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INTRODUGAO

Nos problenas ‘e Engenharia de Produgao ocorre frequentenen
3 - . ~ ’ . L4
te que sonente ten sentido as solugoes nunericas expressas por nueros

inteiros.

. 2 W . o
Ora, a mnaioria das tecnicas utilizadas na solugao dos node=-
r 2 ~ . 7 . . .
los natenaticos supoen variaveis continuas, € conduzen, via de regra,a
solugles ndo inteiras. Isto ocorre, por exemplo, comn a progranagao li-

near.

A prineira idéia que surge é, naturalmente, usar valores ine-
teiros obtidos por un arredondariento conveniente da solugdo nao intci-
ra. Erbora isto seja aceitavel en nuitos exenplos préticos, quando 78
valores nunéricos sao grandes e, portanto, a fragao desprezada ou au -
nentada é, persertualmente, nuito pequena e da orden de grevleza da in
precisao existente nos dados originais do problema, esta solug2o, nes-
mo sendo vidvel, pode ser bastante diferente da solugdo Otima inteira

obtida por métodos exatos.

Somente éste fato bastaria para justificar a importancia do
problena da programaqao linear con variaveis inteiras na Engenharia de
Produgao. Mas, un estudo mais minuciosc da questao noé revela a exis =
téncia de inuneros outros problenas de grande importancia, e de difi-
cil solugao, que poden ser transformados num problena de programaqao
linear en inteiros e, -portanto, resolvidos, se tivernos un algoritno e

e 4 .
ficiente para esta uliima,

Dantzig (1960) cita os exenplos seguintes:
a) dicotonias, isto &, restrigoes alternativas;

L] K3 o) ~ = . O
b) otinizagfo sobre pares de conjuntos de restrigoes;



¢) problenas corbinatdrios con variaveis discretas;
d, problenas cori fungio-objetivo nao linear;

e) restrigoes condicionais;

f) minino global de uma fungao concava;

g) construgao de.quadrados latinos;

h) problema do viajante comercial;

i) problemnas com obrigagoes fixas.

L3 [ 3 I3 - ..
Ilustrarerios conn os dois ultinos citados a naneira de fornmu=

N Lo - . .
lar estes problemas come programagao linear inteira.

0 viajante comercial precisa visitar n cidades i(1 =1, 2,..
.+ n), partindo de sua sede i = O, passando em cada cidade una inica
vez e voltando a origen. No caso mais geral €le deve voltar a sede exa
tanente n vézes, inclusive a ultima volta, e nao deve visitar nais que
p cidades en cada viagen. O problema ¢ achar un itinerario que torne
minina a distancia total percorrida. Evidentemente mp=a n.

Seja xij =1 ou 0, conforme €le va da cidade i para a cidade
j ou nao, e dij a distancia entre as duas. Poderios formular o proble-

ma como o seguinte problema de programag¢ao linear inteira:

nn
Z(nin.) = % dij xij
0 o
sujeito a:
n
T oxy el j=1, 2 vee n
i=o
n
.2 xij =l l-—l, 2 ees I
j=o
U, = U, + pX..<p -1 lgi#i<n



iii

Osxij <1l %44 inteiro, Ui>0 ) Uj>0
A terceira restrigio destina-se a evitar a volta a uua cida=-

de ja visitada, isto &, un circuito com k arcos que nao passa pela ori

gerti. Con cfeito, somando s#s desigualdades ao longo de un circuito que

nao passa por zero, as diferengas Ui - Uj se cancelan e tenos

pk<(# - 1) k. o que & una contradigao. Para os circuitos que passan

. . N 4 & a
origen 0, se fixarnos, por exenplo, Ui = t se a cidade 1 for a t— a

ser visitada (t =1, 2, +ee P), & claro que Ui - Uj <p -1 para todo
par i, j e portanto a restrigio & satisfeita para todo xij = 03 s5¢
X.. = 1, tenros:

1]

U, - Uj + P X3y = t -(t +1) +p=p--1, que tanbén satis=-
faz a restricgao. '

a -~ . -’
0 problena das obrigagoes fixas e encontrado frequentencnte,
quando temos uma grandeza fixa, nao proporcional a variavel, mas que
"~ 0O . ? ~ . ~
nao exista se a variavel for nula. (custos fixos, tenpo de preparagao

» .
de naquinas etc.)

. 3 . &’ . . I3
Adnitindo que os custos variaveis sejam lineares tererios o

problena:
n
7z (nin) = ¥ C
. T,
=1 73
onde CT. = CF. + Cv.xj se xj‘3>0
J J J
CTj= 0 se Xj=0,

sujeito a restrigoes lineares.



iv

. . - » . L3 Q'
Adnitindo que exista un linite superior Lj para a variavel
xj, o que en geral acontece nos problemas reais, poderios escrever -
c sob a forna:
’3

C =S5, C + C .
T, i F., V.
J . J J .

col as restrigoes adicionais:

x. <S5, L,
J ™ 3 3

0«8, =<1 , S. inteiro
J J

o que transforma o problema nun de programagao linear inteira. A pri.

neira restrigao garante que xj = 0 se Sj = 0; enbora a reciproca nao

seja obrigatéria, isto &, se xj = 0, Sj nao esta obrigado é ser 0, co

rio o problema ten por objetivo ninimo custo, Sj sera O se xj = O na

solugao.

o~ . A ~ ’
Por estes dois exemplos venos como a introdugao de varia «
» 1] A 3 13 . - ’ (]
veis de existencia, inteiros O ou 1, pernite abordar varios problenas

de grande interésse para a Engenharia de Produgao.

Enbora alguns problenas particulares ja tivessen sido resol
vidos anteriormente con nétodos ad-hoc, é a partir de 1958 que ajare.
cen os prineiros algoritmos gerais de solugao, Gemory (1958). Desde
entao as publicagdes de Pesquisa Operacional tém apresentado intmeros

exenplos de aplicagao dos quais citamos abaixo alguns:

- problenas de ccrte de un niimero inteiro de comprimentos padroes de
wla pega de comprinento dado, com ninino de perdas er1 retalhos en
Eisemann (1957), Gilnore e Gomory (1961), Gilnore e Gomory (1965).

¢ . & . ~ " "~
- terpo minino de busca em arquivos, sen duplicagao das informagoes
en Day (1965)



- cscolha de investimentos indivisiveis, maximizando o rendimento to
tal, com restrigio de capital diponivel em varios periodos em Weiw
gartner (1963), Hansmann (1961), Petersen (1967)

- Progranagio de nanutengdo preventiva en Wagner e al (1964)

o - ~ . » ~ 0 L4 L3
- Sincronisagao de sinais de transito de forma & tornar maxino o
tenpo livre, tendo em vista que o "vermelho' ¢ o "verde'" ocorren

un nimero inteiro de ciclos entre si, enm Little (1966)

-~ problemas de localizagdo industrial, considerando os custos fixos,
en1 Efroymson e Ray (1966) Manne (1964)

- problenas de roteiro de cntrega, com restrigao que cada cliente
deve receber todo o scu pedido, cm Balinsky e Quandt (1964) Dant
zig ¢ Rane¢r (1959), Clarke e VWright (1964)

- numero de deputados para cada estado, en Burt e Harris (1963%)
- balanceanento de linhas de montagem, em Klein (1963) e Bownan (1960)

~ progranagao de carga de niquinas, en Wagner (1959) Bowman (1959),
Manne (1960), Dantzig (1960)

~ escolha de equipaniento, en Peart e al (1961)
- tamanho otimo dec uma frota, em Esopo e Lifkowitz (1964)

~ distribuigio de recursos no planejanento pelos nmétodos de caminho
critico, em Moder e Phillips (1964), Assis (1964)

- cxrgas indivisiveis, (problemas da mochila) en Pandit (1962)

’ L& e .
- tamanho e numero otimo de embalagens, para ter um custo minimo to -
tal, en Wilson (1965)

- avaliagao de propostas nuna concorréncia, en Beale (1963)

Entretanto, emnbora o assunto tenha despertado tanto interag

« ~ L . - o, «
se, os resultados prétlcos nao ten sido ylenanente satisfatorios,pois



. 0 ke -~
o5 algoritrnos existentes nao se nostraram a altura.

En varios casos a convergéncia ten sido muito lenta, o que
ten limitado nuitas aplicagdOes a problenas de pequeno porte. (ver, -
por exerplo as apreciagoes de Balinsky (1965)). £ ben verdade que ul
tinamente tém surgido resultados nais aninadores no que se refere acs
problenas con varidveis do tipo O ou 1, cono os de Balas (1965), G1S -
ver (1965); Driebeek (1966), Woiler (1967).

A presente tese pretende ser una contribuigao para a solu
"~ ~
¢ao do problena, apresentando um novo nétodo baseado nas solugoes
’ . . - . .~ . .
nultiplas obtidas quando introduzinos uma restrigao adicional paraw~

lela oo hiper planoc da funqao—objetivo.

’ . -~ .
No Capitulo I conceituanos o problema da progranmagao line
4 . . . ~ .
ar con variaveis inteiras e fazenmos una apresentagao resunida dos

3 - . ,
algoritmos nmnais representativos de cada netodo.

No Capitulo II apresentanos os fundamentos do método das-
solugdes mﬁltiplas e desenvolvemos um primeiro algoritmo, utilizan-

- ~
do conbinagoes convexas.

L4 .
No Capitulo IIT desenvolverios un segundo algoritno que
nos parece nmais adequado para problenas de naior porte e para a uti
. ~ ~ .
lizagao de conputador eletronico, baseado nun processo de enunera =

-~ B ¢ . ~ 5 N . " .
¢ao inplacita das solugoes inteiras viaveis.

(4 .
No Capitulo IV sao apresentados alguns aperfeigoamentos
. L b . *
que tornam mais rapida a convergencia do algoritno, e estendem o seu

canpo de aplicagao.



Encerrando a tese, além de conclusoes, e bibliografia atua
lizada até maio de 1967, héa o apéndice I, onde apresentamos a solu =
gao de alguns problemas de pequeno porte, comparando com a obtida por
outros métodos. O apéndice II contém o programa em linguagem FORTRAN
II, que utilizamos no computador IBM-1620 do Centro de Computagao Nu

mérica da U.S.P. para testes preliminares do algoritmo IT.

Esperando ter atingido o nosso objetivo, temos a honra de
submeter esta tese a consideragfo da Douta Congregagao da Escola Po-

litécnica da Universidade de SZoc Paulo.



carpfTUuLO I

DEFINIGOES - METODOS DE SOLUGAO

1.0 Progranagao linear geral

Supomos o leitor familiarizado com a progranagao linear gg
ral, tal como & exposta, por exciiplo, em Dantzig (1963), Gass (1964),
Hadley (1962), Simonnard (1966) ou Fadigas Torres (1967).

. ’ . [ 4
En sua forma nais geral trata-se de achar o maximo ou o N1
nino de uma forma linear sujeita a restrigoes lincares com desiguale-

dades ¢ ou ) ou igualdades estritas.

Utilizarcrios neste trabalho, coro forma padrao do problemas

n
Z (nax) = %_ C. x

sujeito a
szo j:-_' l, 2, eee Il (1‘2)
n
j>fl 84 Xy & d i=1, 2, se.n (1.3)

~ ’ + s
A forna canonica sera definids como sendo!

n‘
72 (max) = 4 C, x, (1.4)
s 973



“2‘

sujeito a

Xj >/ O j = l, 2, s e e n‘ - (1‘5)
nl
T oag.oxgo=d, i=1, 2, ... 0 . (1.6)
ju1 1373

a, 20 (1.7)

~ . -~
Para passar da forma geral para canonica ou padrao, tenoss

a) rmin Z = - nax (=2)

b) se X, nao ten restrigao de sinal, fazemos:
X = X = Xy onde X 2 0, Xy >0

¢) para transfornar desigualdades ) enm <o basta nmultiplicar por =1:

n n

L a_.x, »d ou X (-a_.)x.{ =~4d

=1 rj i “r j=1 rj g r

d) As igualdades sao decompostas en duas desigualdades opostas e aplic
ca-se a regra c:

n
2 . x. =4d ¢ substituido pelas restricoes
j=1 ak-] J k b ¢
n n
Cox. > d e X (-a .)x,& -
§=1 aka J k =1 akJ i dk

e) As desigualdades sao transformadas em igualdades pela introdugao
. . . .
de variaveis residuais X0 4 0

Assin:

n
Y oa,. x, (4, fica

N M™Me
L
+
"
]
o

n n
= a s X h) dk fica 2 a,. X, - X =d



B

i~ . . 4

Notar que estas transformagoes poden introduzir novas varia

. i - » . -~ . P
vels ou novas restriqSes,dO nodo que .0 nunero de restrigoes e de varia

veis pode nao scr o nesneo nas diversas formas do nesrio problema.,

~ » a
As formas apresentadas o foram en notagao algebrica.
~ “ o . Lo “ -
Quando for conveniente podemos utilizar a notagao matricial

ou a notag¢ao vetorial.

X

FaZeIldok C = [Cl, 02 sesese Cn] X _ X2
_xn-

i earpsssoas e ] .—d

11 “1n 1

A = S ss v eI EsII O TSS e D = d2

....(a.ij Sserveese :

_arll Sesssancssoe al‘,]n_] dn

podenos escrever a forma padrdo, en notagdo matricial:

7 (uax) = C.X (1.8)
sujeito a:
X >0 (1.9)
AX { D (1.10)

N

e a forma canonica ficas

Zz (max) = C.X (1.11)
sujeito a:

X0 (1.12)

AX = D com D 20 (1.13)



N4 A N 0 ~ F
Como ja foi dito, a nmatriz A da forma padrao e, en geral,
» « ~ .
diferente da matriz A da forma canonica, e o nesmo acontece con os

vetores C, X e D.

1j
Fazendo A = EPl, P2 5000 Pé] , onde Pj = 2j

oo

0 e

rj

é o vetor coluna j de A, e pondo Po = D, para unifornidade de nota

-~ » B ~ -
¢ao, podenos escrever a forma canonica em notagao vetorial:

n
2 (nax) = X c, X
1
sujeito a:

Xj )/ O j = 1, 2, ees I (1.14)
X) Pyt Xy Py toeee Xy Pj *aee +x P =P (1.15)
Seja o problena na forna canonicas
Z (nax) = C.X
sujeito a:
AX =D A & natriz (n x n)

Varios supor que o sistena de equagoes AX = D nao ten equa

~ . L4 L 4 . .
¢oes redundantes, isto ¢, a caracteristica da matriz A é 3 r(A)= n.

