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A B S T R A C T

The rapid expansion of slums poses a critical challenge for urban planning in Low- and Middle-Income Countries 
(LMICs), where traditional data collection methods like censuses are often outdated and insufficient. This study 
examines the transferability and generalization capabilities of deep learning models, specifically Convolutional 
Neural Networks (CNNs), for automated slum detection across six Brazilian cities with varying urban mor
phologies: São Paulo, Rio de Janeiro, Belo Horizonte, Brasília, Salvador, and Porto Alegre. Utilizing Very High 
Resolution (VHR) and High Resolution (HR) satellite imagery, we trained and evaluated models based on the 
EfficientNetV2L architecture. Our experimental results show that CNN models trained on data from a single city 
achieved high accuracy within that city (F1 scores exceeding 0.90 with VHR imagery), but their performance 
significantly decreased when applied to other cities (F1 scores dropping below 0.80), highlighting the impact of 
regional variations in urban morphology. Conversely, a generalized model trained on combined data from all six 
cities maintained robust performance across all cities, achieving F1 scores above 0.80 with VHR imagery. These 
findings indicate that while CNNs are effective for automated slum mapping, regional diversity necessitates 
training on diverse datasets to ensure generalization. We provide a comprehensive methodology over an openly 
shared dataset, and code to facilitate future research and applications in urban geoscience. The aim is to enhance 
the scalability and generalization of remote sensing and deep learning methods for slum identification across 
diverse urban environments.

1. Introduction

Inadequate housing poses a significant challenge, particularly in 
Low- and Middle-Income Countries (LMICs). The proliferation of slums 
is a clear symptom of this issue, serving as one of the most visible out
comes of unregulated urbanization. The term “slum” can vary in defi
nition depending on the organization or country. In 2002, UN-Habitat 
convened international experts to establish objective criteria for 
defining slums. These criteria include: (i) inadequate access to safe 
water; (ii) inadequate sanitation and infrastructure; (iii) poor structural 
housing quality; (iv) overcrowding; and (v) insecure residential status 
UN-Habitat (2003).

In Brazil, slums—commonly referred to as favelas—align with UN- 
Habitat’s criteria but also encompass aspects such as illegal land occu
pation, noncompliance with urban regulations, and lack of essential 
public services IBGE (2024). The global significance of slums is under
scored by the United Nations’ Sustainable Development Goals (SDGs), 
particularly Goal 11, which aims to make cities inclusive, safe, resilient, 

and sustainable UN-Stats (2023). A key target of this goal is to ensure 
universal access to adequate, safe, and affordable housing and basic 
services by 2030. In LMICs, where urban populations are rapidly 
expanding, the growth of slums poses a significant challenge to 
achieving this goal.

Globally, over 1 billion people are estimated to live in slums, with 
projections suggesting this number could rise if current urbanization 
trends persist UN-Habitat (2023). In Brazil, a country with one of the 
highest urbanization rates, slums house a significant share of the pop
ulation. According to the 2010 census, more than 11 million people lived 
in 6329 slums across the country IBGE (2010). Preliminary data from the 
2022 census indicate the existence of 11,421 subnormal agglomerations 
IBGE (2019).

Slum mapping is crucial for providing accurate, up-to-date infor
mation, enabling policymakers to target interventions and allocate re
sources effectively. By identifying areas in need, slum mapping can 
significantly improve living conditions in these communities Abascal, 
Rothwell, et al. (2022). In Brazil, the characteristics of slums vary widely 
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depending on factors such as topography, environmental risks, urban 
layout, and population density. These variations present challenges to 
the mapping and monitoring process. Traditional methods like censuses 
collect valuable demographic and socioeconomic data but are often 
costly and logistically demanding, particularly in a vast country like 
Brazil, with over 200 million inhabitants Congresso Nacional (2021); 
IBGE (2023). The decennial national census, last conducted in 2010, 
faced significant delays in 2020 due to the COVID-19 pandemic IBGE 
(2021). Such gaps can hinder timely responses to the needs of vulnerable 
populations.

Recent advancements in Earth Observation (EO), artificial intelli
gence (AI), and Geographic Information Systems (GIS) have revolu
tionized slum mapping and monitoring. The declining cost of High- 
Resolution (HR) and Very High-Resolution (VHR) satellite imagery, 
combined with the availability of free platforms like Google Earth, has 
democratized access to large-scale data Mahabir et al. (2018). Inte
grating HR/VHR imagery with advanced AI algorithms enables the 
detection of informal settlements and the monitoring of dynamic 
changes within these areas Kuffer et al. (2016); Mahabir et al. (2018); 
Raj et al. (2024); Neupane et al. (2024).

This study aims to assess the transferability and generalization ca
pabilities of deep learning models, specifically Convolutional Neural 
Networks (CNNs), for slum mapping across different Brazilian cities. 
Additionally, it compares the effectiveness of Very High Resolution 
(VHR) and High Resolution (HR) imagery in this context. Fig. 1 illus
trates the main constituents our methodology. The research addresses 
the following questions: 

• Can deep learning models accurately identify slums in Brazilian 
cities?

• How well do these models generalize across the vast variability of 
urban agglomerates?

• What are the best practices for obtaining and utilizing VHR and HR 
imagery for slum identification?

2. Related work

Over the past few decades, numerous studies have highlighted the 
potential of Remote Sensing (RS) for urban analyses. Early approaches 
often relied on single metrics, such as income, to map deprived areas. 
For instance, nighttime satellite imagery was employed to correlate 
poverty rates, economic activity, population density, and electricity 
consumption in urban environments Elvidge et al. (1997, 2007). 

However, this approach proved limited in deprived areas, as these re
gions typically exhibit low and uniform levels of nighttime light, making 
it difficult to differentiate between varying economic activities Jean 
et al. (2016).

The increasing availability of high-resolution (HR) satellite imagery 
and large datasets has since transformed the field. Satellite imagery 
combined with artificial intelligence (AI) has become a cornerstone for 
predicting urban indicators of Union of Concerned Scientists (2022). 
Recent studies have demonstrated the potential of combining satellite 
and street-level imagery with deep learning to understand socioeco
nomic conditions across diverse contexts. Yeh et al. (2020) used publicly 
available satellite imagery and deep learning to map economic well- 
being in Africa, showcasing how remote sensing can bridge data gaps 
in resource-constrained settings. Similarly, Suel et al. (2023) explored 
the visual characteristics of poverty and wealth in 12 cities across five 
high-income countries using street images, highlighting the importance 
of contextual and visual cues in assessing socioeconomic disparities. A 
common methodology involves using deep learning models to extract 
features from satellite images, which are then fed into regression algo
rithms to predict poverty indicators. This approach has been applied 
successfully in African countries Xie et al. (2016); Jean et al. (2016) and 
Brazilian cities Silva and Rodrigues (2024). However, its focus on iso
lated indicators limits its applicability in large urban areas, where the 
variability of characteristics within deprived regions brings about new 
obstacles. Moreover, this method is computationally intensive, requiring 
vast amounts of imagery to comprehensively capture the reality of these 
areas Silva and Rodrigues (2024); Owusu et al. (2024).

Newer approaches have shifted focus to directly identifying deprived 
areas rather than individual metrics. Some studies emphasize morpho
logical characteristics, which refer to the physical and structural features 
of regions, such as shape, size, distribution, layout, and orientation. 
These approaches extract spatial (contextual) features and apply them in 
machine learning models for binary classification (deprived, non- 
deprived) Chao et al. (2021); Owusu et al. (2024); Vanhuysse et al. 
(2021); Kuffer et al. (2023); Owusu et al. (2023) or multi-class classifi
cation to categorize deprived areas Georganos et al. (2021); Trento 
Oliveira et al. (2023).

