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On asymptotic stability in impulsive semidynamical
systems

K. A. G. Azevedo* and E. M. Bonotto!

Abstract
In the present paper, we study results about asymptotic stability for semidy-

namical systems with impulses at variable times. By considering an impulsive semi-
dynamical system (X, 7; M, I), we state conditions for a closed subset A of X to
be asymptotically stable in the impulsive system. In order to obtain the results we
make use of Lyapunov functionals. In conclusion, we show that the continuous time
three species prey-predator population controlled by a nonlinear feedback control
input still globally asymptotically stable if we consider such system with impulses
perturbation.

1 Introduction
The theory of impulsive differential equations has been used to model real-world prob-

lems in science and technology. This theory of impulsive systems has been attracting the
attention of many mathematicians and the interest in the subject is still growing. In the
last years, the action of impulses on dynamical systems has been intensively investigated.
We refer to the papers [4, 12], [14, 18] and the references therein for instance.

In this paper, we consider a class of impulsive semidynamical systems where the im-
pulses vary on time. We study sufficient conditions in order to obtain results about
asymptotic stability. We start by presenting a summary of the basis of semidynamical
systems with impulse effect. For details, see Refs. [4], [5], [10] and [14]. Then we present
the main results of this paper. First, we consider an impulsive semidynamical system de-
fined on a metric space X and we generalize some results of asymptotic stability for closed
sets studied in [2, 3] to the impulsive case. Second, we consider impulsive semidynamical
systems defined in R™ and we prove results of stability by using Lyapunov functionals of
class C'. Wefinish the paper by presenting a model of three species prey-predator popu-
lation controlled by a nonlinear feedback control input with impulsive condition, that is,
we prove that the equilibrium of this system is globally asymptotically stable.
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2 Preliminaries
In this section we present the basic definitions and notations of the theory of impulsive

semidynamical systems. We also include some fundamental results which are necessary
for understanding the basis of the theory.

2.1 Basic definitions and terminology
Let X be a metric space and Ry be the set of non-negative real numbers. The triple

(X,m,R,) is called a semidynamical system, if the function 7 : X xR, — X is continuous
with 7(z,0) = z and n(n (z,t),s) = n(z,t +s), for all z € X and ¢,s € R.. We denote
such system simply by (X, 7). For every z € X, we consider the continuous function
mz: Ry — X given by 7, (t) = m(z,t) and we call it the motion of z.

Let (X, 7) be a semidynamical system. Given xz € X, the positive orbit of x is given
by nt(z) = {n(z,t) : t € Ry}. Fort > 0 and z € X, we define F(z,t) = {y € X :

7(y,t) = x} and, for A C [0,4+00) and D C X, we define

F(D,A) =U{F(z,t) :z € D and t € A}.

Then a point z € X is called an initial point, if F(x,t) = for all t > 0.
Now we define semidynamical systems with impulse action. An impulsive semidynam-

ical system (X,m; M, I) consists of a semidynamical system, (X, 7), a non-empty closed
subset M of X such that for every x € M, there exists €, > 0 such that

F(z,(0,e;))NM=0 and (xz, (0,e,))NM=10 I)

and a continuous function I : M — X whose action we explain below in the description
of the impulsive trajectory of an impulsive semidynamical system. The points of M are
isolated in every trajectory of system (X,). The set Mis called the impulsive set, the
function I is called impulse function. We also define

M*(z) = (7% (z) NM) \ {x}.

Another property of the impulsive set M is that M is a meager set in X, see Lemma
2.1 in [9].

Given an impulsive semidynamical system (X, 7; M, I) and z € X such that M*(z) #
0, it is always possible to find a smallest number s such that the trajectory m,(t) for
0 < t < s does not intercept the set M. This result is stated next and a proof of it can
be found in [4].

Lemma 2.1. Let (X,m; M,I) be an impulsive semidynamical system. Then for every
r € X, there is a positive number s, 0 < s < +oo, such that m(z,t) ¢ M, whenever
0<t<s, and w(z,s) € M if M*(z) #0.

Let (X,7; M,I) be an impulsive semidynamical system and z € X. By means of
Lemma 2.1, it is possible to define a function ¢ : X — (0, +00] in the following manner

s, if 7(z,s) € M and 7(z,t) ¢ M for 0 < t < s,¢(z) = I+oo, if MT (z) =0.



This means that ¢(z) is the least positive time for which the trajectory of x meets M.
Thus for each z € X, we call w(x, ¢(z)) the impulsive point of x.

The impulsive trajectory of x in (X, 7; M, I) is an X —valued function 7, defined on the
subset [0, s) of R; (s may be +00). The description of such trajectory follows inductively
as described in the following lines.

If M*(z) = 0, then 7,(t) = n(z,t), for all t € R;, and ¢(z) = +oo. However if
M™*(z) #0, it follows from Lemma 2.1 that there is a smallest positive number sy such
that 7(z, sp) = 21 € M and 7(z,t) ¢ M, for 0 < t < sp. Then we define 7, on [0, so] by

+ =zy, t = sp,
= frie) 0<t< sg

where zi = I(z;) and ¢(z) = so.
Since sp < 400, the process now continues from zi” onwards. If M*(z]) = 0, then we

define 7, (t) = w(x, ¢ — 89), for sp < ¢t < +o0o, and ¢(zf) = +oo. When MF (xf) # 0,
it follows again from Lemma 2.1 that there is a smallest positive number s; such that
m(xf, 81) = 33 € M and m(x],t — so) € M, for sg < t < sop + 51. Then we define 7, on
[s0, So + $1] by

~ (xT, t — 80), So <t<sg+ 8;

Tq , b= So + $1,

where = = I(x;) and ¢(z]) = s1, and so on. Notice that 7, is defined on each interval
(tn, tnt1], where tq =Dsi. Hence 7, is defined on [0, t,41].

