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Microscopic dynamics of nonlinear Fokker-Planck equations
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We propose an approach to describe the effective microscopic dynamics of (power-law) nonlinear Fokker-
Planck equations. Our formalism is based on a nonextensive generalization of the Wiener process. This allows
us to obtain, in addition to significant physical insights, several analytical results with great simplicity. Indeed,
we obtain analytical solutions for a nonextensive version of the Brownian free-particle and Ornstein-Uhlenbeck
processes, and we explain anomalous diffusive behaviors in terms of memory effects in a nonextensive general-
ization of Gaussian white noise. Finally, we apply the developed formalism to model thermal noise in electric

circuits.
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I. INTRODUCTION

Fokker-Planck equations (FPEs) constitute a powerful tool
in the study of nonequilibrium phenomena [1]. Since the
seminal contribution by Einstein on Brownian motion [2],
linear equations of this class play a fundamental role in the
study of normal diffusion processes and in the investigation
of nonequilibrium properties in general. It is a well-known
fact, however, that diverse phenomena in complex systems are
associated with an anomalous diffusive behavior that cannot
be properly described by linear FPEs. Indeed, for various
applications including diffusion in porous media [3], type 1I
superconductors [4], granular media [5], and self-gravitating
systems [6,7], a nonlinear FPE [8] appears to be more suitable.

In the present work, we consider nonlinear FPEs of the
form

ap . ;

5, = ~DivEp) +DAp, (1)
where p(x, 1) is a time-dependent density, x € R? represents
a point in an adequate configuration space, D > 0 is a dif-
fusion constant, F(x,7) is a drift force, and v :=2 — g is a
real parameter characterizing the nonlinearity appearing in
the diffusion term. The power-law nonlinear FPEs (1) have
a deep connection with the nonextensive entropy S, [9-11],
and for that they have an almost paradigmatic role in nonex-
tensive statistical mechanics [12]. Moreover, such equations
have properties that are relevant and/or interesting from both
a physical and mathematical point of view. For instance, they
admit exact analytical solutions of the g-Gaussian form that
can be interpreted as maximum entropy densities obtainable
from the optimization (under appropriate constraints) of S,
they have been studied in the context of entropy production
[13,14] and with different drift forces [15,16], they obey an
H -theorem formulated in terms of a free-energy-like quantity
[17,18], and so on. In particular, we highlight an experimental
work on granular media [5] that verified within great precision
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(2% error) Tsallis and Bukman’s [10] prediction 19 years after
the original proposal.

Nonextensive statistical mechanics is a (possible) gener-
alization of the Boltzmann-Gibbs theory that aims to extend
its domain of applicability to phenomena with long-ranged
interactions and memories and (multi)fractal configuration
spaces. This theory has been satisfactorily applied to handle
a large number of physical phenomena [19,20]. Its devel-
opment provides, in addition to several remarkable physical
insights, a powerful mathematical formalism that has been
extensively studied in recent years. One of the main goals of
such a formalism is to generalize mathematical concepts and
tools in order to simplify the formal treatment of problems
arising from nonextensive systems. Remarkable examples are
the g-generalizations of the usual transcendent functions (ex-
ponential, sine, cosine, etc.) [21,22], the g-Fourier transform
[23], a generalization of the central limit theorem [23], g-
Dirac’s delta functions [24,25], and so on.

An interesting problem in the study of nonequilibrium
systems is the reconstruction of the microscopic dynamics
from FPEs. For the linear case (v = g = 1), this problem is
simple and the associated microscopic dynamics is governed
by the usual Langevin equation [26]. For the nonlinear case,
however, this problem is not trivial. In this regard, Borland
[27] proposed a phenomenological model in which the mi-
croscopic dynamics successfully reproduce (1). The equations
of motion, however, depend on the solution of the nonlinear
FPE itself. In other words, there exists a coupling between the
macroscopic description and the microscopic one.