L4 » . ) -
Suporernios tanben que m < n, isto €, o sistema possue infi-
nitas solugoes.



Defininos:

Solugao Viavel ou Programa - ¢ todo o conjunto de valores

, 0 . e .
x ou nelhor, e wi vetor X que satisfaz a todas as restrigoes do pro

bloma, inclusive a de nao .negatividade.

-~ ~ « *
Solucac nao viavel ou pseudo - Programa -

unl vetor X,
0. i

-
é
que satisfaz AX = D, mas nfo satisfaz a condigao X > O, isto &,tenm

pelo nenos wia conponente negativa.

Base do sistema linear AX = D é todo conjunto de n veto-
res-coluna Pj de A, linearnente independentes. Bstes vetores goziw
nen una sub-natriz quadrada B, de ordem n, de A, que ¢ nao singular.

« F . . R -~ « 2 N

As n variaveis associadas a bare B sao chamadas yvariaveis

. . . B . .
basicas e constituem um sub-vetor X de X, As n -n variaveis res

~ . * . ., q
tantes sao variaveis secundarias e constituern o sub~-vetor XR de X,

isto &,
[%®
=LxR

4 . 4 = J
Anulando as n - n variaveis secundarias en relagao a ba

X

o ’ N ~
se B, isto e, fazendo XR = 0, obtenmos un sistema de n equagoes e 1

1l

incdgnitas que adnite uma solugdo unica x® = 37%D, Uma solugdo bi

» ’ -~
sica e a solugao

TR
tal que XR = 0, isto &, que tem no naxino n valores xj diferen=-
tes de zero e os restantes nulos. Frequentemente, ao falar de so=
~ ' d - Q B - - Py
lugao basica nos referinos apenas a X, ficando inplicito que as

« 7 . ~ ~
n - n variaveis restantes da solugao completa, sao nulas.



b

~ . ” I - ’ A ’ ~
Una solugao viavel basica ou prograna basico e uma solugao

. . Beremen 1 & e .y
basica que satisfaz Htaombéina condigao X 7 0.

~ , . v ~ .
Solugao Otina ou Prograna otino é a solugao viavel X que

3 . L ~ - 0
torna maxima (ou minima se for o caso) a funglo objetivo do problema

~ . 3
e que tern todas as conponentes finitas.

1.0.1 -~ Teorema fundamental - Método do Simplex

Dantzig denonstrou o teorema fundamental da progranagao 1i

. .
near, que € o seguinte:

-~ . ~ .
Dado un problena de programagao linear, sob a forma canoni
ca,
~ 3 had - I3 . 3
a) se ele adnite una solugao viavel finita, existe pelo ne

~ e, « !
nos una solugao basica viavel;

. [nd ’ . .
b) Se existe uma solugao otina, existe pelo menos una solu

~ L, . . ,, .,
¢ao basica vidvel que & oOtinma.

Indicou tambén o nétodo de solugio, @nominado nétodo do -
Sinplex, que suponos corhecido do leitor. Recordarenos aqui que, no
algoritno classico do nétodo do Simplex a apresentagdo dos calculos
costuma ser feita nuna tabela, com (m + 1) linhas e (n + 1) colunas.
As colunas sao constituidas pelos n vetores Pj e o vetor da solu
¢io bAsiea X0, ao qual da-se o Indice zero. As linhas corresponden
acs vetores da base, nais una linha onde colocan-se os valores de Z
e de (Zj - cj). Cada iteragio corresponde a troca de uma linha (ve-

tor) na base.

Zj é definido por Zj = L C, 8,.s



» . ]
0 vetor P, que deve entrar na base e deterninado pela condi

Z - C = nax| Z., - C, con 4., - C, 0
12, - C,| | 2, -l A
0 vetor PS que sai da base é deterninado pela condigao:

X X,

= nin »

se a, »0 ie
ie

a

Na solugao 4tima tenos Zj - Cj 20 para todo e qualquer
vetor Pj' Se tivernos Zj - Cj = 0 para Pj nao pertencente a base,
entdo existen solugdes basicas otinas alternativas, obtidas introdu=
zindo éstes vetores na Yase. Saberios também que tdda combinagio linea
ar convexa dostas solugdes basicas Gtinas tanbén serd uma solugdo. Gti

na (ndo barica) o problena

Erm nosso trabalho utilizarerios também o algoritno dual-sin
plex de Lerikke, que parte de una solugado basica ndo viavel (xi < 0),
mas satisfazendo ao critério de otimidade Z. - C. 7 0 ¢ vai nudando
a base até chegar a una solugao viavel que serd otinma, pois nantenos

enpre Z. - C, >0,
senpr i 5 7

. . . ~
0 vetor PS a ser substituido na base é aquéle corresponden
. [d
te a X, = oin x., con X5 < 0., O vetor Pe que deve entrar e dado pe
. . i
lo critério:
2 =-C

Z. - C,
e e _ _
— = riin liiig;rl— ) asj <0

se



-8

1.0.2 - Interpretacdo Geonétrica

A un problena de progranagao linear poderos associar dois
S . . . n . i~
espagos vetoriais. O primeiro e um espago R de dimensao n, que con
’ . ~ ~
ten; en particular os vetores X das solugoes e, por esta razao, de

noniina-se espag¢o das solugoes.

-, 11 . ~ -’
O segundo e um espago R, de dinensao n, que contem,en par
ticular, os vetores Pj da nmatriz A e denonina-se espago das restri -

goes.

- 0 I
No espago das solugoes ternos una coordenada para cada incog
- - . - > ~ 4 - ]
nita (sem considerar as residuais). Cada restrigao da origert unm hiper

. ~ .’ a ’ .
Plano e o conjunto das solugoes viaveis ¢ un poliedro convexo.

As solugdes basicas corresponden aos vertices. A fungao ob
jetivo corresponde a una fanilia hiperplanos paralelos. Interpretado
geonetricanente o método do sinplex consiste en caminhar de un vérti
ce a outro adjacente no sentido de aumentar o valor de Z, até alcan-

’ . a . . L
gar un vertice que tangencia o hiperplano naxino de Z,

A~ .
Se a tangencia se der segundo una ou mais arestas terenos
Lo ~ ’ . L .
varias solugoes basicas otinas alternativas, correspondendo aos ex-
~ o -
trenos destas arestas; qualquer ponto combinagao linear convexa des

* , s
tes extremos sera tamben una solugado Otina do problena.

o ~ b4 a -
No espago das restrigoes cada coordenada e uma restrigao
e o conjunto das combinagdes lincares positivas.dos vetores Pj cons
: . .4 .
titul un cone policédrico convexoj cada base corresponde a wia face

do cone
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Neste trabalho utilizareios unicamente a interpretaqao do

problena no espago das solugoes.

1.1 - Progranagao linear en inteiros

Para facilitar a linguagen, usarenos neste trabalho as ex
pressoes: ponto inteiro, vetor inteiro, matriz inteira, para signi-
ficar o fato que as suas coordenadas ou conponentes S20 expre+sas

’ . .
por nuneros inteiros.

Defininos cono progranag¢ao linear em inteiros a programa
Cocd . . ™ « . .4 .
¢ao linear geral con restrigaoc adicional que uma ou nais varlavels

xj deven ser inteiras.

Distinguirenos dois tipos de problenas de prograngaoa line

ar ernr inteiros:

a) O problema parcial ou nisto, em que apenas parte das varidveis da

forna padrac sno restritas a seren inteiras;

b) o problema total em que todas as variaveis da formna padrao tén

restrigao de inteireza.

. ! . N . . . o) ~
As variaveis residuais, introduzidas na forma canonica,nao
-~ . v N .
ten esta restrigao; evidentenente se a matriz A e o vetor Po foren
. . . 7 . . . ’
inteiros, as variaveis residuais, no problema total, tanben resulta~

rao inteiras.

1.2 - Métodns de Solugao

13 » 3 L3 . [4 A >
Podenos inicialmente classificar os netodos que ten sido
propostos para resolver o problena de progranag¢ao linear em intei-

-~
ros en tres grandes gruposs



a) enuneragao inplicita;
b) corte
¢) penetracgao.

] . -~ ’ .
Os dois ultinos saoc baseados no netodo do simplex.

1.2.1 - Métodos de enureragio implicita

f natural considerar a enuneragao de todas as solugoes vid
veis de un problena er inteiros (ou discreto, no caso geral) quando
hé unm nimero finito de possibilidades. Entretanto eéste nunero finito
pode ser nuito grande e dal a necessidade de inmaginar esquenas de enu
neragao implicita, que permitarn evitar a inspegao de solugdes obvia -

T
nente nao otinas.

. L3 ‘l -
Para conceituar nelhor a ideia, considerarermos un problena
« . . . Lo (4

conl variaveis bivalentes, 0 ou 1. O conjunto das solugoes possivels
L4 -~ o . ¢ . . ’ . s
esta en correspondencia bi-univoca com o conjunto dos vertices terni

. ’ LR . . . (4
nais de uma arvore definida da seguinte forma. Ao primeiro nivel cor

’ . P
respondera a variavel x o rano (arco) da esquerda corresponde ao

13
valor xl =1 e o da direita a xl = Q.

No segundo nivel se encontranm portanto dois vértices, un
extrenidade do arco Xy = 1l e o outro extremidade do arco X, = 0. A

b 4 . .’
este nivel associaros aqvarlavel X os rarios da esquerda que saen
ue

2;
- - ~
de cada un dos vérticesVcorresponden a Xy ten o valor X5 = 1l; os da

direita x. = O. No terceiro nlvel teros, portanto, quatro vértices,
2

correspondendo respectivanente da esquerda para a direita aos valo=
res (1,1), (1,0), (0,1) e (0,0) de (xl, x2).
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o~ N L3 . . .
A este terceiro nivel associanos x, e assin por diante. A
« 47 4 ~ e T [ N ’
ideia fundanental dos netodos de enumeragao implicita e explorar a

Arvore, partindo de A.(Fig. 1.1).

Chegando en B, calcularios o valor da fungao objetivo (cqg

respondente a 1.1.1), Z Prosseguindo na exploragao, chegamos em C

ll

e calculamos o novo valor Z2' Se Z2 < Zl’ conservarnos o valor Zl(eg
Id o ~

tamos procurando o maximo) e a solugao correspondente e passarios pa

ra D.

Fige l.1

Quando cheganos en D, jé ternos fixado Xy = le Xy = 0 pa
ra todo o trajeto D E F G. Se tivernos maneira de estabelecer um 1i
mite superior para o valor de Z a partir dos valores ja fixados pae
ra as incégnitas, isto é, se for possivel afirmar que, se xl =1 e
X, = 0, Z sera no naximo m < Zl’ entdo é inutil efetuar o percur-
so D E F G e podernos passar diretamente de D a G, sem explorar a

’ o L4 .
parte da arvore que sai do vertice DG.
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-’ q €. 4
Esta claro que o raciocinio vale para o caso de cada varia

L} .
vel x poder tomar varios valores discretos.

0 nétodo é bastante geral e permite resolver problemas nao
lineares com varidveis discretas. A rigor o proprio método do simplex
pode ser considerado como de enuneragao implicita, pois sabemos pelo
teorena fundamental que a solugao Stima é basica, o que pernite enunme
rar todas as solugoes basicas., que sio em numero finito. O sioplex
passa de uma basica para outra gue awienta o valor de Z, eliminando

de consideragao aquelas que teriam valor 2 menor.

A programaqao dindmica de R. Bellman é outro exenplo bastan

. ~ . | S
te sugestivo de enuneragao implicita.

O0s wmétodos de enuneragao implicita tén recebido ultimamente
grande atengao na literatura técnica, principalmente os referentes ao
caso de variaveis bi-valentes, isto &, que 56 poderi tomar os valores
0 ou 1., Citarernos entre os nais inportantes os trabalhos de Balas
(1965), Roy e al.(1965), Little e al. (1963), Lawler ¢ Wood (1966),
Woiler (1967).

’ 5
Bstes métodos podenn ser generalizados para o caso de varia

veis inteiras quaisquer, desde que se conhega un limite superior de
scu valor, utilizando a representagao no sistena binadrio, nas éste ar

RS PR . . .
tificio pode levdr asun nimero multo srande«te varidveis.

Con efeito x ( 2k - 1 pode ser expresso pela soma de k va

[ . . LY ~
riaveis bivalentes x X X,y Ppor neio da relagao

1, 2, 0

k-1
X = xl + 2x2 + eee + 2 xk.
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1.2.2 - Métodos de Corte

0 grande sucesso do nétodo do sinplex na progranagao linear
geral levou, naturalmente, a tentar usd-lo na solugao dos problenmas
com variaveis inteiras. Considererios, para raciocinar, o problena to-
tal,

. - ~ 0 > a
Quando inporios a restrigao de inteireza, o poliedro das so=

~ - . . . ~
lugoes vlévels:degenera,redu21ndo-se aos pontos de un reticuladd e n3o

é nais convexo. -0 problena,a rigor,deixa. de' :ger, progranagae Linear.

[ 0 Plad . i
Poren se acrescentarnos restrigoes ligando os pontos Hexter
nos' do reticulado e¢ considerarnos un poliedro convexo com os novos

linites, teremos um novo problema de progranagao linear geral, en que:

. ™ « ’ . . .~
a) a nova regisco viavel conténm todos os pontos inteiros da regiac anw
terior;

. ™~ ' d . )
b) cada ponto extreno da regiao e un ponto inteiro.

Corlo a solugao dtina corresponde a um ponto extrermo, a solu
¢do do novo problema serf neccssariamente inteira. Alguns problenas
de programagao linear ja apresentan de inicio esta condigao de pontos
extrenos inteiros. Dantzig nrostrou en 1949 que os problsmas - tipo
transporte tén senpre solugao inteira, se as disponibilidades e neces
sidades iniciais foren inteiras. Balinsky (1966) demonstra o seguinte
teorema, devido a Hoffman e Kruskal: "uri problema de progranagao line
ar tem todos os pontos extrenos inteiros se, e apenas se, a matriz A
gozar da propriedade uninodular', isto &, se todos os determinantes

nenores de A tiverenm valor O, + 1 ou - 1.

. ~ P : . . 4 .
Geralmente a determinagao da regiao vidvel inteira & feita

por aproximagao sucessiva, introduzindo uma a uma as novas restri #
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¢oes dencrminadas “cortes'.