The process above ends after a finite number of steps, whenever M*(z;}") = () for some
n. Or it continues infinitely, if M*(z}) # 0, n = 1,2,3,..., and if 7, is defined on the
interval [0, 7'(z)), where T(z) = >"2, s:.

Let (X, 7; M, I) be an impulsive semidynamical system. Given z € X, the impulsive
positive orbit of x is defined by the set

7t(z) = {7(z,t) : te Ry}.

Analogously to the non-impulsive case, an impulsive semidynamical system satisfies
standard properties which follow straightforwardly from the definition. See the next
proposition and [5] for a proof ofit.
Proposition 2.1. Let (X,7; M,I) be an impulsive semidynamical system and © € X.
The following properties hold:

i) Tw, 0) =a,
i) 7(m(z,t),s) =7(x,t +s), for all t,s € [0,T(x)) such that t +s € [0,T(x)).

For details about the structure of these types of impulsive semidynamical systems, the
reader may consult [4, 12] and [14, 15].



2.2  Semicontinuity and continuity of ¢
The result of this section is borrowed from [10]. It concerns the function ¢ defined

previously which indicates the moments of impulse action of a trajectory in an impulsive
system. Such result is applied sometimes intrinsically in the proofs of the main theorems
of the next section.

Let (X,m) be a semidynamical system. Any closed set S C X containing z (z € X)
is called a section or a A-section through z, with A > 0, if there exists a closed set L C X
such that

(a) F(L,A) =;
(b) F(L,[0,22]) is a neighborhood of z;

(c) F(L,p)NF(L,v)=0,for 0 < p< rv <2
The set F(L, [0,2]]) is called a tube or a A\-tube and the set L is called a bar. Let (X,)
be a semidynamical system. We now present the conditions TC and STC for a tube.

Any tube F(L,[0,2)\]) given by a section S through z € X such that S C¢ MN
F(L,[0,2X]) is called TC-tube on z. We say that a point x € M fulfills the Tube Condition
and we write (TC), if there exists a TC-tube F(L,[0,2)]) through x. In particular, if
S=MNF(L,[0,2)]) we have a STC-tube on z and we say that a point 2 € M fulfills the
Strong Tube Condition (we write (STC)), if there exists a STC-tube F(L, [0,2)]) through. The following theorem concerns the continuity of ¢ which is accomplished outside M
for M satisfying the condition TC. See [10], Theorem 3.8.

Theorem 2.1. Consider an impulsive semidynamical system (X, 7; M, I). Assume that
no initial point in (X, 7m) belongs to the impulsive set M and that each element of M
satisfies the condition (T'C)). Then ¢ is continuous at x if and only if x & M.

2.3 Additional definitions
Let us consider a metric space X with metric p. By B(z, §) we mean the open

ball with center at z € X and ratio §. Let B(A, §) = {z € X : pa(z) < 6} where
pa(z) = inf{p(z, y) 1 y € A}.

In what follows, (X, m; M, I) is an impulsive semidynamical system and = € X.
We define the limit set of z in (X, m; M, I) by

Lz) = {y € X : F(x, ta) "25° y, for some t, "255° +00}

and the prolongation set of x in (X,m; M, I) by

DF (z) ={y € X : T(an, tn) "== y, for some z, "5% z and t, € [0, +00) }.

For a set A C X we consider D(A) = U{D*(z) : = € A}.
If 77 (A) C A, we say that A is positively T—invariant.



A point z € X is called stationary or rest point with respect to 7, if T(x, t) = x for
allt > 0.

Let A C X. The set A is orbitally T—stable if for every neighborhood U of A, there
is a positively 7—invariant neighborhood V' of A, VC U. We define the set

P(A) = {z € X : for every neighborhood U of A, there is a sequence

{tatns1 C Ry, tn, "255° 400 such that 7(z, t,) € U}.

The set P(A) is called region of weak attraction of A with respect to 7. If z € P(A),
then we say that x is T—weakly attracted to A. A subset A C X is called a weak
T—attractor, if PJ;(A) is a neighborhood of A. A set A C X is called asymptotically
m—stable, if it is both a weak T—attractor and orbitally 7—stable.

3 The main results
In this section, we shall present sufficient conditions to characterize asymptotic sta-

bility of closed sets. We are going to make use of a non-negative scalar function defined
on a neighborhood of the given set and decreasing along its trajectory to get the results.
We divide this section in two parts. In the first one, we consider impulsive semidynamical
systems defined on a metric space X and in the second part we consider impulsive systems
defined in R™.

3.1 Asymptotic Stability
Throughout this section we shall consider an impulsive semidynamical system

(X,m; M, I), where (X, p) is a locally compact metric space. Moreover, we shall assume
the following additional hypotheses:

(H1) no initial point in (X, 7) belongs to the impulsive set M, that is, given x € M there
are y € X and t € R, such that n(y, t) = x.