In this paper we propose an approach to the microscopic
dynamics of nonlinear FPEs (1). For that, we conjecture the
existence of a stochastic process P{ in such a way that the
solution of the stochastic differential equation

dX, = F(X,,t)dt + D)7 dp7 )

is a stochastic process whose probability distribution p is
a solution of (1). In other words, Eq. (2) reproduces the
microscopic dynamics of nonlinear FPEs (1). The process
P/ can be understood as a nonextensive generalization of
the Wiener process. This formalism completely removes the

©2021 American Physical Society
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dependence between microscopic dynamics and nonlinear
FPEs. As will be shown, several physically relevant and
mathematically interesting insights follow from this result.
Namely, we compute analytical solutions for (1) with F = 0
and F = —yxin a very simple and economical way, we define
a nonextensive analog of the Gaussian white noise, and fi-
nally we apply the developed formalism for modeling thermal
noises in electric circuits.

We have organized the paper as follows: in Sec. II we re-
view the mathematical framework of nonextensive statistical
mechanics, in Sec. III we present our results, and we finish the
paper with a discussion in Sec. IV.

II. NONEXTENSIVE FORMALISM

Herein we will briefly review the mathematical framework
of nonextensive statistical mechanics (for a more detailed
discussion see Chapter 3 of Ref. [12]). The main goal is to
introduce three concepts: g-Gaussian distributions, g-Fourier
transform, and g-independence.

The starting point of our discussion is the g-exponential
function,

ifl+(1—-—¢gx>=20 3)

oo [+ = a1
(0] otherwise

q

where g, x € R. For a pure imaginary variable, eiq" can be

defined to be the principal value of [1 + (1 — q)ix]ﬁ. Since
e, = ¢ when g — 1, the g-exponential function can be un-
derstood as a generalization of the usual exponential function
e*. The inverse of ez, the g-logarithm logq (x), reads

lfq_l

g @

log, (x) :=
forx > 0.

The g-exponential function and its inverse have several
useful and interesting properties [22]. Unfortunately, a very
useful property of the exponential, e“*? = ¢%¢?, does not hold
for g-exponentials with g # 1. In order to get around this
difficulty, we can define the operations @, and ®,,

a®,b:=a+b+ (1 —qab )
and
(6)
in such a way that
Ged=at wi M aagh o

As a consequence of the properties above, for the g-logarithm
we have

logq(a ®yb) = logq a+ logq b. (8)

Another important concept in our discussion is that of
a q-Gaussian distribution. As the name suggests, these are
g-generalizations of Gaussian distributions. We say that a

random variable X in R? is g-Gaussian if its probability dis-
tribution is

d

d
G - — _
1) (2qd”qd02> P (

The constants 2., and . are defined as

d
7|x - u|2). ©)

_J2-d+2)g-1 ifg>1
Zad = {2(2 —q)+d( —gq) otherwise (10)
and
2
=g [N%%:f))]d itg=1
[F(%)]i [B(%§ %)]7 otherwise

where B and I' denote the Beta and Gamma functions re-
spectively. Defined in this way, it is possible to demonstrate
that (1) G, is normalized for all g < (2+d)/d, (2) u is the
g-expectation value of X,

-
E,[X] = ( fR d[p(x)]?dx) fR poltdx,  (12)

and (3) o2 is the variance of X,

Var[X] :=E[X?] — (E[X])

:[ Ix|?p(x) dx — ‘/ xp(x)dx
R4 R4

which is finite whenever ¢ < (d + 4)/(d + 2).

The g-Gaussian distributions are deeply related with the
nonextensive entropy S,. We define the g-entropy of a random
variable X taking values x € R¢ with probability p(x) as the
nonextensive generalization of Shannon’s entropy,

1
S [X] := 1 — |dx.
Xl /supppp (0log, [p(xJ ¥

It is possible to demonstrate that S, is maximized (under
appropriated constrains) for a g-Gaussian random variable. In
addition, S, is not additive but g-additive.

