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Abstract. The Boundary Element Method (BEM) is a numerical approach accurate in the solution of
several elastostatic problems. Because the method formulation involves integrals written at the
boundary, solely the bodies’ boundaries are discretised. Then, in three-dimensional problems, the BEM
mesh is composed of plape elements. However, the standard BEM formulation is limited in the solution
of problems where punctual boundary conditions are present. Then, concentrated loads and punctual
support conditions are not properly represented by the standard BEM. Such boundary conditions may
be approximately represented through small BEM elements. However, this strategy may lead to the ill-
positioned algebraic system of equations because of the small distance among the source points in such
elements. In this regard, this study presents an enriched BEM formulation (XBEM) capable to represent
properly punctual boundary conditions in three-dimensional problems. The Dirac’s function is utilized

_in this enrichment process. Three numerical applications illustrate the accuracy of the proposed XBEM
scheme. The results achieved by- the proposed XBEM formulation are compared with responses
provided by equivalent models constructed on Finite Element Method.
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An eXtended Boundary Element formulation for punctual boundary conditions modelling

1 Introducgao

A mecénica dos materiais e das estruturas contempla um conjunto de teorias que permite o estudo
e a compreensdo do comportamento mecénico de sdlidos e sistemas estruturais submetidos a agdes
externas, tais como peso proprio, vento, sobrecargas, dentre outras. De modo a determinar os efeitos dos
esforgos nas estruturas, abordagens analiticas podem ser utilizadas. No entanto, deve-se destacar que
tais abordagens sfo limitadas na andlise de estruturas que possuem geometria e condi¢gdes de contorno
complexas. Nesse contexto, a solugdo de problemas reais de engenharia requer a utilizagfio de métodos
numéricos. Neles, diversas a¢gdes podem ser simplificadamente idealizadas como pontuais, a depender
das caracteristicas das solicita¢des.

Nesse sentido, os métodos numéricos de dominio, como o Método dos Elementos Finitos (MEF),
possibilitam, em sua formulag#o, a aplicagdo das condigBes de contorno concentradas diretamente no
problema, ao aplicar o carregamento ou apoio pontual sobre o né. Contudo, o Método dos Elementos de
Contorno (MEC) é formulado a partir da imposi¢8o de deslocamentos e forcas de superficies prescritas
de forma distribuida no contorno. Desse modo, se hé o interesse em aplicar uma carga ou apoio pontual,
¢ necessério o uso de um elemento de contorno de pequenas dimensdes, ¢ aplicar sobre ele a condigéo
de contorno. Com isso, surgem pontos de colocacdo proximamente posicionados. Devido & natureza
singular das solugdes fundamentais, tal proximidade pode levar ao mal-condicionamento do sistema.
Como alternativa a esse problema, este artigo apresenta uma formulag8o enriquecida para o MEC de
modo a permitir o uso das vinculagdes e cargas concentradas sem prejudicar o condicionamento do
sistema. :

As formulagbes enriquecidas sdo definidas como alteragdes promovidas ao polindmio de
aproximacdo dos campos mecénicos com base no conhecimento a priori do espago de solugfo. Assim,
o Método dos Elementos Finitos Generalizados/Estendidos (MEFG/MEFX) € uma das abordagens que
faz uso do conceito de enriquecimento das fungdes de aproximacéio, aplicado ao MEF. Uma aplicagéo
comum do MEFG/MEFX € na representago de problemas da Mecénica da Fratura. Assim, as solugdes
conhecidas dos campos mecénicos proximos & ponta da fissura sfo adicionadas a aproximagdo de
deslocamentos. Com isso, a influéncia das fissuras é melhor considerada na resposta do problema.

No que concerne ao MEC, a abordagem enriquecida se inicia com Simpson e Trevelyan [1]. Tais
autores fizeram uso do Principio da Partigdo da Unidade para acrescentar termos na aproximagéo do
campo de deslocamentos. Assim, foram obtidas respostas mais precisas em problemas bidimensionais
da Mecénica da Fratura. Dessa forma, inicia-se o estudo do Método dos Elementos de Contorno
Enriquecido (eXtended Boundary Element Method, XBEM). Alatawi e Trevelyan [2] e Hattori, Alatawi
e Trevelyan [3] também fizeram uso do XBEM com objetivo de obter o célculo direto dos Fatores de
Intensidade de Tensfo em problemas fissurados. Observa-se particularmente para o MEC que
formulag¢des enriquecidas sfo mais precisas em relag#o as tradicionais.

