RT-MAT 94-24

Finite Subgroups in Integral Group Rings

Michael A. Dokuchaev Stanley O. Juriaans

Dezembro 1994

Finite Subgroups in Integral Group Rings

Michael A. Dokuchaev * Stanley O. Juriaans

Abstract

A p-subgroup version of the conjecture of Zassenhaus is proved for some finite solvable groups including solvable groups whose any Sylow p-subgroup is either abelian or generalized quaternion, solvable Frobenius groups, nilpotent-by-nilpotent groups and solvable groups whose orders are not divisible by the fourth power of any prime.

1 Introduction

Let $U_1\mathbb{Z}G$ denote the group of units of augmentation one of the integral group ring of a finite group G. The Zassenhaus conjecture (ZC3) says that any finite subgroup of $U_1\mathbb{Z}G$ is conjugate in $\mathbb{Q}G$ to a subgroup of G (see [19, chapter 5]). We know that (ZC3) holds for nilpotent groups [22] and for split metacyclic groups ([16], [21]). K. W. Roggenkamp and L. Scott have shown that the Zassenhaus conjecture is false and a counterexample is a finite metabelian group [11]. However, somewhat weaker statements hold for large families of finite and infinite groups (see [19, chapters 5 and 6]

^{*}research supported by Fapesp-Brazil

AMS Subject Classifiation: Primary 20C05. Secondary 16S34, 16U60.
Key words and frases: group rings, torsion units, unique trace property, (p-2C3).

and [1], [3], [4], [8], [12]). In the present paper we consider the following p-subgroup version of (ZC3).

(p-ZC3) If H is a p-subgroup of $U_1\mathbb{Z}G$ then there exists a unit $\alpha \in \mathbb{Q}G$ such that $\alpha^{-1}H\alpha \subset G$.

Particulary, if (p-ZC3) is true for a group G then any finite Sylow p-subgroup of $U_1 \mathbb{Z} G$ is rationally conjugate to a p-subgroup of G. Conjugation of those Sylow subgroups of $U_1 \mathbb{Z} G$ which can be embedded into a group basis is investigated in [9], [10].

In this paper all groups G are asssumed to be finite. In section 2 we establish a reduction modulo a normal subgroup. We apply it to generalize a result of [17] and to prove (p-ZC3) for nilpotent-by-nilpotent groups. Particularly, this conjecture is true for both metabelian and supersolvable groups. In sections 3 and 4 we establish (ZC3) for S_4 and a covering group of it, the Binary Octahedral Group. We apply these results in section 5 to prove (p-ZC3) for solvable groups whose any Sylow subgroup is either abelian or generalized quaternion. As a cosequence we deduce (p-ZC3) for solvable Frobenius groups. We also prove (p-ZC3) for a family of groups including those solvable groups whose orders are not divisible by the fourth power of any prime.

2 A REDUCTION STEP AND SOME APPLI-CATIONS

For an element α of $\mathbb{Z}G$ we put $\tilde{\alpha}(g) = \sum_{h \in C_g} \alpha(g)$ where C_g is the conjugacy class of $g \in G$.

Let N be a normal subgroup of G, $\overline{G} = G/N$, $\Psi : \mathbb{Z}G \to \mathbb{Z}(G/N)$ the natural map, $\overline{g} = \Psi(g)$ for $g \in G$. This notation shall be used in all what follows.

Lemma 2.1 Let $\alpha \in \mathcal{U}_1 \mathbb{Z}G$ be a torsion unit, $\beta = \Psi(\alpha)$ and $(o(\alpha), |N|) = 1$. If the order of $g \in G$ is relatively prime to |N| then $\tilde{\alpha}(g) = \tilde{\beta}(\overline{g})$.

Proof: Set $S_g = \{h \in G : \overline{h} \sim \overline{g} \text{ in } \overline{G}\}$ and $S'_g = \{h \in S_g : o(h) = o(g)\}$. We see that $\widetilde{\beta}(g) = \sum_{h \in S_g} \alpha(h)$. Note that if h is not in S'_g then $(o(h), |N|) \neq 1$ and consequently there is a prime p such that $p \mid o(h)$ but p does not divide $o(\alpha)$. By [19, Lemma 38.11], $\widetilde{\alpha}(h) = 0$. Since the complement of S'_g in S_g is a normal subset of G, we have that $\widetilde{\beta}(g) = \sum_{h \in S'_g} \alpha(h)$. It suffices to show that the elements of S'_g are conjugate to g. Indeed, if $h \in S'_g$ then $t^{-1}ht = g\theta$ for some $t \in G$, $\theta \in N$ and the equality o(h) = o(g) implies that the cyclic subgroups (g) and $(g\theta)$ are complements for N in $N \rtimes (g)$. Since (o(g), |N|) = 1, we get, by Schur- Zassenhaus Theorem, that h is conjugate to g. Hence, the result follows.

The next result generalizes [7, Lemma 2.3].

Theorem 2.2 Let H be a finite subgroup of $U_1 \mathbb{Z}G$ such that (|H|, |N|) = 1

and G_0 be a subgroup of G with $(|G_0|, |N|) = 1$. Then H is rationally conjugate to G_0 iff $\Psi(H)$ is conjugate to $\overline{G_0}$ in $\mathbb{Q}\overline{G}$.

