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Abstract. The Boundary Element Method (BEM) is a numerical approach accurate in the solution of

several elastostatic problems. Because the method formulation involves integrais written at the
houndary, solely the bodies’ boundaries are discretised. Then, in three-dimensional problems, the BEM

mesh is composed of plane elements. However, the standard BEM formulation is limited in the solution

of problems where punctual- boundary conditions are present. Then, concentrated loads and punctual

support conditions are not properly represented by the standard BEM. Such boundary conditions may

be approximately represented through small BEM elements. However, this strategy may lead to the ill-

positioned algebraic system of equations because of the small distance among the source points in such
elements. In this regard, this study presents an enriched BEM formulation (XBEM) capable to represent

properly punctual boundary conditions in three-dimensional problems. The Dirac’s function is utilized
in this enrichment process. Three numerical applications illustrate the accuracy of the proposed XBEM

scheme. The results achieved by the proposed XBEM formulation are compared with responses
provided by equivalent models constructed on Finite Element Method.
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An eXtended Boundaty Elementformulation for punctual boundary conditions modelling

1 Introdução

A mecânica dos materiais e das estruturas contempla um conjunto de teorias que permite o estudo

e a compreensão do comportamento mecânico de sólidos e sistemas estruturais submetidos a ações

externas, tais como peso próprio, vento, sobrecargas, dentre outras. De modo a determinar os efeitos dos

esforços nas estruturas, abordagens analíticas podem ser utilizadas. No entanto, deve-se destacar que

tais abordagens são limitadas na análise de estruturas que possuem geometria e condições de contorno

complexas. Nesse contexto, a solução de problemas reais de engenharia requer a utilização de métodos

numéricos. Neles, diversas ações podem ser simplificadamente idealizadas como pontuais, a depender

das características das solicitações.
Nesse sentido, os métodos numéricos de domínio, como o Método dos Elementos Finitos (MEF),

possibilitam, em sua formulação, a aplicação das condições de contorno concentradas diretamente no

problema, ao aplicar o carregamento ou apoio pontual sobre o nó. Contudo, o Método dos Elementos de

Contorno (MEC) é formulado a partir da imposição de deslocamentos e forças de superfícies prescritas
de forma distribuída no contorno. Desse modo, se há o interesse em aplicar uma carga ou apoio pontual,

é necessário o uso de um elemento de contorno de pequenas dimensões, e aplicar sobre ele a condição

de contorno. Com isso, surgem pontos de colocação proximamente posicionados. Devido à natureza

singular das soluções fundamentais, tal proximidade pode levar ao mal-condicionamento do sistema.

Como alternativa a esse problema, este artigo apresenta uma formulação enriquecida para o MEC de

modo a permitir o uso das vinculações e cargas concentradas sem prejudicar o condicionamento do
sistema.

As formulações enriquecidas são definidas como alterações promovidas ao polinômio de

aproximação dos campos mecânicos com base no conhecimento apriori do espaço de solução. Assim,

o Método dos Elementos Finitos Generalizados/Estendidos (MEFG/MEFX) é uma das abordagens que

faz uso do conceito de enriquecimento das funções de aproximação, aplicado ao MEF. Uma aplicação

comum do MEFG/MEFX é na representação de problemas da Mecânica da Fratura. Assim, as soluções

conhecidas dos campos mecânicos próximos à ponta da fissura são adicionadas à aproximação de
deslocamentos. Com isso, a influência das fissuras é melhor considerada na resposta do problema.

No que concerne ao MEC, a abordagem enriquecida se inicia com Simpson e Trevelyan [1]. Tais

autores fizeram uso do Princípio da Partição da Unidade para acrescentar termos na aproximação do

campo de deslocamentos. Assim, foram obtidas respostas mais precisas em problemas bidimensionais
da Mecânica da Fratura. Dessa forma, inicia-se o estudo do Método dos Elementos de Contorno

Enriquecido {eXtended Boundary Element Method, XBEM). Alatawi e Trevelyan [2] e Elattori, Alatawi

e Trevelyan [3] também fizeram uso do XBEM com objetivo de obter o cálculo direto dos Fatores de

Intensidade de Tensão em problemas fissurados. Observa-se particularmente para o MEC que
formulações enriquecidas são mais precisas em relação às tradicionais.