Deep learning models, particularly Convolutional Neural Networks 
(CNNs), have also been used to learn spatial features and automatically 
detect informal settlements. CNNs have been employed for binary 
classification El Moudden and Amnai (2023); Raj et al. (2024); Mboga 
et al. (2017), multi-class classification Verma et al. (2019), and regres
sion tasks to compare local citizens’ perception of deprivation with AI- 

Fig. 1. Summary of this work’s methodology.
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generated assessments Abascal et al. (2024). Some studies propose 
hybrid approaches, combining machine learning and deep learning. For 
example, U-Net architectures have been used for semantic segmentation 
to extract building footprints, followed by clustering algorithms (e.g., K- 
Means) to identify deprivation levels or other characteristics Abascal, 
Rodríguez-Carreño, et al. (2022); Wang et al. (2023).

Despite these advancements, most studies fail to address the gener
alization capability of their models. Experiments are often limited to 
specific urban contexts, and the proposed methods are rarely validated 
across different locations. Consequently, the generalization and trans
ferability of these models remain uncertain, with significant perfor
mance discrepancies observed when models trained in one city are 
applied to others Owusu et al. (2024); Vanhuysse et al. (2021); Geor
ganos et al. (2021). The generalization capabilities of deep learning 
models for automatic slum mapping, in particular, have received little 
attention.

Therefore, further exploration is needed to assess the transferability 
of deep learning models, especially in a country as diverse as Brazil, 
where slum characteristics vary widely. Additionally, it is relevant to 
investigate whether the use of Very High Resolution (VHR) imagery 
impacts model accuracy, as the complexity of object-level details in 
these images could potentially reduce performance Owusu et al. (2024). 
In Section 5, we compare our methodology and results with those of 
previous studies to address these gaps.

3. Materials and methods

This study’s methodology is structured into four stages: data acqui
sition, data processing, model training, and analysis. The process begins 
with the collection of relevant geographic and satellite data, followed by 
processing steps to prepare the data for modeling. At the core of the 
methodology is the training of a Convolutional Neural Network (CNN) 
to classify urban areas into slum and non-slum categories. The model is 
then evaluated in three scenarios (With-city, Cross-city, and Global) to 
assess its generalization capability. The overall workflow, detailing each 
step from data acquisition to analysis, is illustrated in Fig. 2.

3.1. Cities of reference

To ensure robust evaluation, models were trained and tested in 
multiple Brazilian cities, selected for their diverse urban environments 
and varying prevalence of informal settlements. These cities are: 

• São Paulo, São Paulo (SP): the largest and most densely populated 
city in Brazil, São Paulo features a complex urban fabric interwoven 
with significant slum areas. Although slums occupy only 4 % of the 
city’s surface, they house over 15 % of its population, resulting in 
extremely high population densities IBGE (2022).

• Salvador, Bahia (BA): known for its historical and cultural signifi
cance, Salvador hosts numerous informal settlements, often located 
along the coastline and characterized by dense, irregular housing. 
Slums make up 9 % of the city’s area, housing 42 % of the population 
IBGE (2022).

• Belo Horizonte, Minas Gerais (MG): as the capital of the state of 
Minas Gerais, Belo Horizonte presents a mix of planned urban areas 
and spontaneous settlements. Slums frequently occupy hilly terrain. 
Slums occupy 5 % of the city’s area and house 13 % of its population 
IBGE (2022).

• Brasília, Distrito Federal (DF): despite its status as a planned city, 
Brasília has developed informal settlements on its periphery, 
including Sol Nascente, the largest slum in Brazil. This makes it a 
compelling case for testing the model in less conventional environ
ments. Slums represent less than 1 % of the city’s area and house 7 % 
of the population IBGE (2022).

• Rio de Janeiro, Rio de Janeiro (RJ): renowned for its dramatic 
topography, Rio de Janeiro’s slums vary widely in their 

characteristics, with some situated in flat urban areas and others on 
iconic hillsides, such as Rocinha, one of the largest slums in the 
country. Slums occupy almost 5 % of the city’s area, housing 21 % of 
its population IBGE (2022).

• Porto Alegre, Rio Grande do Sul (RS): located in southern Brazil, 
Porto Alegre’s slums are primarily found in flatter, urbanized areas, 
with fewer settlements on hillsides. Slums occupy 4 % of the city’s 
area and house 13 % of the population IBGE (2022).

The selection of these cities provides a comprehensive evaluation of 
the CNN model’s scalability and generalization across diverse urban 
landscapes, each with unique physical and socioeconomic characteris
tics. Figs. 4–9 showcase examples of informal settlements in each city, 
while Fig. 3 highlights the city boundaries considered in this study.

3.2. Data acquisition

Data for this study was obtained from a combination of govern
mental datasets and satellite imagery, specifically selected for robust 
experimentation.

3.2.1. Dataset AGSN
The primary dataset used for identifying and classifying slum areas is 

the Aglomerados Subnormais (AGSN), translated as Subnormal Ag
glomerations IBGE (2010). According to the Brazilian Institute of Ge
ography and Statistics (IBGE), AGSNs refer to irregular land occupations 
primarily used for housing, characterized by disorganized urban layouts, 
limited access to essential public services, and locations often subject to 
land-use restrictions. In 2019, IBGE conducted a preliminary mapping of 
AGSNs as a preparatory step for the 2020 census. This initiative not only 
supported census operations but also raised public awareness about 
vulnerable populations during the COVID-19 pandemic. The pre
liminary mapping identified over 13,000 informal settlements, 
comprising more than 5 million households IBGE (2020).

Dataset AGSN is ideally suited for supervised machine learning and is 
among the most comprehensive open-source datasets on slums world
wide. It includes vector data that precisely identifies city regions as 
either slum or non-slum, providing a reliable data source. Fig. 10 illus
trates the dataset provided for the city of São Paulo. In the following, we 
use São Paulo for illustration purposes; but, in the experiments, we use 
all the reference cities (Section 3.1) over the same training-testing 
protocols.

3.2.1.1. Vector data. For this study, vector data was obtained from IBGE 
platforms, providing information on administrative boundaries1 and 
AGSN mappings.2 These data was used to create the grid system used in 
data processing and to overlay AGSN data with satellite imagery.

3.2.2. Satellite imagery
Two types of satellite imagery were employed: Very High Resolution 

(VHR) and High Resolution (HR), as illustrated in Fig. 11. Additionally, 
Fig. 12 presents the color histograms for “slum” and “non-slum” images 
in the city of São Paulo, highlighting differences in their color distri
butions. From the plot, it is possible to notice subtle differences in the 
three color channels; we hypothesize that color is a feature that guided 
the CNNs in our problem domain. 

1 https://portaldemapas.ibge.gov.br/portal.php
2 https://www.ibge.gov. 

br/geociencias/organizacao-do-territorio/tipologias-do- 

territorio/15788-favelas-e-comunidades-urbanas.html
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• VHR images, with a spatial resolution of less than 1 m per pixel, were 
sourced from the Google Maps Static, freely accessible by the time of 
this work API.3 These RGB images have a resolution of 400× 400 
pixels at a zoom level of 19, covering an area of approximately 100×

100 m (10,000 m2)—the reference size for grid components (see 
Section 3.3.1).

• HR images were sourced from the Sentinel-2 satellite, which offers 
free imagery with a spatial resolution of 10 m per pixel. Each image 
covers the same area as the VHR images (100× 100 m) but at a lower 
resolution. To ensure cloud-free data, Google Earth Engine was used 
alongside the precomputed s2cloudless product. The s2cloudless al
gorithm, developed by the EO Research team at Sinergise,4 employs 
gradient boosting to detect clouds across any resolution. The algo
rithm uses ten Sentinel-2 bands as input to generate a cloud proba
bility map, which is converted into a cloud mask using a defined 
threshold Skakun et al. (2022). The image selection process involved 
applying an initial cloud cover filter to exclude images with high 
cloud presence. Subsequently, the s2cloudless mask is used for 
refinement.

3.3. Data processing

The data processing pipeline was implemented using QGIS, an open- 
source GIS software that offers robust tools for spatial data manipula
tion. The following steps outline the process used to prepare the data for 
model training.