An useful property of the Fourier transform is that it maps a
Gaussian distribution with variance o2 into another Gaussian
distribution with variance ocl /0% [26]. In general, the Fourier
transform of a g-Gaussian does not correspond to another g-
Gaussian. We define the g-Fourier transform as an integral
transform that maps g-Gaussians into §-Gaussians (in general
we do not require § = q) [23]. The g-Fourier transform of a
non-negative measurable function f, denoted by fq, is defined,
forl <g<@2+d)/d,as

2
, 13)

(14)

fik) = J(x) ® eX*dx. (15)

Suppf
If X is a random variable, we define the g-characteristic
function of X, denoted by F,[X], as the g-Fourier transform
of its probability distribution.

The g-Fourier transform is the nonextensive generalization
of the usual Fourier transform. However, this generalization
does not have all the good properties of its extensive coun-
terpart. The main problem refers to its invertibility. Indeed, it
is not invertible in the full space of probability density func-
tions for ¢ > 1 [28]. In the space of g-Gaussian distributions,
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however, the g-Fourier transform defines an injective map. In
fact, as a straightforward generalization of the Lemma 2.5 of
Ref. [23], one can verify thatif 1 < g < (d +4)/(d +2), then
the g-Fourier transform maps a g-Gaussian into a §-Gaussian
(up to normalization), with § =[2+ (d —2)(1 — ¢)]/[2 +
d(1 — q)]. More precisely, if X ~ 4,(0, 0%) in RY, then

2.2 +d(1 - g)] ( d >d<““|k|2}

82gamqa)" D \o?

F,IX](k) = exp, {
(16)

Finally, the g-independence consists of a mathematical
property associated with two or more random variables. We
say that two random variables, X and Y, are g-independent if
the g-characteristic function of Z := X + Y can be written as

FylZ])(k) = F3[X](k) ®; F5[Y](K), 7)

where § = [2 4+ (d — 2)(1 — ¢@)]1/[2 +d(1 — q)]. It is easy to
verify that this notion of independence reduces to the usual
one in the extensive limit. In fact, from (17), when ¢ — 1
we have that the characteristic function of Z is the product
between the characteristic function of X and Y, meaning that
they are statistically independent [26].

III. MICROSCOPIC DYNAMICS OF NONLINEAR FPEs

In this section we will discuss a possible way to describe
the microscopic dynamics of nonlinear FPEs. As already men-
tioned, for linear FPEs (v = ¢ = 1) the microscopic dynamics
is described by the usual Langevin equation. Using stochastic
calculus notation, this equation reads

dX, = F(X,,t)dt + 2D dW,, (18)

where W, denotes the Wiener process in R¢. The connection
between (18) and linear FPEs can be found using It6’s lemma
(see, for instance, Refs. [14,29] for detailed discussions).

It is a remarkable feature of the microscopic dynamics
of linear FPE has such a simple form. In particular, we
emphasize that the equation of motion (18) has no explicit
dependence on the density p and therefore can be solved
without any reference to the corresponding FPE. For the non-
linear case, however, if one tries to describe the microscopic
dynamics in terms of W,, the following equation is obtained
[27]:

dX, = F(X,,t)dt + V2D[p(X,,1)]'T dW,.  (19)

This shows that the Wiener process is not adequate to describe
the microscopic dynamics of the nonlinear FPEs. We can
attribute this inadequacy to the fact that W, is Gaussian and
has independent increments; i.e., for every ¢t > O the future
increments W;,, — W;, h > 0, are statistically independent
of the past values Wy, s < [29]. It is currently known,
however, that the solutions of (1) are g-Gaussians [10], and
their connection with nonextensive entropy S, makes us intuit
that the assumption of independent increments should not be
adequate.

Based on nonextensive formalism in the previous section,
we define a g-generalization of the Wiener process as follows.