Dos algoritmnos baseados em cortes os mais conhecidos sao de
vidos a Gornory. No seu prireiro algoritro, das formas inteiras, para
© problena total, Gomory (1958) resolve inicialmente o problena  sem
levar en conta a exigéncia de solugao inteira. Se a solugdo for intei

L4 .
ra, o problema esta terminado.

~ o, . o . .
Se algun x, nao ¢ inteiro vamos introduzir uma nova restri-
i
¢ao (corte) gque obrigue xi a ser inteiro. Podenos escrever diretamen-

te da linha i da tabela da solugdo 4tima do simplex:

n
. = a, Ta,.. («x.,) 20 1.16
x a, + 2 a, 4 ( xJ) > ( )

. = . . . N . [4
Designando por La] 0 naior inteiro contido em a, isto e:

a= [a] +r 0 rc¢i (1.17)

[4 o . [ + o~ g + .
observaros que r & a parte fracioniria de a se éste for positivo,e
-~ . -
0 seu complenmento para 1 se a for negativo. Coro X, deve ser inteiro

devenios ter, de (1.16), que:

x, = [aio] trg b, [aij] (-xj) + Zrij(—xj) 20 (1.18)
ou sinplificando

n

Zr..x,=r, +E E = o2 inteiro.,

1 13 7] io

n

Coro % 13 xj.;o, 0 inteiro E ten de ser nao negativo e
1

portanto

r,, x. 2 r, (1.19)
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que é a restriqao adicional do algoritrio I de Gonory. Devido a proble
nas de aproximagio do cdlculo nunérico Gomory (1963) introduziu o al-
goritrio II, todo inteiro, no qual todos os pivas de tfansformagao da
tabela sfo unitirios, onservando desta forma a matriz A sempre intedi

ra, Dividindo (1.16) por A > O, tenos, introduzindo o maior inteiro,e

transpondo,
. fa, . | .
i R RO g( > J e ‘fg_l] (-xj)2+ Fio 3,0 (1.20)
A A g 1] A A ’ A

Cono O,Q-—é%g <1 e o térmo entre colchetes é inteiro, se-

A -’ . ’ . a 5 A . ’
gue~-se que este vltimo ¢ un inteiro positivo, isto e,

r aio'! n[_ai. i
a0t | 7 Ll
A 11 A

que & a restrighio wusada no algoritmo II de Gomory.

t-x,) 30 (1.21)

A constante A & fixada de forma que o piva seja senpre 1.

Para o problena parcial ou nisto, Gorory (1960) define o coxr
te da seguinte naneira; seja I o conjunto dos {ndices das varidveis in
teiras. Entao, para X, cot i€ I, temos de (1.18), decompondo en duas

.
partes os somatorios:

Sr, . x.+XLa.. xX. = fa. | + = L..W(—x.)—x. + r, (1.22)
€I i3 J JZI i3 J 10 j(ILlJ J X 10

- - 4 . ’ 3 s
No lado esquerdo, o prineiro somatorio e sempre positivo,nas
o segundo pode ser positivo ou negativo. Se todo o terno da esquerda

A . . ~ ~ . . 3 »
for positivo, entao a expressac entre colcletes ¢ un inteiro positivo

. ,
ou nulo, isto e, neste caso
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3 0 - ~ 3 3
ey Ma fortiori', considerando apenas os ternos positivos do segundo

4 .
sonatorio:

= rosoX, ot Y a . X oo
jger *d 9 4gr td

Y

(1.23)

Se a expressﬁo (1.22) far negativa, cono rio» 0 o térno

’ . «
entre colchetes e wn inteiro menor que -1 e ternos:

PN rij Xj + X aij x. £ =1+ L
€I I I
e "'a fortiori"
i¢§I ala Xj £ -1+ o
ai3< 0
ou
rio
L (~a, )(z—=) x, > r. (1.24)
i€ 1 ij l-rio j 7 io
a,.<0
1]
Como todos os coeficientes de (1.23) e (1.24) sao positivos
terios:
Fio %4
“r. + % (=r. V) (=x)+ % (-a.)(-x.)+ T ( )(=x.) 20 (1.25)
PN RN i .. L =T,
N B e N ¥ Vo g Tio J
aij v O aij <0

que é a restrigio usada no algoritmno III de Gonory, para problenas ris

tos.

- . . e
Gonory denonstrou gque a convergencia de seus algoritrios da-
’ . . . (3 s
se num nunero finito de iterag¢oes, sendo que o algoritmo III (proble=-
N ’ N . . -~ . .
ma misto) so tem convergencia garantida se a fungaoc-objetivo Z ou X,

Lol - 3
for inteira.



~17=

No apéndice I apresentanos un exemplo de Balinsky (1965) ,
resolvido pelos diversos algoritnos, para comparagao com a solugao

pelo algoritmo proposto nesta tese.
Martin (1963) prop3sﬁa1teraqao na naneira de efetuar os
cortes no algcritno I. Glover (1964,1965) apresenta outras variantes

de algoritmos de corte.

1.2.3 ~ Métodos de Penetracio

Nos nétodos de penetragao utilizamos planos de corte basea
dos na fungio-objetivo. O prineiro algoritmo déste tipo foi proposto
por Land e Doig (1960). Na realidade o seu nétodo & hibrido, pois a
solugdo ¢ obtida por enuneragho implicita. O algoritmo é o mesmo pa~

ra o problema niisto ou para o pProblena total.

Inicialmente resolve-se o problema sen restrigio de intedi
reza. Se a solugdo nao é inteira o valor Y° da fungao ¢ un linite su

perior da solugio: max 7 § Y°.

Unia variavel X, que deve ser inteira, mas nfo o é na solu-
4
¢ao corrente, deve scr tornada inteira e, portanto, ou diminuida pa-
ra [xﬁ[ ou aunentada para [xk] + 1 que sao os pontos inteiros vizi -
nhos. Realmente Land e Doig determinam todo o intervalo de valores
inteiros possiveis, resolvendo os dois problemas de progranagao linc

ars x (max) e %) (nin), con as restrigdes do problena original.,
¢+

. [ . . f
Fixando entao Xk nun valor inteiro possivel, resolve-se o
problema original (que agora ten una variavel a rnenos) determinando
nax Y que serd wm novo limite Superior para a fungao-obactlvo,

e assin por diante,
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G2 . ~ L4 . ’ N Y
A enuneragao das coribinagoes possiveis e feita por neio de
. o} o]
urla arvore, con a raiz (vértice O) correspondendo a solugdo X, Y e
i .
os ranos (arcos) (0,i) correspondendo a solugao xt, Y*, con x, fixa-

k

i . . N
do nun valor Xk inteiro, aplicando-se o nesno prooedlmento--sempre

« . P 3 ~ 0 s
que as variaveis com restrigdo de inteireza nao forem inteiras.,

» . - ’ s +
Nesta arvore um caminho de O a qualquer vertice define uma
“~ 3 . - » l' -
sequencia de valores inteiros fixados para certas variaveis, conm resg
.~ . . ’ . :
trigao de inteireza, Cada vertice terminal ou corresponde a uma solu
o . - . ’ »~ . ~ ’ ~ A ”
gao inteira viavel ou a uma sequencia que nao e solugao viavel. O ver
. .’ ’ r 3 R A -~ .’
tice viavel com max. Z é a solugdo Otima, pois todas as solugoes Vvidw

veis foram enumeradas.

Land ¢ Doig dnvestigam apenas um sub-conjunto destas so
lugoes, desenvolvendo apenas a parte da arvore que contém a soluglo
otima bascados em que, cada vértice deve ter um valor de 2 niio maior
que o de seu predecessor, pois a ramificagao significa 1mpor uma res
trigfio adicional (nova varidvel fixada), e, num vértice X%, se x; -

. . . .
ndo ¢ inteiro, o valor que produz menor decréscimo de Z & ou lxkj
r i :

X + 1.
|

Segundo informa Balinsky (1966), até 1964 este algoritmo
nao havia sido testado em computadores de grande porte, a experiég
cia sobre seu uso restringindo~se a problemas resolvidos manualmen
te, a principal dificuldade parecendo ser a grande exigéncia de es

£
Pago na neriorid.

Harris (1964) e Thompson (1964) apresentam outros algorit

nos de penetragio.

~ R ~ ~ e
No apendice 1 fazemos unma conmparagao entre estes algorite

mos e o proposto nesta tese.
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cArPfTULO II

0 METODO DAS SOLUGOES MOLTIPLAS. ALGORITMO I

2.0 - Consideragdes Geonétricas

Sabemos que no espago das solugoes de dimensdo n, as res-
trigoes forman un conjunto convexo, ou nais particularmente, un poli

edro convexo.

~ . . ’ N q
Cada valor da fungao objetivo esta associado a um hiperpla
no, que er geral corta o poliedro convexo e, no caso especial do va

lor Otimo, é tangente.

Y L) . . ’
A interse¢ao do hiperplano con o poliecdro convexo € ul Qu=-
tro conjunto convexo de dimensio (n - 1) no maximo. A figura 2.1 re

presenta esta intersegio no caso de n = 3.

X1

Fig., 2.1
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Os pontos xl, X, ¢ XB sdo o0s interceptos do hiperplanc com
A . Pl q . .
os tres eixos e a area hachurada representa o conjunto convexo limita

do pelas restrigoes do problena e o hiperplano.

0 - -~ L4
Neste poliedro convexo de dimensao (n - 1) havera um valor
Lo € .
maximo e un valor minino para cada coordenada, consistente coum as res

trigoes do problena original, coro ilustra a fig. 2.2.

Fig. 2.2

Se o hiperplano é aquéle associado con a solugao otima do
problena sen restrigao de inteircza, éste poliedro convexo reduz-se,
normalmente a un ponto unico (a nfo ser que o problena original te
nha solugdes Otinas alternativas), nas nesno assin podenos . afirmar
que cxisten wn valor mixino e minino (que poden coincidir) para ca

. P
da variavel Xj'

A L
Conhecendo, para um dado valor de Z, éstes valores naxirno
f . L4 . . . . .
€ ninino, podemnos determinar se ha possibilidade de um valor inteie

« P P .
ro, para cada variavel, ncsta posigao do hiperplano.
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Se nao existir pelo menos um valor inteiro roasivel para ca
da variavel x_,entdo podemos afirmar imediatamente que ndo hd solugao
inteira para este valor de %. Infelizmente a reciproca nio é verdadedi
ra, pois a intersegdo destas coordenadas inteiras poda nao estar s0=
bre o hiperplano, pois, realmente, estamos pesquigando os inteiros den
tro de um hiperparalelep{pedo, limitado pelos hiperplanos paraleloes

& . & . .
gue passam pelo maximo e minimo de cada variavel.

Cad 3 .
Até este ponto seguimos de perto Land e Doig (1960). Agora
L4 . . . « P .
porem, em vez de fixar valores inteiros para algumas variaveis e re-
solver os problemas auxiliares max xj e min xj, como fazem os auto-

res citados, vamos proceder de modo diverso.

Consideremos inicislmente o problema total, isto &, com t§
das as varidveis inte iras., Podemos sempre impor, sem perda de gene=-
ralidade a condigao gque todos os coeficientes cj de Z = % c. Xj 5€=-
jam inteiros e primos entre si. Neste caso as solugoes in%eiras darao
valores também inteiros a %2, de modo que, se Z njo for inteiro, pode~
mos logo afirmar que nao h& solugdo inteira para esta posigao do hi =

perplano.

Partindo, portanto, da posigao % = Y° do problema sem res
trigao de inteireza, vamos penetrando progressivamente o hiperplano
da.fungao objetivo, até atingir o primeiro valor inteiro Z = Yl < Y.
Obteremos entdo uma interseg¢ao que é um poliedro convexo com (n - m)
pontos extremos, todos éles dando a fungao objetivo o mesmo valor

2 = Yl, visto que estao sobre o hiperplano.

Ora, éstes pontos extremos podem ser facilmente obtidos na
tabela do simplex original com a restrig¢ao adicional X cj xj§:Yl, =
pois cada um déles & uma das (n - m) solugoes basicas 1otimas do no-

vo problema.
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Destas (n ~ m) solugoes podemos obter diretamente max x:j e
min xj e verificar se pode haver algum ponto inteiro incluido. Se nao
houver, fazemos nova penetragdo até o proximo valor inteiro Z=Y2=Y1~1

. q ’ q . ¢
e repetimos o procedimento, atéc encontrar um ponto inteir- rossivel,

. . [ad ' ~
Para verificar se este ¢ realmente uma solu¢ao do problema
[ 4 . ~ . P
basta lembrar que, havendo multiplas solugoes b551cas-ot1mas, qual ~
7 ~ 5 , I Ll 4 0 O
quer combinagao linear convexa e tambem uma solugao Otima. Necessi-
tames apenas pesquisar se existe uma combinagdo linear convexa que cor

responda ao ponto inteiro,

Ocorre inclusive gque algum dos pontos extremos pode j& ser

inteiro e, portanto, uma soluqao otima do problema.

Se nao existir combinagao linear convexa inteira fazemos no
~ 14 L . . . )
va penetragao ate o proximo valor inteiiro de Z, e repetimos o procedi

mento.

Como somente penetramos até um valor 2 = Y& depois de ter
verificado que nao ha solugdo inteira para valores de Z maiores que
Yk, o algoritmo necessariamente converge, se existir solugdo inteira
do problema, apés [Z°] - Z* + 1 iteragoes, no maximo, onde Z;:= é o va

~ o N ’ .
lor de Z na solugao inteira otima.

. . ’ ,
Para o caso do problema parcial ou misto, o método & o mes

kéEE % % P

. f . . 7 . . . »
sendo o conjunto de 1lndices das variaveis inteiras, isto e, penetramos

]
mo; apenas a penetragio ¢ feita com um hiperplano Z =

N [4 < P . . .
com um hiperplano que ¢ paralelo a Z no sub-espago das variaveis intei

ras.

’ . . . .
Tambem neste caso supomos os coeficientes ¢, inteiros e pri-

k

. . ~ 0 .
mos entre si, de modo que as solugoes com X inteiro sorreapondan
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’ . . ! ) .
tambem valores inteiros de Z2 , valendo, portanto, todas as considera-
~ k3 L] - -~ -~ - - . b
¢oes anteriores, inclusive sobre convergencia. A verificagao do ponto
inteiro incluido & restrita, obviamente, ao sub-espago das varifveis

inteiras.

