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The rapid expansion of slums poses a critical challenge for urban planning in Low- and Middle-Income Countries
(LMICs), where traditional data collection methods like censuses are often outdated and insufficient. This study
examines the transferability and generalization capabilities of deep learning models, specifically Convolutional
Neural Networks (CNNs), for automated slum detection across six Brazilian cities with varying urban mor-
phologies: Sao Paulo, Rio de Janeiro, Belo Horizonte, Brasilia, Salvador, and Porto Alegre. Utilizing Very High
Resolution (VHR) and High Resolution (HR) satellite imagery, we trained and evaluated models based on the
EfficientNetV2L architecture. Our experimental results show that CNN models trained on data from a single city
achieved high accuracy within that city (F1 scores exceeding 0.90 with VHR imagery), but their performance
significantly decreased when applied to other cities (F1 scores dropping below 0.80), highlighting the impact of
regional variations in urban morphology. Conversely, a generalized model trained on combined data from all six
cities maintained robust performance across all cities, achieving F1 scores above 0.80 with VHR imagery. These
findings indicate that while CNNs are effective for automated slum mapping, regional diversity necessitates
training on diverse datasets to ensure generalization. We provide a comprehensive methodology over an openly
shared dataset, and code to facilitate future research and applications in urban geoscience. The aim is to enhance
the scalability and generalization of remote sensing and deep learning methods for slum identification across
diverse urban environments.

1. Introduction

Inadequate housing poses a significant challenge, particularly in
Low- and Middle-Income Countries (LMICs). The proliferation of slums
is a clear symptom of this issue, serving as one of the most visible out-
comes of unregulated urbanization. The term “slum” can vary in defi-
nition depending on the organization or country. In 2002, UN-Habitat
convened international experts to establish objective criteria for
defining slums. These criteria include: (i) inadequate access to safe
water; (ii) inadequate sanitation and infrastructure; (iii) poor structural
housing quality; (iv) overcrowding; and (v) insecure residential status
UN-Habitat (2003).

In Brazil, slums—commonly referred to as favelas—align with UN-
Habitat’s criteria but also encompass aspects such as illegal land occu-
pation, noncompliance with urban regulations, and lack of essential
public services IBGE (2024). The global significance of slums is under-
scored by the United Nations’ Sustainable Development Goals (SDGs),
particularly Goal 11, which aims to make cities inclusive, safe, resilient,

* Corresponding author.

and sustainable UN-Stats (2023). A key target of this goal is to ensure
universal access to adequate, safe, and affordable housing and basic
services by 2030. In LMICs, where urban populations are rapidly
expanding, the growth of slums poses a significant challenge to
achieving this goal.

Globally, over 1 billion people are estimated to live in slums, with
projections suggesting this number could rise if current urbanization
trends persist UN-Habitat (2023). In Brazil, a country with one of the
highest urbanization rates, slums house a significant share of the pop-
ulation. According to the 2010 census, more than 11 million people lived
in 6329 slums across the country IBGE (2010). Preliminary data from the
2022 census indicate the existence of 11,421 subnormal agglomerations
IBGE (2019).

Slum mapping is crucial for providing accurate, up-to-date infor-
mation, enabling policymakers to target interventions and allocate re-
sources effectively. By identifying areas in need, slum mapping can
significantly improve living conditions in these communities Abascal,
Rothwell, et al. (2022). In Brazil, the characteristics of slums vary widely

E-mail addresses: jp.silva@usp.br (J.P. da Silva), junio@icmc.usp.br (J.F. Rodrigues-Jr), joao.porto@glasgow.ac.uk (J.P. de Albuquerque).

https://doi.org/10.1016/j.compenvurbsys.2025.102306

Received 5 December 2024; Received in revised form 2 March 2025; Accepted 4 May 2025

Available online 31 May 2025

0198-9715/© 2025 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).