3.3.1. Grid creation
Vector data for each city were divided into a uniform grid system, 

with each grid component covering an area of 100× 100 m (10,000 m2). 
This grid structure provided a systematic framework for classifying and 
analyzing different parts of the city.

3.3.2. Grid classification criteria
The classification of each grid component was based on the AGSN 

dataset (Section 3.2.1), which provides detailed information on slum 
coverage. For each grid component, the proportion of the area covered 
by slums was calculated. Grid components where more than 50 % of the 
area overlapped with slums were labeled as “slum”; the remaining grid 
components, with less than 50 % of the area overlapped with slums, 
were classified as “non-slum”, as detailed in Eq. 1. 

P =
Aslum

Agrid
(1) 

where P is the proportion of the grid area covered by slums; Aslum is the 
area of the grid component overlapping with slum regions; and Agrid is 
the total area of the grid component. If P > 0.5, a grid component is 
labeled as “slum”.

3.3.3. Vegetation filter
Many cities in the dataset contain extensive vegetation, rivers, and 

coastal areas. Including such regions in the model would not enhance 
performance, as they lack urban characteristics. Since the analysis uti
lizes 3-band (RGB) images, the widely used Normalized Difference 
Vegetation Index (NDVI), which requires the near-infrared band, could 
not be applied. Instead, we employed the VIGreen vegetation index 
Gitelson et al. (2002), which uses only the red and green bands to 
effectively identify regions with dense vegetation, rivers, and oceans. 
This allowed us to focus the analysis on urban areas.

3.3.4. Component selection
After filtering grid components based on urban characteristics, a 

balanced and randomized selection process was used to build the 
training dataset. The dataset consisted of 50 % “slum” and 50 % “non- 
slum” grid components. For each selected grid component, a corre
sponding satellite image was extracted, covering the same 100× 100 m 
area. This process is illustrated in Fig. 13.

A total of 3000 grid components/images were selected from each of 
the cities—São Paulo, Salvador, Brasília, Rio de Janeiro, Belo Horizonte, 
and Porto Alegre—with an equal distribution between the “slum” and 
“non-slum” categories. Table 1 provides a detailed breakdown of the 

Fig. 2. Overview of the methodology, including data acquisition, processing, model training, and evaluation. We repeat this process for every city in our dataset.

3 https://developers.google. 

com/maps/documentation/maps-static/overview
4 https://www.sinergise. 

com/en/news/eo-browser-goes-public
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grid components selected for each city.

3.4. Model training

A deep learning model was trained to identify slum areas from sat
ellite imagery. The experiments were conducted on a Ryzen 9 CPU with 
32GB of RAM and an NVIDIA RTX 3090 GPU with 24GB of VRAM. The 
models were implemented using Keras with TensorFlow as the backend, 
running on Linux Pop!_OS 22.04 LTS. The following steps outline the 

training process:

3.4.1. Dataset Split
The dataset was randomly stratified and divided into three subsets: 

training (70 %), validation (15 %), and testing (15 %), following the 
work of Roshan Joseph (2022). The training set was used to optimize the 
model’s parameters, the validation set for hyperparameter tuning and 
overfitting prevention, and the test set to evaluate final model perfor
mance. This split ensures robust generalization to unseen data.

Fig. 3. Maps and photos illustrating the cities included in this study.

Fig. 4. Paraisópolis - São Paulo.
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Fig. 5. Beiru – Salvador.

Fig. 6. Aglomerado da Serra - Belo Horizonte.

Fig. 7. Sol Nascente – Brasília.

Fig. 8. Rocinha - Rio de Janeiro.
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3.4.2. CNN model fine-tuning
For this task, the EfficientNetV2L architecture Tan and Le (2021) was 

selected due to its superior balance between accuracy and computa
tional efficiency. EfficientNetV2L improves upon EfficientNetV1 by 
incorporating enhanced “Compound Scaling” and introducing “Fused- 
MBConv” layers, which optimize the trade-offs between depth, width, 
and resolution.

The model’s weights were initialized with those from a pre-trained 
EfficientNetV2L model on the ImageNet dataset Russakovsky et al. 
(2015). The convolutional layers remained unfrozen, allowing the 
model to be fine-tuned specifically for satellite imagery. This fine-tuning 
process helped the model to adapt to the unique characteristics of the 
satellite images, improving its performance in identifying slum areas.

3.4.3. Binary classification
The model was trained for binary classification, distinguishing be

tween “slum” and “non-slum” grid components. Its output layer consists 
of a single neuron with a sigmoid activation function, mapping the 
output to a probability between 0 and 1. The sigmoid function, σ(x) =

1
1+e− x, compresses the output into a narrow range, making it sensitive to 
variations near 0 and 1. This allows the model to produce confidence 
levels, which can be adjusted to prioritize metrics like recall in specific 
applications.

The training process employed the Adam optimizer, see Eq. 2: 

θt+1 = θt − η⋅
mt
̅̅̅̅vt

√
+ ϵ

(2) 

Fig. 9. Vila Cruzeiro do Sul - Porto Alegre.

Fig. 10. Example of AGSN data for São Paulo, highlighting slum (spot below) and non-slum (spot above) regions.
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where θt are the model parameters at iteration t; η is the learning rate 
(set to 1× 10− 4); mt and vt are the estimates of the first and second 
moments of the gradients; and ϵ is a small constant to prevent division by 
zero. Eq. 2 adjusts the model’s parameters during training by combining 
momentum and adaptive learning rates. Momentum (mt) smooths up
dates by considering past gradients, while adaptive scaling (vt) ensures 
stable updates by adjusting step sizes based on gradient magnitudes. 
This balance allows Adam to converge efficiently and reliably, even in 
noisy or complex optimization landscapes.

On average, the models required 20 epochs to converge, with early 
stopping to prevent overfitting – we employed the binary cross-entropy 
loss function, as detailed in Eq. 3. Each training session took approxi
mately 30 min to complete. 

L = −
1
N

∑N

i=1
[yi⋅log(pi)+ (1 − yi)⋅log(1 − pi) ] (3) 

where L is the loss; N is the number of samples; yi is the true label (0 for 
non-slum, 1 for slum) of sample i; and pi is the predicted probability that 
sample i is a slum area.

The choice of binary classification over segmentation was driven by 
the study’s focus on capturing broader patterns of slum presence within 
predefined grid areas rather than achieving pixel-level precision. In 
satellite images, segmentation may introduce ambiguity due to the 
blending of slum and non-slum features within individual pixels. Clas
sification, by leveraging grid-level information, enables robust 
discrimination of mixed areas. This approach aligns better with the 
study’s objectives and the resolution of the available imagery, balancing 
computational efficiency with actionable insights.

Fig. 11. Comparison between satellite imagery with Very High Resolution (VHR) – sourced from Google Maps Static API, and with High Resolution (HR) – sourced 
from satellite Sentinel-2, demonstrating the level of detail captured by each. At the last column, we present the result of the Sobel edge detection algorithm Gonzalez 
and Woods (2008) – we hypothesize that the density of edges is another feature, together with color, guiding the CNNs of our methodology.

Fig. 12. Average color histograms (RGB) summarizing 3000 satellite images from São Paulo. The left column displays the histograms for “slum” images, while the 
right column shows the histograms for “non-slum” images.
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4. Results

4.1. Within-city evaluation

The initial evaluation considered training a separate model over the 
training data of each selected city and testing it over the testing data of 
the same city—within-city evaluation. As outlined in Section 3.3.4, a 
total of 3000 grid components (100× 100 m each) and their corre
sponding satellite images were selected for each city, with equal rep
resentation of “slum” and “non-slum” classifications.

