse index of zg such that

(5.11) h(fi,{20})e = h(L + Kiin 2, {0})e = SV, for all £ € N large enough.

Proof. This is Theorem 2.8 in [10] and its corollary. The proof that
h(fx,{z0})e = h(L + Kiin,z,{0})e, for all £ € N large enough

is technically involved since, in general, the map fx = L+ K: E — E is merely continuous
but not differentiable. To prove that

h(L + Kiin 2, {0}) = B, for all £ € N large enough,

note that, for all £ € N large enough, 0 is a hyperbolic equilibrium of the linear finite
dimensional ODE
T =g ('T )a T€El ¢

where g,: E* — E* is the linear map g, = Pfo (L + Kiin,z) gt~ Thus, for every £ large
enough there is a ky € Ny such that

(5.12) h(ge, {0}) = =™

Since in our case Hypothesis 4.13 holds with 4, = 1, formula (5.12) together with Propo-
sition 4.14 immediately implies the existence of v € Z such that

R(L + Kiin z,, {0})e = Z7F¢,  for all £ € N large enough. O

The following result was proved in [9] using an important a-priori estimate established
in [1].
Theorem 5.3. Define S to be the set of all points z9 € E for which there is a bounded

solution z: R — E of fx such that z(0) = 2.
Then S is compact in E and the Conley indez h(fk,S) is defined and

h(fx,S)e=X* for all £ sufficiently large. O

We say that the function H is a Morse function if every equilibrium of (5.10) is hyper-

bolic.
It is proved in Section 7 of [1] that the property of being a Morse function is generic in

a certain sense.
We can now state the main result of this section.
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Theorem 5.4. Suppose that H is a Morse function. Moreover, assume that 0 is a hy-
perbolic equilibrium of (5.10) with v(0) # 0. Then system (5.1) has at least two nontrivial
solutions.

Furthermore, if v(0) > 0 and H is even, i.e.

H(u,v,z) = H(-u,-v,z), (u,v,7) ERxRxQ,

then for every v € [0,v(0) — 1] equation (5.10) has at least two different equilibria with
renormalized Morse index . In particular, system (5.1) has at least 27(0) nontrivial
solutions.

Remark 5.5. This result was proved in sections 9.2.1 and 9.2.2 of [1] using a version of
Morse-Floer homology.

Proof. By Theorem 5.3 there is a bounded and closed set N C E such that N is an
isolating neighborhood of S relative to fx. Let 7 := Sol(fx,N). Then 7 is compact
in C = C(R — E), translation and cut-and-glue invariant. Moreover, 2o € E is a 7T-
equilibrium if and only if zp is an equilibrium of (5.10). Every equilibrium zq of (5.10) is
hyperbolic and so we conclude, by Theorem 5.2, that {2} is an isolated invariant set for
Jx. It follows that the set £ of equilibria of (5.10) is finite and (as 0 € £) this set has m
elements 2., 7 € [1,m], for some m € N. Since by (5.9) the set 7 is gradient-like with
respect to the function —@ it follows from Proposition 3.4 that, after a possible reordering,
the family ({z,})%, is a 7-Morse decomposition, i.e ({z.})™; is a Morse decomposition
of S = Invy(IV), relative to fx.

Now, for every r € [1,m] let W, C N be a bounded isolating neighborhood of {z,}
(relative to fx). Let v, = v(2), r € [1,m].

We then obtain, using Theorems 5.2 and 5.3, that, for all £ € N large enough,

p(t, h(f, {zr})e) = 7+, 1€ [1,m],

and
p(t, h(fx, S))e) = t-.

In view of Theorem 4.16 this implies that there is an ¢; € N such that for every £ € N with
£ > £, there is a formal power series

[ o]
Qe(t) =) arxtt, teR
k=0
with coefficients agx, ¥ € Ny lying in Ny U {oco} and such that

(5.13) ip(t, h(fi,{zr})e) =0, h(fK,9))e) + (L +8)Qu(t), £> 41, t€R

r=1
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Setting ay —1 = 0 we see that

A+)Qe(t) =D best®, >4, teR
k=0

where

(5.14) bg,k =0kt Qg k-1, keNy

SO
m oo

(5.15) PIRASAE T > bett, L2, teR
r=1 k=0

For v € Z let ¢, € Ny be the number of r € [1,m] such that v, = ~. Since 7, +£ 2 0 for
all £ > £, and r € [1,m] we see that

m (o 0]
Zt7r+e — Z c7t7+e s Z ck-—ttk) e Z Zl, t 6 R-
r=1 YEZ k=0

We can thus rewrite (5.13) in the form
oo oo

(5.16) S cr_ptt =1t + ) bestt, £24,t€R
k=0 k=0

Fix £ > £; arbitrarily. If m = 1, then y; = 7(0) # 0. However, (5.15) implies 71 = 0, a
contradiction. If m = 2, then (5.15) implies that 7; = 0 or 72 = 0 and so thereisay e Z
such that

(o o]
(5.17) 11 = "byut®, teR
k=0

This means that by g, 7 0 for some ko € Np. But then (5.14) implies that bgx,—1 7 0 or
else by ko+1 7 0. However, this contradicts (5.17) and proves that m > 3. This proves the
first part of the theorem.

Now assume that (0) > 0 and that H is even. This implies, in particular that when-
ever zg # 0 is an equilibrium of (5.10) then —zp # zp but Kiin,—z, = Kiin,z and so by
Theorem 5.3 we have that

h(fx,{—20})e = h(fx,{z0})e, for all £ € N large enough.

It follows that c, is odd for v = v(0) and c, is even otherwise. Hence it follows from (5.16)
that by is odd if k = £ or k = 7(0) +£ and even otherwise. It now follows from (5.14) that
ag is even if -1 < k < ¢ and so ag is odd. This implies by simple induction that ag g
is odd for all k € [£,7(0) + £ — 1]. By comparing coefficients in (5.16) we thus see that
ck—e > 2 for all k € [£,v(0) + £ — 1]. Hence, for every v € [0,7(0) — 1] we have at least
two equilibria of (5.10) with renormalized Morse index . This proves the second part of

the theorem. [
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