Contudo, nenhum dos trabalhos acima mencionados aborda problemas tridimensionais. Além
disso, agOes pontuais também nfo sfo tratadas. Desse modo, o presente estudo apresenta uma
formulagfio enriquecida no MEC que permite a abordagem direta das condi¢Ges de contorno pontuais
em problemas tridimensionais. Dessa forma, o presente estudo contribui com a ampliagéo do campo de
aplicagdo do MEC. Assim, € evidente o carater inovador dessa abordagem, uma vez que néo hd nenhum
trabalho na literatura que aborde tais topicos. Serdo apresentadas trés aplica¢des, em que os resultados

da formulagfio desenvolvida serfio comparados a modelos equivalentes desenvolvidos no software
ANSYS®.

2  Meétodo dos Elementos de Contorno

2.1. Solucdo Fundamental e Equacio Integral

O MEC, de acordo com Brebbia [4], pode ser deduzido a partir da aplicagdo do Método dos
Residuos Ponderados no problema de valor de contorno da elasticidade linear, conforme Eq. (1).

CILAMCE 2019
Proceedings of the XLIbero-LatinAmerican Congress on Computational Methods in Engineering, ABMEC,
Natal/RN, Brazil, November 11-14, 2019




M. Rocha, E. D. Leonel

[(o,, +b)wdr=0. (M

Q

Em que o, ; € o gradiente do tensor de tensdes, b, € o vetor de forcas de volume aplicadas e Q) ¢
o dominio do corpo analisado. A fun¢@io ponderadora w escolhida para a minimizag8o do residuo € a
Solugfo Fundamental de Kelvin [5], em.que um meio infinito, tridimensional e isotropico € sujeito a
aclo de um carregamento pontual representado pela fung8o Delta de Dirac. Para esta solugéo, o campo

de deslocamentos ¢ descrito pela Eq. (2), enquanto as forgas de superficie sdo calculadas pela Eq. (3).

s 1 :
Uy (xf,x ):m[@—é’f\/)@d +r’kr,i}. 2)
_ . 1
B (x',x )=W{’fjﬂj[(1_2‘/)5m+3”,k’.:}‘<1_2‘/)<’7i’”,k‘Uk’”,:)}- , (3)

Nas solugdes fundamentais, x/ ¢ o ponto em que se deseja conhecer os campos mecanicos,

também denominado ponto campo. J4 a grandeza x° é denominada ponto fonte, em que a carga pontual
¢ aplicada. A distancia entre o ponto fonte e ponto campo € medida pela grandeza r , enquanto que

n= {77l 77, 773}T € o versor normal ao plano do pbnto campo. O tensor Delta de Kronecker é definido

como & e as constantes eldsticas Médulo de Flasticidade Transversal e Coeficiente de Poisson sdo
dados, respectivamente, por G e v.

A partir de desenvolvimentos mateméticos sobre as Egs. (1) e (2), e aplicando a lei constitutiva
linear isotrépica de Hooke, obtém-se a Equagdo Integral em Deslocamentos (EID), representada na Eq.

). v
u (x*) = [ULp, (%7 )dT = [ Bl (7 )dT + [U},(+” ) 2. (4

r r 0
Na Eq. (4), u, representa o deslocamento e p, ¢ a forga de superficie do ponto campo ou fonte,
dependendo do caso. Para os problemas em que as forcas de volume sdo nulas, é possivel desprezar a

tltima parcela da Eq. (4). Além disso, a partir de um processo limite em que se considera o contorno
tendendo ao ponto fonte, é possivel obter a Eq. (5).

ci],(x‘)tzj(x“)+][[l’.;uj(xf)dF:Jl@?pj<xf)dF. (5

O termo livre ¢; vale 1/2 para contornos suaves, o que € garantido com o uso de pontos fontes

afastados de arestas, denominada condi¢@o de continuidade de Holder.

As integrais da Eq. (5) possuem singularidade, da ordem de 1/#* para a primeira e 1/7 para a
segunda. A singularidade de ordem 1/7 é removida com o uso de coordenadas polares para a integragfo.
J& a singularidade de ordem 1/#? requer o uso da integracdo no sentido do Valor Principal de Cauchy
(VPC), além do uso da parametrizag8o em coordenadas polares. A integragfo numérica de Gauss €
utilizada para o calculo das integrais no contorno do sélido. A remog#o da singularidade de tais nicleos
¢ efetuada a partir do Método da Subtragéo de Singularidade proposto por Guiggiani et. al.[6].

2.2 Discretizagfio em elementos de contorno

A EID, Eq. (5), requer a discretizagdo do corpo em elementos, denominados elementos de
contorno. Para tanto, a superficie externa é mapeada e dividida em nds e elementos. A geometria do
contorno € aproximada a partir dos polindmios completos de Lagrange. Assim, a fungdo de forma que
representa a aproximagéo da geometria € dada pela Eq. (6). O elemento utilizado € o quadrilateral linear,
apresentado na Fig. 1.