Two models were trained per city: one utilizing Very High Resolution 
(VHR) images and the other High Resolution (HR) images. To ensure 
consistency and compatibility, all images were resized to 224× 224 
pixels prior to training. HR images, originally at 10× 10 pixels, un
derwent an upscaling using the nearest neighbor resampling method 
proposed by Patil (2018) – see Eq. 4, aligning their spatial resolution to 
the input size. Similarly, VHR images, initially at 400× 400 pixels, were 
downsampled to 224× 224 pixels using nearest neighbor interpolation. 
The models were based on the EfficientNetV2L architecture, as 
described in Section 3.4.2 and underwent fine-tuning with satellite 

images to adapt their weights for slum detection. 

Iresized(x, y) = I
(

round
(x

s

)
, round

(y
s

))
(4) 

where Iresized(x, y) is the pixel value at position (x, y) in the resized 
image; I is the original image; s is the scaling factor; and function 
round() rounds to the nearest integer.

Models trained on VHR images achieved superior performance 
across most of the cities, with F1 scores exceeding 0.90 in São Paulo, Rio 
de Janeiro, Belo Horizonte, and Brasília. In contrast, Salvador and Porto 
Alegre reported F1 scores of 0.85 and 0.81, respectively. When using HR 
images, the models achieved F1 scores above 0.80 in São Paulo, Belo 
Horizonte, and Brasília, while Rio de Janeiro and Porto Alegre scored 
only above 0.70. Salvador obtained an F1 score of 0.67. These results 
underscore the impact of image resolution on model performance, 
particularly in cities with more complex or heterogeneous urban lay
outs. Table 2 summarizes the evaluation metrics for each city and Fig. 14
illustrates the ROC curve of the model trained on São Paulo using VHR 
images – the plot demonstrates the high performance for a within-city 
experiment over the largest Brazilian city.

4.2. Cross-city evaluation

To assess the model’s ability to generalize across different Brazilian 
cities, we conducted a cross-city evaluation by testing models trained 
with data from one city (source) on the test data from each of the other 
cities (targets). Importantly, the models were not retrained or fine-tuned 
with data from the test cities; instead, they were directly evaluated using 
the pre-trained weights. This experiment was performed for both VHR 
and HR models.

Fig. 15 presents the F1 scores for the cross-city evaluation using VHR 
images. The y-axis corresponds to the source cities where the models 
were trained, and the x-axis corresponds to the target cities where the 
models were tested. Diagonal values indicate the F1 scores for models 
tested on the same city they were trained on, providing a baseline for 
within-city performance. Off-diagonal values show the model’s perfor
mance when applied to unseen cities, highlighting its generalization 
capabilities. Similarly, Fig. 16 displays the results for the HR models.

Detailed results of these evaluations are provided in Tables 3 and 4.

4.3. Global evaluation

To further evaluate the generalization of our CNN methodology, we 

Fig. 13. Illustration of the grid creation process based on imagery, grid component discrimination based on AGSN data, and random balanced selection 
of components.

Fig. 14. ROC curve of the model trained on Very High Resolution (VHR) im
ages for the city of São Paulo.
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trained a global model using a dataset comprising images from all the 
selected cities: São Paulo, Rio de Janeiro, Belo Horizonte, Brasília, Sal
vador, and Porto Alegre. The aim was to assess the performance of a 
model that learned from a diverse range of urban environments.

The results are summarized in Table 5. When using VHR images, the 

model achieved F1 scores of 0.91 in São Paulo and Belo Horizonte, 0.89 
in Rio de Janeiro and Brasília, 0.85 in Salvador, and 0.78 in Porto Ale
gre. Conversely, the model trained with HR images exhibited lower 
performance, with F1 scores ranging from 0.55 to 0.70 across all cities.

The generalized model consistently outperformed most models when 

Fig. 15. F1 scores for the cross-city evaluation using VHR images. The y-axis represents the source city (training), and the x-axis represents the target city (testing).

Fig. 16. F1 scores for the cross-city evaluation using HR images. The y-axis represents the source city (training), and the x-axis represents the target city (testing).
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compared to the cross-city evaluation, achieving F1 scores above 0.85 in 
São Paulo, Belo Horizonte, Rio de Janeiro, Brasília and Salvador for VHR 
images. Additionally, it maintained acceptable performance in Porto 

Alegre, with F1 scores exceeding 0.78.

4.4. Global evaluation - leave-one-out

To assess the robustness of the global model, we conducted yet 
another experiment – we used technique leave-one-out with 6 cities. We 
trained the model with five cities and tested it over the left-out city; we 
trained and tested for each of the 6 cities according to the leave-one-out 
protocol. This experiment allowed us to evaluate the potential of the 
methodology over unseen urban contexts. The quality of global pre
dictions is significantly influenced by the spatial distribution and 
representativeness of the training data, particularly when models are 
applied to regions with conditions that differ from those in the training 
set Meyer and Pebesma (2022).

Table 1 
Grid components selected for model training, with total grid components and 
class distribution per city.

City Total Components Slum Non-slum Total Selected

São Paulo 156,623 3781 152,842 3000
Salvador 70,202 6256 63,946 3000
Brasília 579,153 4235 574,918 3000
Rio de Janeiro 122,424 5579 116,845 3000
Belo Horizonte 33,875 1673 32,202 3000
Porto Alegre 50,586 2961 47,625 3000

Table 2 
Classification results for the within-city evaluation using VHR and HR images.

City Data source Accuracy Precision Recall AUC PRC F1

São Paulo VHR-Google Maps 0.94 0.94 0.94 0.96 0.96 0.94
HR-Sentinel-2 0.85 0.85 0.85 0.91 0.91 0.85

Belo Horizonte VHR-Google Maps 0.93 0.93 0.92 0.98 0.97 0.93
HR-Sentinel-2 0.81 0.81 0.81 0.87 0.85 0.81

Rio de Janeiro VHR-Google Maps 0.90 0.90 0.91 0.96 0.95 0.91
HR-Sentinel-2 0.79 0.79 0.78 0.86 0.85 0.78

Brasília VHR-Google Maps 0.90 0.90 0.90 0.94 0.93 0.90
HR-Sentinel-2 0.86 0.87 0.86 0.95 0.95 0.87

Salvador VHR-Google Maps 0.85 0.85 0.85 0.90 0.89 0.85
HR-Sentinel-2 0.67 0.67 0.67 0.76 0.76 0.67

Porto Alegre VHR-Google Maps 0.81 0.81 0.81 0.86 0.84 0.81
HR-Sentinel-2 0.72 0.72 0.72 0.78 0.76 0.72

Table 3 
Classification results for the cross-city evaluation using VHR images. The training occurred over data of the source city, and the test occurred over the data of the target 
city.

Source Target Accuracy Precision Recall AUC PRC F1

São Paulo São Paulo 0.93 0.93 0.93 0.97 0.97 0.93
Rio de Janeiro 0.87 0.87 0.87 0.93 0.91 0.87
Belo Horizonte 0.90 0.90 0.90 0.94 0.93 0.90
Brasília 0.81 0.81 0.81 0.83 0.81 0.81
Salvador 0.78 0.78 0.78 0.81 0.79 0.78
Porto Alegre 0.75 0.75 0.75 0.77 0.72 0.75

Belo Horizonte Belo Horizonte 0.93 0.93 0.92 0.98 0.97 0.93
Rio de Janeiro 0.85 0.85 0.85 0.90 0.89 0.85
São Paulo 0.85 0.85 0.85 0.91 0.90 0.86
Brasília 0.80 0.80 0.80 0.84 0.82 0.80
Salvador 0.74 0.74 0.74 0.80 0.78 0.74
Porto Alegre 0.76 0.76 0.77 0.80 0.73 0.76

Rio de Janeiro Rio de Janeiro 0.90 0.90 0.91 0.96 0.95 0.91
Belo Horizonte 0.86 0.87 0.86 0.93 0.93 0.87
São Paulo 0.86 0.86 0.85 0.92 0.92 0.86
Brasília 0.76 0.76 0.76 0.78 0.77 0.76
Salvador 0.80 0.80 0.80 0.85 0.83 0.80
Porto Alegre 0.76 0.76 0.75 0.76 0.76 0.76