Proof: We have to prove just the converse. Denote $\overline{H} = \Psi(H)$. Let $\gamma^{-1}\overline{H}\gamma = \overline{G_0}$ for some $\gamma \in \mathbb{Q}\overline{G}$. Let $\alpha \in H$ and let β be as above. According to [19, Lemma 41.4] $h_{\alpha} = \gamma^{-1}\beta\gamma$ is, upto conjugacy, the unique element of \overline{G} with $\widetilde{\beta}(h_{\alpha}) \neq 0$. If we choose $g_{\alpha} \in G$ such that $h_{\alpha} = \Psi(g_{\alpha})$ and $(o(g_{\alpha}), |N|) = 1$ then it follows from [19, Lemma 38.11] and Lemma 2.1 that, upto conjugacy, g_{α} is the unique element of G with $\widetilde{\alpha}(g_{\alpha}) \neq 0$. Let G_1 be the inverse image of $\overline{G_0}$ in G. Since $G_1/N \cong \overline{G_0}$ and $(|G_0|, |N|) = 1$ we have, by Schur-Zassenhaus Theorem, that G_0 is a complement for N in G_1 . Clearly, the restriction of Ψ to G_0 gives an isomorphism between G_0 and $\overline{G_0}$. Denote by Ψ_1 the inverse of this isomorphism and define a homomorphism $\phi: H \longrightarrow G_0$ by setting $\phi(\alpha) = \Psi_1(\gamma^{-1}\beta\gamma)$. Since $(o(\phi(\alpha)), |N|) = 1$, Lemma 2.1 implies that $\widetilde{\alpha}(\phi(\alpha)) = \widetilde{\beta}(\Psi\phi(\alpha)) = \widetilde{\beta}(h_{\alpha}) \neq 0$ and $\phi(\alpha)$ is conjugate to g_{α} . It follows by [19, Lemma 41.4] that H is rationally conjugate to G_0 .

As a consequence we have the following:

Corolarry 2.3 Suppose that (ZC3) holds for the factor group G/N. Then any finite subgroup $H \subset U_1 \mathbb{Z} G$ whose order is relatively prime to the order of N is rationally conjugate to a subgroup of G.

Also we obtain some consequences for split extensions.

Corolarry 2.4 Let G be a split extension of a normal subpotent subgroup

N and a group X which satisfies (p-ZC3). If the orders of N and X are relatively prime then G satisfies (p-ZC3).

Proof: Let H be a finite p-subgroup of $U_1\mathbb{Z}G$. If p does not divide the order of N then we use Theorem 2.2 and the assumption on X. If p does divide |N| then G has a normal Sylow p-subgroup and hence, by [19, Lemma 41.12], we obtain that H is rationally conjugate to a subgroup of G.

We give now an improvement of Lemma 37.13 of [19].

Lemma 2.5 Let $G = N \times X$, where the orders of N and X are relatively prime, and let $\alpha = vw \in \mathcal{U}_1 \mathbb{Z} G$ be a torsion unit with $v \in \mathcal{U}(1 + \Delta(G, N))$ and $w \in \mathcal{U}_1 \mathbb{Z} X$. If $(o(\alpha), |N|) = 1$ then α and w are rationally conjugate.

Proof: We observe that $\tilde{\alpha}(g) = \tilde{w}(g)$ for all $g \in G$. Indeed, if $(o(g), |N|) \neq 1$ then it follows from [19, Lemma 38.11] that $\tilde{\alpha}(g) = \tilde{w}(g) = 0$. If (o(g), |N|) = 1 then, by Schur-Zassenhaus Theorem, we may suppose that $g \in X$ and apply Lemma 2.1.

Now let d be a divisor of $o(\alpha)$. Then $\alpha^d = v_d w^d$ with $v_d \in \mathcal{U}(1+\triangle(G,N))$ and we use the same reasoning for the units α^d , w^d . Hence, according to [13, Theorem 2], α and w are conjugate in $\mathbb{Q}G$.

The next result is a modification of Lemma 37.6 of [19].

Lemma 2.6 Let H_1 and H_2 be isomorphic finite subgroups of $U_1\mathbb{Z}(i)$ with a given isomorphism $\varphi: H_1 \longrightarrow H_2$. Suppose that $\chi(h) = \chi(\varphi(h))$ for all $h \in H_1$ and all absolutely irreducible characters χ of G. Then H_1 is conjugate to H_2 in $\mathbb{Q}G$.

Proof: We extend the representation $\Gamma: G \longrightarrow Gl(n,\mathbb{C})$ corresponding to χ , linearly to $\Gamma_1: H_1 \longrightarrow Gl(n,\mathbb{C})$. By the assumption the characters of Γ_1 and $\Gamma_1 \varphi$ are equal and, consequently, the images of H_1 and H_2 are conjugate in any simple component of $\mathbb{C}G$. Hence H_1 is conjugate to H_2 in $\mathbb{C}G$ and Lemma 37.5 of [19] implies that the conjugation can be taken in $\mathbb{Q}G$.

Now we extend Theorem 37.17 of [19].

Theorem 2.7 Let G be as in Lemma 2.5. Then any finite subgroup H of $U_1 \mathbb{Z} G$ with (|H|, |N|) = 1 is rationally conjugate to a subgroup of $U_1 \mathbb{Z} X$.

Proof: We write $H = H_1H_2$ with $H_1 \subset U(1 + \triangle(G, N))$ and $H_2 \subset U_1\mathbb{Z}X$. By Lemma 2.5 the isomorphism $H \ni \alpha = vw \longrightarrow w \in H_2$ satisfies the hypothesis of Lemma 2.6. Hence H is conjugate to H_2 in $\mathbb{Q}G$.

As a consequence we have the following:

Corolarry 2.8 Let G and N be as in Lemma 2.5. If H is a finite subgroup of $U(1 + \Delta(G, N))$ then the order of H divides the order of N.

Proof: We already know that |H| is a divisor of |G|. Suppose that there is a prime p that divides the order of H and does not divide |N|. Let $\alpha \in H$ be a unit of order p. Then, by Lemma 2.5, we have that α is rationally conjugate to an element of $U_1 \mathbb{Z} X \cap U(1 + \Delta(G, N)) = 1$, a contradiction.