M,(§,8,)=c +as +a& +ads, - ©6)
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Figura 1. Elemento de contorno quadrilateral linear

NaEq. (6), ¢ e ¢, sdo as coordenadas adimensionais do elemento de contorno. J4 a determinagéo

dos coeficientes ¢, € efetuada a partir da propriedade de Delta de Kronecker, conforme a Eq. (7).

oo 1, sei=j .
Mi(flj,ng):{o, Sel_ij,paraz,jzl,...A; (7

Uma vez definidas as fungfes de forma, as coordenadas do interior do elemento podem ser
aproximadas com uso da Eq. (8).

x(élﬂé:Z):Mi(gl:‘éZ)xi‘ ®

Em que x(£,£,) é o vetor de coordenadas de um ponto com coordenada adimensionais £, e &,,
e x; € o vetor com as coordenadas dos nés que definem o elemento.

Com o uso dos elementos isoparamétricos, a integragdo numérica é efetuada neste espago. Assim,
a relagfo entre o diferencial de area do espago fisico e do espago paramétrico deve ser calculada. Essa
relagdo € expressa a partir do vetor jacobiano, de acordo com a Eq. (9).

dre :|J(§1=§2)ld§1d§2 :J(§1’§2)d§ld§2' (9)

Em que lJ (fl,fz )‘ representa a norma do vetor jacobiano, denotado simplesmente por J(&,, ).

As componentes deste vetor s8o calculadas pela Eq. (10).
_ Ox, Ox,  Ox, Ox,
|04 08 0404
J, = dx, Ox,  ox 6x3'
0g, 05, 04, 0,
J, = Ox, Ox, Ox, Ox,
05,05,  0g; 0,

A aproximag8o dos campos mecénicos no interior do elemento de contorno € efetuada a partir de
fun¢des de forma N, (f{ & ) , cujas constantes séo determinadas de forma andloga & M, . A diferenca

(10)

fundamental entre as duas aproximagdes apresentadas decorre do uso de nés descontinuos quando o nd
fizer parte de arestas, de acordo com a Fig. 2. Dessa forma, a condi¢do de continuidade de Holder é
garantida. Destaca-se que os campos mecéinicos calculados com o MEC sfo associados aos pontos de
colocagdo, isto €, os pontos deslocados das arestas.
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& NG geomdirico . Pomto de colocagio
....... Arvsta de descontimsidade

Figura 2. Elementos descontinuos de aresta, descontinuos e continuos

Uma vez definida a fung¢fio de forma para o elemento de contorno considerado, os campos
mecénicos de deslocamentos e forgas de superficie podem ser aproximados pela Eq. (11).

u(§15§2):Na (é:la":z)ua
p(&.8)=N,(&.8)p,

Comu, = {uf u¥ uf¥ ep,={®F¥ py 5}’ sendo os campos mecanicos dos pontos
de colocagfo.

(an

2.3 Equacdes algébricas

A partir da discretizag&o do contorno do sélido, a aplicagdo da EID, Eq. (5), € possivel. Assim,
séo considerados como pontos fontes os pontos de colocagfo. Com isso, sdo incdgnitas e condi¢des de
contorno do problema os deslocamentos e for¢as de superficie destes pontos. De maneira complementar,
no ponto em que u € conhecido, p é incognito, e vice-versa. Dessa forma, s8o substituidas as Eqs. (9)

e (11) na Eq. (5), resultando na Eq. (12).

5—” (x)+ [Z.[ X ’xf(fpfz))Nz(fufﬂ‘]e(flffZ)dfxdfz}’j

e=lT

(12)
{ZJ. x° x fpfz))Ne (51552)']6(51’52)5{510152}’/

Em que NE representa o nimero de elementos de contorno utilizado na discretizagéo do sélido.
As integrais sfo avaliadas no espago paramétrico, por meio da integrago numeérica, em que quadraturas
conhecidas sdo aplicadas. Quando o ponto de integracio e o ponto de colocagio pertencem ao mesmo
elemento, as técnicas de subtragfo de singularidade s&o necessdrias. Aplicando a Eq. (12) para todos os
pontos de colocag8o existentes, o sistema algébrico do MEC € obtido, conforme a Eq. (13).