Brasília Brasília 0.90 0.90 0.90 0.94 0.93 0.90
Belo Horizonte 0.77 0.77 0.77 0.85 0.85 0.77
São Paulo 0.77 0.77 0.77 0.84 0.82 0.78
Rio de Janeiro 0.77 0.77 0.77 0.83 0.80 0.78
Salvador 0.73 0.73 0.73 0.79 0.76 0.72
Porto Alegre 0.69 0.69 0.69 0.70 0.64 0.69

Salvador Salvador 0.85 0.85 0.85 0.90 0.89 0.85
Belo Horizonte 0.82 0.82 0.82 0.89 0.88 0.83
São Paulo 0.82 0.82 0.82 0.90 0.89 0.82
Rio de Janeiro 0.82 0.82 0.82 0.90 0.89 0.83
Brasília 0.83 0.83 0.83 0.89 0.88 0.83
Porto Alegre 0.74 0.74 0.74 0.76 0.72 0.74

Porto Alegre Porto Alegre 0.81 0.81 0.81 0.86 0.84 0.81
Belo Horizonte 0.79 0.79 0.79 0.84 0.82 0.79
São Paulo 0.77 0.77 0.77 0.81 0.79 0.77
Rio de Janeiro 0.83 0.83 0.83 0.88 0.87 0.83
Brasília 0.71 0.71 0.71 0.75 0.69 0.71
Salvador 0.76 0.76 0.76 0.81 0.79 0.76
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Table 4 
Classification results for the cross-city evaluation using HR images. The training occurred over data of the source city, and the test occurred over the data of the target 
city.

Source Target Accuracy Precision Recall AUC PRC F1

São Paulo São Paulo 0.85 0.85 0.85 0.91 0.91 0.85
Rio de Janeiro 0.73 0.73 0.72 0.78 0.75 0.73
Belo Horizonte 0.70 0.70 0.69 0.73 0.68 0.70
Brasília 0.83 0.83 0.84 0.87 0.85 0.83
Salvador 0.68 0.68 0.68 0.70 0.65 0.68
Porto Alegre 0.67 0.67 0.67 0.69 0.64 0.67

Belo Horizonte Belo Horizonte 0.81 0.81 0.81 0.87 0.85 0.81
Rio de Janeiro 0.76 0.76 0.75 0.78 0.76 0.76
São Paulo 0.78 0.78 0.78 0.85 0.83 0.78
Brasília 0.81 0.81 0.81 0.88 0.85 0.81
Salvador 0.64 0.65 0.64 0.66 0.63 0.64
Porto Alegre 0.64 0.64 0.64 0.65 0.63 0.64

Rio de Janeiro Rio de Janeiro 0.79 0.79 0.78 0.86 0.85 0.78
Belo Horizonte 0.70 0.70 0.69 0.72 0.73 0.70
São Paulo 0.70 0.70 0.70 0.73 0.73 0.70
Brasília 0.67 0.67 0.67 0.70 0.69 0.67
Salvador 0.70 0.70 0.70 0.72 0.72 0.70
Porto Alegre 0.72 0.72 0.72 0.76 0.74 0.72

Brasília Brasília 0.86 0.87 0.86 0.95 0.95 0.87
Belo Horizonte 0.68 0.67 0.68 0.71 0.71 0.68
São Paulo 0.69 0.69 0.69 0.71 0.70 0.69
Rio de Janeiro 0.71 0.71 0.71 0.75 0.75 0.71
Salvador 0.64 0.64 0.64 0.61 0.60 0.64
Porto Alegre 0.56 0.56 0.56 0.60 0.61 0.56

Salvador Salvador 0.73 0.73 0.73 0.78 0.78 0.73
Belo Horizonte 0.64 0.64 0.64 0.66 0.65 0.64
São Paulo 0.66 0.66 0.66 0.70 0.69 0.66
Rio de Janeiro 0.72 0.72 0.73 0.79 0.79 0.73
Brasília 0.73 0.73 0.73 0.74 0.75 0.73
Porto Alegre 0.66 0.66 0.66 0.68 0.62 0.66

Porto Alegre Porto Alegre 0.72 0.72 0.72 0.78 0.76 0.72
Belo Horizonte 0.68 0.68 0.68 0.70 0.67 0.68
São Paulo 0.68 0.68 0.68 0.70 0.63 0.68
Rio de Janeiro 0.71 0.71 0.71 0.78 0.76 0.71
Brasília 0.59 0.59 0.58 0.62 0.58 0.59
Salvador 0.67 0.67 0.67 0.73 0.71 0.67

Table 5 
Performance of the global model on individual cities using VHR and HR images.

City Data source Accuracy Precision Recall AUC PRC F1

São Paulo VHR-Google Maps 0.91 0.91 0.91 0.96 0.95 0.91
HR-Sentinel-2 0.86 0.86 0.86 0.93 0.92 0.86

Belo Horizonte VHR-Google Maps 0.91 0.91 0.91 0.97 0.97 0.91
HR-Sentinel-2 0.75 0.75 0.74 0.85 0.85 0.75

Rio de Janeiro VHR-Google Maps 0.89 0.89 0.89 0.94 0.93 0.89
HR-Sentinel-2 0.79 0.79 0.78 0.85 0.83 0.79

Brasília VHR-Google Maps 0.89 0.89 0.89 0.96 0.95 0.89
HR-Sentinel-2 0.86 0.86 0.86 0.93 0.93 0.86

Salvador VHR-Google Maps 0.85 0.86 0.85 0.91 0.89 0.85
HR-Sentinel-2 0.68 0.68 0.67 0.74 0.73 0.68

Porto Alegre VHR-Google Maps 0.78 0.79 0.78 0.86 0.85 0.78
HR-Sentinel-2 0.72 0.72 0.72 0.78 0.75 0.72

Table 6 
Performance of the global model on individual cities using VHR and HR images - Leave-one-out technique.

City Data source Accuracy Precision Recall AUC PRC F1

São Paulo VHR-Google Maps 0.86 0.86 0.86 0.91 0.90 0.86
HR-Sentinel-2 0.74 0.74 0.74 0.81 0.79 0.74

Belo Horizonte VHR-Google Maps 0.90 0.90 0.90 0.95 0.94 0.90
HR-Sentinel-2 0.74 0.73 0.75 0.81 0.78 0.74

Rio de Janeiro VHR-Google Maps 0.87 0.87 0.87 0.91 0.89 0.87
HR-Sentinel-2 0.77 0.77 0.77 0.83 0.80 0.77

Brasília VHR-Google Maps 0.76 0.76 0.75 0.81 0.78 0.76
HR-Sentinel-2 0.75 0.75 0.75 0.81 0.78 0.75

Salvador VHR-Google Maps 0.81 0.80 0.81 0.86 0.84 0.81
HR-Sentinel-2 0.63 0.63 0.63 0.67 0.64 0.63

Porto Alegre VHR-Google Maps 0.73 0.73 0.73 0.75 0.71 0.73
HR-Sentinel-2 0.66 0.66 0.66 0.67 0.62 0.66
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The results in Table 6 show that when using VHR images, the model 
maintained satisfactory performance in most cities, with F1 scores of 
0.90 in Belo Horizonte, 0.87 in Rio de Janeiro, 0.86 in São Paulo, 0.81 in 
Salvador, 0.76 in Brasília and 0.73 in Porto Alegre. In comparison, 
models using HR images exhibited lower performance, with F1 scores 
ranging from 0.63 to 0.77.

5. Discussion

This research provides insights into the application of deep learning 
for slum detection using satellite imagery in three settings: within-city, 
cross-city, and global; and considering two image resolutions: High 
Resolution (HR) and Very High Resolution (VHR).