(H2) each element of M satisfies the condition (STC) (consequently, ¢ is continuous on
X\M).

(H3) MNI(M)=0.
(H4) For each z € X, the motion 7(z, t) is defined for every ¢ > 0, i.e. [0, +00) denotes the

maximal interval of definition of 7,. By following [14], the impulsive systems where
the motion 7 (x,t) is defined for all ¢ > 0 are the most important and interesting,
and, moreover, in many cases we may restrict ourselves to such systems (because of
the existence of suitable isomorphisms), due to the paper [12].

The first lemma is proved in [7], Lemma 3.1. We note that X does not need to be
locally compact to obtain Lemma 3.1.

Lemma 3.1. Let (X, 7; M, I) be an impulsive semidynamical system where X is a metric
space. Let 1p: X — RR, be a functional satisfying:
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a) Y(m(z,t)) <x) forx € X and t > 0;

b) ¥(I(z)) < ¥(x) for x € M.

Then (7 (z,t)) < (x) for allz € X and t > 0.

Let A be a non-empty closed positively #—invariant subset of X with boundary 9A
compact. Our aim is establish sufficient conditions to guarantee asymptotic 7—stability
of the set A. We start by presenting some auxiliary results.

Lemma 3.2. Let (X,m; M,I) be an impulsive semidynamical system and A be a non-
empty closed positively m—invariant subset of X with OA compact. Suppose G is a neigh-
borhood of A, I(G\ A)NM) Cc G\ A and let ¥ : G — Ry be a non-negative scalar
function satisfying:

a) Y(m(z,t)) < (xz) whenever w(x, [0,t]) CG, t > 0;

b) v(I(z)) < (x) for allz € M NG;

¢) Given € > 0, there exists 6 > 0 such that ¥(z) < & whenever p(z, A) < §. If
{Zn}nz1 C G and Y(z,) "=57 0 then p(zn, A) "=5° 0.

Foreacha > 0, let V, = {z € G: ¥(z) < a}. Then there exist ag > 0 and a neighborhood
U of A such that U NV, is a positively T—invariant neighborhood of A for a < ay.

Proof. By hypothesis of X and A, there exists a closed neighborhood U of A such that

ACcU=UCG and OU cU — A is compact.

By item c), given a > 0 there exists J, > 0 such that (2) < a whenever x € B(A, d,).
Thus V, is a neighborhood of A and consequently U NV, is a neighborhood of A.

Let ap = inf{t)(z) : = € G\ U}. From item c) we have ag > 0. We claim that U NV,
is positively 7—invariant if a < ap. In fact, take 0 < a < ag. By the proof of Theorem
10.10, [2], we can assure that

(x,t) eUNV, forall x € UNV, and for all t> 0. (3.1)

Now, let z € (UN V,) NM. By item b) we have

BU) < 92) < a
which implies I(z) € V,. Suppose I(z) ¢ U, then

ap <Y(I(2)) <Y(2) < a,

which is a contradiction by the choice of a. Hence,

I(2) eUNV, forall ze (UNV,) NM. (3.2)

By (3.1) and (3.2) we get w(z,t) e UNV, for all z € UNV, and for all ¢t > 0. O



Definition 3.1. Let x € M be given and suppose there exists a sequence {wy }n>1 C X
such that w, "=5° z. We say that z € M, if the sequence {wn }n>1 admits a subsequence
{wn }r>1 such that w,, ¢ M for all natural ny, and 7(wy,, (wn,)) ms x, see Figure 1.

We say that x € M. if the sequence {w,},>1 admits a subsequence {w,,}r>1 such that
Wn, € M for all ny, see Figure 2. We say that z € M, if the sequence {wy }n>1 admits a
subsequence {wp, }x>1 such that w,, ¢ M for all natural ny and 7(wp,, A) frei (x, A)
for 0 < A < ¢(z), see Figure 3.

M M M

x x r(x, A)
Wry,| We bet Wn, A)

Wns Wy Uhpr (Why, A)
Wns Who Wis (Wh, , A)

Wpr—>—|Wh,

Figure 1: =z € M, Figure 2: z € M. Figure 3: =z € M,

Lemma 3.3 below deals with the orbital 7—stability of the set A defined in Lemma
32
Lemma 3.3. Let (X,m; M,I) be an impulsive semidynamical system and A be a non-
empty closed positively ™—invariant subset of X with OA compact. Consider G and 1 :

G — Ry satisfying the hypotheses of Lemma 3.2. Assume 1 : G — R, is a continuous
function on G\ M. Then A is orbitally T— stable.

Proof. Let us prove that every neighborhood V of A contains some neighborhood UNV,
a < ag, where V,, ap = inf{¢)(z) : z € G\U} > 0 and U are constructed in Lemma
3.2 and its proof. Suppose the contrary, then there are sequences {\,},>1 C R; and

n—+00{za, }n>1 C X such that A, — 0, A, < ap and

Tx, € unv,, -V,
for each n € N. Set W = V,, NU. Since W — A is compact, we can assume without loss
of generality that

n—-400
IT) == PD.n

Note that p € W C G and
p¢A (3.3)

because x), ¢ V for each n € N. We have two cases to consider: when p € M and p ¢ M.