Contudo, nenhum dos trabalhos acima mencionados aborda problemas tridimensionais. Além
disso, ações pontuais também não são tratadas. Desse modo, o presente estudo apresenta uma

formulação emiquecida no MEC que permite a abordagem direta das condições de contorno pontuais

em problemas tridimensionais. Dessa forma, o presente estudo contribui com a ampliação do campo de

aplicação do MEC. Assim, é evidente o caráter inovador dessa abordagem, uma vez que não há nenhum
trabalho na literatura que aborde tais tópicos. Serão apresentadas três aplicações, em que os resultados

da formulação desenvolvida serão comparados a modelos equivalentes desenvolvidos no software
ANSYS®.

2 Método dos Elementos de Contorno

2.1 Solução Fundamental e Equação Integral

O MEC, de acordo com Brebbia [4], pode ser deduzido a partir da aplicação do Método dos
Resíduos Ponderados no problema de valor de contorno da elasticidade linear, conforme Eq. (1).
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b.) wdCi. = 0. (1),, , +
.nj

n

é 0 gradiente do tensor de tensões, b. é o vetor de forças de volume aplicadas e Q é

0 domínio do corpo analisado. A função ponderadora w escolhida para a minimização do resíduo é a
Solução Fundamental de Kelvin [5], em que um meio infinito, tridimensional e isotrópico é sujeito à
ação de um carregamento pontual representado pela função Delta de Dirac. Para esta solução, o campo
de deslocamentos é descrito pela Eq. (2), enquanto as forças de superfície são calculadas pela Eq. (3).

Em que <jMJ

1

[(1 - 2v) 5^ + 3r,r, ] - (l - 2v)(;?,r, - Tj.r.)}.

(2)

-1
(3)

8;r(l-v)r

Nas soluções fundamentais, x-^ é o ponto em que se deseja conhecer os campos mecânicos,

também denominado ponto campo. Já a grandeza x* é denominada ponto fonte, em que a carga pontual
é aplicada. A distância entre o ponto fonte e ponto campo é medida pela grandeza r , enquanto que

*7 = {V\ dl ViY 6 0 versor normal ao plano do ponto campo. O tensor Delta de Kronecker é definido

como á e as constantes elásticas Módulo de Elasticidade Transversal e Coeficiente de Poisson são

dados, respectivamente, por G e v.
A partir de desenvolvimentos matemáticos sobre as Eqs. (1) e (2), e aplicando a lei constitutiva

linear isotrópica de Hooke, obtém-se a Equação Integral em Deslocamentos (EID), representada na Eq.
(4).

(4)

Na Eq. (4), Uf. representa o deslocamento e /?; é a força de superfície do ponto campo ou fonte,

dependendo do caso. Para os problemas em que as forças de volume são nulas, é possível desprezar a
última parcela da Eq. (4). Além disso, a partir de um processo limite em que se considera o contorno

tendendo ao ponto fonte, é possível obter a Eq. (5).

jf,fu,{x')dr=ju,;pj{x']drx” + (5)

O termo livre Cy vale 1/2 para contornos suaves, o que é garantido com o uso de pontos fontes

afastados de arestas, denominada condição de continuidade de Holder.

As integrais da Eq. (5) possuem singularidade, da ordem de i / para a primeira e 1 / r para a
segunda. A singularidade de ordem 1 / r é removida com o uso de coordenadas polares para a integração.

Já a singularidade de ordem 1 / requer'o uso da integração no sentido do Valor Principal de Cauchy

(VPC), além do uso da parametrização em coordenadas polares. A integração numérica de Gauss é
utilizada para o cálculo das integrais no contorno do sólido. A remoção da singularidade de tais núcleos
é efetuada a partir do Método da Subtração de Singularidade proposto por Guiggiani et. al.[6].

2.2 Discretização em elementos de contorno

A EID,- Eq. (5), requer a discretização do corpo em elementos, denominados elementos de

contorno. Para tanto, a superfície externa é mapeada e dividida em nós e elementos. A geometria do

contorno é aproximada a partir dos polinômios completos de Lagrange. Assim, a função de forma que
representa a aproximação da geometria é dada pela Eq. (6). O elemento utilizado é o quadrilateral linear,
apresentado na Fig. 1.

m,(í„4)=c;+4í,+44+c:í,4. (6)
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Figura 1. Elemento de contorno quadrilateral linear

Na Eq. (6), e são as coordenadas adimensionais do elemento de contorno. Já a determinação

dos coeficientes é efetuada a partir da propriedade de Delta de Kronecker, conforme a Eq. (7).