N
Z ¥ sz'Pj- (13)
J=1

A . J
Na Eq. (13), os vetores #; e p; representam os campos mecénicos do ponto de colocagéo -,

. . . T . . . T
de modo que w ={u) u) ul} ep’/={p] p} pi} representam deslocamentos e forgas de
superficie em cada diregdo (1, 2 e 3). O somatdrio é definido para todos os N pontos de colocagéo do
problema. Além disso, as matrizes de influéncia H; e G sdo construidas a partir da integragéo das

solucBes fundamentais, conforme as Eqgs. (14) e (15), respectivamente.
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H, =Y [ PN (6.6)7° (6.6 456+, sei= ]

Jeet. : (14)
H, =3 [ PN, (6.6)7°(5.6)d6d5, seiz j -
G, :Z.[U:N:z(j,e)(51"52)]6(51"52)‘151‘152 : (15)

As matrizes de influéncia apresentadas nas Eq. (14) e (15) sfo calculadas a partir da matriz de
fungdo de forma, obtida pelo produto entre a correspondente func¢io de forma e a matriz identidade.

Também sio necessdrias as matrizes U, e P, definidas a partir da solugio fundamental apresentada
nas Egs. (2) e (3), e calculadas conforme as Egs. (16) e (17).

( )
Uy (x5.%7(,8)) Un(x,x7 (£.8))]- (16)
( )

)
B (%, %7 (£,8))]. 17

Destaca-se que o ponto campo utilizado € o ponto de integrag#o, obtido a partir das quadraturas
adotadas, que podem ser cartesianas ou polares, de acordo com a necessidade.

Assim, o sistema obtido na Eq. (13) deve ser rearranjado para o formato de sistema linear, por meio
de uma operagéo de troca de colunas. Com isso, é obtida a Eq. (18).

Ax=b. (18)

Na Eq. (18), a matriz A4 possui as colunas das matrizes H e G que multiplicam as grandezas
incognitas. Ja o vetor do lado direito b ¢é calculado pelo produto das colunas de H e G com as
condi¢des de contorno associadas.

2.4 Técnica de Sub-Regides

O MEC permite a andlise de dominios ndo-homogéneos acoplados por interfaces. Para tanto, é
utilizada a Técnica de Sub-Regides, em que so calculadas as matrizes de influéncia de cada dominio,
de maneira independente, € o sistema algébrico resultante é obtido a partir da imposi¢&o da condigfo de
continuidade de deslocamentos e equilibrio de forgas.

Nesse contexto, considera-se um sélido com N, sub-regides. Para cada sub-regifio, é obtido o

sistema apresentado na Eq. (13). Como as sub-regides ainda nfo estfo acopladas, a influéncia entre cada
uma delas inexiste. Dessa forma, o sistema resultante ¢ apresentado na Eq. (19).

H 0 - 0 u' G 0 - 0 p'

0 HZ 2 0 GZ 0 2
o L O i 1 (19)

0 0 ... HVs||pVs 0 0 ... GV pNsn
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Para a aplicagdo das condigBes de compatibilidade de deslocamentos e de equilibrio de for¢as de
superficie, o sistema & organizado em termos |das grandezas do contorno externo e das grandezas

pertencentes & interface I'" e I'", de acordo com a Eq. (20).

c pé
[H® H' H ]u"1=[6° ¢ G |ip . (20)
] .

Na Eq. (20), u“e p° sdo os deslocamentos e forgas de superficie do contorno néio pertencente a

interface, enquanto que u*, u~, p‘e p” pertencem ao contorno de interface. Assim, é possivel impor
as condig8es que correlacionam os subdominios, de acordo com a Eq. (21).
u=u
. . @n
prp=0

Desse modo, impondo a Eq. (21) sobre a Eq. (20), tem-se a Eq. (22).

L& " H)]{:} =[¢° (G- G‘)]{ﬁ } . 22)

A partir do sistema obtido na Eq. (22), as condi¢des de contorno podem ser impostas analogamente
ao exposto para obtengfo da Eq. (18).

3 Enriquecimentos Concentrados

3.1 Forgas concentradas

A proposta de enriquecimento para a representacfio de forgas concentradas no MEC consiste no
uso da func¢do Delta de Dirac. A esta funcéio é multiplicada a forgca concentrada Fjl aplicada no ponto
x' pertencente ao contorno do elemento. Assim, o campo mecanico de forcas de superficie para o
elemento sobre o qual a for¢a € aplicada, anteriormente aproximado pela Eq. (11), se torna a Eq. (23).

pj(§1>§2):Na(§15§2)p?+A<x_x1)}?jl' (23)
Com isso, substitui-se a Eq. (23) na parcela corréspondente a p; daEq. (5), obtendo a Eq. (24).