First, we consider the case when p ¢ M. Fromthe continuity of ¢» on G'\ M we have

P(za,) "57 Y(p). (3.4)
n—-+ooSince Y(zy,) < An, n € N, and A, — 0, it follows by (3.4) that

Y(p) = 0.

By property c) of 1 we have p € A and it contradicts (3.3).
Now, we consider the case when p € M. We need to study three subcases: when

p € M,, when p € M, and when p € M,. First, suppose p € M,. We can assume without
loss of generality that x, € M, for each n =1,2,.... By continuity of I, we have

I(z2,) "25° I(p) & M.

Then
Y(I(z,)) "=p(I(p)).

Since ¥(I(zy,)) < ¥(zx,) < Ap and A, "25° 0 we have

¥(I(p)) = 0,

that is, I(p) € A (by condition c) of ¢) and it is a contradiction since I((G \ A) NM) C
G\ A.

Second, we consider the case p € M;. We can assume without loss of generality that
{zx Ins1 C€ X \ M and 7(z,,, #(zy,)) "=25° p. Then

YI(T(2r,s $(2,)))) "=BI (p)).

Since Y(I( (zr, $(22,))) < (7 (2r,, (2) < Y(22,) < Ap and A, "5° 0, we have

Y(I(p)) = 0,

and I(p) € A which is a contradiction.
The last situation occurs if p € M,, that is, there exists a subsequence {zy, },>1 in

n—-4o0oX\M (we also denote this subsequence by {zy, }n>1) such that T(z,,€) = m(zy,,€) "—
m(p,e) = 7(p,€), with 0 < € < ¢(p) and 7(p,e) ¢ AU M. Thus (n(zy,,€)) "=5°

n—-4-00Y(m(p,€)). Since Y(m(zy,,€)) < P(x.) < Ap and A, — 0, we have (7 (p, €)) = 0 and
thus 7(p, €) € A which is a contradiction.

Therefore, every neighborhood V' of A admits a positively 7—invariant neighborhood
UNV, of A, a < ag, and A is orbitally 7—stable. O

Now, we mention an important lemma that will be very useful in the next result. The
reader may consult [5] for a proof.

Lemma 3.4. Given an impulsive semidynamical system (X, mw; M, I), where X 1s a met-
ric space, suppose w € X \ M and {zn}n>1 15 a sequence in X which converges to the point
w. Then, for any t > 0, there exists a sequence of real numbers {e, }ns1, with e, "—5° 0,

n—-+00 ~such that T(z, t + €,) — 7(w, t).



In Lemma 3.4, when 7(w, t) # wy = I(w;) for every j = 1,2,3,..., the convergence
Nn——+00 ~ n—-+oo(zn, t+en) — 7(w, t) does not depend on the sequence {e, },>1, thatis, 7(z,, t) "==

k

7(w, t), whenever t # > ¢(w]") for every k =0,1,2,.... We present this fact in the next
7=0

lemma whose the proof is in [8], Lemma 3.3.

Lemma 3.5. Given an impulsive semidynamical system (X, m; M, I), where X is a met-
ric space, suppose w € X \M and {z,},>1 is a sequence in X which converges to w. Then,

k

for any t > 0 such that t # > wy), k=0,1,2,.., we have F(z, t) "=5° F(w, t).
§=0

The attraction of set A is presented next.

Lemma 3.6. Let (X,m; M,I) be an impulsive semidynamical system. Consider A, G,
I and 1 as defined in Lemma 3.2. Suppose in addition that + satisfies the following
properties:

1. 1) is continuous on G \ M;
2. If 7(z,[0,5)) C G\ A forz € G\ A and s > 0 (s may be +00), then i is not

constant in T(z, [0, s)).

Then A is weak 7™— attractor.

Proof. Let U, V, and ap as in Lemma 3.2. If we prove that U N Vag C P(A), the result
follows. Suppose the contrary, that is, there exist z € UN Ven and neighborhood V of A

such that for every sequence {t,},>1 C Ry with ¢, "ZF 1oo we have

T(z,tn) € V,

for each mn € N. Since U N Vag is positively 7—invariant we have 7(z,t,) € UNV.my = V,
for all n € N. By the compactness of U N Veo — V we may assume that

(ta) "Ty € UNVag— V. (3.5)

We have two cases to consider: when y € M and when y ¢ M.
First, let us consider the case when y ¢ M. By the continuity of ¢ on G'\ M and (3.5)

we get
Y(F(@, ta)"57 U(y).

Since (T(z, t,)) < Y(z) < = we have ¥(y) < =
n

that t # 3. d(y;H), for each n = 0,1,2,.... Then, there exists a subsequence {tn, tr>1 of

<opandy € V,,. Now, fixet > 0 such

i=0
{tn}n>1 such that t,, >t,,_, +t, kK > 2. Note that

Y(7 (2, tn) < YA (2, toy, +1) = (FF (2, t0,_,), 1), (3.6)

9



for k > 2. By Lemma 3.5, we have the convergency 7(7(z,t,,_,),t) fide 7(y,t) ¢ M.
By passing the limit in (3.6) as & — +00 we have

P(y) < ¥(7(y,1)).