^ ' [0, se z 7

Uma vez definidas as funções de forma, as coordenadas do interior do elemento podem ser
aproximadas com uso da Eq. (8).

(7)

(8)

Em que é o vetor de coordenadas de um ponto com coordenada adimensionais e

e X; é 0 vetor com as coordenadas dos nós que definem o elemento.

Com 0 uso dos elementos isoparamétricos, a integração numérica é efetuada neste espaço. Assim,

a relação entre o diferencial de área do espaço físico e do espaço paramétrico deve ser calculada. Essa
relação é expressa a partir do vetor jacobiano, de acordo com a Eq. (9).

Em que 7(4^,,<^2) representa a norma do vetor jacobiano, denotado simplesmente por ■

As componentes deste vetor são calculadas pela Eq. (10).

(9)

0X3 ÔXj ÔXj 0X3

5xj ÔX2 ÔX2 ôxj

J, =
1

(10)

•^3 =

A aproximação dos campos mecânicos no interior do elemento de contorno é efetuada a partir de

funções de forma Ai ) > cujas constantes são determinadas de forma análoga à M-. A diferença

fundamental entre as duas aproximações apresentadas decorre do uso de nós descontínuos quando 0 nó

fizer parte de arestas, de acordo com a Fig. 2. Dessa forma, a condição de continuidade de Holder é

garantida. Destaca-se que os campos mecânicos calculados com 0 MEC são associados aos pontos de
colocação, isto é, os pontos deslocados das arestas.
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Figura 2. Elementos descontínuos de aresta, descontínuos e contínuos

Uma vez definida a função de forma para o elemento de contorno considerado, os campos
mecânicos de deslocamentos e forças de superfície podem ser aproximados pela Eq. (11).

u,

(11)

Com u„ = {u“ uf UjY sPa = ÍPi Pi P3V sendo os campos mecânicos dos pontos
de colocação.

2.3 Equações algébricas

A partir da discretização do contorno do sólido, a aplicação da EID, Eq. (5), é possível. Assim,

são considerados como pontos fontes os pontos de colocação. Com isso, são incógnitas e condições de

contorno do problema os deslocamentos e forças de superfície destes pontos. De maneira complementar,

no ponto em que u é conhecido, p é incógnito, e vice-versa. Dessa forma, são substituídas as Eqs. (9)

e (11) na Eq. (5), resultando na Eq. (12).

^ e=l r

m ^

/
II

i

(12)

f

_ e=I r

Em que NE representa o número de elementos de contorno utilizado na discretização do sólido.

As integrais são avaliadas no espaço paramétrico, por meio da integração numérica, em que quadraturas
conhecidas são aplicadas. Quando o ponto de integração e o ponto de colocação pertencem ao mesmo
elemento, as técnicas de subtração de singularidade são necessárias. Aplicando aEq. (12) para todos os
pontos de colocação existentes, 0 sistema algébrico do MEC é obtido, conforme aEq. (13).

N N

(13)
J=1 >1

Na Eq. (13), os vetores Uj e Pj representam os campos mecânicos do ponto de colocação ,
• T • ■ ■ •7'

^3} e = [pI p^ p^] representam deslocamentos e forças dede modo que = [u{
superfície em cada direção (1, 2 e 3). O somatório é definido para todos os N pontos de colocação do

problema. Além disso, as matrizes de infiuência Hy e Gy são construídas a partir da integração das
soluções fundamentais, conforme as Eqs. (14) e (15), respectivamente.
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^.■=ZÍ^Xo>)
r,

h,=z\p:k

, SSl=J

(14)

se i ^ ja{j,e) II

(15)aiUe)
r.

As matrizes de influência apresentadas nas Eq. (14) e (15) são calculadas a partir da matriz de
função de forma, obtida pelo produto entre a correspondente função de forma e a matriz identidade.

Também são necessárias as matrizes TJ] e F*, definidas a partir da solução fundamental apresentada

nas Eqs. (2) e (3), e calculadas conforme as Eqs. (16) e (17).