Definition III.1. The d-dimensional nonextensive Wiener
process P? is a stochastic process in R¢ defined by the fol-
lowing properties:

(1) P§ = 0 almost surely;

(2) The paths ¢ > P are continuous with probability 1;

(3) P/ has g-independent increments, i.e. P} — P is sta-
tistically independent of {P{ : s < ¢’} forany 0 < ¢’ <t

(4) Given ¢t and ', 0 <t <1, P! — P} is a ¢g-Gaussian
random variable, with

E [P —P!]=0 (20)
and
Var[P! — P?] = e,4(1 — /)00, 1)

where

2

d
€ = (M2 — 2+ d(1 — @l}7T=0.  (22)
2447 qd

In what follows, we will consider that P{ is a well-defined
stochastic process for all g < (d +4)/(d + 2). It should be
stressed that P is the usual Wiener process in the limit g — 1.
The main differences between W, and P! are the following:
(1) W; is Gaussian, while P{ is g-Gaussian; (2) the increments
of W, are independent, while the increments of P{ are g-
independent; and (3) the variance of W, is Var[W,] = ¢, while
Var[P{] oc t%, a = 2/[2 + d(1 — q)].

Once the nonextensive analog of the Wiener process is
well defined, we consider the following stochastic differential
equation:

dX, = F(X,,t)dt + (2D)™@ 5 dP, (23)

associated with the nonlinear FPEs (1). Since P} — W, when
g — 1, Eq. (23) is a generalization of Eq. (18). We conjecture
that the microscopic dynamics of the nonlinear FPE (1) is
governed by Eq. (23). In order to demonstrate that such a
conjecture is reasonable, we will consider some particular
cases whose results are known.

We define a nonextensive analog of the stochastic integral
inspired by the definition of Itd’s integral (see, for instance,
Ref. [29]) as follows.

Definition II1.2. Let I = {tg,t0 + A, ..., to +nA =t}
(A = (t —tp)/n) be a homogeneous partition of the interval
[fo, t]. The g-Itd’s integral of a real function f(X;, ) (X, is a
stochastic process in R?), is defined as

t n
Iz = /t; f(Xtr, t’)dP:]r = Inns;lolom ;f(X,,,, ti)APZ, (24)

where ms-lim denotes the mean square limit

ms-limX, = A < lim E[|X, — A]*] = 0.
n— o0 n—oo
The following theorem states an useful formula to compute
g-1td integrals. In particular, it will be a powerful tool to solve
Eq. (23).
Remark 1. In what follows, LP([0, 7]) denotes the set of
real functions such that

[1f oo,y = (/0 If(r)lpdt>p < 00.
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Theorem 1. Let f € LP([0,¢]) be a real function, and
letp=2+d( —¢q),q <min{(1 +d)/d,(d+4)/(d + 2)}.
The g-1t6 integral of f,

I =/ f()dPf, (25)
0

is a g-Gaussian stochastic process with the following proper-
ties:

E ) =0 and Var(L) =eqllfI}qo,  (26)

Thatis, I, ~ f/‘{/(ov 8qd||f||fp([0,;]))o
Proof. The proof of this result is presented in
Appendix A. ]
In what follows we will apply the developed formalism to
some selected problems.

A. Free particle: F =0

First, let us consider the simplest possible case, in which
there is no drift force, F = 0. For this considered case, the
associated nonlinear FPE (1) is a nonlinear power-law version
of the heat equation:

ap

— = DAp". 27

or P (27
The microscopic dynamics, in turn, is governed by the follow-
ing stochastic differential equation:

dX, = D)7 dPY, (28)

The solution of Eq. (27) can be directly found by the Pattle-
Barenblatt ansatz [8,30], which is, however, laborious work.
On the other hand, to solve the stochastic differential equation
(28) is quite simple. In fact, integrating both sides of (28) and
applying Theorem 1, it follows that

X, ~ [0, £,4(2Dt) 7], (29)

if one consider Xy = 0 almost surely. The probability distri-
bution of X,
: dx?

—} (30)

pe.1) = [2qdnqd02<r)] Py [_ 2,002(0)

where
o2 (t) 1= £40(2Dt) D 31)

is a solution of Eq. (27) with initial condition p(x, 0) = §(x),
where § denotes Dirac’s delta function.