Since y € UNVy, and ¥(7(y,t)) < ¢(y) for all ¢ > 0, it follows that (7 (y,t)) = ¥(y) for

all t # >yi), n=0,1,2,3,.... Consequently, if t = > oly) for any n =0,1,2,...,
i=0

and 0 < € ¢(yit.1) we have (y) = ¥(7(y,t +¢€)). Thus

Py) = v@(y, t+ €)) < p(@(y, 1) < P(y).

Hence, (7 (y,t)) = 9 (y) for all t > 0. By (3.5) it implies y ¢ A and since (7 (y,t)) =
Y(y) for all t > 0 we have 7+ (y) € V4, \ A, which contradicts the hypothesis 2).

Now, we consider the case when y € M. Since 7(z,t,) ¢ M because I(M) NM =)
(hypothesis (H3)) and Msatisfies the STC—condition, we may consider just the two
possibilities: either 7(z,t,) € M, or 7(z,t,) € M,.

If7(z,t,) € My, let 2, = T(x, t,),n=1,2,.... Then we can suppose 7(2,, ¢(z,)) Ree
y, with ¢(z,) "=55° 0. Let t > 0 be fixed (arbitrary) such that t # > oly), for each

i=0
n=0,1,2,.... Let {t,, }x>1 be a subsequence of {t,},>1 such that ¢,, >t
and N > 0 be an integer such that ¢(z,) < t, for all n > N. Then

+t k>2Ng—1

(7 (2, try + D(2n,)) S YA bn, +14 O20) =

= Y(7 (x, ty, TH+ ¢(2ny,) + ?(2ni_y) - P(2ny_1))) =
Y(T(T(2, tnyy + B(2ney))s t+ O20) — D204),

that is,

YI (7 (zn $(20,)))) S YEF(@, trey + S201) t+ D(20e) = D201),
that is,

YI (7 (zn, #(2n,)))) S (EIT (2ny_ys B20) E+ (20) — B(2n,y)).
Since

k—+oc0I(7(2n,, $(2n,) = I(y) and ¢(zn,) — (2n,_,) "=> 0,

we get by Lemma 3.5 the following inequality

Y(I(y)) <v(@F((y), 1) <v((y)),
Then we have

Y(@(I(y),t)) = ¥(I(y)) forall ¢t>0 such that t#> ¢(y5), (3.7)
1=0

10



for each n = 0,1,2,.... On the other hand, if t = > oi) for any n = 0,1,2,..., and
i=0

0 < € < @(y,y) it follows by equation (3.7) that ¢(I(y)) = (F(I(y),t + €)). Thus

v(I(y))= v(@(1(y), t+ €)) < Y(F(I(y), 1) < (I (y)).

Therefore, ¥(I(y)) = ¥(7(I(y),t)) for all t > 0. Note that 7+(I(y)) € Vy, \ A since y ¢ A
and I((G\ A)NM) C G\ A. It is a contradiction.

But if 7(z,t,) € M,. Choose 0 < e < ¢(y) such that 7(y,e) = n(y,¢) ¢ A. We have

F(7 (2, tn), €) "25° Fy, €).

Let ¢ > 0 be fixed such that ¢ # > oh), for each n = 0,1,2,.... Let {¢,,}x>1 be a
i=0

subsequence of {t,},>1 such that t,, > t,,_, +t, k > 2. Then

Y(7(z, tn, + €)) < Y(7(z, tn, +t + &))

for all £ > 2. By Lemma 3.5 and by passing the limit in the previous inequality as
k — +00, we have

Y(7(y,€)) < Y(7(y,e +1) <»(F(y,e)).
n

Thus (7 (y,€)) = Y(7(y,e +t) for all ¢ > 0 such that ¢t # > oh), for each n =
i=0

Bede HiE= > ¢(y;") for any n = 0,1,2,..., we proceed as before. Then (7 (y, €)) =
i=0

Y(7(y,e+1t)) for all t > 0. Since 7+ (7(y,€)) € Vy, \ 4, we have a contradiction.
Therefore, A is weak T—attractor. Od

According to Lemmas 3.3 and 3.6, we can state the asymptotic stability result to the
set A as show the next theorem.

Theorem 3.1. Let (X,m; M,I) be an impulsive semidynamical system, where X is a
locally compact metric space. Let A be a non-empty closed positively T—invariant subset of
X with OA compact. Suppose G is a neighborhood of A and I((G\A)NM) C G\A. Assume
YG — Ry is a continuous functional on G\ M satisfying the following properties:

P1) y(m(z,t)) < ¢(z) whenever w(z,[0,t]) C G and t > 0;

P2) Y(I(z)) < Y(z) forz €e MNG;
P3) Given € > 0, there exists 6 > 0 such that ¥(z) < e whenever p(x, A) < §. If

n—-4o0o{Zp}ns1 C G and (zy) "=5° 0 then p(z,, A) "235° 0;

Pz) If 7(z,[0,s)) C G\ A forz € G\ A and s > 0 (s may be +00), then 1 is not
constant in T(z, [0,s)).