U:= .

u;\xux^{^„0 u;,(xux^ u;,[xux^{^„^,))_

~p:\xUx^{^,,0 p:,(x%x^{^„0

p; = p:\xUx^{^,,0 p,;(xf,x^(^„^,)) p:,[xUx^ .

p:\xux^ p;,(xux^{^„0 p:,{xux^{^„0_

(16)

(17)

Destaca-se que o ponto campo utilizado é o ponto de integração, obtido a partir das quadraturas
adotadas, que podem ser cartesianas ou polares, de acordo com a necessidade.

Assim, o sistema obtido na Eq. (13) deve ser rearranjado para o formato de sistema linear, por meio
de uma operação de troca de colunas. Com isso, é obtida a Eq. (18).

Ax = b.

Na Eq. (18), a matriz A possui as colunas das matrizes H e G que multiplicam as grandezas

incógnitas. Já o vetor do lado direito b é calculado pelo produto das colunas de H e G com as
condições de contorno associadas.

(18)

2.4 Técnica de Sub-Regiões

O MEC permite a análise de domínios não-homogêneos acoplados por interfaces. Para tanto, é
utilizada a Técnica de Sub-Regiões, em que são calculadas as matrizes de influência de cada domínio,

de maneira independente, e o sistema algébrico resultante é obtido a partir da imposição da condição de

continuidade de deslocamentos e equilíbrio de forças.

Nesse contexto, considera-se um sólido com 77^^ sub-regiões. Para cada sub-região, é obtido o

sistema apresentado naEq. (13). Como as sub-regiões ainda não estão acopladas, a influência entre cada
uma delas inexiste. Dessa forma, o sistema resultante é apresentado na Eq. (19).

0 1[ m' 1 \g' 0 ■■
0 ■■■ 0 m" 0 G" ••• 0

0
1

0 P
2

P
(19)^ = >.

. . .
^SR (V.™0 0 0 0M VP
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Para a aplicação das condições de compatibilidade de deslocamentos e de equilíbrio de forças de
superfície, o sistema é organizado em termos Idas grandezas do contorno externo e das grandezas

pertencentes à interface F'*' e F' , de acordo com a Eq. (20).

. = 1"^'' G-^\p (20)u > .

u p

NaEq. (20), t são os deslocamentos e forças de superfície do contorno não pertencente à

interface, enquanto que , u~, p^ e p~ pertencem ao contorno de interface. Assim, é possível impor

as condições que correlacionam os subdomínios, de acordo com a Eq. (21).

=u

p^+p-=0

Desse modo, impondo a Eq. (21) sobre a Eq. (20), tem-se a Eq. (22).

(21)

1 P"
(H^+H ) G^ (G^-G-) ■ (22)> .

[P\u

A partir do sistema obtido na Eq. (22), as condições de contorno podem ser impostas analogamente
ao exposto para obtenção da Eq. (18).

3 Enriquecimentos Concentrados

3.1 Forças concentradas

A proposta de enriquecimento para a representação de forças concentradas no MEC consiste no

uso da função Deita de Dirac. A esta função é multiplicada a força concentrada F. aplicada no ponto
x‘ pertencente ao contorno do elemento. Assim, o campo mecânico de forças de superfície para o
elemento sobre o qual a força é aplicada, anteriormente aproximado pela Eq. (11), se torna a Eq. (23).

Pj{^M = N‘‘{^a2)Pj+à{x-x‘)F‘.

Com isso, substitui-se a Eq. (23) na parcela correspondente a Pj da Eq. (5), obtendo a Eq. (24).

U:pj{x^)dT=]u:.[N^{^,,^,)p;+A{x-x‘)F‘]dT =
r r

uX{^„^,)pjdr+\u;A{x-x’)F‘dr

(23)

(24)

r

A última integral da Eq. (24) é relacionada às forças concentradas. Nesta integral, o termo Fj é
constante. Além disso, é aplicada a propriedade da filtragem da função Delta de Dirac. Assim, a integral
se torna a avaliação do núcleo fundamental em relação ao ponto fonte e ao ponto de aplicação da carga.

Tais procedimentos algébricos são representados na Eq. (25).

'ulA{x-x')F’dr=F’\ulA(x-x‘)dr=u:(x\x‘)Fj. (25)

O termo obtido na Eq. (25) é acrescido ao sistema final apresentado na Eq. (13), conforme a Eq.
(26).