J.U,;pj )dr J. |: fl,f )pj +A(x x )Fl]dr_
f 2 (6:6) “dF+jUA x-x'FldT @9

A ultima integral da Eq. (24) é relacionada as for¢as concentradas. Nesta integral, o termo F}’ é
constante. Além disso, é aplicada a propriedade da filtragem da fungfio Delta de Dirac. Assim, a integral
se torna a avaliagéo do niicleo fundamental em relagdo ao ponto fonte e ao ponto de aplicagfo da carga.
Tais procedimentos algébricos séo representados na Eq. (25).

jUA x—x')Fldl = F’jUAx x')dr =U,(x*,x')F}. (25)

O termo obtido na Eq. (25) € acrescido a0 sistema final apresentado na Eq. (13), conforme a Eq.
(26).

N N NC
2 ;=2 Gyp, + 3 U (X, X ) F' (26)
= j=1 =1
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Em que NC € o numero de cargas concentradas existentes no problema analisado. O vetor F'
contém as forgas concentradas aplicadas nos respectivos pontos x'. A matriz U; (xf ,x') ¢ a matriz de
influéncia associada a solugfo fundamental em deslocamentos, calculada de acordo com a Eq. (27).

U;, (xf,x') Uy, (xf,x’) U, (xf,x')
U; (x3,x')=| U, (x0,x") Uy (%) Uy (x),x")|- @27
U,, (xf,x’) U,, (xf,x’) U,, (xf,x’)
Assim, a parcela adicional referente as forgas concentradas surge no problema final como um vetor,

denominado b*, associado ao tltimo termo da Eq. (26). Desse modo, sua adi¢fo ao sistema algébrico
da Eq. (18) ¢ apresentada na Eq. (28).

Ax=b+b". (28)
3.2 Apoios concentrados

Os apoios concentrados sfo considerados como forgas pontuais, que representam as reacdes de
apoio. Com isso, o enriquecimento apresentado na Eq. (23) € utilizado, substituindo a for¢a concentrada
conhecida pela incognita R . Dessa forma, as reagdes sdo adicionadas como incégnitas aplicados do

problema mecénico. Assim, para que o sistema admita solugfio, sfio utilizadas equagfes de
compatibilidade associadas ao deslocamento prescrito do ponto, de acordo com a Eq. (29).

i =N (&,8)uf. (29)

. . . ] I . . —
Em que as coordenadas adimensionais £, e &, sdo referentes ao apoio concentrado analisado e u j’

¢ o deslocamento prescrito na vinculagfio. Assim, a Eq. (29) acrescenta linhas ao sistema da Eq. (18).
Tal sistema expandido ¢ apresentado na Eq. (30).

P W) =
A 0 R u+b

A matriz G* muitiplica as reagdes de apoio incégnitas, sendo obtida a partir de cada ponto fonte,

preenchendo 3 linhas da matriz por vez. Sua montagem ¢ efetuada com a Eq. (31), com uso da Eq. (2)

aplicada ao ponto de colocagéo e ao ponto com apoio concentrado.

Gx T Uy (%7, x')
Gy =| Gy | =T, =| Uy (x7.x') . (31)
Gy U;k(xf,x')

Na Eq. (31), o indice k representa a dire¢io associada ao deslocamento prescrito. Isso €
interessante pois permite que seja aplicado o deslocamento prescrito apenas na dire¢&o que ele atua.

O vetor u da Eq. (30) contempla todos os deslocamentos prescritos. A matriz A* e o termo b~
contemplam a disposi¢do da Eq. (29) em relagdo aos u;, que podem ser incOgnitos ou conhecidos.
Quando os deslocamentos sdo incognitos, a fungdo de forma é introduzida na matriz que multiplica as

incégnitas do problema. Caso sejam conhecidos, o produto da fun¢fio de forma pelo respectivo valor é
acrescentado ao lado direito. Esses procedimentos sdo apresentados na Eq. (32).
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Na(j’e) (f{,fé) Vu; incognito

A =
0 Vu, conhecido
. (32)
= Nagie (.fl’,le)uj Vu; conhecido
! 0 Y, incognito

Embora a aplicagfio de apoios concentrados em elementos nos quais os deslocamentos sfo
prescritos seja redundante, a formulag8o apresenta tal possibilidade para garantir sua generalidade.

3.3 Enriquecimentos concentrados e Técnica de Sub-Regides

Os enriquecimentos concentrados em meios ndo-homogéneos séo efetuados com o uso da Técnica
de Sub-Regides. Para tanto, o termo b* da Eq. (28) deve ser calculado apenas se a carga concentrada
pertencer ao subdominio analisado. Essa relagfio é expressa pela Eq. (33).