Then, A is asymptotically 7™— stable.

il



Example 3.1. Consider the space X = R? x {0,1} and the dynamical system

T= —x+ ey,
y=-—-y+oz, (3.8)

on R? x {0} and R? x 1, independently. The constants ¢ and o are positive such that ¢ < 1

and 0 < 1. Now let My = {(z,y,2) e R®: 2* +32 = 1, 2 = 0}, My = {(z,y,2) € R3:
2? +y? = 1/4, 2 =1} and M = MyUM;. We define I(z,y,0) = (z,y,1) for (z,y,0) € Mp
and I(z,y,1) = (z,y,0) for (z,y,1) € My. Take Ay = {(z,y) € R?: 2? +42 < 1} x {0},
Ay = {(z,y) e R? : 22 +3? < 1} x {1} and A = Ag U A;. We claim that the set A
is asymptotically 7#—stable. We are going to use Theorem 3.1 to prove it. It is easy
to check that A is a closed positively 7—invariant subset of X with OA compact. Let
G = X be the neighborhood of A. Since (G\ A) NM = it follows that the hypothesis
I((G\A)NM) C G\ A is satisfied. Consider the function 4 : X — R, given by

Vat 4+y?—-1Sif Vz? +92 >1 and z€ {0,1Wows) ={ Jaag OV 1
0, if vVz2+92<1 and 2 € {0,1}.

It is clear that the function vy is continuous on X. Now, let us start by verifying the four
conditions of Theorem 3.1:

(P1) Given (z9, v0) € R?, we consider the two flows

©1((20, 90,0), t) = (z(z0,1), y(%0,1),0) and @a((z0,90,1),t) = (z(zo.t),y(v0,t), 1)

such that (z(t), y(t)) = (z(zo,t), y(vo,t)) satisfies system (3.8) and (z(0),y(0)) = (x, ¥o).
Let zp = (zo, ¥0, 0) and wo = (zo, ¥o, 1).

If Jz? + y3 > 1, we have

oY oy. oy, _552 (20,7) + 3y Wo: t) + 5, 220 t) =

1 €eE+oSR (1+ ) <0,(20,0) + (30,1) 2

for all t > 0 such that (20) € X \ A. If \/zZ +42 < 1 then (1 (z0, t)) =0fort>
Hence, (1 (20,t)) < 0 whenever (zo, yo) € R? and ¢ > 0. Analogously, 1(pa(wp,t)) <
for all (zo,30) € R? and ¢ > 0. Then, ¥(p1(20,t)) < ¥(20) and ¥(wa(wy, t)) < Y(w
whenever (zg,%0) € R? and t > 0.

Y(er(20,1)) =

0.
0

0)

(P2) Since 9(z,y, z) = 0 for each (z,y,2) € A and I(z,y,2) C A for (z,y,2) € M, we
have ¥(I(z,y, 2) = ¥(z,y, 2) = 0 if (z,y,2) € M.

(P3) Given 0 < e < 1, if p((z,9,0), Ag) < t=; and 2? + y? > 1 then

€ 1
Vz+y?—-1< = 1l— ——<e¢.4 1—¢ Vx? +?

12



Thus, ¥(z,y,0) < e. If 2? + y* < 1 it is clear. Analogously, if p((z,y,1), A;) < 7 then
Y(z,y,1) < e. Hence, given € > 0, there is § > 0 such that Y(z,y,2) < & whenever
p((z,y,2),A) <6.

It is clear that if {(zn,¥Yn,2n)}n>1 C G and ¥(Tn, Yn, 2.) "ZFC 0 then
p(T, Yn, 20), A) "57 0;

(P4) Note that M C A. By the property (P1), ¥(w;((zo, vo, 2;),t)) < 0 for t > 0 such
that vi((zo, 0, 2:),t) € X \ A, i = 1,2. Then, ¥(;((zo, yo, 2), t)) < ¥((x0, yo, zi)) for all
(zo, Yo, zi) € X \ A and ¢ > 0 with ¢;((zo, v0, 2i),1) € X \ 4, i = 1,2. As the inequality is
strict we get the result.

By Theorem 3.1, A is asymptotically 7—stable.

3.2 (Cl-Lyapunov functionals and asymptotic stability in R"
This section concerns about impulsive semidynamical systems on X C R™. Throughout
the results, we will assume that the function f : R® — R" satisfies sufficient conditions
such that the ordinary differential equation

z= f(z), z eR" (3.9)

define a dynamical system in R™. Thus we consider that equation (3.9) satisfies conditions
for the existence, uniqueness and extendability to the whole real line of its solutions for
all points in R™.

Let M C R™ be an impulsive set and J : M — R" be the impulse operator as presented
in subsection 2.1. Then, we consider the impulsive semidynamical system (R", 7; M, I ).

We also assume that hypotheses (H1) — (H4) from the last subsection hold.
We present the first asymptotic stability result for impulsive semidynamical systems

in R™. We recall that a set A is positively m—invariant if 7(A,t) C A for all t > 0, and it
will be said I—invariant if 7(A NM) C A, see [10].

Theorem 3.2. Let A C R™ be a non-empty closed subset of R™ with A compact. Assume
A positively m—invariant and I—invariant. Let G be a positively m—invariant neighborhood
of A, I((G\A)NM) C G\ A and ¢ : G — R,. be a continuously differentiable real-valued
function defined on G such that:

a) P(x) =0 if x € A and if {Tn}n>1 C G with ¥(z,) "=5°0 then p(z,, A) "225° 0;

b) (V(x), f(z) <0 ifz ¢ A;

c) ¥(I(z)) < ¥(z), if t€ MNG.
Then, A is asymptotically 7-stable in (R™, 7m; M, I).
Proof. From item b) we have y(n (z,t)) < ¢(z) for all z € G\ A and for all t > 0. Since
A is positively m—invariant, we have (7 (z,t)) < (x) for all z € G and for all t > 0.