The power-law dependence of o2 on t, o%(t) %, is
the main indicator of an anomalous diffusive behavior. In-
deed, normal diffusion processes are characterized by a linear
dependence of the variance on ¢, ¢ = 1. This induces a nat-
ural classification of anomalous diffusion according to «:
superdiffusion corresponding to o > 1, and subdiffusion cor-
responding to o < 1. In other words, o can be understood
as a “diffusibility quantifier.” From (31), we conclude that
a superdiffusive behavior will be observed whenever g > 1,
while a subdiffusion will be observed for ¢ < 1.

B. Nonextensive Ornstein-Uhlenbeck process: F = —yx

Let us consider now that the drift force has a linear de-
pendence on x, F = —yx, where y > 0. In this case, the
associated nonlinear FPE is a nonlinear power-law version of
the Smoluchowski equation:

d
a_f = yDiv(xp) + DAp". (32)
The corresponding microscopic dynamics is governed by the

following stochastic differential equation:

2

dX, = —yX, dt + (2D)7 dP{. (33)

As in the free-particle case, it is trivial to find the solution
of the above equation. Indeed, with straightforward manipu-
lations and considering X, = 0 (almost surely), it follows that

t
X, = / (D)= ¢~V gpd. (34)
0

Applying Theorem 1 to the expression above we conclude that
X; ~ A0, 0%(1)), (35)
where

2
2+d(1—q)

o(t) = sqd{ZD/ exp{—[2+d( — q)]y(t—t/)}dt’}
0

2

1 — e~ 2=yt }zmlq)
vY[2+d(1 - q)]

The process X; can be understood as a nonextensive gen-
eralization of the Ornstein-Uhlenbeck process [29,31]. A
remarkable property of this system is that it has a well-defined
steady state, which corresponds to the situation in which the
stochastic forces are balanced with the linear drift force. The
variance in the steady state is

e {213 (36)

2D g 5
y[2+d(1—q>]} - G

For ¢ small, on the other hand, the system behaves like a free-
particle. In fact, considering ¢ small in (36) we have

2 . 2
o2 = lim o°(t)=¢
€4 t—+00 ( ) qd{

o2 (t) & £44(2D1)FT (38)

C. Nonextensive colored noise

The effective microscopic dynamics of normal diffusion
processes are characterized by stochastic forces that do not
exhibit temporal correlations (or memory). So the influence
of such a force at a time ¢ does not depend (or influence) the
action at another time #’ # ¢. This behavior is well modeled
by the Gaussian white noise 1, which is heuristically related
to the Wiener process as follows:

n(®)dt = dw,. 39

A well-known fact about n (which can be verified by the
expression above) is that it has delta correlation:

(n®n")) =@ — 1), (40)

which models its (temporal) uncorrelated action.
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(Mg(Ong(0))

FIG. 1. Temporal correlations with g > 1 [Eq. (45)].

Herein we are interested on the nonextensive analog of 7,
that is, a noise 7, such that

ng(t)dt = dP{, (41)

where P/ is the one-dimensional generalization of the Wiener
process (see Definition III.1). The correlators (1, (¢)n,4(t')) can
be computed by using the definition of P{. From

E[XY] = Var[X] + Var[Yz] — Var[X — Y]
—E[X]IE[Y], 42)
the definition of P{,
Var[P!] = g1, (43)

and E[P{] =0 (which follows from the fact that one-
dimensional g-Gaussian distributions are even functions
whenever the q-expectation value is zero), it follows that

B[PpL] = L[

= dP{, then

+tlw—(fz—l‘1)“’] (44)

Since n,(t)dt

/ / (gm0 dit’ dt”

[t; ‘ +t,’ T —(ty —1)7 q]

2
which implies that
/ " ( )
(g ng@")) = g1 (f =L @8)
In the extensive limit we have (see Flg. 1)
Jim (g0 my¢") = £3" ~ 1. (46)