A {nica limitagdo do método proposto nesta tese para o pro=
blema parcial é a exig@ncia de haver pelo menos uma varidvel inteira
X, com coeficiente ) # 0 na fungado objetivo. Se todos os coeficien
tes de varidveis inteiras, na fungao objetivo, forem nulos, © método
das solugdes multiplas nao pode ser aplicado, pela impossibilidade de
fixar a profundidade de penetragao. Felizmente tais casos sao bastan=

Lo
te raros na pratica.

2.1 - Algoritmo I

(4 ]
Suporemos, neste capltulo que o problema original, sem res
R . . . £ . ~ P,
trigao de inteireza, admite uma unica solugao otima. O caso em que o
P N4 o 3 fyge ’
problema original ja apresenta, de inicio, solugocs multiplas, sera

abordado no capitulo I1I.

14 , * . . o . .
Suporemos , tambem, que as variaveis com restrigao de intei
~ a 0 5 [
reza sao as r primeiras, isto e, E =1, 2 ... r. No caso do rroble-~

ma total, evidentemente, r = n.

0 algoritmo I serd explicado com o auxilio do diagrama de
bloco da fig. 2.3.

(1)- Resolver o problema original de programagdo linear por meio de
un dos algoritmos do simplex.

(2)- Se a soluglo otima obtida fér inteira, o problema estd termina-

do. Se¢ nao, passe para (3).



(L)

(2)

(2)

(4)

(5)

(6)

(7)

~2ha

Resolva problema original
pelo simplex

!

-~ “\\

Solugdo € ~._ sim

inteira? T >

DN

Nao i_"_ =

'
Pcnetre o hiperplano Z = § ¢ ¥

. . . r -
o inteiro mais proximo

)

) ~ ’
Deternmine as novas solugoes ba-

sicas otimas XI, XII"" XP

inteiro

incluido

Solugdo &tira do problema
inteiro

Fig., 2.3 - Algoritmo I
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r
(3)~ Penetragao do hiperplano z'= % . X até o inteiro mais préximo.

£ obtida introduzindo-sc¢ a restrigao adicional:

Z = L

Cy x, $ Y (2.1)

=M

1 . . . R . o' ~ ~ ~ .
onde Y~ & o maior inteiro contido em Z°~ , se este nao for inteiro, ou

] ] ~
72° = 1 se 2° £8r inteiro.

' e -~
Evidentenmente, cono Y1<’Z° a restrigao adicional (2.1} nao

serd satisfeita pela solugao obtida em (1).

Para introduzir a restrig¢ao diretamente na tabela da solu =
¢ho otinma do simplex Dbasta lembrar que, de modo geral, as varifveis .

. .
basicas podenm ser escritas:

X, =ag ¢ ? aij (- xj) (2.2)

~ . . I d
onde xj sao as variaveis fora da base. Tamben:

7' - z° . 5 (z:'.| - ;) (-xy) (2.3)
J

Introduzindo-se en (2.1) a variavel residual X4 © substi=

tuindo enm (2.3), temos:

' : o!
¥ (Zj - cj)(~ Zj) X = Y-Z° == (2.4)

onde A é a penetragao feita.
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A tabela do novo problema fica, portantotl

Base PO P1 Pm Pj Pk Pn+1
e e - - - Kl _ . e - e
xl alo 1 0 alj alk 0
L] . . . . . L] (2.5)
xm a 0 1 T Ak 0
Xpel A 0 0 (z'=c.) | (2, ~c.) 1
n & BRRE R E i M ™
7° 0 0 o 7 .~C 7. -c e 0
Jd k "k

Como a solugho anterior era Otima, todos os Z, - cj > 0, pa
ra Jj fora da base. Logo temos todas as condigoes para aplicar o algo
ritmo dual simplex. O vetor que sai da base é evidentenmente, X041 0
que entra & determinado pelo critério do dual simplex:

By = O '
nin ——~———= ., con %, - c¢_< 0, Z. -c,»0
12 - ¢ I k k J J
k k

~
No caso do problema total todos os vetores fora da base ton
» 3
o nesmo valor 1 para eéste uociente, ocorrendo empate. No problema par
. * (4 . ¢ .
cial é possivel que haja unm unioco vetor para entrar na base, nas tam -

, 5 .. ., L
bém pode ocorrer anpais entre varios.

. ~ ’ . 14 .
(4)~ Determinar as novas solugoes basicas otinas.

» ~
Unn vetor xk que entra na base dara una nova solugao Xk.
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Base PO | Pj N+l
a a . a
X a, = -LQE-A DA s = . o (2, - ¢c.) = ~72££~
1 lo Z'-C 13 Z'-C J Z, =-C
k 'k k 'k k 'k
a a . a
X a Py ._.'E"Q:{__. A . - ...T'-I:ﬂ.lg'-.. (Z o= c .) e —'-L-llc-:.-
a o 7 ¢ 1J 2, =C J Z, =C
k 'k k k 'k
]
Z, -~ cC,
x, —1t A B E— o
SN By = O B = O
0 o ]
45 = % e = Oy
z° - A (Zme,) = i J (2, - ¢ —_—
Zk - ck Zk - c1

(2.6)

Como s6 precisamos dos solugdes basicas e em cada penetragdo

muda apenas o valor A, perilanecendo os denais celernentos da tabela (desde

que nao ocorra nenhurn Xi‘ 0 o que indicaria a necessidadade de nudanga

de base), ndo é preciso calcular toda a tabela.

Podenos cscrever una solugao X

k

i .
sob forma paranctrica
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alk
i e

B~

a

x]{ — X = a - lﬂk A (2-7)

jal jule] Z'—c

k 'k

1
i = , « 4
Zk - ck

. . . . ] P .
onde os Ifndices (i .... 1) indicam os vetores da base otima inicial e k
« . . . . . PR
ul vetor inicialnente fora da base original e que satisfez ao criterio
de entrada do dual sinmplex. Lembramos que no caso do problena total to~

dos os vetores fora da base inicial sao candidatos a entrada.

Podenos obscrvar que as I primeiras conponentes de (2.7) po~

dern1 ser escritos sob a forna

. = A, + a A o8
Xl 110 i,n+l (2.8)
onde &, ¢ a conponente i do vetor P , residual da nova restri-
i, n+l n+l
¢ao.
Desta forna calcularios todas as solugoes altcrnativas
X, X ess X do problena corl penetragao.

I’ "II P

(5)- Pesquisar sc existe una solugao inteira incluida
0 f . £ M . € . .
Deterninarnos o naxino ¢ o ninino de cada variavel X intei-

. ] - 1] » [ad - ~
ra, e verificanos se¢ existe algun inteiro entre estes dois valorces, cles

incluidos.
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Se ndo existir voltaros para (3), penetrando o hiperplano
[}

L d 4 - « .
b4 ato o proxino valor inteiro.
» » -~ .
(6)~ Pesquisa de uma corbinagfio linear convexa

Existindo um ponto inteiro possivel Yqy» ¥, +ee ¥y 1O sub=ecs

2
N . . . . . . Lad .
rago das variaveis inteiras, precisanos verificar se ten solugao o sis

tena de (r + 1) equagdes:

Oy Xpq 0 * Cpp XIIl t oaee F O, Xpyp = ¥y
B . (2.9)
aI xIr + aII XIIr + eee + ap xPr e yr
Bt S & AU o = 1
o >0 i=1, ... 0p

No caso do problema total com natriz A inteira a determina
~ ” 0 . Cad « 7 . . .
¢ao e facilitada pelo fato de, sendo todas as variaveis inteiras, cada
« P . - . . L3 .
variavel X, introduzida na base permite deterninar os valores possiveis

do 'l correspondente, pois ak tern un canpo de variagao discreto:

X
1 2 Lk
= 0, =T | e L, e
O(k Xk Xk Xk

Bste nétodo & bastante eficicnte se todos os valores xk foren pequenos.

Caso o sistena (2.9) nlo adnita solugio voltanos a (3) e rea

lizanos nova penetragio.

Se existir mais de wuna solugao do sistena (2.9) terenos

’ . . . L,
miltiplas solugdes inteiras dtinas.
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2.2 - Exenplo de Aplicacao

Vanos resolver o seguinte problema, que se encontra resolvi

do en Carr e Howe (1964), pagina 222 pelo algoritmo I de Gomory:

Z (pax) = 2 x, +x

1 2

20 xl + 10 x2

A\"2

75

12 x, + 7 x

L 55

N

2

25 Xq ¥ 10 X, $’9O

xl 2,0 inteiro

X, 2 0 inteiro

. . - . . .
Introduzindo as variaveis residuais x3, x4 e x respecti-

5

vamente, e resolvendo pelo simplex temos a seguinte tabela de solugao é

tina sem restrigio de inteireza, dada por Carr e Howe (1964)

Base Po Pl P2 P3 . P4 P5
x, |295/55| 0 | 1 [0 | 25/55 - 12/55
N Xy u2s/55 1 0 | o |1 | so/s5 20/55

3 8o/s5 | 1 | o | o -10/55 7/55
Zj s Lkos/55 | © 0 Y 5/55 2/55




) Lond 14
A nova restrigac serd dada por:
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-4 = 5/55 (—xu) + 2/55 (—x5) + xg

e terios, iniciando com A = 15/55

it

) Base PO Pl P2 P3 ‘ P4 P5 ! P6
X, 295/55 0 1 Y 25/55 ~12/55 Y
X3 425/55 Y Y 1 50/55 20/55 Y
X, 80/55 | 1L | 0 |© -10/55 7/55 0
X¢ -15/55 0 0 o - 5/55 ~2/55 1
Zj-c 1 8 0 0 0 5/55 2/55 0
Intrcduzindo na  base Pq e P5 temos as duas solngoes
X1 X1
v _ 8o 10 55 15 _ 110 _ _ 8 7 15
TS s 1T 55 " T55 T2 |\t TE5 T 5 T
N 295 _ .25 55 15 _ 220 _y |, _29% ., 12 _35
2 55 55 5 55 55 2 55 o5 2
= ¥25 90 55 15 . 275 _ 5 | x,- hos 20 15
3 55 55 5 55 55 3 55 55 e
. 55 15
Xl+— 5 55 = “]:‘51 = 3 x[+= (9]
_ _ _ 55 15
5= O =0 | ¥ 2 " 5

1/2



Tenos wmax x, = 2, min X = 1/2 ; logo ¥y, = 2 ou 1
nax x, =7 min x, = L y, =7 ou 6 ou 5 ou &
nax X = 5 nin Xy = 5 Vg = 5
max  x, = 3 min X, = 0 Yy = 2 ouz2oulouo
nax x5=!'2i'min x; = 0 Vg =7 6 5 b 3 2, 1

o X, + X =¥ 1
171 11 “11 ? Pesquisa das Combinagoes Convexas.
aI + O(.II

[t}
M~

Evidentenente, cono XI S inteiro, uma solugao é aI = 1,
O(.II=0.
o 2Cono Xy, deve ser inteiro, os valores possiveis para Or sao
SR
Conlo x. deve ser inteiro, os valores possiveis para Oy
s8o O 2 L. 6 8 10 12 14
*15°' 15 * 15 15 ' 15 °* 15 ' 15
A Uni 'bi a aa =1 e o =) C
unica corbinagao que da Qp + Oy =1, O = RN A

~
que nos fornece a solugaos

1
x) = e 2+ i = 1
x2= -Ll'+ . 7 = 6

o ]
+ \S,
§ i
L4
\n
+
\n
1t
\n
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. (g L . *
O problema admite portanto duas solugoes otimas inteirass

P4
n
~~
]
It
n
"
n

4)

>4
1
~~
™
Y
(o)
[l
4}

6)

L interessante conparar con a solugao apresentada ' per

Carr e Howe (1964), que & igual a nossa ‘solugao X e exigiu a

ir
introdugao de quatro cortes, con as correspondentes tabelas con

pletas,

2.3 -~ Mudanca de¢ base durante a penetracgao

N . . -
A nedida que vanos penetrando o hiperplano Z' as solugoes
~ s P . . P4
vao se nodificando ¢ poden, nun certo instante, deixar de serem via

. . ’ .
veis, isto e, conteren valores negativos.

Da férnula de transformagio de una varidvel qualquer da

base:

X, = a, === (2.10)

concluinos que, sendo Zi ~ >0 a © A Y 0, a tnica possibilidade
. - io .
de x;, { O ¢se a;, >0 e A)a (Zk-c

).
i N ik k

Evidentenente, se todos os a,, £ 0, para qualquer i e Kk,
lk\ P

”» rd
nao havera troca de basce. Se tomarnos:

a,
io

%k

A critico = nmin (2.11)
i’k

aik.>0

(Zk - ck)
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. e . 4 v . . >
terenos o linite superior de A conpativel con a base inicial, isto

-’ A L T 3 £
e, a base inicial so0 e viavel no intervalo 0 < A L 4 critico.

Se A > A critico, deverios nudar de base, se quizernos

. P4
17 XII’ 060 XP sejan senpre via

veis. Geonetricamente esta nudanga de base significa que una das

que as nossas solugoes multiplas X

T L .
intersegoes do poliedro com o hiperplano Z e agora numa face di=-

ferente daquela que estavanos considerando,

Feita a nudanga de base, calculanos novo A critico, que
dara » linite superior de A para validade desta base, e assin por

diantc.

Ora, se estanos trahalhando con a solugao sob forma pa-

’ . . Cod .
raretrica, terianos de calcular toda a tabela do sinplex correspon
dente a penetragio feita, para podernos fazer a substituigfo de ba

se, utilizando, cono terios feito, o algoritmo dual simplex.

. . ~
Devenos notar, entretanto, que o algoritno das conbinagoes
~ . . « £ .
convexas nao exige que os pontos extrenos sejan todos viaveis, e

vale da nesma forma se houver algumas coordenadas negativas.

Desde que haja ponto inteiro positivo incluido o nosso

. 14 g
algoritno nos formecera a solugao.

L . 14 sy 3™
O unico incoveneiente, neste caso, e a possibilidade de
virmos a exaninar nais pontos inteiros desnecessarianente, pois
estanos pesquisando nun canpo naior, no sentido que o conjunto (g
Cod : ¢ . , .
gora nao viavel) da base antiga contén o conjunto que correspona

- LY
deria a nova base,
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2.3.1 - Exemplo
Para ilustrar éste problena de nudanga de base durante a
pentragao, onsiderenos o problena seguinte, apresentado por Hadley

{1964), p.285.