On the other hand, given ¢ > 0 and z € A, there exists §, > 0 such that 1(y) < ¢

whenever p(y,z) < 0,. Let {B(z,d;) : = € OA} be a cover of A. By the com-
pactness of 9A there are zi, ...,z) such that 0A C B(z1,6;,) U ... U B(x, ds, ). Take
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0 < min{dy,, ..., 0, }. Then provided p(z, A) < § we have (x) < e (¥(w) = 0 if w € A).
Moreover,if ¢(z) = 0 it follows by item a) that zz € A.

Suppose 7(z, [0,s)) C G'\ A for some s > 0 and z € G \ A. Since (7 (z,t)) < ¥(z)
for t € (0, ¢(z))N (0, s) and ¥(I(z)) < (x) it follows that 1) is not constant on the whole
trajectory 7(z, [0, s)).

Therefore, by Theorem 3.1 the set A is asymptotically 7—stable. Od

Lemma 3.7. Let X be a non-empty subset of R™ and (X,m; M, I) be an impulsive semi-
dynamical system. Let G be an open positively m—invariant neighborhood of a compact
set AC X in X. Suppose I((G\ A)NM) C G\ A and L*(z) is a non-empty set such
that L*(z)C G\ Mfor allz € G. Let: G — Ry be a functional satisfying:

a) ve Cl;

b) (Vi(z), f(z)) £0, for z € G;

c) v(I(z)) <Y(z), ifz € MNG.

Then, for any x € G, we have (Vi(y), f(y)) = 0 for all y € L*(z).

Proof. By items b), c) and Lemma 3.1, we have ¢(7(x,t)) < ¢(z) forall z € G and ¢ > 0.
Let z € G. If L*(z) is singleton, that is, L*(z) = {so} for some sy € G then sis a
stationary point (because sy ¢ M) and f(so) = 0. Otherwise, take z, 25 € L*(z). Then,
there exist sequences {¢,} and {7,} in R; such that ¢t, — +00, 7, — +00,

F(z, t,) "25% 2 and F(z, 7)"5° 2.
We can assume without loss of generality that 7,, > t,, for each natural n. Then,

(T(z, 7) < (T(2,t0)).
Since 1 € C', we may take the limit in the previous inequality as n — +00 and we obtain

Y(22) < Y(21).

Analogously, we can assume t, > 7, and we get Y(z1 ) < (23). Hence 1) is constant on
L*(z). Consequently, (Vi(y), f(y)) =0for ally € L*(z), z € G. O

In order to prove Theorem 3.4, we need the following theorem from [11].

Theorem 3.3. Let (X,m; M,I) be an impulsive semidynamical system. Assume that X
is locally compact and A is a compact subset of X. Then the following conditions are
equivalent:

a) A is T-stable.

b) A is orbitally 7-stable.

¢) D(A) = A.

14



From subsets of R™ we have the following theorem about asymptotic stability.

Theorem 3.4. Let X be a non-empty subset of R™ and (X, 7m; M,I) be an impulsive
semidynamical system. Let A be a compact subset of X and G be an open positively
m—invariant neighborhood of A in X. Suppose I((G\A)NM) C G\ A and let : G — R..
satisfying:

a) Pp eC;
b) (zx) =0 for all x € A;

¢) (Vy(z). f(z)) <0 for all z € G\ A;

d) Y(I(z)) <¥(z) ifr € MNG.
Let n > 0 such that B(A,n) C G. If L*(z) C B(4,n)\ M for all x € G, then A is
asymptotically 7™— stable.

Proof. Items b), c), d) and Lemma 3.1 imply that ¢(7(z,t)) < ¥(z) for all z € G and
t > 0. By Lemma 3.7, for any z € G, we have

(Vy), f(y) =0 forall ye L¥(a). (3.10)

Suppose A is not 7-attractor, then there exists yo € G, L* (yo) # 0 suchthat L* (yo)
is not contained in A. Now, let z € L*(yo) then (VY(2), f(2)) = 0 since we have
(3.10). Consequently, by b) and c) it implies that = € A. Hence, L* (yo) C A and it is a
contradiction. In conclusion, A is T-attractor.

_Now let us show that A is orbitally 7-stable. Suppose there exists z € D(A) — A.
Then, there are a € A, {wp}n>1 C G and {t,}n>1 C [0, +00), such that

n—-+o00 ~ n—-+o0o
wy, — a, and 7(wn,t,) — =x.

Since
Y(T(wn, tn) < (wy)

and ¢ € C?, by taking the limit as n — +00, we obtain

P(x) < (a) =0.

It is a contradiction because z ¢ A. Thus D(A) = A and by Theorem 3.3 the set A is
orbitally 7-stable. Therefore, A is asymptotically 7-stable. O

Example 3.2. The system which describe the three species prey-predator that consists
of two competing preys and one predator can be described by

— = rz (1 — kilz - kitcoy) —®y(z,y)2

— = ry(l—ki'az —ky'ly) — ®o(z,y)2 (3.11)

— = e®i(z,y)z + ea®Py(z,9)2 — az,

15



where a, ky, ka, 11, 79, C1, C2, €1 and e; assume positive values. The parameters e; and e,
represent the conversion rates of the preys z, y to predator z. The functions ®; and ®,
represent a functional response of predator to preys. The variable z and y represent the
densities of the two prey species and the variable 2 represents the density of the predator
species. It is known that the predator z consumes the preys z, y according to the response
functions

ax asy——— and Py(z,y) = ——————14 biz + by
2(%,y) 14 biz + boy

where a; and a, are the search rates of a predatorfor the preys x, y respectively, b; = hyay
and by = hag with hy and hy denote the expected handing times spent with the preys z,
y, respectively. See [16] for details.