Theorem 2.9 Let G be a nilpotent-by-nilpotent group. Then (p-ZCB) holds for G.

Proof: Let H be a p-subgroup of $\mathcal{U}_1\mathbb{Z}G$ and G_1 be a normal nilpotent subgroup of G so that G/G_1 is nilpotent. If G_1 is not a p-group, then G possesses a normal p'-subgroup N. It follows from Theorem 2.2 and induction on the order of G that H is conjugate in $\mathbb{Q}G$ to a subgroup of G. If G_1 is a p-group, then the Sylow p-subgroup of G is normal and [19, Lemma 41.12] implies that H is rationally conjugate to a subgroup of G. \square

The proof of the following Lemma can be found in [7].

Lemma 2.10 Let G be a solvable group and P an abelian Sylow p-subgroup of G. If P is not normal in G then $O_{p'}(G) \neq 1$.

Proposition 2.11 Let P be an abelian Sylow p-subgroup of a solvable group G. If H is a finite p-subgroup of $U_1\mathbb{Z}G$ then H is rationally conjugate to a subgroup of G.

Proof: By [19, Theorem 41.12] we may assume that P is not normal in G. It follows from the preceding lemma that $N = O_{p'}(G) \neq 1$. Since the factor group G/N satisfies our hypothesis we can use Theorem 2.2 and induction to conclude that H is rationally conjugate to a subgroup of G.

3 (ZC3) for S_4

The Zassenhaus conjecture for cyclic subgroups in ZLS₄ was proved in [5]. In this section we prove the following:

Theorem 3.1 (ZC3) holds for S4.

Proof: Let $G = S_4$ and let H be a finite subgroup of $U_1\mathbb{Z}G$. It is known that G has a faithful irreducible complex representation $\Gamma: G \longrightarrow Gl(3,\mathbb{C})$ such that the trace of $\Gamma((12))$ is 1. We denote also by Γ the extension of this representation to $\mathbb{Z}G$. Since (ZC1) holds for G it follows that Γ is faithful on H. Therefore

$$|\Gamma(H)| = |H|.$$

Denoting by F the Fitting subgroup of G we have that $F = \langle (12)(34), (13)(24) \rangle$ and $G/F \cong S_3$. Since F is abelian there exists an invertible matrix X such that $X^{-1}\Gamma(F)X$ has a diagonal form. It is easy to see that

$$(3.3) \quad X^{-1}\Gamma(F)X = \{I, diag(-1, -1, 1), diag(-1, 1, -1), diag(1, -1, -1)\}.$$

Denote by Ψ the natural map $\mathbb{Z}G \longrightarrow \mathbb{Z}G/F$, $\overline{H} = \Psi(H)$ and $H_0 = H \cap (1 + \Delta(G, F))$. In view of (ZC1), going down modulo F, we obtain that

(3.4) $h \in H_0$ if and only if $\gamma^{-1}h\gamma \in F$ for some unit $\gamma \in \mathbb{Q}(i)$.

We may also assume that H is not cyclic. According to Lemma 2.6 it suffices to find a monomorphism $\varphi: H \longrightarrow G$ such that $h \sim \varphi(h)$ in $\mathbb{Q}G$ for all $h \in H$. We consider several cases.

Case 1: H = (u, v) is isomorphic to the Klein four group. Since the order of \overline{H} divides 6 we have that $[H : H_0] = 1$ or 2.

If the index is 1 then, by (3.4), the map $\varphi: H \longrightarrow F$ defined by $\varphi(u) =$ (12)(34), $\varphi(v) =$ (13)(24) is a group isomorphism such that $h \sim \varphi(h)$ in $\mathbb{Q}G$ for all $h \in H$. Thus, H is rationally conjugate to F.

Let $[H:H_0]=2$. Choose generators u,v such that $u\notin H_0$ and $H_0=\langle v\rangle$. We have that $u\sim (12)$ and $v\sim (12)(34)$ in $\mathbb{Q}G$. Clearly $uv\notin H_0$ and, therefore, $uv\sim (12)\sim (34)$ in $\mathbb{Q}G$. We now define an isomorphism $\varphi:H\longrightarrow \langle (12),(12)(34)\rangle$ by putting $\varphi(u)=(12),\varphi(v)=(12)(34)$. Then h is rationally conjugate to $\varphi(h)$ for all $h\in H$ and consequently H is conjugate in $\mathbb{Q}G$ to a subgroup of G.

Case 2: The order of H is 8. Note that in this case $[H:H_0]=2$. We show that H is not abelian. First suppose that H is elementary abelian and let u_1 , u_2 , u_3 be generators of H such that $H_0=\langle u_2,u_3\rangle$. There exists a matrix Y such that $Y^{-1}\Gamma(H)Y$ consists of diagonal matrices. For $h\in H$ we put $d(h)=Y^{-1}\Gamma(h)Y$. Note that $Y^{-1}H_0Y$ consists of the diagonal matrices given in (3.3). So there is $u\in H_0$ so that d(u)=diag(1,-1,-1). Now since u_1 does not belong to H_0 we may suppose that $d(u_1)=diag(-1,1,1)$. Hence $d(uu_1)=diag(-1,-1,-1)$, a contradiction since uu_1 is rationally conjugate to (12).