Z(nax)

0,25 xy + %,

sujeito a:

-+

0,50 x, x, « 1,75

x, + 0,30 x, £ 1,50

Xys X, 2 0, dinteiros

Para aplicar o nosso algoritno, Z deve ter coeficientes
inteiros. £ tanbén conveniente no problema totalmente inteiro ter

. . . g . . . ’ .
a natriz A inteira, embora nao seja indispensavel ao algoritno.

Transfornmamos, portanto, o problema original no equiva-

lente ja sob forma candnicas

7 (nax) = xg * 4 X,

sujeito a:

2 x5 + L X, + x3 = 7
10 X+ 3 X5 txy, o= 15
con x. >0, inteiro

J
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Teros:
Base PO Pl P2 P3 P4
2 L 1 0
x3 7
xu 15 10 3 0] 1
Z.=C 0 -l -4 0 0
J 3

Entra o P, e sai o P,

2 3
- -
Base PO P1 P2 P3 P4
X, 7/4 1/2 1 1/4 0
X, 29/4 17/2 0 -3/h 1
Zj-cj 7 1 0 1 0

-~ rd a . Lod
Solugao otima sen restrigao.

Cono x, e X, nfo sdo inteiros, embora Z o seja, vanos pe

netrar una profundidade A&, introduzindo a restrigao:

- A = = X

- X, + X
1

3 >

~ ’ .
e tenoe as duas solugoes paranctricas.



X X11
x1= A xl = 0
Xy = 72/ = 1/2 A X, = 2/ -~ /4 A
x3 = Q x3 = A
X, =39/4 ~ 17/2 & x, = 39/ + 3/4 A

A eritico = min (7/2, 7, 39/34) = 1,147

Inicialnente tonmanos A = 1 e tenos:

1 1 inteiro
X e incluido
x1 1 0] sin
X 5/4 6/4 nao
=1 2
7 =6 x 0 1 sin
3
%), ha/b 5/l sin

Corio os valores de X, nao incluen un inteiro, passanos

para A = 2, e tenos:



2 2 inteiro
L XI XII incluido
xl sin
A =2 X, 3/4 5/4 sin
. > X, 0 2 sin
X, -29/k Ls/L sin

Conforne era previsto, a solugdo X

X

-~ I d . P ’
nao ¢ viavel, pois

estarnos corn A> A critico. Mas, cono dissenos, continua valendo

algoritrio das combinagoes convexas. Com efeito, terios a conbinagdo

aI = 1l/2, Opp = 1/2, que da a solugao inteira:

42 2
1/2 X3 + 1/2 X{

I
Xy /2. 2 +1/2 . O. =
X, 2 . 3/h +1/2 . 5/ =
Xy i/2 .0 +l2.2 =

x, | 1/2(-29/4) + 1/2 .7 h5/h

Varios, entretanto, efetuar a nudanga de base, como ilus-’

trar. A tabela corpleta da base X &2
Base Po P1 P P3 P5
X, 3/k 0 1 ~1/k 1/2
x, |-29/t 0 o | -37/4 17/2
x 2 1 0 1l -1
- s i
Z.,=C. 0 0 0 1
J cJ 5




c’l

Sai.xu e entra x

dando a tabela:

3 2
Base PO Pl P2 P4 P5
X, 35/37 0 1 1/37 10/37
X5 29/37 0 0 ~4/37 -34/37
Xy L5/27 1 0 L/ 37 - 3/37
Zj-cJ 5 0 0 0 1
<
As solugdes sfo agoras
2! 2!
Xy X11
x, Ls/37 0 2
x, | 35/37 5/4 5
X3 ( 29/*7
Xy, ] 0 4k5/39
Neste caso a combinagfio convexa é dada por 0y = 37/45,
az = 8/37, resultando na nesna soluqao inteira anterior:

"
[

»
n

™

]

F W

[}
\V)

!
Y [
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A figura 2.3 nos nmostra o que acontece no espago das solu~

~ ~ 7
goes quando nanterios a base nao viavel.

Solugéo
inteira

Fig. 2.3
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2.4 - Varifveis Bivalentes

0 algoritrio ndo oferece qualquer dificuldade de aplicagao,
nas a eficiénecia & mnaior se enpregarnos na solugdo do problena sen
restriqao de inteireza o algoritmo do sinplex para variaveis con 1i
rmite superior, de forna a ter, 35 no inicio da penetracgao,

O‘S X s 1

f]
1

+ . +
para as variaveis bivalentes.

2.5 -~ Apreciagao Geral sobre o Algoritro I

0 algoritno I, das combinaqSes lineares convexas, foi usa
L
do con sucesso na solugdo nanual de varios problenas de pequeno por
. N - e Al L.
te, apresentados por diversos autores cono ilustragao didatica, e
» . L) AI
dos quais reproduzinos nais alguns exenplos no Apendice I para con=

paragao.

fle & tadbénm facilmente adaptivel a qualquer um dos diver
sos algoritmos do simplex, € especialmente ao simplex revisado, one
de podemos introduzir a restrigfo adicional logo de inicio, sem per
nitir a sua saida da base na fase I (solugao sem restrigao de intei

reza).

Entretanto é preciso reconhecer o aspecto negativo, de que
a solugao do sistema de equagdes (2.9) das combinagdes convexas tor-

na-se bastante trabalhosa a nedida que aumenta o porte do problema.

Outra questfo dificil de contornar é a perda de precisio

’ r 2 e . A
no calculo numérico. A ndo ser que a solugao seja toda calculada com
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~ . P . « P A > .
fragBes ordindrias, o que e impraticavel num computador eletronico, auxi
. L] . ’ ’
liar indispensavel para resolver problemas grandes, sera impossivel ob -

ter a solugio exata do sistema (2.9).

Estas razdes nos levaram a modificar o algoritmo I em sua se -
gunda parte, substituindo a determinagZo das combinagles convexas por um
~ . 4 . . »
processo de enumeragio implicita. Este algoritmo II e apresentado no ca-

pitulo seguintac.
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AIGORITNO IT

3.0 - Consideragoes Iniciais

A grande facilidade do computador eletronico en fazer com
paragao de valores, conjugada com as dificuldades de obter wia con-
binaghdo linear convexa de nuitas solugoes e a perda de precisao do
cAlculo numérico, nos levaranm a modificar a segunda parte do algorit

. . L) . & -
rno I, substituindo«a por un processo de enunieragao implicita.

~ - . 3 .
Toda a parte inicial do algoritmo pernanece conceitualnen
te g nesna; apenas fizerios pequenas nodificagoes, elininando algunas

L
passagens que se tornaram desnecessarias.

Com efeito, na enumeragao implicita é supérfluo calcular
todas as solugoes basicas XI’ XII’ o XP bastando deterninar, para

todo x,_ que deva ser inteiro, o seu valor miximo e minimo no conjunto
das solugCes.

. G2 . . « 7 .
3,1 - Determinaciao dos valores limites das Variaveis

~ ~ A L4 .
Na expressao da solugao basica Xk sob forma parametrica,

tinhamos
aik
X, T AT A (3.1)
Zk . ck
Xk = l — o, A (3.2)
Z, = C
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, . " ~ L N 5 b4 . »
onde X, € uma variavel da solugao basica original e X, © uma varia-

vel introduzida pela penetragdo do hiperplano.

Definamos:
a,
D max. = - min —7—&E;~ (3.3)
. k Z -c
k k
a_k
D min, = - max e (3.4)
k 2, - cC
k k
D max = —emie—e- (3.5)
k Z = cC
k k
i = 0 .
D min (3.6)
Neste caso podemos escrever diretamente:
max x. =a. + Dmax, . A (3.7)
5 T 3 3.7
mn x. =a. + Dmin., « A (3.8)
J Jo J

expressao valida para qualquer j.

Consideremos um xj gque deva ser inteiro e indiquemos, cgQ

mo anteriormente, por LX] o naior inteiro contido em x.

. L4 + . . .
Para determinar o numero hj de inteiros existentes no in
tervalo (max xj, min Xj)’ precisamos distinguir dois casos, confor-

me min xj seja ou nao inteiro. Temos:
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=
I
o )
g
o5}
]
>
U

- [min Xj] se min‘xj # [min ij (3.9)

5%
1
™
B
o
b
tal

= [min XjJ + 1 se min X3 =Lmin xj] (3.10)

A « P N . . .
Sa, para todas as variaveis xj que devem ser inteiras,tiver

mos hj > 1, entdo hi possibilidade de existir uma solugao inteira.

3,2 - Enumeragao Implicita das Solugoes Inteiras

Devemos entio testar todas as combinagbes possiveis de va-
lores inteiros de cada uma das varidveis. Ora, ¢éste & um problema
combinatdrio que pode facilmente atingir dimensaes enormes, pois o
nimero de combinagdes & dado pelo produto % hi , 0 que torna im-

praticével verificar todas as possibilidades.

* . 2 * « ' «
Felizmente um algoritmo de enumeragao 1mpli01ta permitira
eliminar a verificagio das combinagdes que obviamente nao satisfa -

zem ao problema, conforme discutimos de modo geral no Capitulo I.

Consideremos, agora, o problema totalmente inteiro. Vamos
Lo . Y g ~ (4 . ’
entdo enumerar implicitamente todas as ''solugoes' possivels atraves
ta . N L4 . . « P
de uma arvore, definida pelo indice j da variavel correspondente a

cada nivel, a qual pode tomar os hj valores inteiros.

‘max xf] , [max X =1, eeo [max x.] - h, + 1.
3 J J J J
. + s . [4 ¢
Tomando inicialmente j = 1 vamos construindo a arvore, 2
. Cd L4 .
té cheparmos a j = n quando teremos enumerado todas as possivels

solugoes inteiras.
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~ - h . (a2
Uma solugao deve satisfazer as restrigoes:

c.X_:Z:YO-A (3.11)

HMs HMB

aij X L By i=1,2 ...nm (3.12)

A equagao (3.11) exprime a condigdo que o ponto deve estar
sobre o hiperplano Z na sua posigao corrente, Y° - A; as demais sao

as restrigoes originais do problema.

S~ o o o [y LA v
Para colocar toda a verificagao da solugao numa unica roti

o}

na, vamos fazer ¢, = ao. e Y =~ A= aoo y, de modo que podemos esw-
3 -~ J

crevar as restrigoes sob a forma:

HMB

3y 5 xj < 25, i=0,1, «oom (3.13)

notando que para 1 = O deve valer a igualdade:

Sabemos que uma solugao corresponde a um caminho partinde
L 4 R 4 [4 . . Co) .
do nivel O "ate unm vertice n, Vamos supor que seguindo este cami-

g . L4 . . o . .
nho, atingimos o nivel j , isto quer dizer que ja fixamos os valo-

X X

. . . . ® .
10 Koo e Xj das J primeiras variaveis.

Conhecemos portanto o valor da soma parcial

J
SIGMA (4,j) = § aij Xj i=0,1, ¢eem (3.14)

que pode ser calculado facilmente a partir de

SIGMA (i,j) = SIGMA (4i,j-1) + a5 X
(3.15)
SIGMA (i,0) =0



Lo

Vamos calcular agora um limite superior SUP (i,j) de cada

restrigio i no nivel j, tal que, =¢

SIGMA (4,3) » SUP(4,])

2 ™ N [ . . Cod «
para uma restrigao 1, nao existe combinagao de valores das varia -

veis restantes, xj + L, eve X, que permita satisfaer a restrigao i

(4 N < . » .
e portanto € inutil prosseguir neste caminho.

L) - - » L3
Para determinar cestes limites superiores, suponhamos

SUP (i,3) j& calculado, e vamos determinar SUP (i,j-1).

. . (4 . .
A diferenga entre os dois niveis deve ser a menor contri~-

G v .
buigao possivel da variavel xj.

Se aij 2‘0 esta correspondera ao menor valor inteiro per

aye > . » N
mitido para X5 isto e, [max xj] = hj + 1.

. ™ (4 .
3 < 0 a menor contribuigao sera dada pelo maior valor

. . [ 4 . [ 4 i
inteiro possivel para xj, isto e, Lmax Xj] .

Se a.
i

Portanto, podemos calcular a matriz dos SUP (i,3) por recor

A - -
rencia, partindo de:

SUP (i,n) = ay, i=o0,21...m (3.16)
SUP(i,j-1) = SUP(i,j) - &, [max x] , a,;. <0
g (g oty <0 (3.19)
SUP(i,j-1) = SUP(i,j) = aij([max xjj__ hy o+ 1) a;5%0

. ’ .
Chegando ao nivel j da arvore, duas situagoes podem ocoOr=

rers:
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1) SIGMA (i,3) € suP (i,3).

L 4 . o
Neste caso avangamos ao nivel j+1, fixando

xj+1 = Lmax xj+11 e lcalculamos a nova soma parcial, pela relagao

SIGMA(i,j+1) = SIGMA(L,j) + 8441 ¥ (3.18)

j+1

4
e testamos se, no novo nivel

SIGMA(i,j+1){§ SUP (i,j+l) , e assim por diante.

2) SIGMA (i,3) > SUP (i,3])

Neste caso devemos retroceder ao nivel imediatamente ante
rior Jj~1 e tentar escolher uwm novo valor de xj que permita satis-

fazer ao teste.

Como o problena ¢ linear e os valores de x, variam de 1
en 1, vamos utilizar éste fato para simplificar nossa busca. Como
a Arvore ¢ construida de modo que a varidvel xj ¢ ordenada scgundo
valores decrescentes, a primeira possibilidade de variar xj & no

b N . - ’
ramo a direita, com xj = xj - 1, o que da o novo valor

SIGMA (4i,3) = SIGMA (4,3) - 2 5
Se 2y 5 > 0, entgo STGMA (i,3) < 8IinMA (i,3) e, & pos -
sivel que agora SIGMA (i,3j) < SUP (4,3).

Se ainda SIGIA (i,j) » SUP (i,J) deslocamos para O pro-

. &) . . a ’
wimo ramo a direita e repetimos, ou ate encontrar um valor
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SIGMA (i,j),g SUP (i,j) (que permitira retomar a descida
da arvore), ou até chegar ao menor valor possivel de X (ramo mais

a direita), que & x, = [ﬁax x:] - h, + 1.
J J J

Se ainda neste caso SIGMA (i,3) B SUP (i,j), entlo devemos
retroceder ao nivel j-2, onde mantemos a escolha de Xy Xy ewe xj_2

e tentamos, diminukindo 1 do valor corrente de x, prosseguir a

-1
descida. '

Se aij < 0 entfo o deslocamento para a direita iré aumen-
tar o valor de SIGMA (i,j) e portanto, podemos retroceder imediata=-
mente ao nivel (j-2) e passar a explorar o ramo da direita de xj-l’

tentando prosseguir na descida.