5.1. Cross-City evaluation

The cross-city evaluation, where models trained on data from one 
city were tested on data from other cities without retraining or fine- 
tuning, yielded the lowest performance compared to within-city and 
global evaluations. As shown in Figs. 15 and 16, F1 scores for cross-city 
evaluations were generally lower, with significant variability depending 
on the source-target city pair. This highlights the difficulty of trans
ferring models across regions with distinct urban and slum 
characteristics.

5.2. Within-City vs. global models

The results of the global evaluation (Tables 5 and 6) in comparison to 
the results of the within-city evaluation (Table 2) demonstrate that 
exposing the model to a broader range of slum characteristics and urban 
patterns does not necessarily lead to superior performance compared to 
models trained on data from individual cities. This suggests that the 
generalization benefits of a mixed dataset come at the cost of reduced 
specificity, as the model must learn features that are broadly applicable 
across diverse urban landscapes, rather than optimizing for the unique 
characteristics of a single city.

5.3. HR vs. VHR imagery

Across all evaluation settings—within-city, cross-city, and global
—models utilizing Very High Resolution (VHR) images consistently 
outperformed those using High Resolution (HR) images. As detailed in 
Tables 2 and 5, VHR models achieved higher F1 scores, with improve
ments ranging from 5 to nearly 20 percentage points depending on the 
city and evaluation setting. Despite this pronounced difference in per
formance, the High Resolution 10 × 10 images still demonstrated 
discriminatory potential in the proposed task; this is evidence that such 
low-cost images can still perform reasonable if images with higher res
olutions are not available.

The comparison of performance metrics between HR and VHR im
ages requires careful consideration, as their varying spatial resolutions 
introduce differences in the scale and granularity of the input data. VHR 
images, with finer spatial details, provide a more precise representation 
of urban morphology, which can enhance the model’s ability to detect 
nuanced patterns associated with slums. In contrast, HR images, with 
coarser resolution, may aggregate features from mixed areas, such as 
regions containing both slum and non-slum characteristics, potentially 
reducing model accuracy. This difference in spatial scale has implica
tions for model interpretability and generalization. To ensure fair 
comparisons, future studies could normalize the input data by aggre
gating VHR pixels to match HR resolution or assess model performance 
on metrics that account for scale differences, such as grid-level preci
sion. In this study, we considered the trade-offs between computational 
efficiency, data availability, and model accuracy, which become rele
vant for data with varying resolutions.

5.4. Comparison to previous works

In Table 7, we summarize the performance of our methodology in 
direct comparison to other works. In the table, one can see that we 
achieved results similar or superior to every other methodology. It is 
important to note that these comparisons do not rely on the same dataset 
(Location); accordingly, these numbers provide a relative estimative of 
performance, instead of an absolute perspective.

In the first stage of our experiments, where models were trained and 
tested within each city, F1 scores ranged from 0.81 to 0.94 using VHR 
imagery. These results align closely with those reported in previous 
studies. For instance, Mboga et al. Mboga et al. (2017) achieved an ac
curacy of 0.91 in Dar es Salaam, Tanzania, using a CNN model with VHR 
Quickbird imagery. Similarly, Verma et al. Verma et al. (2019) reported 
an accuracy of 0.94 in Mumbai, India, using a CNN trained on VHR 
Pleiades imagery, while performance dropped to 0.90 when using HR 
Sentinel-2B images. Using contextual features with machine learning, 
Owusu et al. Owusu et al. (2023) reported F1 scores of 0.77, 0.86, and 
0.77 in Accra, Lagos, and Nairobi, respectively, with Sentinel-2 imagery. 
In a follow-up study, Owusu et al. Owusu et al. (2024) achieved F1 
scores of 0.93, 0.58, and 0.92 in the same cities.

Regarding cross-city results, F1 scores varied significantly depending 
on the source-target city pairs, ranging from 0.69 to 0.93 across 36 

Table 7 
Non-absolute comparison of slum detection studies using deep learning and 
satellite imagery - each author used a different dataset.

Study Location Imagery 
Type

Method Performance

Mboga et al. 
(2017)- 
Within-City

Dar es 
Salaam, TZ

VHR 
QuickBird

CNN Accuracy: 0.91

Verma et al. 
(2019)- 
Within-City

Mumbai, IN VHR 
Pleiades

CNN Accuracy: 0.94

HR 
Sentinel-2B

CNN Accuracy: 0.90

Owusu et al. 
(2023)- 
Within-City

African 
Cities

HR 
Sentinel-2

ML + Features F1 Score: 
0.77–0.76

Owusu et al. 
(2023)- 
Cross-City

African 
Cities

HR 
Sentinel-2

ML + Features F1 Score: 
0.57–0.69

Owusu et al. 
(2023)- 
Global

African 
Cities

HR 
Sentinel-2

ML + Features F1 Score: 
0.63–0.84

Owusu et al. 
(2024)- 
Within-City

African 
Cities

HR 
Sentinel-2

ML + Features F1 Score: 
0.58–0.93

Owusu et al. 
(2024)- 
Cross-City

African 
Cities

HR 
Sentinel-2

ML + Features F1 Score: 
0.13–0.81

Owusu et al. 
(2024)- 
Global

African 
Cities

HR 
Sentinel-2

ML + Features F1 Score: 
0.68–0.86

This Work- 
Within-City

Brazilian 
Cities

VHR 
GMaps

EfficientNetV2L F1 Score: 
0.81–0.94
Accuracy: 
0.81–0.94

This Work- 
Cross-City

Brazilian 
Cities

VHR 
GMaps

EfficientNetV2L F1 Score: 
0.69–0.93
Accuracy: 
0.69–0.93

This Work- 
Global

Brazilian 
Cities

VHR 
GMaps

EfficientNetV2L F1 Score: 
0.78–0.91
Accuracy: 
0.79–0.91

This Work- 
Global 
(Leave-one- 
out)

Brazilian 
Cities

VHR 
GMaps

EfficientNetV2L F1 Score: 
0.73–0.90

Accuracy: 
0.73–0.90
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combinations. Similar variability was observed by Owusu et al. Owusu 
et al. (2023), who reported F1 scores between 0.57 and 0.69 in their 
cross-city evaluations. In their subsequent work, Owusu et al. Owusu 
et al. (2024) observed even wider variability, with F1 scores ranging 
from 0.13 to 0.81 across African cities, highlighting the challenges of 
generalizing models across diverse urban landscapes.

For the global results, a generalized model trained on data from all 
six Brazilian cities, we achieved F1 scores ranging from 0.78 to 0.91. 
When applying the Leave-one-out technique, where the model was 
trained on five cities and tested on the remaining one, F1 scores ranged 
from 0.73 to 0.90. These results are comparable to those of Owusu et al. 
Owusu et al. (2023), who reported scores between 0.63 and 0.84, and 
Owusu et al. Owusu et al. (2024), who achieved F1 scores from 0.68 to 
0.86 in three African cities. These findings reinforce the effectiveness of 
generalized models in capturing diverse urban patterns, albeit with 
some performance trade-offs compared to city-specific models.

These results demonstrate the success of our methodology in slum 
detection across diverse urban contexts using deep learning. Notably, 
our use of the EfficientNetV2L architecture, combined with fine-tuning 
on satellite imagery, consistently delivered competitive performance, 
particularly in the within-city evaluation where VHR models achieved 
F1 scores exceeding 0.90 in several cities. Additionally, even in the 
challenging cross-city setting, our models demonstrated transferability 
comparable to or exceeding previous works, with F1 scores as high as 
0.90. The generalized model further underscores the robustness of our 
approach, achieving strong performance across all cities, with F1 scores 
between 0.78 and 0.91. These outcomes validate the effectiveness of our 
specific training pipeline, including the careful preprocessing of both 
VHR and HR images, the strategic use of diverse datasets, and the 
emphasis on scalability for practical applications in urban analysis.