N N NC

2u:{xUx')f' (26)+

t=i /=i
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Em que NC é o número de cargas concentradas existentes no problema analisado. O vetor F'
contém as forças concentradas aplicadas nos respectivos pontos x‘. A matriz t/* (xf é a matriz de
influência associada à solução fundamental em deslocamentos, calculada de acordo com a Eq. (27).

~u:,(xux') u:,(x:,x‘) u:,{xux‘)

u:{x:,x‘)= u;,(x%x‘) u;,(x:,x‘) u;,(xux‘) .

c/;(xf,y)

(27)

Assim, a parcela adicional referente às forças concentradas surge no problema final como um vetor,

denominado , associado ao último termo da Eq. (26). Desse modo, sua adição ao sistema algébrico

da Eq. (18) é apresentada na Eq. (28).

Ax = b + b^. (28)

3.2 Apoios concentrados

Os apoios concentrados são considerados como forças pontuais, que representam as reações de

apoio. Com isso, o enriquecimento apresentado naEq. (23) é utilizado, substituindo a força concentrada

conhecida pela incógnita Rj. Dessa forma, as reações são adicionadas como incógnitas aplicados do

problema mecânico. Assim, para que o sistema admita solução, são utilizadas equações de
compatibilidade associadas ao deslocamento prescrito do ponto, de acordo com a Eq. (29).

(29)

Em que as coordenadas adimensionais e são referentes ao apoio concentrado analisado e wj
é o deslocamento prescrito na vinculação. Assim, a Eq. (29) acrescenta linhas ao sistema da Eq. (18).
Tal sistema expandido é apresentado na Eq. (30).

A -(7-^1 íx

0 \R

b

(30)\u+b^

A matriz multiplica as reações de apoio incógnitas, sendo obtida a partir de cada ponto fonte,

preenchendo 3 linhas da matriz por vez. Sua montagem é efetuada com a Eq. (31), com uso da Eq. (2)
aplicada ao ponto de colocação e ao ponto com apoio concentrado.

1/

= Ul^ Ul,{xUx‘) . (31)21

Na Eq. (31), o índice k representa a direção associada ao deslocamento prescrito. Isso é

interessante pois permite que seja aplicado o deslocamento prescrito apenas na direção que ele atua.

O vetor « da Eq. (30) contempla todos os deslocamentos prescritos. A matriz A^ e o termo b^
contemplam a disposição da Eq. (29) em relação aos Uj, que podem ser incógnitos ou conhecidos.

Quando os deslocamentos são incógnitos, a função de forma é introduzida na matriz que multiplica as
incógnitas do problema. Caso sejam conlrecidos, o produto da função de forma pelo respectivo valor é
acrescentado ao lado direito. Esses procedimentos são apresentados na Eq. (32).
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incógnito

\/Uj conhecido

Uj Vuj conhecido

Wuj incógnito

Embora a aplicação de apoios concentrados em elementos nos quais os deslocamentos são
prescritos seja redundante, a formulação apresenta tal possibilidade para garantir sua generalidade.

N
_ J “U.d

0

(32)
N

y
0

3.3 Enriquecimentos concentrados e Técnica de Sub-Regiões

Os enriquecimentos concentrados em meios não-homogêneos são efetuados com o uso da Técnica

de Sub-Regiões. Para tanto, o termo 6^ da Eq. (28) deve ser calculado apenas se a carga concentrada

pertencer ao subdomínio analisado. Essa relação é expressa pela Eq. (33).

Uix y =. * ’ ^ ^
[ 0, sej^{Ns,iy

Em que é o número da sub-região do elemento e em que a força é aplicada. Para o caso

de apoios concentrados, apenas a montagem de y é alterada, conforme a Eq. (34).

Gy,scj = {N,J

0, sej^{Nsi,y

(33)

(34)

4 Exemplos Numéricos

São propostos três exemplos numéricos para verificar a precisão da formulação proposta. O

primeiro exemplo possui um único carregamento pontual e condições de contorno em deslocamentos

prescritas de maneira tradicional. No segundo exemplo, a força aplicada é distribuída ao longo da face,

enquanto que os apoios são considerados como pontuais. Por fim, o terceiro modelo aborda a proposição

dos enriquecimentos em um sólido não-homogêneo. Os resultados dos exemplos apresentados são

confrontados com modelos equivalentes calculados pelo MEF com uso do software ANSYS®.