Se conseguirmos chegar ao nivel n, conm
SIGMA (O,n) = SUP (O,n)

SIGMA (i,n)‘g'SUP (i,n) i=1;, 2 «au

-~ R “~ . e
teremos encontrado wma solugio que satisfaz as restrigoes do proble=-

L&«

(4 . A
Se ao retroceder chegarmos ao nivel j=0 podemos roncluir
(ad « ~ 3 0 A
que nao existe solugao inteira para aquele valor de Z; fazemos nova

penetragdo e reconecgaros.

Pode acontecer que existam varias solugoes inteiras do pro
blema. Para determinfi-las basta prosseguir a busca, depois de ter a=-
chado unma solugdo, retrocedendo ao nivel n-1 e repetindo o procedi
nento, até chegar a retroceder ao nivel 3j=0 quando a busca estara

terninada.



..50..

3.2.1 - Problema Parcial ou Misto

’ a .~ . . L4 . L4
Neste caso a Arvore as solugoes inteiras possivels ¢ nmon=-
. . . . s ™ ~
tada apenas com as variaveis inteiras Xq Xy ene X e a verificagao

de uma solugdo ¢ feita en duas fases.

Na fase I verificamos pelo procedimento anterior se o pon~
. . , ~ 3 :
to inteiro xl, Xy ene X, esta sobre o hiperplano.

2 %o x, =0 =0 (3.19)
1

Na fase II cada sub-conjunto xi, xé oo x; que satisfaz
a equaqao (%.19) & substituido no problema original e temos urt pro-~

g . : . e, « 7 .
blema de programagio linear ordindria com (n-r) variaveis.

n
]
7 (max) =2 * + 5. ¢, X,
r+l J J

sujeito at . (3.20)

™
©
]
A
)
1
HMB
b
*
'J.
it
l_l
o
]

a, .
1]

x5 70 )

1)
e
+
[
=]

Se o problema (3.20) tiver uma solugho viavel x;+l, %60 x;

L 1 . [ .
a solugdo do problema original sera, evidentemente

x*, XE ve ey x;, X;+l 500 x;

Se o problema (3.19) ndo tiver solugao vidvel entao faremos
y T

nova penetragao do hiperplano 2 = ¢. Xx. e repetinos o procedimen=

)y
1
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to anterior.

3.3 - Erros de Aproximagio no CAlculo Numérico

Cono no algoritno II apenas pr..cisanos enquadrar os valores
. L3 o - - . ~ . .
inteiros de Xs s podemos facilmente eliminar o erro devido as aproxima
-~ ¢ , o, - 3
goes do calculo numerico,Se aumentarros de 20 a largura da faixa one=

tre max x, e nin x..
1 J

Para isto, modificamos as férmulas (3.3) a (3.6) para

D max x; = - uin ,ik + 0 (3.21)
k Zk-ck
Pk
D nin X, = = max S Te— - 0 (3.22)
2 e
ko 4oy
D max x_ = =S s+ 0 (3.23)
-c
k k
Dninx = 0 (3.24)

. ~ L4 . ~ . [4
Para D min X, nao ha modificagao, pois o valor e exato.
~ L4 Y . - .
Desta forma nao ha perigo de passarnos por cima de um ponto inteiro
- . -
sen reconhece~lo. Apenas terenos, eventualnente, de pesquisar nais

> . Y € .
pontos inteiros que os estritamente necessarios.

¢ ~ .
En nossos calculos no computador eletronico teros usado

o = 0,01.



3.4 -~ Algoritmo II para o Problema Total

Podenos agora formalizar o algoritmo, conforne o diagrana

de bloco da figura 3%.1.

(1) Resolva o problema original po~ um dos algoritmos do

sinplex.
(2) Se a solugio & inteira, o problema estd terminado.

b o . ‘ .’
(3) Se a solugao nfo & inteira calcule para cada variavel

’ .
05 AacCrctscClilos.

a,
D nax, = - pin e + g j €& bvase
J 2, ~c
k k 'k
a-
D minj = - nax jk -0 i€, base
ko Zy-cy
D maxk T e + g kﬁz base
2, = ©C
k k
D mink = 0 kg base

(4) Penetre o hiperplano até o valor inteiro mais prdximo

fazendo:
A= 2° - [z°] se 2z°» 0

a=2° [Z?]+1 se z°¢ 0

. s e + 7
(5) Deternine os valores limites de cada variavel



max x, = a., + Dnax, . A
d Jo J
min X.=a. +ij..n. lA j=1| e ey n
F Jo J
h. =|max x| =min x. se min min x
5 =L It ; A j]

hj =[max xjj-[pln xj] +1 se min Xy = [mln ij
(6) Se todos os hj > 0 existen pontos inteiros incluldos

(7) Chlculo dos limites superiores das restrigoes

Para i=0,1...2 e j=N,nl, ... 1 calcule

SUP (i, j-1) = SUP (i,j) - 3 5 [maij se a;y £ 0

SUP (i, j=1) = SUP (i,j) - 83 ( Lmaxj] - hj+1) se aij7 0
SUP (i, n) = o

SUP (0, n) =a_ =%

(8) Efetue a enumeragio implicita da arvore das solugoes possiveis.
0 diagrama de bloco da fig. 3.2 indica detalhadamente como pro-

ceder.

(9) Achada uma solugao inteira, para pesquisar as eventuals outras,

proceda como indica o diagrama de bloco da fig. 3.3,



ol

_Bha

(1) Resolva problema original
pelo simplex

sim

Solugao

(2)

inteira

Calcule D max.,, D min,
j=1,2:=,l .--1’13

)

(_f: )

[ Penetre o hiperpléno Z =¥ c, X,

CO N j i

’ . s . s
| ate o valor inteiro mais proxiro

(3)

Deternine nax., .
j=1,2 .9.n J

///Eiiség\\\\ nao
(6) ( inteiro >
?

(5)

¥

sinm

(7) Calcule SUP (i,j), i =0, 1 «c. m
j=1l, 2 oo n

WV
Teste as combinagaes inteiras por
(8) enumeragao implicita (fig. 3.2)

w

~
//g;i;;;\\\ nao
K\\fiiijig//
sim )

)

| e
¥ %

(9) Determine tbédas as solugoes otimas
E inteiras (fig. 3.3)

d

FIM

Fig. 3.1 ~ Algoritmo II para o problema total
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Y

SIG(i,0)=0

L.

X.= {max X.j . =3 P ¢ .
J321,2..9n Fig. 3.2 - Enumeragao implicita

- das solugoes

SIG (4,3)
SIG(i,3=-1)+
4+ Qs XK
&8-—="3-1 1816(0,3) =

SIG(O,J)uan

O\

sS1n /SIG(o,n) \ nao

irprimir
- —1(9) /
solugao




Xy = (maxj)

|

J -1

o
fl

Sim FIM

Fig., 3.5 ~ Bg§qpisa‘de outras solucoes inteiras

3.’ - Exenplo de Aplicagao

Vanos resolver o mesmo problema 2.2 anterior pelo algoritmo II.

Da tabela final do simplex da pg. 30, tenmos

10 . 7 7
Dmaxl=--5-5~.---g5~--=2 Dm1n:-—5-5—— .—25—-:——?‘-
D max, = —%ié*. négiu =6 Dmnmin,= - —%%—. —%;— =5

A ="}‘5‘* 7z =8



nax, = gg v 2 .-%%}-: 2 min x,= gg - ;g
nax, = 3%% + 6. -%%%—: 7 min x,= —3%%— +5. —%%- -
SUP (0,2) = 8 SUP ( 0,1) =4
SUP (1,2) = - 75 SUP (1, 1) = - 50
SupP (2,2) = 55 SUP (2, 1) =

~57-

SUP (3, 2) = 90 SUP (3, 1) = 50

’ Ld
A Arvore de solugoes €%

,

BAN
A

~ [4 . 3 Y
Solugoes otimas inteiras:

x. = 2 x_ =k 7z =8

X, = 1 x. =6 72 =8
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3.6 = Algoritno II para o problema parcial

Seja E = (1, 2, ««. r) o conjunto de indices das varii-

veis inteiras.

(1) Resolva o problema original por un dos algoritnos do sin
plex.

(2) Se todo X4 i € E f0r inteiro, o problema esta terninado

(3) Caso contradrio calcule para cada variavel xj. 3 E:E 0s

L4 .
acresclirios

Bk
Dnaxj--min-—-l—-+0

k Zk-ck

2, - Cye >0, jG: base

J -
k Z1 Cp |
D max. = r = + g
J Zj - C
J t
) Z, -c, »0 j & base
J J -~
Dnin, = 0O
J
L] r A
(4) Penetre o hiperplanoc Z =1 oy Xy até o valor inteiro
nais préximo, fazendo .
,0
A = lZ J se 2 70
1 O-, 1 O
A = [z J+1 s 7 <0



(5)

(6)

(7)

(8)

(9)

Deternine os valores limites de cada variavel j(i E

max x. = &, + D mnax, A
J Jo 3
nin x. = a, + Dmin., A j=1, 2.
J Jo J
hj = [ﬁax xj] N [ﬁin xj] se nmin X A [ﬁin xs]
hj = [max xj] = [min xj] +1 se nin Xy = [min xi]

Se todos hj > 0, existen pontos inteiros incluidos.

Calcule SUP (0, r) =

sup (0, j-1)=SUP(0, j) - cj [maxj] se cjg o]

suP (0,3-1)=8UP(0, 3) - Cj([ﬁaxj]-hj+l)se C;> 0

Verifique, por enurieragac 1np11c1ta, se existe ponto in=
teiro sobre Z . O procedinento & o nesno indicado no dia
grana de bloco das figs. 3.2 e 3.3, liniton do o {ndice i

. ’
ao valor zero, isto e, fazendo-se 1 = 0.

. 4 (a3
Achada una solugio parcial xi, x§ . x; que esta sobre
]
Z , substituir éstes valores nas equagoes do problena ori
ginal e resolver o problena de programagao linear ordind-

a . »
ria conn (n-r) variaveis:
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T
7 (nax) = 2 + L c. x.
.{

sujeito a:

n T .

¥ a.,x, =a, = L a,.X, .

r+l i3 7] io s ij ] i=1, 2 ... 11
X > 0 j =r+l, <o n

Exenplo de aplicagio & apresentado no apéndice I, problenas

A=l e A5,



cAPfTULO IV

APERFEIGOAMENTO DOS_ALGORITMOS

4.0 - Consideracocs Iniciais

- A L3 . . o Lo L3

A experiencia que tivemos da utilizagao de nossos algorit
nos I e II, ernbora pequena, indicou-nos a possibilidade de alguns
refinanentos que tornan nais rapida a convergéncia. Discutirenos

’ L 4 . .
tanbén neste capitulo o caso e que o problema original apresenta

solugio nultipla.

4,1 - Penetragdo Inicial

-~ ’ N
Cono sabenos, a solugao parametrica nos fornece as exXpres

n
[ 4
[w)
4]
L1

It

nax Xx. a. + D nax, A
J Jo J

(4.1)

if

nin x, a, + Dnin, A
J Jo J
En nossos algoritmos temos feito a penetragac inicial &
1
. hy . L .
igual a parte fracionaria de Z ou 2 , conforme o casc, e depols va~

’ ~ » Iy
nos aunentando A de un em wl ate achar uma solugao inteira.

Na expressao (4,1) podenos deternminar os valores de A
que corresponden ao priuneiro valor inteiro encontrado em max x. €
nin xj. Con efeito, éste primeiro inteiro s6 pode ser [éjo} + 1 ou
[ ajAI conforne D >0 ou D <O.

Fazendo a. = [a. ] + T, obtenos:?
Jo Jo J



b2

para nax xj ser inteiro:

1 - r.
A int max = - se Dnax. > O
J D nax, .
J
- T,
A int nax, = —— se Dnax, <0 (4.2)
D nax. J
A int maxj = 0 se rj = 0

o . . [ 4 .
e expressao inteiranente analoga para nin xj.

Lol s e 4 . . [ 4
Portanto a penetragao inicial que d4 inteiro possivel en

Cad . ® . ’
todas as variavels seral

o B
A, = max Jnin (A int-maxj, A int minj)} (4.3)
j J

Lenbrando que dste valor deve ser ajustado para dar um va

]
Jor inteiro a Z ou Z , tonarernos:
A inicial = [A. -7 ] +r +1 (4.h)
i Z 7

Nos exemplos A=3 e A-=5 do apéndice I teremos ocasiao de

L] . , .
aplicar esta idecia.

- A . . .
Ocorre nuitas vezes que ao testar os primeiros pontos in=-
. 2 . . . 1
teiros obtenos wi valor Z = Y muito jnferior ao valor corrente Y,

indicando un inteiro nuito abaixo do hiperplano.
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Coro a busca ¢ feita dentro do hiperparalelepipedo defini
do pelos nixinos e ninimnos, éste fato ¢ uma indicagao que hé grande

probabilidade da solugao inteira corresponder a éste valor Y .

Considerenos, para visualizar nelhor o problema un exenplo

. ~ . .~ .’ .o ., q a
er1 duas dimensdes, cuja regido viavel esta indicada na figura 4.1,

Fig. 4,1
X 2 )1"..
maxl
2
max2
2
ninxl
’ 2
m.nx2

hllnl

rnin. nax
1 1

0 hiperplano Yl provocou uma busca na regiao ABCD que in

dicou um ponto inteiro em I.

Passando para YZ, teremos que procurar os inteiros dentro
do retangulo EFGH. Ora, ficariam de fora as Areas hachuradas, onde

poderia haver pontos inteiros.

R 1 2
Cono a variagao de maxj para maxj ¢ ao longo de uma &=

resta, poderos ter a certeza de que incluireros todos os pontos in-
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teiros dentro do poliecrn viavel entre os planos Yl e Ya, pene. =

trando diretamente até YZ, desde gque tonenos cono linmites:

nax x. = nax ( max%, max? )
J J J

(k.5)

. . .1 . 2
nin x. = min  (min x7, nin x7 )
J J J

Se encontrarros un ponto inteiro que dé 2 =Y ,Y%{Y<§Yl,
retrocedenios até o nivel Z = Y, e verificanos se éste ponto estd

sobre o hiperplano Y. O exenplo A-5 do apéndice ilustra a aplicogao

aa penetragao acelerada.