Let $H=\langle u,v\rangle$, where $o(u^2)=o(v)=2$. Note that u does not belong to H_0 and, consequently, H_0 is generated by u^2 and v. Let Y be such that $Y^{-1}\Gamma(H)Y$ is in the diagonal form. As above, the diagonal form of H_0 consists of the matrices given in (3.3). Since $u^2\in H_0$ we may assume that $d(u^2)=diag(-1,-1,1)$. Hence, $d(u)=diag(\pm i,\pm i,\pm 1)$. ('hoose $w\in H_0$ so that d(w)=diag(1,-1,-1). The element uw has order 4 so, since (ZC1) holds for G, we see that uw is rationally conjugate to (1234). Hence, d(u) and d(uw) are conjugate. However, it is easy to check that the matrices

 $diag(\pm i, \pm i, \pm 1)$ and $diag(\pm i, \pm i, \pm 1)diag(1, -1, -1)$ are not conjugate in $Gl(3,\mathbb{C})$, a contradiction.

Thus H is not abelian and since H_0 has exponent 2 we see that H must be isomorphic to the dihedral group of order 8. Let $H = (u, v : u^4 = v^2 = 1, v^{-1}uv = v^3)$. Then u is not in H_0 and we may choose v such that H_0 is generated by u^2 and uv. By (3.4), the nontrivial elements of H_0 are conjugate to (12)(34). Since (ZC1) holds for G we have that the other elements of order 2 are rationally conjugate to (13) \sim (24) and those of order 4 are conjugate to (1234). Put $H_1 = \langle (1234), (13) \rangle$ and define an isomorphism of H to H_1 given by $\varphi(u) = (1234), \varphi(v) = (13)$. Then it is clear that h and $\varphi(h)$ are rationally conjugate for all $h \in H$ and hence, $H \sim H_1$ in $\mathbb{Q}G$.

Case 3: The order of H is 6. Since (ZC1) holds for G we must have that H is isomorphic to S_3 . Let $H = \langle u, v \rangle$ with $u^3 = v^2 = 1$. Note that H_0 has to be trivial, otherwise H would be cyclic. Hence the elements of order 2 in H are rationally conjugate to (12). Define a monomorphism $\varphi : H \longrightarrow G$ by $\varphi(u) = (123)$ and $\varphi(v) = (12)$. Then it is clear that h and $\varphi(h)$ are rationally conjugate for all $h \in H$ and hence H is conjugate in $\mathbb{Q}G$ to a subgroup of G.

Case 4: The order of H is twelve. Since $U_1\mathbb{Z}G$ does not have elements of order 6 we have, by [2, pp. 134-135], that H is isomorphic to A_4 . Then the elements of order 2 are pairwise conjugate in H and case 1 implies that H_0 is rationally conjugate to F. If $\varphi: H \longrightarrow A_4$ is any isomorphism then, clearly,

h is rationally conjugate to $\varphi(h)$ for all $h \in H$. Hence, H is rationally conjugate to A_4 .

Case 5: H is a group basis. We shall show that H is isomorphic to S_4 . First note that H is solvable. Put $H_1 = O_{2'}(H)$. Note that H_0 is normal and has order 4 in this case. So if H_1 is not trivial then H would have an element of order 6 which is, obviously, a contradiction. According to case 2, the Sylow 2-subgroups of H are dihedral of order 8. Hence, [6, page 462] implies that H is isomorphic to S_4 . Denote by φ the extension of any isomorphism $G \cong H$ to the integral group rings. It follows from [19, Theorem43.6] that φ is an inner automorphism induced by a unit of $\mathbb{Q}G$.

4 (ZC3) for the Binary Octahedral Group

Let G be the Binary Octahedral group. We know that the center of G is cyclic of order 2, $G/Z(G)\cong S_4$, the Sylow 2-subgroups of G are generalized quaternion of order 16 and a group with these properties is isomorphic to G (see, for example, [20, 2.1.14]). Moreover, the Fitting subgroup F of G is isomorphic to the quaternion group of order 8 and $G/F\cong S_3$. Let $N=Z(G)=\langle z\rangle$ and $\Psi: \mathbb{Z}G\longrightarrow \mathbb{Z}G/N$ the natural map.

Lemma 4.1 We can choose a Sylow 2-subgroup $P = (a, b : a^8 = 1, b^2 = a^4, b^{-1}ab = a^{-1})$ of G and it's generators so that $\Psi(a) = (1234)$, $F = (a^2, ab)$ and $a^2 \sim ab$ in G.

Proof: Obviously, we can take a P with $\Psi(P) = \langle (1234), (13) \rangle$. Since F is the inverse image of $\langle (12)(34), (13)(24) \rangle$, we see that $F = \langle a^2, ab \rangle$. Let $x \in G$ be an element of order 3. Then $x^{-1}ax \neq a^6$. Going down modulo N to S_4 we see that $x^{-1}a^2x \in \{a^{2k+1}b\}$ and consequently $a^2 \sim ab$ in G. \square

We also note that a is not conjugate to a^5 in G. For if $x^{-1}ax = a^5$ for some $x \in G$ then $x^{-1}Px = P$ as (a^2, ab) is the Fitting subgroup. However, $N_G(P) = P$ and consequently $x \in P$, a contradiction.

In all what follows in this section we choose P and its generators as in the lemma above. If $c \in G$ is an element of order 3, then we obtain, looking at S_4 , the following representatives of the conjugacy classes of G:

order of an element	1	2	3	4	6	8
representatives	1	Z	c	a^2, b	zc	a, a5

We note that Ψ maps the two conjugacy classes of elements of order 4 of G to the two of those of order 2 in S_4 . We begin by proving that the Zassenhaus conjecture holds for cyclic subgroups in $\mathbb{Z}G$. We say that $\alpha \in \mathbb{Z}G$ satisfies the unique trace property if there exists a $g \in G$, unique upto conjugacy in G, such that $\tilde{\alpha}(g) \neq 0$.

Proposition 4.2 (ZCI) holds for G.