5.4.1. Morphological indicators
In another approach, morphological indicators have gained traction 

in slum detection tasks Wang et al. (2023) because they provide valuable 
contextual and structural insights into urban landscapes, such as 
building density, size, layout, and spatial organization, which are often 
key characteristics of slum areas. These indicators complement satellite 
imagery by capturing physical patterns that may not always be evident 
in pixel-based data alone, enabling a more nuanced understanding of 
urban morphology. In future works, incorporating such indicators can 
improve model performance and generalizability, particularly when 
combined with high-resolution imagery.

5.5. Challenges of ground truth variability

One of the critical challenges in slum detection is the variability in 
ground truth definitions, which differ significantly across countries and 
cities due to variations in socioeconomic, cultural, and legal contexts. 
While this study benefits from the Brazilian AGSN dataset, which pro
vides detailed and well-defined labels tailored to the local context, these 
definitions may not align with those used in other regions. Such dis
parities could hinder the generalizability of models trained on localized 
datasets, particularly in applications requiring global consistency, such 
as monitoring progress toward Sustainable Development Goals (SDGs). 
This challenge underscores the need for deeper discussions on how local 
definitions influence the generalizability of slum detection models. 
Future research could address this issue by incorporating domain 
adaptation techniques or additional contextual features to bridge 
regional differences. Furthermore, developing standardized global def
initions for slums, while challenging, would significantly enhance the 
scalability and impact of deep learning models in this field. By situating 
this study within the broader context of slum detection challenges, we 
aim to highlight the importance of addressing these disparities to 
advance the field and support global urban monitoring efforts.

The study’s use of a consistent definition of slums from the AGSN 
dataset ensures uniformity in labeling and robust model training, 

enhancing reproducibility. While tailored to the Brazilian context, the 
methodology could be adapted to other countries by incorporating local 
definitions and employing techniques like transfer learning or domain 
adaptation, enabling broader applicability.

6. Conclusion

The findings of this study demonstrate the significant potential of 
deep learning models, particularly CNNs, in leveraging satellite imagery 
for automated slum detection in urban environments. The successful 
application of these models across multiple Brazilian cities highlights 
the effectiveness of using VHR images to capture the complex charac
teristics of slums. However, the variation in model performance across 
different cities underscores the importance of accounting for regional 
differences in slum morphology and urban patterns.

Future work should focus on developing models that can better 
generalize across diverse urban contexts, possibly through the use of 
more advanced architectures like encoder-decoder networks (EDNs) 
that can handle imbalanced data and preserve spatial information. 
Additionally, expanding the classification beyond binary categories to 
include different types of slum environments could enhance model 
adaptability and usefulness for urban planning and policy-making.

By refining these approaches, we can improve the ability to monitor 
and address the challenges of urban inequality, contributing to more 
effective interventions in rapidly developing regions.
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Hagolle, O., et al. (2022). Cloud mask intercomparison exercise (cmix): An 
evaluation of cloud masking algorithms for landsat 8 and sentinel-2. Remote Sensing 
of Environment, 274, Article 112990.

Suel, E., Muller, E., Bennett, J. E., Blakely, T., Doyle, Y., Lynch, J., , … Nathvani, R., et al. 
(2023). Do poverty and wealth look the same the world over? a comparative study of 
12 cities from five high-income countries using street images. EPJ Data Science, 12 
(1), 19.

Tan, M., & Le, Q. (2021). Efficientnetv2: Smaller models and faster training. In 
International conference on machine learning (pp. 10096–10106). PMLR. 

UN-Habitat. (2003). The challenge of slums: global report on human settlements, 2003. 
London and Sterling, VA: Earthscan Publications Ltd. URL https://unhabitat. 
org/the-challenge-of-slums-global-report-on-human-settlements-2003.

UN-Habitat. (2023). Annual report 2022. URL https://unhabitat.org/annual-re 
port-2022.

Union of Concerned Scientists. (2022). UCS satellite database. URL https://www.ucsusa. 
org/resources/satellite-database.

UN-Stats. (2023). The sustainable development goals report 2023: Goal 11. URL 
https://unstats.un.org/sdgs/report/2023/goal-11/.

Vanhuysse, S., Georganos, S., Kuffer, M., Grippa, T., Lennert, M., & Wolff, E. (2021). 
Gridded urban deprivation probability from open optical imagery and dual-pol sar 
data. In 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS 
(pp. 2110–2113). IEEE. 

Verma, D., Jana, A., & Ramamritham, K. (2019). Transfer learning approach to map 
urban slums using high and medium resolution satellite imagery. Habitat 
International, 88, Article 101981.

Wang, J., Fleischmann, M., Venerandi, A., Romice, O., Kuffer, M., & Porta, S. (2023). Eo 
+ morphometrics: Understanding cities through urban morphology at large scale. 
Landscape and Urban Planning, 233, Article 104691.

Xie, M., Jean, N., Burke, M., Lobell, D., & Ermon, S. (2016). Transfer learning from deep 
features for remote sensing and poverty mapping. In , 30. Proceedings of the AAAI 
conference on artificial intelligence.

Yeh, C., Perez, A., Driscoll, A., Azzari, G., Tang, Z., Lobell, D., … Burke, M. (2020). Using 
publicly available satellite imagery and deep learning to understand economic well- 
being in africa. Nature Communications, 11(1), 2583.

J.P. da Silva et al.                                                                                                                                                                                                                              Computers, Environment and Urban Systems 121 (2025) 102306 