From (45) we conclude that the stochastic force associ-
ated with nonlinear FPEs exhibit memory. These memory
effects can explain the anomalous diffusive behavior dis-
cussed earlier. Indeed, the correlators (n(t + A)n(t)), A >
0, are positive if, and only if, ¢ > 1. So the action of the
stochastic force at an instant ¢ + A is positively correlated
with the action at a previous instant ¢, tending to amplify it.
Hence, we expect that the diffusive behavior in this case to

Thermal Bath

C

FIG. 2. RLC circuit where the resistor R is coupled to a thermal
bath at a temperature 7'.

be greater than the uncorrelated case (which corresponds to
normal diffusion with ¢ = 1). In other words, for g > 1 we
expect a superdiffusive behavior, which agrees with (31). A
similar reasoning applies for subdiffusion (¢ < 1).

D. Thermal noise in electric circuits

Finally, we will consider the problem of modeling thermal
noise in electric circuits. For this, consider an RLC circuit in
series, where the resistor is coupled with a thermal bath at
temperature 7' (see Fig. 2). In our approach, we will assume
a thermal noise modeled by 7,. The noise-free RLC circuit is
described by the following equations:

d*Q(t) do(t)

2 _
P + 28 7 +wyQ@) =0 “n
and
_dO()
I(t) = P (48)

where Q denotes the electric charge, I the electric current,
R the resistance, C the capacitance, L the inductance, a)(z) =
1/RL,and B := R/2L.

The dynamics of the circuit with the introduction of the
nonextensive thermal noise is governed by two stochastic
differential equations:

dl, = —2Q, dt — 21, dt + (2D)5 dP? (49)
and
dQ, = I dt. (50

A strategy to solve the above equations is to define the
matrices:

|28 —w? L
A_|: | 00:| and Zt_[Qt]’

in such a way that (49) and (50) read
dZ, = AZ, dt + (2D)7 7 E; dP’, 1)

where E; = (1,0)” and Eg = (0, 1)” (T means transposi-
tion). With straightforward manipulations one can verify that
the solution of the above equation is

t
7, = Mz + (2D) / e""NE, apY, (52)
0

where zo = (1(0), Q(O))T denotes the initial condition.
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FIG. 3. Thermal fluctuations in an RLC circuit in series with C =
1.0 mF, L = 50.0 mH, and R = 1.15 mQ.

From (52) we can compute all (stochastic) properties of the
considered electric circuit. In particular, the current /, reads

12
I =E'Z = Ele'"z + (2D)77 f Ele"""NE aP?!.  (53)
0
We can compute the integral on the right-hand side by diago-
nalizing the matrix exp[(z — #")A] and then applying Theorem
1. The eigenvalues of exp[(t — t')A] are e ~)B+®)  where

w = ,32 — a)g. From Theorem 1, the variance of I, is

2D (! ,
Var[l] =8q1<;/ {wcos [w(t —1)]
0

2
3—q

+ﬂsin[w(t’—z)]}3qe<3W(””dt’) . (54)

To understand the behavior of thermal fluctuation in the cir-
cuit, we can consider some particular values for the circuit
parameters. For instance, consider

C=10mF, L=500mH, and R =1.15mQ.

For these values, the circuit has a subcritical damping. In
Fig. 3 we have the behavior of the variance as a function
of time (in minutes). The fluctuations become stationary for
times longer than approximately 5 min, which is due to the
fact that the current is approximately zero. The nonextensivity,
as we see in Fig. 3, increases the amplitude of the thermal os-
cillations for ¢ > 1. As in superdiffusion, such a phenomenon
can be understood as an effect of memory in the nonextensive
noise 7,: the action of such a noise at a time t + A, A > 0,
is positively correlated with the action at a time ¢. Hence, the
amplitude of the thermal fluctuations will become larger as g
increases.

IV. DISCUSSION

In the present paper we proposed a formalism to describe
the effective microscopic dynamics of power-law nonlin-
ear Fokker-Planck equations. The formalism is based on
the nonextensive generalization of the Wiener process (see
Definition III.1). We have demonstrated that, with an ade-
quate generalization of It6’s integral (see Definition III.2),
the associated equation of motion can be trivially solved for
important cases, namely, with F = 0 (Brownian free-particle

process) and F = —yx (Ornstein-Uhlenbeck process). The
proposed formalism also provides an explanation for anoma-
lous diffusive behaviors. In particular, super(sub)-diffusion
can be understood in terms of memory effects in the effective
stochastic force. We also showed that such a formalism can be
easily applied in modeling thermal noise in electric circuits.