By using the transformations

OJ (x, Y) =

T= hi az, To = kyty, Tg = kylz and t=nrT
we can rewrite system (3.11) in the non-dimensional form:

dx — 1-2 _ ) — 12123

I ! ! 22 + Biz + Bo
T2 VooT3— = xo(l—29g — M21) — ——= 3.12dt 7222 2=Na) 1+ Biz1 + Baz

( )

dvs _ nTiTst falasdt i + G121 + Bao Ha Zs,

where ay = a1kiri', as = cikoki!, Bi = biki, Bo = boka, M1 = cokikyt, yo = ae
v1 = ager, vp = agkiry’, pu = ar] and pp = egkovs thy

In [1], the authors study the adaptive control of the three species prey-predator system
by using nonlinear feedback control approach. They consider system (3.12) with control
inputs as present the following system:

day _ z1(1 — 21 — aps) (1 + fiz1 + Poza) — 1x13 + Uy

dt 1+ Biz1 + faz
dy _ Y2Ta(l — 1x1 — 22) (1 + S121 + Boma) — tamozs + us (3.13)dt 1+ Biz1 + Bozo
dg B T3(T1 + pots) — pizs(l + frzy + Bows) + us
dt 1+ Biz + Bozo

where uy, uy and uz are the control inputs. By using the nonlinear feedback controllers

uy = z1[(Br1x1 + Baza) (anzs + Tp = 1) + Qo — 1]

uy = 7r2((b1z1 + fora) (22 + M121 — 1) + 171 — 1] (3.14)
uz = p1(biz1 + Boza)xs — (1x1 + pata) zs,

system (3.13) becomes
dz;  —(z1 + ozs)dt 1 + B11 + (oxo
dy _

— (722 + vox3) 22
(3.15)dt 14 Bizzy + Boxsdrs —U1T3

dt - 1+ B11 + Boxy
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In [1], the authors show that the equilibrium point of (3.15) is asymptotically stable.
If we change the number of population of predators, for instance, by imposing impulse

conditions, we are going to show that system (3.15) with this impulse condition still
asymptotically stable.

Since the densities z(t), z2(t) and x3(t) are non-negative, we consider the phase
space X = {(z,y,2) €R*: 2 > 0,y > 0,2 > 0} which is invariant. Thus (3.15) define a
dynamical system (X, 7) on X.

By Theorem 4.1 from [1], the equilibrium (0, 0,0) of system (3.15) is asymptotically
stable. Actually, by Corollary 1.2 (Chapter X) from [13], the equilibrium (0, 0, 0) Is glab-
ally asymptotically stable. In fact, the Lyapunov function V (x1, zy, 23) =

TitTptssatisfies the conditions to get the result. Then (3.15) is stable and for each zo € X we
have

lim #(t,0,@5) =0, (3.16)
t—+4o00

where z(t) := z(t,0,z0) = (z1(t), z2(t), z3(t)) is solution of (3.15) satisfying the initial
condition z(0) = zy.

Pp

Now, let M = (a, To, x3) € X : z1+2z9+23 = 3} be an impulsive set in X, where
i=1

p € N and §; are positive numbers for ¢ = 1,...,p. We define the impulsive operator
I: M — X by

I(z1, 29, 23) = (21, 2, I3(21, 22, 23)
where 0 < I(x, Ta, x3) < x3 and I(M) NM=0.

Let (X, 7; M, I) be the impulsive semidynamical system defined by system (3.15) and
by the impulse operator I above. Set A = {(0,0,0)} and let G = X be the neighborhood
of the equilibrium (0, 0,0) in X. Note that I((G\ A) NM) C G\ A. By definition of I
and by (3.16), we have I+ (%1, 22,23) = {(0,0,0)} for all (zy, x0, 23) € G.

The impulsive condition says that if the solution of (3.15) meets surface M then the
quantity of predators decrease. Even we have loss of predators, the equilibrium (0,0, 0)
still asymptotically stable. Indeed, consider the Lyapunov functional

2 2 2
zy +15 + 23Y(z1, 22,23) =5defined on X. We have 1(0,0,0) =0. If w = (21, 22,23) € G'\ A then

(21 + Q1T3)T3 (Yao + VoT3)T3 p13(Vw), fw) = 1+ Brz1 + Pao LE Brz1 + Bozo C14 Brz1 + Bozo =i,
and if (x1, zo, x3) € M then

n 2 2zo] + 23 + I3(z1, To, 73) Ti + x5 + 23
5 5 = (x1, T2, T3).Y(I(z1, zo, x3) =

By Theorem 3.4, A is asymptotically 7—stable. Actually, A is globally asymptotically
7—stable Bedsits L* (zy, Ta, x3) == {(0,0,0)} for all (zy, zs, z3) € X.
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