Proof: Let $a \in \mathcal{U}_1 \mathbb{Z}G$ be a torsion unit. β its image in $\mathbb{Z}S_4$ and $g \in G$. Denote by $\overline{g} = \Psi(g)$. Since (ZC1) holds for S_4 we have that

$$(4.3) \widetilde{\beta}(\overline{g}) \in \{0,1\}.$$

Note first that the unit group $U_1\mathbb{Z}G$ has a unique element of order 2. So we may suppose that the order of α is not 2. If $o(\alpha)=3$ then we apply Theorem 2.2. If the order of α is 6 then we may write $\alpha=z\alpha_0$, where the order of α_0 is 3 and so we are done by the previous case. Going down modulo N we see easily that the only possibilities left for the order of α are 4 and 8.

Let α be a 2-element such that $o(\alpha) \geq 4$. We want to show that every element of $\langle \alpha \rangle$ satisfies the unique trace property. Note that z does not belong to the support of α . If g has order 3 or 6 then [19, Lemma 38.11] implies that $\widetilde{\alpha}(g) = 0$. So we may suppose that g is of order 4 or 8. Let g and g_0 be elements of G whose orders are 4 and 8 respectively. Going down modulo N it is easy to see that

(4.4)
$$\widetilde{\beta}(\overline{g}) = \widetilde{\alpha}(g),$$

$$\widetilde{\beta}(\overline{g}_0) = \widetilde{\alpha}(g_0) + \widetilde{\alpha}(g_0^5).$$

Since g_0 is not conjugate to g_0^5 in G, there exists an absolutely irreducible character χ of G so that $\chi(g_0) = \chi(g_0^5)$. It is easy to see that the degree of χ divides 4 and χ is not zero on an element of order 8. Moreover, χ is faithful as $\Psi(a) = \Psi(a^5)$. Let Γ be the representation associated with χ . Then $\Gamma(z) = -I$ and therefore

(4.5)
$$\chi(g_0^5) = -\chi(g_0).$$

We now treat seperately the remaining two cases.

Assume first that α has order 4. It follows from (4.3) and (4.4) that $\widetilde{\alpha}(g_0) + \widetilde{\alpha}(g_0^5) = 0$ and there exists a unique, upto conjugary, element $g_1 \in G$ of order 4 such that $\widetilde{\alpha}(g_1) \neq 0$. Applying χ to α and using (4.3) and (4.5) we obtain that $\chi(\alpha) = \chi(g_1) + 2\widetilde{\alpha}(g_0)\chi(g_0)$. It follows from the equalities $g_1^2 = z = \alpha^2$ that the eigenvalues of $\Gamma(\alpha)$ and $\Gamma(g_1)$ are $\pm i$. Note that in G every element is conjugate to its inverse so χ is real-valued. Consequently, $\chi(\alpha) = \chi(g_1) = 0$ and so $\widetilde{\alpha}(g_0) = 0$. Thus any element of α satisfies the unique trace property and in view of [19, Lemma 41.5] $\alpha \sim g_1$ in $\mathbb{Q}G$.

Finally assume that $o(\alpha)=8$. By the same reasoning we obtain that $\tilde{\alpha}(g)=0$ if $o(g)\neq 8$ and $\tilde{\alpha}(g_0)+\tilde{\alpha}(g_0^5)=1$. Hence,

(4.6)
$$\chi(\alpha) = [\tilde{\alpha}(g_0) + \tilde{\alpha}(g_0^5)]\chi(g_0) = [2\tilde{\alpha}(g_0) - 1]\chi(g_0).$$

The equalities $\alpha^4=z=g_0^4$ implies that the eigenvalues of α and g_0 are primitive roots of unity of order 8. Since χ is real-valued and $\chi(g_0)\neq 0$ we see easily that the only possibilities for $\chi(\alpha)$ and $\chi(g_0)$ are $\pm\sqrt{2}$ and $\pm2\sqrt{2}$. Using this fact and (4.6) we obtain that $2\tilde{\alpha}(g_0)-1=\pm 1$ and so $\tilde{\alpha}(g_0)$ is 0 or 1. It follows, from the former case, that every element of $\langle \alpha \rangle$ has the unique trace property and so, by [19, Lemma 41.5], either $\alpha \sim g_0$ or $\alpha \sim g_0^5$ in $\mathbb{Q}G$.

Theorem 4.7 G satisfies (ZC3).

Proof: As we already mentioned $U_1\mathbb{Z}G$ has a unique element z of order 2, which is central, and we denoted $N = \langle z \rangle$. So if H is a finite non-cyclic subgroup of $U_1\mathbb{Z}G$ then the Sylow 2-subgroups of H are either cyclic, or quaternion of order 8 or generalized quaternion of order 16. Moreover, since

(ZC3) holds for S_4 and this group does not have subgroups of order 6, $U_1 \mathbb{Z}G$ does not contain subgroups of order 12.

Let |H|=8. Suppose first that $H<\mathcal{U}(1+\Delta(G,F))$. Then, by (ZC1), any $1\neq h\in H$ is conjugate in $\mathbb{Q}G$ to $a^2\sim ab$. Therefore, if $\varphi:H\longrightarrow F$ is any isomorphism, h is rationally conjugate to $\varphi(h)$ for all $h\in H$, and Lemma 2.6 implies that H and F are conjugate in $\mathbb{Q}G$.