4,3 - Modificagao da ordern das restrigoes

As restrigdes cuja variavel residual aparece na base éti
na do sinplex tén grande probabilidade de seren satisfeitas por tgo
dos os pontos inteiros exaninados. A enuneragao inplicita serd, por
tanto, mais rapida se testarnos en prineiro lugar as ®strigoes cu=
ja varidvel residual nfo estA na base Otima sen restrigao de intei-
reza. Isto & obtido facilmente renunerando o indice i das equagoes
rnantendo 1 = O para a fungao-objetivo e colocando en primeiro lu -
gar as restrigoes que nfio tinhan folga na solugao XO, e en ultiro

as con folga, na orden crescente de folgas.

4.4 - Problenas corl Solugio Miltipla Inicial

Lad - * L3 ” .
Se a solugao inicial do problena e miltipla, deverios tes
. . . o . . [ 4 « po q
tar inicialmente se ha inteiro incluldo e verificar, pela combina
-~ . ~ - [ 4 N 4 ~

¢ao linear convexa ou pela enumeragac inplicita se ha solugao con
~ {¢]
este valor de Z =Y .
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q 0O = q q . .
Evidentemente, se Y nao for inteiro podenos fazer inedia

~ I3 » . s L]
tamente a penctragao do hiperplano até o inteiro nais pr6x1mo.

Entretanto, aparecen algwnas dificuldades:

a) havendo alguns Zj - ¢. = 0, fora da base, nio podenlos
aplicar diretanente as nossas f&rmulas (3.3) a (3.6) para o céleulo

das D max. e D nin,.
J J

¢’ . ~ L
b) havendo varias solugoes, teremos varias tabelas de so~

~ ’ 3 -
lugao otina a considerar.

. N -~

Se fizerrnos todas as tabelas de transfornagao de basc pos=~
¢ . (4 e . e} A

siveis, conpativeis con a condigdo 2 =Y = 4, poderos tirar destas

- ,
tabelas os valores D maxj e D mlnj, nas & um processo trabalhoso.

Ora, sabenos que, quando h& solugdo nultipla é porgque, num
sub-espago das solugoes o hiperplano da fungao-~objetivo é paralelo
ao hiperplano de una das restrigoes. fiste hiperplano & facilnente
jdentificavel, porque a sua varidvel residual & necessarianente nu~
la en todas as solugoes nultiplas, e hé proporcionalidade entre pe-

. . . a 4
lo nenos dois dos cocficientes, isto e

(k.6)

para, pelo rienos url por (j, k)

3 h - . )
Se eliminarnos tenporarianente estas restrigoes e resol-~
~ LI ~ 0
verrios o problena, terenos una solugao unica, que eribora nao satis
. ~ ] » 3 "~
fazendo as restrigoes elininadas, nos perrite escrever a €quagao do

hiperplano 2 para a penetraqao sob a forna

- A =73 (Zj - cj) (-xj) X (4.7)
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onde X

, .
arl © a residual correspondente.

Recolocando as restrigoes que havian sido retircdas, e re
solvendo pelo dual-sinplex tereros, na coluna correspondente a xn+l
os valores dos acréscinos conforne foi exposto na paglna 28, equaqao
(218), donde podenos calcular os D Hax, e D mlnj e prosseguir nornal

nente no uso do al-oritno.

k.5 ~ Qutros Aperfeigoanentos

Na solugao pelo algoritno I acontece, as vézes que a solu
gao inteira ¢ deterninada inediatamente, pois esta nun dos pontos
extrenos. Na resolugio pelo algoritno IT tal fato é ignorado e @& SQ

lugao inteira & pesquisada dentre as vArias conbinagoes p0551ve15.

(4 . ’, ’
A1&n disto, pode ocorrer, tamben que na nesna solugdo ba=
sica Xk do algoritmo I tenhanos associado nax xj e nin X, Usando

L 4 v O o~
esta infornagao podorlﬂnos elininar o exane de varlias coribinagoes

inteiras.

. ~ 0 ~ .

Estas consideragoes nos sugeren una conbinagio dos algorit

ros T e II, usando o primeiro cono indicador para clininar una parte
’, . . . . . 0]

da Arvore. Estanos pesquisando esta possibilidade, nas ainda nao te=

ros resultados concrctoss

Outra idéia interessante que estanos estudando ¢ elininar
a reconsideragio dos cauminhos j4 pesquisados nuna penetragao anteri
or que ndo resultou en solugao inteira. Con efeito, a intersegao das
drvores de penetra goes concecutivas en geral nho e vazia, e pelo con
trario, contén un ninero grande de elenentos que se nao foren nais

considerados resultarao nuna convergen01a raplda para a soluqao.
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SUMARIO E_CONCLUSOES

Nesta tese sao apresentados dois algoritnos para solugao
de problenas de progranagao linear con variaveis inteiras, total ou
parcial, baseados no nétodo da penetragao do hiperplano da fungao

objetivo.

0 algoritno I enprega una combinagao linear convexa de BQ
lugdes basicas rmiltiplas, enquanto que o algoritmo ITI utiliza un

~ . f .
processo de enuneragao inplicita.

A avaliagao da eficiénecia de un algoritno 50 pode ser fel
ta através da sua utilizagfo. A experiéncia na solugao rianual de
prdblemas pequenos foi bastante promissora, parecendo indicar que
os algoritnos propostos conpararn favoravelnente corl os apresentados

por outros autores.

Infeliznente nao foi ainda possivel testar a resolugao de
problenas grandes en conputadores de alta velocidade, para cfeito

de conparagao.

Apresentanos un prograna inicial, nfo otinizado em lingua

gern FORTRAN II, utilizado en alguns testes no corputador IBM 1620,
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APENDICE 1

ALGUNS PROBLEMAS RESOLVIDOS

A-1 - _Exenplo de Balinsky (1965).

z (max) = = b x; =5 x,

sujeito a:

- 3 Xl - x2 + x3 = = 2
- %y = b X, X, = - 5
-3 xl- 2 x2 + x5 = =7

e >, 0 dinteiro

A tabela final da solugho otima nfo inteira &:

i
. .
Pase A P2 3 "y %5
x3 L2/10 0 1 3/10 | -11/10
X5 8/10 1 0 -3/10 1/10
X 18/10 0 0 7/10 11/10
zj-cj -12/10 0 0 7/10 11/10
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Algoritno T

Introduzinos a restrigdo

Xg = = A -~ 7/10 X}, - 11/10 x5

-~
e tenos as solugoes?

X X
T I1
x, = 18/10 ~ 2/7 & X, = 18/10 + 4/11 A
X, = 8/10 + 3/7 A X, = 8/10 - 1/10 a
Xy = 42/10 -« 3/7 & Xy = 42/10 + A
X, = 0 + 10/7 & x) = 0
x5 = 0 x5 = 0 .+ 10/11 A
Princira penetragao: A = 8/10, Z = - 12
T
X X inteiro?
I 11
x) = | 11/7 23/11 sin N
X, = 8/7 8/11 sin
x5 = | 27/7 5 sirn
x), = 8/7 0 sin
x5 = 0 8/11 sin
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Nfo existe, porén, corbinagdo linear de X e X2 que A€ in=
teiro, pois Oy = 7/8 ou 0 e Oy 56 pode ser 0, devido a x5

Segunda penctragdo: A& =18/10 , Z = - 13

Xy 9/7 27/11 sin
X, 11/7 ?2/11 sin
*3  lak/7 6 sin
x), = 18/7 0 sin
[, W - - o= 7/28 ,14/18, ©
x5 = O 18/11 sin oty 11/18, O

s ~ _ - =1
A combinagao O = 7/18, Oy = 11/18 ten Op + Opp

e da X, =2, X

5 = 1, XB = 5, x), = 1, x5 =5
Pelo algoritmo II:

D nax
1

i

L/11 D nin - 2/7

H
i}

D nax

> 3/7 D nin

- 1/11

Prineira penetraqﬁo:

A = 8/10 7 = - 12
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nox. = 23/11 minl =.11/7 hy = 1 Lmaxl] = 2
nax, = 8/7 nin, = 8/11 h2 =1 Enaxz] =1
Testes 2 = = 4.2 = 5.1 =~ 13
Logo penetranos para 2 = - 13, A = 18/10
nax, = 27/11 min, = 9/7 hl =1 [maxlj = 2
nax, = 11/7 min2 = 7/11 h2 =1 |max21 =1
Testes 2 = = 4.2 = 5.1 = =13
m 3.2 wll=e? -2
-1-2—4.13"'6 \<-5
- 3.1 =21==38 47
Solugdo Stima X, =2, X = 1

Balinsky nostra a solugao por diversos algoritnos. O algo
ritno I de Gorory exigiu a introdugao de dois cortes, nun total de
cinco tabelas. O algoritmo II de Gonory chega a solugdo con 3 tabe=

las apenas.

0 de Land e Doig conduziu ao exane dos seguintes pontos da

’
arvore:
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virtice O:(-112/10, 18/10, 8/10, 42/10, O, 0) - solugao inicial

Vértice 1:(" 1"“, 15 27 3, L"'u 2)

virtice 2:(~47/4, 2, 3/4, 19/4, 3/k, 1/2)

Vértice 3}( -00, cullol|'¢'..ao-|)

vértice 4i(~13, 2, 1, 5, 1, 1)

vértice 5:(=29/2, 3, 1/2, 15/2, O, 3)

b 1.4 I d .
A solugdo & o vértice U

0 nosso algoritno exigiu 3 tabelas para chegar a solugao -

#, . . . o .
&tina noo inteira, como Gomory I e Land e Doig, e depois 2 penetra~

-~
GOCS.

A - 2 - Excnplo de Balinsky (1965)

Mesno problema anterior, com a restrigdo que apenas Xy © 2

deven ser inteiros.

L ) . ~ . ’ .
Corio Z & inteiro, a penetragao & feita pelo proprio z, cono

no problena A-l. A tnica diferenga & que deveros pesquisar apcnas as

G . 3 . s ~
conbinagoes lineares que tornari Xy inteiro. Na prinelira penetragaos

A = 8/10 Z

= = 12

Inteiro x; = 11/7 o + 23/11 (1L - o) que 44 a solugfos
oy = 7/40, (1 - a) = 33/40 e
x. =

1“ 2, X2 = 4/5, X3 = 24/5 xh = 1/5, X5 = 3/5 Zi=wld
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A solugdo pelo algoritno
cor1 6 tabelas no total.
A restrigdo 2 = inteiro

géncia do algoritmo III de Gomory.

IIT de Gonory exigiu 3 cortes,

& exigida para garantir a conver

L e
Varios levantar esta restrigao,

especificando gue apenas Xq deve ser inteiro.

]
~ L d n
Neste caso a penetragao € feita com 2 =

~ L4
¢gao correspondente e

xg =

= - A + 2/10 %), = L/10 x

- X, ¢ a restrie

1

5

Sonente pode entrar na tase x5, pelo critério do dual-sin

L4 0 "~
plex, e temos wnia unica solugaos

XI

X = 18/10 + A

X, = 8/10 - 1/4 a

X3 = 42/10 + 11/4 &

X, = 0

‘X5 = 10(4 A

Z = - 112/10 - 11/4 &
Fazendo

A = 2/10, temos a solugdo procurada X, = 2, X, = 3/k,

x3:19/4, X4=O, x5=l/2i Z_"‘LI"?/L*‘
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A-3 - Exerplo de Balas (1965) - Variaveis bi-valentes

Z (min) = 5 x, + 7 x, + 10 x, + 3 x +X

1 2 3

5
X) =~ 3%, +5 Xz b X - b %g > 2

2 X * 6 X, = 3 x3 - 2x1+ + 2 x5 & 0

x. = 0 oul
J

Colocando sob forma padrfo e resolvendo pelo sinplex, tenos

solugho Otima nao inteiras )
Base | P By S Py Py, Pg P¢ P, Pg
X5 1/3 | -%/9 1 0 -7/9 1/9 0 -3/9 -2/9
Xg 2/3 4 -2/9 0 1 -8/9 -4/9 Y -6/9 -1/9
Xg 1/3 | =7/9 0 0 -28/9 13/9 1 -21/9 1/9
_;s-cj -9 | 93/9 0 “ 0 156/9 L2/9 0 81/9 | 24/; :

. Lo . . - 4 .
Usarermos o algoritio II, con penetragao inicial rapida:




nax. = 4/93% A minl = 0 Al=min(93/4, 0) =0
max, = 1/3 + 1/12 & min, = 1/3 - 1/h2 8 A= nin(8, 14) = 8
naxy = 2/3 + b/h2 A r_ti.n3= 2/3 + 2/93 & A3=min(ll+/l+, 31/2)=14/4
nax, = 9/156 A minu = 0 A4=min(156/9,0)= 0
maxs 9/’-!-2 A min5 =0 A5=min(’+2/9, 0)= o

A inicial = nax A, = 8, pois z° & inteiro, e temos:

A =8 Z = - 17
max, = 0,344 min1 = 0 hl = 1 {@axl} =0
max, = 1,000 min2 = 0,143 h2 = 1 max, | = 1
max, = 1,429 min3 = 0,839 h3 = 1 [paxB] =1
mex, = 0,461 min4 = 0 h4 = 1 [paxu] =0
max5 = 1,71k min5 = 0 h5 = 2 [anB] =1
lo. teste: = = = - -

o este xl 0, x, = 1 x3 = 1, X, = 0, x5 =1
Verificagao:
Z == 5,0=7.1~10.1 - 3.0 - 1.1 = - 18 ndo serve

20. teste: X = o, X, = 1 x3 = 1, Xy, = o, x5 =0
Verificagao:

Z=-500"'711-1011-3-0-1-02-17
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-3+5=2,2
6 -3=320
-1+2=12.1

L4 L
logo e a solugao procurada.

Além de Balas (1965), o mesmo problenma & apresentado por
Roy e outros en (1965).