4.1 Exemplo 1

O primeiro exemplo trata da análise mecânica de um cubo de lado 5,0 (unidades de comprimento).
A face superior está submetida a um carregamento concentrado em seu centro, de valor 100 (unidades

de força). O Módulo de Elasticidade e o coeficiente de Poisson são, respectivamente, 1.000 (unidades

de tensão) e 0,30. A geometria deste exemplo é apresentada na Fig. 3.
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F = m

A
■ r

I

5,0

5,

Figura 3. Geometria do primeiro exemplo

Na análise numérica, são utilizadas três malhas, as quais objetivam a realização de uma análise
de convergência. A mais grosseira possui 194 elementos e 268 pontos de colocação, enquanto que a
intermediária possui 621 elementos e 749 pontos de colocação, e a mais refinada, 2.441 elementos e

2689 pontos de colocação. Tais malhas são denominadas como A, B e C, e são ilustradas conforme Fig.
4.

fjT1

TPFrr
i

iifri a
rl

aKl1

I

m

Malha A Malha B Malha C

Figura 4. Malhas adotadas para o Exemplo 1

O campo de deslocamentos calculados na direção para a malha C é ilustrado na Fig.5, para

a malha C em sua configuração deformada.

3.3àiE-aij

iLÇj- ‘ i'467E-qij
.Ij - _9.723E-02j

'fÚJ ?.nSE,-02,
S.a34S-Q2i

3.Sa9B-S2’

'tv9«e*02-

I.o.oqo|*oaj .

Figura 5. Deslocamentos na direção Xj para malha C.

Nota-se que o elemento em que a carga é aplicada se desloca de maneira uniforme. Isso deriva

do grau de aproximação utilizado para a interpolação desse campo mecânico.
O modelo de elementos finitos faz uso de uma malha de 35.721 nós e 8.000 elementos

hexaédricos de aproximação quadrática (SOLID 186). O modelo em MEF é apresentado na Fig. 6.
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Figura 6. Discretização adotada no MEF para o exemplo 1

A comparação entre o resultado obtido no ANSYS® e as malhas adotadas é efetuada para os
deslocamentos orientados na três direções ao longo da linha tracejada em vermelho da Fig. 3, em que

= 0, ^2 = 2,5 e 0 < X3 < 5. Tais comparações são apresentadas na Fig. 7, para deslocamento na

direção x-i (Uxi), na Fig. 8, para os resultados da direção X2 {UX2) e na Fig. 9, para deslocamento na

direção x^ (Ux^), em unidades de comprimento compatíveis.
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l,8E-03 h
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l,4B-03 (-
l,2E-03 j

p l,0B-O3
8,0E-04 -

G.OE-04 -

4.0E-04 -

2,0E-04 -

0,0E+00 -

r X X
o

r

f
, ^ o

■
><!

Malha B x Malha C- - ANSYS Malha A o

30 1 2 4 5

X3

Figura 7. Deslocamentos orientados na direção x^ ao longo da linha vermelha tracejada
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Figura 8. Deslocamentos orientados na direção X2 ao longo da linha vermelha tracejada
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JX
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Figura 9. Deslocamentos orientados na direção X3 ao longo da linha vermelha tracejada

É efetuada também a análise dos deslocamentos orientados na direção X2 {ÜX2) ao longo da linha

tracejada verde da Fig. 3. Nesta linha, = 5, 0 < X2 ^ 5 e Y3 = 2,5. Tais resultados são apresentados
na Fig. 10.
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X S 2 D1C_Sl,0E-02 .-X'
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><!
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4,0E-03 X
o

✓
X

2,0E-03
X

0,0E-K)0

2 X2 3

Figura 10. Deslocamentos orientados na direção ^2 ao longo da linha vermelha tracejada

Com base nos resultados observados, calcula-se a diferença percentual entre a Malha Ceo modelo

do ANSYS®. Para a linha tracejada vermelha, na posição — 2,5 tal diferença é de -4,42% para o
deslocamento orientado na direção x^ e de -0,029% para o deslocamento na direção X2- Já para a linha
verde, esse desvio corresponde a 3,695% para UX2 em X2 = 5. Desse modo, nota-se que os
deslocamentos calculados pelo MEC enriquecido se aproximam das respostas de referência à medida
que a malha é refinada. Assim, 0 enriquecimento para força concentrada se mostra válido.