() -

e

b=, sej:(NSR)

- (33)
0,sej# (NSR)

Em que (N = )e ¢ o nimero da sub-regifio do elemento e em que a forga € aplicada. Para o caso

de apoios concentrados, apenas a montagem de (é;," )j ¢ alterada, conforme a Eq. (34).

(34)

4 Exemplos Numéricos

S#o propostos trés exemplos numéricos para verificar a precisfo da formulagfio proposta. O
primeiro exemplo possui um tinico carregamento pontual e condigdes de contorno em deslocamentos
prescritas de maneira tradicional. No segundo exemplo, a for¢a aplicada & distribuida ao longo da face,
enquanto que os apoios sdo considerados como pontuais. Por fim, o terceiro modelo aborda a proposicéo
dos enriquecimentos em um so6lido nfdo-homogéneo. Os resultados dos exemplos apresentados sfo
confrontados com modelos equivalentes calculados pelo MEF com uso do software ANSYS®.

4.1 Exemplo 1

O primeiro exemplo trata da andlise mecanica de um cubo de Jado 5,0 (unidades de comprimento).
A face superior estd submetida a um carregamento concentrado em seu centro, de valor 100 (unidades
de for¢a). O Mddulo de FElasticidade e o coeficiente de Poisson sdo, respectivamente, 1.000 (unidades
de tenséo) e 0,30. A geometria deste exemplo € apresentada na Fig. 3.
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Figura 3. Geometria do primeiro exemplo

Na anélise numérica, séo utilizadas trés malhas, as quais objetivam a realizagfo de uma anélise
de convergéncia. A mais grosseira possui 194 elementos e 268 pontos de colocagdo, enquanto que a
intermediéria possui 621 elementos e 749 pontos de colocagfo, e a mais refinada, 2.441 elementos e
2689 pontos de colocagdo. Tais malhas séo denominadas como A, B e C, e sfo ilustradas conforme Fig.
4,

Malha A Malha B

Figura 4. Malhas adotadas para o Exemplo 1

O campo de deslocamentos calculados na diregfio x, para a matha C ¢ ilustrado na Fig.5, para
a malha C em sua configuracéo

o,

.
) !
REFT
.7veny,

“yaerEny
3
s83eEY)

0.000£:00; |

Figura 5. Deslocamentos na dire¢éio x, para malha C.

Nota-se que o elemento em que a carga € aplicada se desloca de maneira uniforme. Isso deriva
do grau de aproximagéo utilizado para a interpolag@io desse campo mecénico.

O modelo de elementos finitos faz uso de uma malha de 35.721 nds e 8.000 elementos
hexaédricos de aproximagfo quadrética (SOLID 186). O modelo em MEF ¢ apresentado na Fig. 6.
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Figura 6. Discretizagdo adotada no MEF para o exemplo 1

A comparagéo entre o resultado obtido no ANSYS® e as malhas adotadas é efetuada para os
deslocamentos orientados na trés dire¢des ao longo da linha tracejada em vermelho da Fig. 3, em que
x1 =0, x, =2,5¢e0 < x3 <5. Tais comparagdes séo apresentadas na Fig. 7, para deslocamento na
direcdo x; (Ux4), na Fig. 8, para os resultados da dire¢fio x, (Ux,) e na Fig. 9, para deslocamento na
direg8io x3 (Ux3), em unidades de comprimento compativeis.

2,0E-03
1,8E-03
1,6E-03
1,4E-03
1,2E-03
;5? 1,0E-03
8,0E-04
6,0E-04
4,0E-04
2,0E-04
0,0E-+00

Lo % X XS~
- L% 8 9 T &
- ,6,{5_ = _5‘%&
o R % _
5 XS o XD
= n
L - — = ANSYS u Malha A o Malha B X Malha C
0 1 2 3 4 5

X3

Figura 7. Deslocamentos orientados na diregfo x; ao longo da linha vermelha tracejada
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Figura 8. Deslocamentos orientados na dire¢&o x, ao longo da linha vermelha tracejada
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Figura 9. Deslocamentos orientados na dire¢do x5 ao longo da linha vermelha tracejada

E efetuada também a analise dos deslocamentos orientados na direcdo x, (Ux,) ao longo da linha
tracejada verde da Fig. 3. Nesta linha, x; = 5, 0 < x, < 5 e x3 = 2,5. Tais resultados sfo apresentados
na Fig. 10.