A-li - Exemplo de Harris (1964)

Trata-se do problema parcial ou nisto:

7 (max) = 11 Xy + 2 X, + 6 x3 + %),

restrito a:

6 X, + b X5 + X, -3 X, ¥ x5 = 6

3
xl + 3 X2 + 2 x3 + xbr + x6 = 3
X 2 0 j =1, 2 «ss 6 X, € X, inteiros

A solugao Stina nAo inteira é dada pela tabela

Base P, P P, 1 P, ' P, P5 P¢

x, 5/3 1 13/9 | 7/9 0 1/9 | 1/3
=, ws | o | e lnge | 1| s | @
zes | 5973 | o | 139/9 | su/9 | 0 | 10/9 | 13/3 |
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A restrigio & agora Z L 11 xg * 2 x, = 55/3, ou em fungao das

0 L4 »
variaveis fora da base:

x = - A + 125/9 (-xz) + 77/9 (-x3) + 11/9 (—xu) + 11/3(-x3)

7

dondez
max, = 5/3 - 1/11 & min = 5/3 - 13/125 &
max,, = 13/125 A min2= 0

Penetragho inicial rapida 6, = max . min (22/3, 90/13) = 90/13

A inicial = [90/13 = 1/3| + 1/3 + 1 = 22/3
1
A = 22/3% Zz =11
max, =1 pin, = 0,904 h, =1 Lmaxl] =1
nax, = 0,763 min, = o] h2 =1 [maxlj =0
t ” A
Coro % = 11.1 + 2.0 = 11, o ponto esta sobre o hiperplano.

Resolvenos apgora o @roblema de programagao linear sen res=
trigao inteiras
7 (max) = 11 + 6 Xy * X,

sujeito a:

2 x, + X + x6 = 2

rd

cuja solugao e

"
It
O
~
~3J
»
0]

2/7 Z = 11 + 38/7
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donde a solugao coupleta do problema:

x, =1, x,= 0, Xy = 6/7, x), = 2/7, Z = 115/7

A solugio de Harris exigiu 9 tabelas de sinplex, enguento
que a nossa necessitou 6 para resolver os dois problenas de progra

nagac linear.

A-5 - Exemplo de Land e Doig (1960)

7 (nax) = 779 x; *+ 768 x, + 896 x5 + 971 x, + 313 xg
sujeito as

10,9 X 3,6 X, = Lo,8 X5 + 43,9 x) + 7.1 x5 + Xg = 82,3

-

- 86,8 Xy + 32,7 %5 + 2L, 3 x5 * 13,8 x, - 12,6 X * X 77,3
60,9 x4 + 68,9 x, + 69,0 X3 = 56,9 x, + 22,5 *g = 86,5
Xy Xo x3 2. 0 inteiras xh, x5, Xg x7 20
A penetragio serd feita com

Z =779 Xq ¥ 768 X, + 896 x3

~ . . . . . - .
A tabela da solugao &tina nao inteira 6, incluindo ja a linha
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i
Base Py P, P, Py P, P5 P, P7
e 1,4960 | 1 0,5271L | © o | 0,2389 | 0,0125 | 0,0038
), 6,1697 | © 1,9260 | O 1 | 0,4615 | 0,0401 | 0,017k
X 5,0210 | O 2,1256 | 1 o | o,%124 | 0,0220 | 0,0177
z;-cji5664,2 o | 1547,15| 0 0 | 555,61 | 29,45 | 12,90
' z i
Tenos:
max, = 1,4960 + 0,00042L A min, = 1,4960 - 0,000 430 A
nax, = 0,000646 A nin, = 0
maxy = 5,0210 - 0,000747 & min, = 5,0210 ~ 0,001374 A

A. = max (min (1153,5, 118724); nin(1540, 0); nin(28,1, 15,3) ).

1
A inicial = 1154,2 com Z = 4510

maxl = 1,985 lilin1 = 1,000 hl = 1
max,, = 0,746 nin, = 0 h, = 1
naxy = 4,159 min, = 3,435 hy =1

]
A solugao inteira X, = 1, x. =1, x_ =1 da 2= 4363

~ -~ L A [4
Faganos entao a penetragao rapida para este nivel

A = 1301,2 Z = 4363
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nax, = nax(1,985; 2,048) = 2,048 mnin, = nin(1,000; 0,93%65)=1,000
max, = nax(0,746; 0,841) = 0,841 min, = O
maxs = max(%,159; 4,049) = 4,159 min, =min(3,435; 3,323) = 3,435

O0s pontos inteiros incluidos sao:

"
It

2, X, = 0, Xy = L

e X=l, X2=O ](3:’-{.

1
0 primeiro da Z = 5142 > 4510 = . rejeitado. Como o segundo é o
1

2

que nos levou a penetraqao até 2 = 4363 =Y éle é aceito, pois

j4 saberos que estd sobre o hiperplano Y2.

Substituindo no problema original teros o novo problema sen

restrigao inteira:

7 (max) = 4363 + 971 x) + 313 x5
sujeito a:

}4’319 xLI- + 7,1 X5 + X6 = 23416

1%,8 X - 12,6 x5 + x7 = 66,9
56,9 X, = 22,5 x5 = 250,4
xj ; ¢]

cuja a solugdo completard a solugdo do problema misto.
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APANDICE II ~ PROGRAMA PARA COMPUTADOR

PROGRAMACAO LINEAR DE INTEIROS

PROGRAMA 1 - INICIALIZACAQ
CoC.Euv = UoSsPo REINHARD

DEFINICAQ DE AREAS
DIMENSION NBAS(8) s NNBAS (20) sNX(8) s XMAX(E) s XMINI(8) s TESTX (84
1A(11:08)sD(10)+ZC(20)«DMAX(B) «DMIN(8)
COMMON NEQsNRsZ¢FRACZ s NX s XMAX s XMINs Dy DMAX s DM INs A s NEQM] 5 NOSOL
LEITURA DAS MATRIZES
READ 1 sNEQsNTVARZ,ERPSIL
FORMAT (214 ¢2E14¢7)
READ 26 ((A(FaJ)sI=1aNEQ)sJ=1sNTVAR)
READ 25(D(J)sJ=1:NEQ)
READ 23 (ZC(I1)s1=1+NTVAR)
READ 44+ (NBAS(J)sJ=1NEQ)
READ 4+ (NNBAS(1)s1=1sNTVAR)
READ 1sNR
READ 44 (NX(I1)sI=1sNR)
FORMAT (S5E1407)
FORMAT (14)
NEOM1 =NEG+1
NOSOL=1
TESTE SOLUCAO UNICA
DO 11 J=1sNTVAR
IF(ZC(J))12+13s11
SOLUCAO NACO OTIMA
STOP 100
SOLUCAO MULTIPLA
CALL LINK (PROLI3)
CONT INUE
ES5TE SOLUCAOD INTEIRA
DO 120 I=1sNR
KKK=NX (1)
DO 121 J=1sNEQ
IFE(NBAS(JY-KKK)121s122+s121
CONT INUE
CONT INUE
GO TO 200
1IF(D(JY-DRH(D(J)Y))130:1205130
CALCULO DAS VARIACOES LIMITES
DO 14 J=1sNR
DO 137 JJ=1.NEQ
[F(NSAS (JJ)=NX(J))137:138+137
CONTINUE
XMAX (J)=0.
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138

136

131

132

18
17

21
20

134

135

180
172
171
201

14

w80u

XMIN(J)Y=0«

GO TO 136

XMAX (J)Y=D(JJ)
XMINC(IHY=D(JJ}
VERIFICACAO J PERTENCE A BASE
DO 131 JJ=1sNEQ
IF(NBAS(JJI=NX(J))131,132+131
CONT INUE

GO TO 133

VARIAVEL J E BASICA
CALCULO DO MAXIMO
DMAX(J)=1.0E+28

DO 17 K=1+NTVAR
VAR=A(JJ ) /ZC(K)
IF(DMAX (J)Y-VAR)17517.:18
DMAX (U)Y=VAR

CONTINUE
DMAX(J)=—-DMAX (J)
CALCULO DO MINIMQ
DMIN(J)=-1.0E+98

DO 20 K=1.NTVAR
VAR=ZA(JJ K ) 7Z2C (K
IF(DMIN(J)Y=VARIZ213204+20
DMIN(J)Y=VAR

CONT INUE
DMIN(J)Y==DMIN(J)

GO TO 180

VARTAVEL NAO BASICA
PESQUISA DO INDICE NA MATRIZ
DO 134 JU=1sNTVAR
IF(NNBAS(JJ)=-NX(JY)134:135,134
CONTINUE

SToOP

DMAX(J)=1e/7Z2C{(JJ)
DMIN(J)=0¢

AJUSTE ERRO ARREDOND.
IF(DMAX(J)Y)Y1 711714172
DMAX (J)=DMAX(JU)Y+EPSIL
IF(DMIN(J)YIR01:14514
DMINC(J)=DMIN(JI-EPSIL
CONT INUE

TESTZ DE Z INTEIRO
IF(Z-DRH(Z2))22+:23+22
IF(Z)25+25+24

FRACZ=1o
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24

25
26

263
261

262

264
200
400

500

300

27

271

29

GO TO 26

FRACZ=Z-DRH(2Z)

GO TO 26

FRACZ=Z-DRH(Z)+1.

READ SslaJdeXl1J

FORMAT (2T144F 105)
IF(I)263+42645263
IF(J)Y261:262+261

Al(T «J)Y=XTJ

GO TO 26

D(I1)=X1J

GO TO 26

CALL LINK{(PROLIZ)

PUNCH 400+NOSCLZ
FORMAT {1 1HSOLUCAO NOs 135 17HFUNCAO OBJETIVO =9E14.757/)
NOSOL=NOSOL.+1

PUNCH 500

FORMAT (BHVARIAVEL «s 5X s SHVALOR)
PUNCH 300+ (NX(I)sD(I)slI=1eNR)
FORMAT (2Xa15:E1457)

STOP

END

PROGRAMACAO LINEAR DE INTEIROS

PROGRAMA 2 - PROCESS0O DE PESQUISA NA ARVORE

DEFINICAO DE AREAS
DIMENSION NX(8) e XMAX(3) s XMIN(B)sA(11:8)sD(10)sDMAX(8),

IDMIN(8) s SIGMA(1148)sH(8) s X(B)eSUP(11:8)sTESTX ()

COMMOMN NEQsNRsZsFRACZ o NX s XMAX s XMINs Do DMAX s DMINA NEQUML « NOSOL
EQUIVALENCE (XMAX(1)+sTESTX (1))

NOVO VALOR FUNCAQ OBJETIVO

Z2=Z-FRACZ

CALCULO DO5 VALORES LIMITES DAS VARIAVEILS
IF{NOSOL-1)27142712:80

DO 33 J=1sNR

XMAX (J)=XMAX (J)Y+DMAX (J) ¥FRACZ
XMIN(J)=XMINCIY+DMIN(J)Y¥FRACZ
IF(XMIN(UYIZS 30430

XMIN(J)Y=Daq
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30 IF(XMIN(J)—DRH(XMIN(J)))31932931
NUMERO DE INTEIROS CONTIDOS NO INTERVALO
31 H(J)=DRH(XMAX (J))~DRHIXMIN(JI))
GO TO 33
32 H(J)=DRH(XMAX(J))—DRH(XMIN(J))+lu
VALORES DE PARTIDA
33 TESTX(J)=DRH (XMAX (J))
VERIFICAR EXISTENCIA DE INTEIROS
DO 35 J=14NR
IF(H(J)Y134534+35
34 FRACZ=1s
GO TO 27
35 CONTINUE
SUP(1sNR+1)=2Z
CALCULO DOS SUPREMOS PARA O ULTIMOC NIVEL
DO 36 [=2:NEGMI]
36 SUP(ITsNR+1)=D{(1)
J=NR
SAIDA INTERMEDIARIA OPCIONAL
INDICA A DIMENSAO DA ARVORE
IF (SENSE SWITCH 1)361+40
361 PUNCH 30Cs NOSOL.Z
PUNCH 300 (NX(1)eH(I)s I=1sNR)
CALCULO DOS SUPREMOS PARA 0S5 NIVEIS INTERMEDIARIOS
40 DO 37 1=1sNEQMI
IF(A(I+J))38s38+39
39 SUP(IqJ)=SUP(IaJ+1)~A(I9J)*(TE5TX(J)-H(J)+10)
GO TO 37
38 SUP(IsJ =GUP (T ed+1)=A(] s JIXTESTX(J)
37 CONTINUE

J=J-1
CIF(J=1)41441+40
SOMATORIAS NULAS - INICIO

41 DO 50 1=1.NEQMI
50 SIGMA(I11=00
TESTE DA ARVORE
DO 601J=1+NR
601 X(JYy=TESTX(J)
DO 70 I=1.NEGMI
DO 60 J=1.NR
SIGMA(IqJ+1)=SIGMA(IqJ)+A(IqJ)*X(J)
S1 IF(SIGMA(I;J+1)—SUP(19J+1))60960952
60 CONTINUE
IF(1-1)70:53s70
70 CONTINUE



GO TO 200
S2 IF(A(1:J))54:54+55
54 X(J)I=TESTX(J)
J=d-1
IF(J)56:56+¢52
56 FRACZ=1o,
GO TO 27
55 X{J)r=X(J)=-1o
IF(X (D) =TESTX(U)I+H(J) 1545458

C RECOMECA A VERIFICACAQO
58 I=1-
SICGMA(T o J+1)=SIGMA(TI +J+1)Y=A(1sJ)
GO TO 51
C VERIFICACAO SE 0O PONTO PERTENCE AQC PLANO DE CORTE

53 IF (SIGMA(1NR+1)=-Z2)162:70562
61 IF(A(I «JU)) 72471471
71 X(I)=TcSTX(J)
J=J-1
IF(J)T73473461
73 FRACZ=1o
Go TO 27
62 J=J-1
GO TO &1
72 X{J)=X(J)=1los
IF(X(JY=TESTX(J)Y+H(I) )Tl 7174
74 SIGMA(L1 s J+11=SIGMA(L s J+1)+A(13J)
GO TO 51
C SAIDA DA SOLLUCAQ
200 PUNCH 4072+NOSOL«Z
400 FORMAT (11HSOLUCAO NO,13¢3Xs17HFUNCAO OBJETIVO =4E14c¢79/)
NOSOL =NOS0CL+1
PUNCH 500
500 FORMAT (BHVARIAVEL s5X5SHVALOR)
PUNCH 30N+¢ (NX(I)YsX(I)eI=1aeNR)
300 FORMATI(2X:15:E140:7)
C PESGUISA DE OUTRAS SOLUCOES
J=NR+1
[=NEQ+1
75 X(J)=TESTX (J)
J=J-1
IF(J)B0 802176
76 X(Jy=X(J)-1.
IF(X(JY=TESTX(JY+H(J) ) T7D175:92
G2 Jl1=J+1
GO TO 58
C PARADA FINAL
80 STOPRP 999
END
222727
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