From these results we conclude that the proposed for-
malism is an important tool for a better understanding of
nonequilibrium phenomena in nonextensive statistical me-
chanics. The g-Wiener process, in turn, is an innovative
element on the list of g-generalizations.

Although we have shed some light on important ques-
tions about nonextensive statistical mechanics and nonlinear
Fokker-Planck equations, the results presented in this con-
tribution leave several questions open. Among such issues,
we highlight the rigorous construction of the process P and
the connection between Eq. (23) and nonlinear FPE (1). We
believe that the former can be solved by using the g-central
limit theorem proposed in Ref. [23], while the latter requires
a g-generalization of It6’s lemma.
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APPENDIX: PROOF OF THEOREM 1

Theorem 1. Let f € LP([0,¢]) be a real function, and
letp=2+d(—gq),qg <min{(1 +d)/d,(d+4)/(d+ 2)}.
The g-It6 integral of f,

I, :/ f@"dp, (A1)
0

is a g-Gaussian stochastic process with the following proper-
ties:

E,I1=0 and Var[L]=eullflloq.  (A2)

thatis, I; ~ «/1{1(0, 8qd||f||fp([o,;]))~
Proof. Let N € Z*, N > 1, and consider the partial sum
SN’

N N
Sv =) f@)(PL, —P) =) f@)AP],  (A3)
k=1 k=1
where ty = t. Since each term of the sum in the right-hand
side has the g-expectation value equal to zero, then, from the
linearity of E,, it follows that E,[Sy] = 0.
The increments of P{ are g-independent random variables
(see Definition III.1). So, from (17), the g-characteristic func-
tion of Sy must satisfy the following condition:

N
F,[Sy1(k) = F, [Z f(rk)APz}(m = F[f()aP!]

k=1
®; -+ ®; Fy[ftn)APL ], (A4)
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where § = [2+ (d — 2)(1 — ¢)]1/[2 + d(1 — g)]. Each term Fq[f(tk)Aquk](k) on the right-hand side of (A4) is a g-Gaussian
distribution (up to normalization), given by (16). Hence, F,;[Sy](K) is g-Gaussian of the following form:

2,42+ d(1 —q)]

F,ISx1(k) = exp,

N
Var[ (7)) AP/} 4D k2
Sd(zqdﬂqd/d)d(q_l);{ ar[ (i) AP} ]} K|

2,2 +d(1 = @) | ) 21 dia
= ~ b3 AL, ) 2+d0-9) (g—1) k 2
D7\ 3@, a 0 ;[sqdlf( O (Ar) =i ] k|
2442 +d(1 —q)] al 24+d(1=q) 2d(1— A=D1
= ~ 2 t ‘I)At -9 |k
i\ 8 @eartya /T ;ueqd) |f @)l ] K|
2,a12+d(1 —gq)] N b Al—d@=D) 5
= y 1| f(t)|P AL P |k|° ¢, A5
7\ 8 @ artsa T ;ueqd) f@)PAL] K| (AS)
with p =2 + d(1 — g). Comparing the above equation with (16), the variance of Sy reads
N b 21-d(g=1)] R
Var[Sy] = {Z [P IF P AR] } . (A6)
k=1
Without loss of generality, consider Aty = 1/N. Since 1 4 d(1 — q) > 0 [because g < (1 4 d)/d], then
N b 21—d(g=1)] S N ;
Var[L] = lim Var[Sy] = lim {;[(swz P AR } = Jim sqd{; |f<tk)|PArk}
N 5 ' 2
= ep] i PALY = Pdr |’ A7
= &4 nggo;v(tm Aty = el | If@PdT] (A7)
which proves the the theorem. |
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