1,2E-02 - N u n
Lo x Q
1,OE-02 o T2 xR
X
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”
™ {K y 7
2 60E03 | Wl T T TANSYS
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4,0E-03 *+ o ©  Malha B
2 0F-03 ES/ x  Malha C |
X |
0,0E+00 B : ‘
0 1 2 X5 3 4 5

Com base nos resultados observados, calcula-se a diferenga percentual entre a Malha C e o modelo
do ANSYS®. Para a linha tracejada vermelha, na posigdo x5 = 2,5 tal diferenca é de -4,42% para o
deslocamento orientado na diregdo x, e de -0,029% para o deslocamento na direg8o x,. J& para a linha
verde, esse desvio corresponde a 3,695% para Ux, em x, =5. Desse modo, nota-se que os
deslocamentos calculados pelo MEC enriquecido se aproximam das respostas de referéncia 4 medida
que a malha € refinada. Assim, o enriquecimento para for¢a concentrada se mostra véalido.
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4.2 Exemplo 2

O segundo exemplo consiste na anélise mecénica de uma viga engastada e livre, com uma forga de
superficie distribuida em sua face superior, de valor 10,0 (unidades de for¢a de superficie) orientado na
direg8o x, e para baixo. N&o ha forgas externas aplicadas as diregdes x4 € x3. O Modulo de Elasticidade
¢ 10.000 (unidades de tenséo) e o coeficiente de Poisson € 0,0. A Fig. 8 mostra a geometria deste
exemplo. :
p=10,0

T R T
3 ¥ ¥ 3

B Y e N
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1
i
1
i
1
i
]
1
1
i
1
'
1]
i
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'
1
o
1
1

-

5,0

-,l—

Figura 11. Geometria do exemplo 2

As quatro malhas adotadas para este exemplo possuem, respectivamente, 88, 352, 1408 e 5.632
elementos e 150, 470, 1638 e 6.086 pontos de colocagdo, conforme Fig. 9.

Malha A . MalhaB Malha C

Figura 12. Malhas adotadas para o segundo exemplo

A vinculagdo da face com condi¢o de contorno em deslocamentos é efetuada com uso de apoios
concentrados nas trés direcdes, aplicados no centro de cada elemento que a compde. Desse modo, 0
comportamento mecéanico de engaste é promovido a ela. A Fig. 13 apresenta a posi¢do das vinculagdes
para a malha A.

Figura 13. Posi¢do dos apoios concentrados aplicados & malha A.

Os deslocamentos na dire¢do x, para a malha D estfio representados na Fig. 14.
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Figura 14. Deslocamentos na diregio x,: malha D deformada e indeformada

O modelo de referéncia em MEF possui uma malha com 40.000 elementos hexaédricos de
aproximagéo quadrética (SOLID 186) e 1.333.361 nés, conforme Fig. 15.

Figura 15. Discretizagdo adotada para o modelo em MEF do exemplo 2

A validagdo deste exemplo € efetuada comparando-se os deslocamentos entre os modelos
numéricos do MEC com a referéncia em dois intervalos. A primeira analise envolve os deslocamentos
orientados na direg8o x, ao longo da linha tracejada em vermelha da Fig. 11, com 0,0 < x{ < 5,0, x, =
0,5e x3 = 1,0. Tais resultados s&o apresentados na Fig. 16.
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Figura 16. Deslocamentos na dire¢#o x, ao longo da linha vermelha tracejada

E calculada também a diferenga percentual para o deslocamento orientado na direcfio x, em
x, = 5,0. Bsta analise ¢ feita a partir da comparag&o entre 0 ANSYS®e a Malha D. Assim, a diferenga

obtida é de -1,95%.

O segundo intervalo analisado é delimitado porx; =5, 0,0 < x, < 1,0 ex3 = 0,5. Na Fig. 11,
este intervalo € simbolizado pela linha tracejada em verde. Os resultados comparados séo os
deslocamentos associados a dire¢o x4, e apresentados na Fig. 17.
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Figura 17. Deslocamentos na diregfio x, ao longo da linha verde tracejada

A diferenca percentual calculada para os resultados observados na Fig. 17 refere-se a
coordenada x, = 1,0. SHo utilizados os dados associados ao modelo de referéncia e a Malha D. Assim,

obtém-se como erro o valor de -1,73%.

Portanto, a partir dos resultados apresentados na Fig. 16 e na Fig. 17 nota-se boa concordancia
entre os deslocamentos do MEC enriquecido e do modelo em MEF. Além disso, também s&o calculadas
as reagdes de apoio na resolucfo do sistema, apresentadas na Tabela 1 para as quatro malhas utilizadas.