0 1 4 5
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4.2 Exemplo 2

O segundo exemplo consiste na análise mecânica de uma viga engastada e livre, com uma força de
superfície distribuída em sua face superior, de valor 10,0 (unidades de força de superfície) orientado na
direção X2 e para baixo. Não há forças externas aplicadas às direções ex^.O Módulo de Elasticidade
é 10.000 (unidades de tensão) e 0 coeficiente de Poisson é 0,0. A Fig. 8 mostra a geometria deste
exemplo.

/p = 10,0

I I I I

i i i i -
r

1,0

1^2
mssisi

>x-á

é 1.

i,a

5.0
1

Figura 11. Geometria do exemplo 2

As quatro malhas adotadas para este exemplo possuem, respectivamente, 88, 352, 1408 e 5.632
elementos e 150, 470, 1638 e 6.086 pontos de colocação, conforme Fig. 9.

BtiUI
Í5 f-

Malha A Malha B Malha C Malha D

Figura 12. Malhas adotadas para o segundo exemplo

A vinculação da face com condição de contorno em deslocamentos é efetuada com uso de apoios
concentrados nas três direções, aplicados no centro de cada elemento que a compõe. Desse modo, 0
comportamento mecânico de engaste é prom-ovido a ela. A Fig. 13 apresenta a posição das vinculações
para a malha A.

Figura 13. Posição dos apoios concentrados aplicados à malha A.

Os deslocamentos na direção %2 para a malha D estão representados na Fig. 14.
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Figura 14. Deslocamentos na direção 3:2: malha D deformada e indeformada

O modelo de referência em MEF possui uma malha com 40.000 elementos hexaédricos de

aproximação quadrática (SOLID 186) e 1.333.361 nós, conforme Fig. 15.

Figura 15. Discretização adotada para o modelo em MEF do exemplo 2

A validação deste exemplo é efetuada comparando-se os deslocamentos entre os modelos

numéricos do MEC com a referência em dois intervalos. A primeira análise envolve os deslocamentos

orientados na direção X2 ao longo da linha tracejada em vermelha da Fig. 11, com 0,0 < < 5,0, X2 =
0,5 0X3 = 1,0. Tais resultados são apresentados na Fig. 16.
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x Malha CANSYS ■ Malha A ° Malha B

Figura 16. Deslocamentos na direção ao longo da linha vermelha tracejada

É calculada também a diferença percentual para o deslocamento orientado na direção X2 em

= 5,0. Esta análise é feita a partir da comparação entre o ANSYS® e a Malha D. Assim, a diferença
obtida é de -1,95%.

O segundo intervalo analisado é delimitado por = 5, 0,0 < X2 < 1,0 6X3 = 0,5. Na Fig. 11,

este intervalo é simbolizado pela linha tracejada em verde. Os resultados comparados são os

deslocamentos associados à direção x^, e apresentados na Fig. 17.

1,0 o

0,8

- - ANSYS0,6

IS

■ Malha A"0,4

o Malha B■»o
✓

0,2✓

X Malha CX
✓

■0;0-

Uxi 0,05 0,1 0,15-0,15 -0,1 -0,05 0

Figura 17. Deslocamentos na direção ao longo da linha verde tracejada

A diferença percentual calculada para os resultados observados na Fig. 17 refere-se à

coordenada X2 = 1,0. São utilizados os dados associados ao modelo de referência e a Malha D. Assim,

obtém-se como erro 0 valor de -1,73%.

Portanto, a partir dos resultados apresentados na Fig. 16 e na Fig. 17 nota-se boa concordância

entre os deslocamentos do MEC enriquecido e do modelo em MEF. Além disso, também são calculadas

as reações de apoio na resolução do sistema, apresentadas na Tabela 1 para as quatro malhas utilizadas.

Tabela 1. Somatório das reações de apoio para as quatro malhas do MEC e referência

RzMalha

-4,32E-13

-1,02E-14

1,61E-12

-3,51E-04

-4,76E-08

A 4,83E-02

-2,25E-02

-l,28E-02

-7,29E-03

l,31E-07

74,06

59,05

52,75

50,79

50,00

B

C

D

ANSYS®
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Com OS dados apresentados na Tabela 1, calcula-se o erro percentual entre a soma das reações na
direção X2 na malha D e a força resultante aplicada (50,0 unidades de força), cujo resultado é 1,58%.