If H is not contained in $\mathcal{U}(1+\Delta(G,F))$ then it is easily seen that, going modulo N, we may choose generators h_0,h_1 of H such that $h_0 \sim b$ and $h_1 \sim a^2$ in $\mathbb{Q}G$. We now define a homorphism $\varphi: H \longrightarrow (a^2,b)$ by $\varphi(h_0) = b$, $\varphi(h_1) = a^2$. Since $\Psi(h_1h_0) \notin \mathcal{U}(1+\Delta(S_4,Fit(S_4)))$ it follows that $h_1h_0 \sim a^2b$ in $\mathbb{Q}G$ and $h_1^3h_0 = zh_1h_0 \sim za^2b = a^6b$ in $\mathbb{Q}G$. Hence h and $\varphi(h)$ are rationally conjugate for all $h \in H$ and consequently so are H and (a^2,b) .

Suppose now that the order of H is 16. We have that $H \cong P$. Choose generators u, v for H so that $\Psi(u) \sim (1234)$ and $\Psi(v) \sim (13)$ in $\mathbb{Q}S_4$. It follows, by proposition 4.2, that $v \sim b$ in $\mathbb{Q}G$ and either $u \sim a$ or $u \sim a^5$ in $\mathbb{Q}G$. In the later case we consider a^5 instead of a, so we may suppose that $u \sim a$. Define an isomorphism $\varphi: H \longrightarrow P$ by $\varphi(u) = a$, $\varphi(v) = b$. Observe that $\Psi(u^k v)$ is rationally conjugate to $(1234)^k(13)$. So if k is even then $\Psi(u^k v) \sim (24) \sim (13)$ and consequently $u^k v \sim b$ in $\mathbb{Q}G$. If k is odd, then $\Psi(u^k v) \sim (14)(23)$ in $\mathbb{Q}S_4$ and, hence $u^k v \sim a^2 \sim ab$ in $\mathbb{Q}G$. So we proved that $h \sim \varphi(h)$ for all $h \in H$ and, therefore, H and P are rationally conjugate.

Let |H|=24. Since S_4 satisfies (ZG3) it follows that $\Psi(H)\sim A_4$ in $\mathbb{Q}S_4$. Since A_4 has a normal Sylow 2-subgroup it follows that H also has a normal Sylow 2-subgroup H_0 . Hence $H=H_0\bowtie \langle v\rangle$ with $v^3=1$. Clearly H_0 is the quaternion group of order 8 and as $\Psi(H_0)\sim \Psi(F)$ in $\mathbb{Q}S_4$, going down modulo F, it is easily seen that $H_0< U(1+\triangle(G,F))$. Consequently, H_0 is rationally conjugate to F. Let $c\in G$ be an element of order 3, $G_1=F\bowtie \langle c\rangle$ and $\varphi:H\longrightarrow G_1$ any isomorphism. Recall that the conjugacy classes of elements of order 3 and 6 are respectively represented by zc and c. From this it easily follows that $\varphi(h)\sim h$ in $\mathbb{Q}G$ for every $h\in H$ and hence H and G_1 are rationally conjugate.

Finally let |H|=48. It follows from the information above that $H/Z(H)\cong S_4$ and the Sylow 2-subgroups of H are isomorphic to P. Hence, H must be the Binary Octahedral Group. Let $\varphi:H\longrightarrow G$ be any isomorphism. Theorem 3.1 and Proposition 4.2 imply that $\varphi(h)\sim h$ in $\mathbb{Q}G$ for every $h\in H$ with $o(h)\neq 8$. Let o(h)=8 and suppose that $\varphi(h)$ is not rationally conjugate to h. We have that $G=\langle P,c\rangle, c^3=1$ and $G_1=F\otimes \langle c\rangle$ has index 2 in G. Define a map θ by $a\longrightarrow a^5$ and $g\longrightarrow g$ for any $g\in G_1$. Since the elements of G_1 are fixed by this map it follows that it is an automorphism of G. It is easy to check now that if we replace φ by $\varphi\theta$, we get $\varphi(h)\sim h$ in $\mathbb{Q}G$ for all $h\in H$ and consequently H and G are rationally conjugate.

5 (p-ZC3) FOR SOME SOLVABLE GROUPS

Theorem 5.1 Let G be a solvable group such that any Sylow subgroup of G is either abelian or generalized quaternion. Then G satisfies (p-Z(G)).

Proof: Let H be a finite p-subgroup of $U_1\mathbb{Z}G$. In view of Proposition 2.11 we may assume that p=2 and the Sylow 2-subgroups of G are generalized quaternion. If the Fitting subgroup F of G is not a 2-group, then G contains a non-trivial normal subgroup N of odd order. Since the factor group G/N satisfies the assumption of the theorem we use Theorem 2.2 and induction on |G|.

Let F be a 2-group. Since G is solvable, $C_G(F) = \mathcal{Z}(F)$ [18, p. 144] and, consequently, $G/\mathcal{Z}(F) = N_G(F)/C_G(F)$ is a subgroup of Aut(F). According to [15,Proposition 9.10] if F is not isomorphic to Q_8 , the quaternion group of order 8, then Aut(F) is a 2-group and the result follows from [22].

Let $F \cong Q_8$. Then $Aut(F) \cong S_4$, $|\mathcal{Z}(F)| = 2$ and, hence, |G| divides 48. By [22] we may suppose that G is not nilpotent. If |G| = 24 then G has a normal Sylow 2-subgroup and we can use Theorem 2.9. If |G| = 48 then G is the Binary Octahedral group. In this case we apply Theorem 4.7.

Corolarry 5.2 A finite solvable Frobenius group satisfies (p-ZC3).

Proof: By [18, 10.5.6] $G = N \rtimes X$ where N is nilpotent. (|N|, |X|) = 1 and the Sylow p-subgroups of X are either abelian or generalized quaternion. Hence, the result follows from Corollary 2.4 and Theorem 5.1.

Theorem 5.3 Let G be a finite solvable group and L = L(G) the last non-trivial term of the lower central series of G. If p^4 does not divide |G| for any prime p dividing |L|, then G satisfies (p-ZC3).