15 

https://www2.camara.leg.br/orcamento-da-uniao/estudos/2021/subsidios-a-apreciacao-do-projeto-de-lei-orcamentaria-ploa-para-2022
https://www2.camara.leg.br/orcamento-da-uniao/estudos/2021/subsidios-a-apreciacao-do-projeto-de-lei-orcamentaria-ploa-para-2022
http://refhub.elsevier.com/S0198-9715(25)00059-6/rf0030
http://refhub.elsevier.com/S0198-9715(25)00059-6/rf0030
http://refhub.elsevier.com/S0198-9715(25)00059-6/rf0030
http://refhub.elsevier.com/S0198-9715(25)00059-6/rf0035
http://refhub.elsevier.com/S0198-9715(25)00059-6/rf0035
http://refhub.elsevier.com/S0198-9715(25)00059-6/rf0035
http://refhub.elsevier.com/S0198-9715(25)00059-6/rf0035
http://refhub.elsevier.com/S0198-9715(25)00059-6/rf0040
http://refhub.elsevier.com/S0198-9715(25)00059-6/rf0040
http://refhub.elsevier.com/S0198-9715(25)00059-6/rf0040
http://refhub.elsevier.com/S0198-9715(25)00059-6/rf0045
http://refhub.elsevier.com/S0198-9715(25)00059-6/rf0045
http://refhub.elsevier.com/S0198-9715(25)00059-6/rf0045
http://refhub.elsevier.com/S0198-9715(25)00059-6/rf0045
http://refhub.elsevier.com/S0198-9715(25)00059-6/rf0050
http://refhub.elsevier.com/S0198-9715(25)00059-6/rf0050
http://refhub.elsevier.com/S0198-9715(25)00059-6/rf0050
http://refhub.elsevier.com/S0198-9715(25)00059-6/rf0055
https://www.ibge.gov.br/en/geosciences/territorial-organization/territorial-typologies/17553-subnormal-agglomerates.html?edicao=17587
https://www.ibge.gov.br/en/geosciences/territorial-organization/territorial-typologies/17553-subnormal-agglomerates.html?edicao=17587
https://www.ibge.gov.br/en/geosciences/territorial-organization/territorial-typologies/17553-subnormal-agglomerates.html?edicao=17587
https://www.ibge.gov.br/en/geosciences/territorial-organization/territorial-typologies/17553-subnormal-agglomerates.html?edicao=27744
https://www.ibge.gov.br/en/geosciences/territorial-organization/territorial-typologies/17553-subnormal-agglomerates.html?edicao=27744
https://www.ibge.gov.br/en/geosciences/territorial-organization/territorial-typologies/17553-subnormal-agglomerates.html?edicao=27744
https://biblioteca.ibge.gov.br/visualizacao/livros/liv101717_notas_tecnicas.pdf
https://biblioteca.ibge.gov.br/visualizacao/livros/liv101717_notas_tecnicas.pdf
https://www.ibge.gov.br/novo-portal-destaques/30569-adiamento-do-censo-demografico.html
https://www.ibge.gov.br/novo-portal-destaques/30569-adiamento-do-censo-demografico.html
https://censo2022.ibge.gov.br/panorama/
https://www.ibge.gov.br/en/highlights/36135-official-note-on-the-2022-population-census.html?lang=en-GB
https://www.ibge.gov.br/en/highlights/36135-official-note-on-the-2022-population-census.html?lang=en-GB
https://www.ibge.gov.br/en/highlights/36135-official-note-on-the-2022-population-census.html?lang=en-GB
https://biblioteca.ibge.gov.br/index.php/biblioteca-catalogo?view=detalhes&amp;id=2102062
https://biblioteca.ibge.gov.br/index.php/biblioteca-catalogo?view=detalhes&amp;id=2102062
http://refhub.elsevier.com/S0198-9715(25)00059-6/rf0095
http://refhub.elsevier.com/S0198-9715(25)00059-6/rf0095
http://refhub.elsevier.com/S0198-9715(25)00059-6/rf0095
http://refhub.elsevier.com/S0198-9715(25)00059-6/rf0100
http://refhub.elsevier.com/S0198-9715(25)00059-6/rf0100
http://refhub.elsevier.com/S0198-9715(25)00059-6/rf0100
http://refhub.elsevier.com/S0198-9715(25)00059-6/rf0105
http://refhub.elsevier.com/S0198-9715(25)00059-6/rf0105
http://refhub.elsevier.com/S0198-9715(25)00059-6/rf0110
http://refhub.elsevier.com/S0198-9715(25)00059-6/rf0110
http://refhub.elsevier.com/S0198-9715(25)00059-6/rf0110
http://refhub.elsevier.com/S0198-9715(25)00059-6/rf0110
http://refhub.elsevier.com/S0198-9715(25)00059-6/rf0115
http://refhub.elsevier.com/S0198-9715(25)00059-6/rf0115
http://refhub.elsevier.com/S0198-9715(25)00059-6/rf0115
http://refhub.elsevier.com/S0198-9715(25)00059-6/rf0120
http://refhub.elsevier.com/S0198-9715(25)00059-6/rf0120
http://refhub.elsevier.com/S0198-9715(25)00059-6/rf0125
http://refhub.elsevier.com/S0198-9715(25)00059-6/rf0125
http://refhub.elsevier.com/S0198-9715(25)00059-6/rf0125
http://refhub.elsevier.com/S0198-9715(25)00059-6/rf0130
http://refhub.elsevier.com/S0198-9715(25)00059-6/rf0130
http://refhub.elsevier.com/S0198-9715(25)00059-6/rf0130
http://refhub.elsevier.com/S0198-9715(25)00059-6/rf0135
http://refhub.elsevier.com/S0198-9715(25)00059-6/rf0135
http://refhub.elsevier.com/S0198-9715(25)00059-6/rf0135
http://refhub.elsevier.com/S0198-9715(25)00059-6/rf0140
http://refhub.elsevier.com/S0198-9715(25)00059-6/rf0140
http://refhub.elsevier.com/S0198-9715(25)00059-6/rf0140
http://refhub.elsevier.com/S0198-9715(25)00059-6/rf0140
http://refhub.elsevier.com/S0198-9715(25)00059-6/rf0145
http://refhub.elsevier.com/S0198-9715(25)00059-6/rf0145
http://refhub.elsevier.com/S0198-9715(25)00059-6/rf0150
http://refhub.elsevier.com/S0198-9715(25)00059-6/rf0150
https://doi.org/10.1002/sam.11583
https://doi.org/10.1002/sam.11583
http://refhub.elsevier.com/S0198-9715(25)00059-6/rf0160
http://refhub.elsevier.com/S0198-9715(25)00059-6/rf0160
http://refhub.elsevier.com/S0198-9715(25)00059-6/rf0160
http://refhub.elsevier.com/S0198-9715(25)00059-6/rf0165
http://refhub.elsevier.com/S0198-9715(25)00059-6/rf0165
http://refhub.elsevier.com/S0198-9715(25)00059-6/rf0165
http://refhub.elsevier.com/S0198-9715(25)00059-6/rf0170
http://refhub.elsevier.com/S0198-9715(25)00059-6/rf0170
http://refhub.elsevier.com/S0198-9715(25)00059-6/rf0170
http://refhub.elsevier.com/S0198-9715(25)00059-6/rf0170
http://refhub.elsevier.com/S0198-9715(25)00059-6/rf0175
http://refhub.elsevier.com/S0198-9715(25)00059-6/rf0175
http://refhub.elsevier.com/S0198-9715(25)00059-6/rf0175
http://refhub.elsevier.com/S0198-9715(25)00059-6/rf0175
http://refhub.elsevier.com/S0198-9715(25)00059-6/rf0180
http://refhub.elsevier.com/S0198-9715(25)00059-6/rf0180
https://unhabitat.org/the-challenge-of-slums-global-report-on-human-settlements-2003
https://unhabitat.org/the-challenge-of-slums-global-report-on-human-settlements-2003
https://unhabitat.org/annual-report-2022
https://unhabitat.org/annual-report-2022
https://www.ucsusa.org/resources/satellite-database
https://www.ucsusa.org/resources/satellite-database
https://unstats.un.org/sdgs/report/2023/goal-11/
http://refhub.elsevier.com/S0198-9715(25)00059-6/rf0205
http://refhub.elsevier.com/S0198-9715(25)00059-6/rf0205
http://refhub.elsevier.com/S0198-9715(25)00059-6/rf0205
http://refhub.elsevier.com/S0198-9715(25)00059-6/rf0205
http://refhub.elsevier.com/S0198-9715(25)00059-6/rf0210
http://refhub.elsevier.com/S0198-9715(25)00059-6/rf0210
http://refhub.elsevier.com/S0198-9715(25)00059-6/rf0210
http://refhub.elsevier.com/S0198-9715(25)00059-6/rf0215
http://refhub.elsevier.com/S0198-9715(25)00059-6/rf0215
http://refhub.elsevier.com/S0198-9715(25)00059-6/rf0215
http://refhub.elsevier.com/S0198-9715(25)00059-6/rf0220
http://refhub.elsevier.com/S0198-9715(25)00059-6/rf0220
http://refhub.elsevier.com/S0198-9715(25)00059-6/rf0220
http://refhub.elsevier.com/S0198-9715(25)00059-6/rf0225
http://refhub.elsevier.com/S0198-9715(25)00059-6/rf0225
http://refhub.elsevier.com/S0198-9715(25)00059-6/rf0225

	On the power of CNNs to detect slums in Brazil
	1 Introduction
	2 Related work
	3 Materials and methods
	3.1 Cities of reference
	3.2 Data acquisition
	3.2.1 Dataset AGSN
	3.2.1.1 Vector data

	3.2.2 Satellite imagery

	3.3 Data processing
	3.3.1 Grid creation
	3.3.2 Grid classification criteria
	3.3.3 Vegetation filter
	3.3.4 Component selection

	3.4 Model training
	3.4.1 Dataset Split
	3.4.2 CNN model fine-tuning
	3.4.3 Binary classification


	4 Results
	4.1 Within-city evaluation
	4.2 Cross-city evaluation
	4.3 Global evaluation
	4.4 Global evaluation - leave-one-out

	5 Discussion
	5.1 Cross-City evaluation
	5.2 Within-City vs. global models
	5.3 HR vs. VHR imagery
	5.4 Comparison to previous works
	5.4.1 Morphological indicators

	5.5 Challenges of ground truth variability

	6 Conclusion
	Availability of data and materials
	CRediT authorship contribution statement
	Acknowledgements
	References