Tabela 1. Somatorio das reagdes de apoio para as quatro malhas do MEC e referéncia

Malha R, R, R,
A 4,83E-02 74,06 -4,32E-13
B -2,25E-02 59,05 -1,02E-14
C -1,28E-02 52,75 1,61E-12
D -7,29E-03 50,79 -3,51E-04
ANSYS®  1,31E-07 50,00 -4,76E-08
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Com os dados apresentados na Tabela 1, calcula-se o erro percentual entre a soma das reagdes na
direcdo x5 na malha D e a for¢a resultante aplicada (50,0 unidades de forga), cujo resultado € 1,58%.
Além disso, o somatério das forgas reativas resulta aproximadamente nulo nas dire¢Ses x; e X3,
conforme esperado. Com isso, conclui-se que as condi¢gdes de equilibrio em forcas s&o atendidas.

4.3 Exemplo 3

O ultimo exemplo deste estudo envolve a andlise mecénica de um sélido ndo-homogéneo e
perfeitamente conectado pela interface que une os materiais que compdem a estrutura. A sub-regido 1
possui como propriedades elasticas o Mddulo de Elasticidade de 1.000 (unidades de tenséo) e coeficiente
de Poisson 0,0. Para a segunda sub-regido tais dados sdo, respectivamente, 500 (unidades de tens&o) e
0,30. £ aplicada uma forca concentrada de 100 (unidades de for¢a) na face superior do corpo,
pertencente ao segundo subdominio. A geometria e condi¢des de contorno séo apresentadas na Fig. 18.

F =100

: {
: ) 5,0
: i >
/,l 1
N )
. :
JE SR ] —
e ; f
| ! 5,0
X, i
A 1
__________ A K
%3 5,0

) \\\5,\0\\\\]\ 7

*

Figura 18. Geometria do terceiro exemplo

Para o MEC, sfo adotadas trés malhas com, respectivamente, 410, 1661 e 6689 elementos,
562, 1.955 e 7.267 pontos de colocagdo, de acordo com a Fig. 19.
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Figura 19. Malhas adotadas para o terceiro exemplo

A referéncia analisada para este exemplo é um modelo em MEF construido no software
ANSYS®. Neste modelo, sdo utilizados 71.442 noés e 16.000 elementos hexaédricos de aproximag#o
quadrética (SOLID 186). A malha adotada € apresentada na Fig. 20.
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Figura 20. Modelo em MEF do exemplo 3

Os deslocamentos na dire¢do x, sdo mostrados para a configuracio deformada da Malha C na

Fig. 21.
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Figura 21. Deformada e deslocamentos em x,, malha C.

A comparag8o dos resultados é efetuada a partir dos deslocamentos na dire¢&o x, ao longo da linha

7,50, e x5 variade 0,0 a 5,0. Os dados calculados

Xy =

0,0,

para as trés malhas do MEC, assim como para a malha em MEF

vermelha tracejada da Fig. 18, em que x;

8o apresentados na Fig. 22.
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Figura 22. Deslocamentos na diregdo x; na linha vermelha tracejada do exemplo 3

A diferenca percentual do deslocamento associado a diregfo x; entre a malha C e o modelo do
MEF, no ponto x5 = 2,5 sobre a linha analisada, € de -2,98%.

E analisado também o campo de deslocamentos orientados na diregdio x, ao longo da linha
tracejada em verde da Fig. 18. Neste intervalo, tem-se x; = 5,0,0 < x, < 10 e x5 = 2,5. Com isso, os
resultados obtidos séo apresentados na Fig. 23.
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Figura 23. Deslocamentos na dire¢&o x, na linha verde tracejada do exemplo 3

Calcula-se a diferenga percentual para o deslocamento associado a dire¢@o x, na posi¢do x, = 10
na linha verde tracejada entre a Malha C e 0 modelo em MEF. Com isso, obtém-se o erro percentual de
0,15%.

Portanto, diante dos resultados obtidos, é evidente a boa conformidade dos resultados obtidos ao
passo que ¢ efetuado o refinamento da malha do MEC. Assim, atesta-se a validade da formulago
também para meios ndo-homogéneos analisados com uso da Técnica de Sub-RegiGes.

5 Conclusoes

De posse dos resultados apresentados, conclui-se que a estratégia de enriquecimento para forgas e
vinculagBes concentradas é eficaz. Isso € garantido devido a boa conformidade dos resultados obtidos
pelo MEC em comparagéo aos modelos numéricos calculados pelo MEF.

O caréter de convergéncia dos resultados também € evidente, uma vez que os resultados concordam
com os resultados da referéncia & medida que malhas mais refinadas sfo utilizadas.
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No presente trabalho foram utilizados elementos de contorno isoparamétricos de aproximagéo
linear. No entanto, os enriquecimentos propostos podem ser aplicados a elementos de contorno com
outros tipos de aproximag&o.
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