Proof: Let H be a finite p-subgroup of $U_1 \mathbb{Z} G$. If p does not divide |L| then, since G/L is nilpotent, we apply Theorem 2.2 and the theorem of Weiss [22].

Let p divides |L| and F be the Fitting subgroup of G. If F is not a p-group, then $N = O_{p'}(F)$ is a non-identity normal subgroup of G. It is easy to see that the factor group G/N satisfies the hypothesis of the theorem, so we may use Theorem 2.2 and induction on the order of G.

Let F be a p-group and P a Sylow p-subgroup of G. In view of Proposition 2.11 and [19, Theorem 41.12] we may assume that P is not abelian and not normal in G. In fact $|P| = p^3$ because p^4 does not divide |G|. Now same arguments as in [7, pp. 4908-4909] shows that p = 2 and $G \cong S_4$. Thus, the result follows from Theorem 3.1.

Remark: The proof of the theorem shows that if $H \subset U_1 \mathbb{Z}G$ is a finite subgroup whose order is relatively prime to that of L then H is rationally conjugate to a subgroup of G.

ACKNOWLEDGEMENTS

We express our appreciation to Mazi Shirvani for useful conversations.

The first author thanks the Institute of Mathematics and Statistics of the State University of São Paulo for it's warm hospitality.

REFERENCES

- [1] Bovdi, A., Marciniak, Z., Sehgal, S. K., Torsion Units in Infinite Group Rings, J. Number Theory 47 (1994), 284-299.
- [2] Coxeter, H. S. M., Moser, W. O. J., Generators and Relations for Discrete Groups, Springer-Verlag, Berlin, 1980.
- [3] Dokuchaev, M.A., Torsion units in integral group ring of nilpotent metabelian groups, Commun. Algebra. 20(2) (1992), 423-435.
- [4] Dokuchaev, M.A., Sehgal, S.K., Torsion Units in Integral Group Rings of Solvable Groups, Commun. Algebra (to appear).
- [5] Fernandes, N.A., Torsion Units in the Integral Group Ring of S₄, Boletim da Soc. Bras. de Mat.18 (1) (1987), 1-10.
- [6] Gorenstein, D., Finite groups, Harper & Row, New York, 1968.
- [7] Juriaans, S. O., Torsion units in integral group ring, Commun. Algebra., 22 (12) (1993), 4905-4913.
- [8] Juriaans, S. O., Torsion Units in Integral Group Rings II, Canadian Mathematical Bulletin (to appear).
- [9] Kimmerle, W., Roggenkamp, K.W., Projective Limits of Group Rings, Journal of Pure and Applied Algebra 88 (1993), 119-142.
- [10] Kimmerle, W., Roggenkamp, K.W., Zimmerman, A., DMV-Seminar Part I Group Rings: Units and the Isomorphism Problem.
- [11] Klinger, L., Construction of a counterexample to a conjecture of Zassenhaus, Commun. Algebra 19 (1993), 2303-2330.
- [12] Lichtman, A.I., Sehgal, S.K., The elements of finite order in the group of units of group rings of free products of groups, Commun. Algebra 17 (1989),2223-2253.
- [13] Luthar, I.S., Passi, I. B. S., Zassenhaus conjecture for As, Proc. Indian Acad. SCi 99 (1) (1989), 1-5.
- [14] Marciniak, Z., Ritter, J., Sehgal, S.K., Weiss, A., Torsion units in integral group rings of some metabelian groups, II, *Journal of Number Theory* 25 (1987), 340-352.

- [15] Passman, D.S., Permutation groups, W.A. Benjamin, Inc. N.Y., 1968.
- [16] Polcino Milies, C., Ritter, J., Sehgal, S. K., On a conjecture of Zassenhaus on torsion units in integral group rings II, *Proc. Amer. Math. Soc.*, 97 (2) (1986), 206-210.
- [17] Polcino Milies, C., Sehgal, S. K., Torsion Units in integral group rings of metacyclic groups, J. Number Theory 19 (1984), 103-114.
- [18] Robinson, D.J.S., A course in the theory of groups, Springer-Verlag, New York, Heidelberg, Berlin, 1980.
- [19] Sehgal, S.K., Units of Integral Group Rings, Longman's, Essex, 1993.
- [20] Shirvani, M., Wehrfritz, B. A. F., Skew Linear Groups, Cambridge. Univ. Press, 1986.
- [21] Valenti, A., Torsion Units in Integral Group Rings, Proc. Amer. Math. Soc. 120(1) (1994), 1-4.
- [22] Weiss, A., Torsion units in integral group rings, J. Reine Angew. Math. 415(1991), 175-187.

Instituto de Matemática e Estatística Universidade de São Paulo Caixa Postal 20570 01452-990 - São Paulo - Brasil dokucha@ime.usp.br ostanley@ime.usp.br