Além disso, 0 somatório das forças reativas resulta aproximadamente nulo nas direções e X3,

conforme esperado. Com isso, conclui-se que as condições de equilíbrio em forças são atendidas.

4.3 Exemplo 3

O último exemplo deste estudo envolve a análise mecânica de um sólido não-homogêneo e

perfeitamente conectado pela interface que une os materiais que compõem a estrutura. A sub-região 1

possui como propriedades elásticas o Módulo de Elasticidade de 1.000 (unidades de tensão) e coeficiente

de Poisson 0,0. Para a segunda sub-região tais dados são, respectivamente, 500 (unidades de tensão) e
0,30. É aplicada uma força concentrada de 100 (unidades de força) na face superior do corpo,

pertencente ao segundo subdomínio. A geometria e condições de contorno são apresentadas na Fig. 18.
F = 100

5,0
✓

✓

.1

5,0

Xj [2
X,

..■r 5,g

Figura 18. Geometria do terceiro exemplo

Para 0 MEC, são adotadas três malhas com, respectivamente, 410, 1661 e 6689 elementos, e

562, 1.955 e 7.267 pontos de colocação, de acordo com a Fig. 19.

mms

Malha A Malha B Malha C

Figura 19. Malhas adotadas para o terceiro exemplo

A referência analisada para este exemplo é um modelo em MEF construído no software
ANSYS®. Neste modelo, são utilizados 71.442 nós e 16.000 elementos hexaédricos de aproximação

quadrática (SOLID 186). A malha adotada é apresentada na Fig. 20.
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Figura 20. Modelo em MEF do exemplo 3

Os deslocamentos na direção X2 são mostrados para a configuração deformada da Malha C na
Fig.2L

™3T872E-01 I

3.442H-01Í

WÊ ,3,0l2E*0l‘
2:581E-01Í

2.152E-01

l-721E*01

1.2giE'01-

S.603E-Q2

fi 4.30DE-02<

-2.733E-05-

Figura 21. Deformada e deslocamentos em X2, malha C.

A comparação dos resultados é efetuada a partir dos deslocamentos na direção ao longo da linha

vermelha tracejada da Fig. 18,emquexi = 0,0, X2 = 7,50,e X3 varia de 0,0 a 5,0. Os dados calculados
para as três malhas do MEC, assim como para a malha em MEF, são apresentados na Fig. 22.
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Figura 22. Deslocamentos na direção Xi na linha vermelha tracejada do exemplo 3

A diferença percentual do deslocamento associado à direção Xi entre a malha Ceo modelo do
MEF, no ponto x^ = 2,5 sobre a linha analisada, é de -2,98%.

É analisado também 0 campo de deslocamentos orientados na direção x^ ao longo da linha
tracejada em verde daFig. 18. Neste intervalo, tem-se = 5,0, 0 < X2 < 10 e X3 = 2,5. Com isso, os
resultados obtidos são apresentados na Fig. 23.
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Figura 23. Deslocamentos na direção X2 na linha verde tracejada do exemplo 3

Calcula-se a diferença percentual para 0 deslocamento associado à direção X2 na posição X2 = 10
na linha verde tracejada entre a Malha Ceo modelo em MEF. Com isso, obtém-se 0 erro percentual de
0,15%.

Portanto, diante dos resultados obtidos, é evidente a boa conformidade dos resultados obtidos ao

passo que é efetuado o refinamento da malha do MEC. Assim, atesta-se a validade da formulação
também para meios não-homogêneos analisados com uso da Técnica de Sub-Regiões.

5 Conclusões

De posse dos resultados apresentados, conclui-se que a estratégia de enriquecimento para forças e
vinculações concentradas é eficaz. Isso é garantido devido a boa conformidade dos resultados obtidos

pelo MEC em comparação aos modelos numéricos calculados pelo MEF.
O caráter de convergência dos resultados também é evidente, uma vez que os resultados concordam

com os resultados da referência à medida que malhas mais refinadas são utilizadas.
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No presente trabalho foram utilizados elementos de contorno isoparamétricos de aproximação
linear. No entanto, os enriquecimentos propostos podem ser aplicados a elementos de contorno com
outros tipos de aproximação.
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