TRABALHOS DO DEPARTAMENTO DE MATEMÁTICA

TÍTULOS PUBLICADOS

- 93-01 COELHO, F.U. A note on preinjective partial tilting modules. 7p.
- 93-02 ASSEM,I. & COELHO, F.U. Complete slices and homological properties of tilted algebras.
- 93-03 ASSEM, Î. & COELHO, F.U. Glueings of tilted algebras 20p.
- 93-04 COELHO, F.U. Postprojective partitions and Auslander-Reiten quivers. 26p.
- 93-05 MERKLEN, H.A. Web modules and applications. 14p.
- 93-06 GUZZO JR., H. The Peirce decomposition for some commutative train algebras of rank n.12p.
- 93-07 PERESI, L.A. Minimal Polynomial Identities of Baric Algebras. 11p.
- 93-08 FALBEL E., VERDERESI J.A. & VELOSO J.M. The Equivalence Problem in Sub-Riemannian Geometry. 14p.
- 93-09 BARROS, L.G.X. & POLCINO MILIES, C. Modular Loop Algebras of R.A. Loops. 15p.
- 93-10 COELHO.F.U., MARCOS E.N., MERKLEN H.A. & SKOWRONSKI Module Categories with Infinite Radical Square Zero are of Finite Type. 7p.
- 93-11 COELHO S.P. & POLCINO MILIES, C. Automorphisms of Group Algebras of Dihedral Groups. Sp.
- 93-12 JURIAANS. O.S. Torsion units in integral group rings. 11 p.
- 93-13 FERRERO, M., GIAMBRUNO, A. & POLCINO MILIES, C. A
 Note on Derivations of Group Rings. 9p.
- 93-14 FERNANDES, J.C. & FRANCHI, B. Existence of the Green function for a class of degenerate parabolic equations, 29p.
- 93-15 ENCONTRO DE ÁLGEBRA IME-USP/IMECC UNICAMP. 41p.
- 93-16 FALBEL, E. & VELOSO, J.M. A Parallelism for Conformal Sub-Riemannian Geometry, 20p.
- 93-17 "TEORIA DOS ANEIS" Encontro IME.USP. IMECC-UNICAMP - Realizado no IME-USP em 18 de junho de 1993 - 50p.
- 93-18 ARAGONA, J. Some Properties of Holomorphic Generalized Functions on Strictly Pseudoconvex Domains. 8p.
- 93-19 CORREA I., HENTZEL I.R. & PERESI L.A. Minimal Identities of Bernstein Algebras. 14p.
- 93-20 JURIAANS S.O. Torsion Units in Integral Group Rings II. 15p.
- 93-21 FALBEL E. & GÜSEVSKII N. Spherical CR-manifolds of dimension 3. 28p.
- 93-22 MARTIN P.A. Algebraic curves over Q and deformations of complex structures. 9p.

- 93-23 OLIVEIRA L.A.F. de Existence and asymptotic behavior of poiseuille flows of isothermal bipolar fluids.
- 94-01 BIANCONI, R. A note on the construction of a certain class of Kleinian groups. 9p.
- 94-02 HENTZEL, I.R., JACOBS, D.P., PERESI, L.A. & SVERCHKOV, S.R. Solvability of the ideal of all weight zero elements in Bernstein Algebras. 11p.
- 94-03 CORREA, I. & PERESI, L.A. Bernstein-Jordan Algebras of dimension five, 6p.
- 94-04 ABADIE, B. The range of traces on the Ko-group of quantum Heisenberg manifolds. 13p.
- 94-05 BIANCONI, R., GUSEVSKII, N. and KLIMENKO, H. Schottky type groups and Kleinian groups acting on S³ with the limit set a wild Cantor set. 30p.
- 94-06 GORODSKI, C. Minimal Hyperspheres in Rank Two Compact Symmetric Spaces. 20 p.
- 94-07 BARROS, L.G.X. de and WATSON, B. On Modular Loop Algebras of RA2 Loops. 19p.
- 94-08 BARROS, L.G.X. de Loop Rings of I.P. Loops. 12p.
- 94-09 BIANCONI, R. A note on the non-interpretability of a discrete order in an o-minimal (dense) structure.
- 94-10 GOODAIRE, E.G. and POLCINO MILIES, C. On the loop of units of an alternative loop ring, 10p.
- 94-11 GOODAIRE, E.G. and POLCINO MILIES, C. Finite subloops of units in an alternative loop ring. 8p.
- 94-12 JURIAANS, S.O. Trace Properties of Torsion Units in Group Rings. 7p.
- 94-13 FALBEL, E. and GORODSKI, C. On Contact Sub-Riemannian Symmetric Spaces. 22p.
- 94-14 GORODSKÎ, C. Mînimal Sphere Bundles in Euclidean Spheres. 32p.
- 94-15 COELHO, F.U., MARCOS, E.N., MERKLEN, H.A. and SKOWRONSKI, A. Module categories with infinite radical cube zero. 28p.
- 94-16 CHAVES, R.M.B. On two parameter envelopes of N-Spheres in a real space form. 17p.
- 94-17 BARROS, L.G.X and JURIAANS, S.O. Units in Integral Loop Rings. 13p.
- 94-18 BRASIL, JR. A. Hypersurfaces in S⁴(1) with constant mean curvature and constant Gauss-Kronecker curvature.
- 94-19 COSTA R., NEUBURG, M. and SUAZO, A. Some Results in the Theory of Bernstein Algebras. 19p.
- 94-20 FALBEL E., GORODSKI C. Sub-Riemannian Homogeneous Spaces in Dimensions 3 and 4. 32p.
- 94-21 BARROS, L. G. X. de and POLCINO MILIES, C. Loops Algebras of Code Loops. 13p.
- 94-22 CARRARA, V.L., RUAS, M.A.S. and SAEKI, O. A note on codimension two submanifolds with at most four critical points. 11p.

94-23 COELHO F.U., MARCOS E.N., MERKLEN H.A., and SKOWRONSKI, A. Domestic Semiregular Branch Enlargements of Tame Cancealed Algebras. 14p.

94-24 DOKUCHAEV M. A., and JURIAANS, O. Finite Subgroups in Integral Group Rings. 20p.

NOTA: Os títulos publicados dos Relatórios Técnicos dos anos de 1980 a 1992 estão à disposição no Departamento de Matemática do IME-USP. Cidade Universitária "Armando de Salles Oliveira" Rua do Matão, 1010 - Butantã Caixa Postal - 20.570 (Ag. Iguatemi) CEP: 01498 - São Paulo - Brasil