mailto:jp.silva@usp.br
mailto:junio@icmc.usp.br
mailto:joao.porto@glasgow.ac.uk
www.sciencedirect.com/science/journal/01989715
https://www.elsevier.com/locate/ceus
https://doi.org/10.1016/j.compenvurbsys.2025.102306
https://doi.org/10.1016/j.compenvurbsys.2025.102306
http://creativecommons.org/licenses/by/4.0/

J.P. da Silva et al.

depending on factors such as topography, environmental risks, urban
layout, and population density. These variations present challenges to
the mapping and monitoring process. Traditional methods like censuses
collect valuable demographic and socioeconomic data but are often
costly and logistically demanding, particularly in a vast country like
Brazil, with over 200 million inhabitants Congresso Nacional (2021);
IBGE (2023). The decennial national census, last conducted in 2010,
faced significant delays in 2020 due to the COVID-19 pandemic IBGE
(2021). Such gaps can hinder timely responses to the needs of vulnerable
populations.

Recent advancements in Earth Observation (EO), artificial intelli-
gence (AI), and Geographic Information Systems (GIS) have revolu-
tionized slum mapping and monitoring. The declining cost of High-
Resolution (HR) and Very High-Resolution (VHR) satellite imagery,
combined with the availability of free platforms like Google Earth, has
democratized access to large-scale data Mahabir et al. (2018). Inte-
grating HR/VHR imagery with advanced Al algorithms enables the
detection of informal settlements and the monitoring of dynamic
changes within these areas Kuffer et al. (2016); Mahabir et al. (2018);
Raj et al. (2024); Neupane et al. (2024).

This study aims to assess the transferability and generalization ca-
pabilities of deep learning models, specifically Convolutional Neural
Networks (CNNs), for slum mapping across different Brazilian cities.
Additionally, it compares the effectiveness of Very High Resolution
(VHR) and High Resolution (HR) imagery in this context. Fig. 1 illus-
trates the main constituents our methodology. The research addresses
the following questions:

e Can deep learning models accurately identify slums in Brazilian
cities?

e How well do these models generalize across the vast variability of
urban agglomerates?

e What are the best practices for obtaining and utilizing VHR and HR
imagery for slum identification?

2. Related work

Over the past few decades, numerous studies have highlighted the
potential of Remote Sensing (RS) for urban analyses. Early approaches
often relied on single metrics, such as income, to map deprived areas.
For instance, nighttime satellite imagery was employed to correlate
poverty rates, economic activity, population density, and electricity
consumption in urban environments Elvidge et al. (1997, 2007).
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However, this approach proved limited in deprived areas, as these re-
gions typically exhibit low and uniform levels of nighttime light, making
it difficult to differentiate between varying economic activities Jean
et al. (2016).

The increasing availability of high-resolution (HR) satellite imagery
and large datasets has since transformed the field. Satellite imagery
combined with artificial intelligence (AI) has become a cornerstone for
predicting urban indicators of Union of Concerned Scientists (2022).
Recent studies have demonstrated the potential of combining satellite
and street-level imagery with deep learning to understand socioeco-
nomic conditions across diverse contexts. Yeh et al. (2020) used publicly
available satellite imagery and deep learning to map economic well-
being in Africa, showcasing how remote sensing can bridge data gaps
in resource-constrained settings. Similarly, Suel et al. (2023) explored
the visual characteristics of poverty and wealth in 12 cities across five
high-income countries using street images, highlighting the importance
of contextual and visual cues in assessing socioeconomic disparities. A
common methodology involves using deep learning models to extract
features from satellite images, which are then fed into regression algo-
rithms to predict poverty indicators. This approach has been applied
successfully in African countries Xie et al. (2016); Jean et al. (2016) and
Brazilian cities Silva and Rodrigues (2024). However, its focus on iso-
lated indicators limits its applicability in large urban areas, where the
variability of characteristics within deprived regions brings about new
obstacles. Moreover, this method is computationally intensive, requiring
vast amounts of imagery to comprehensively capture the reality of these
areas Silva and Rodrigues (2024); Owusu et al. (2024).

Newer approaches have shifted focus to directly identifying deprived
areas rather than individual metrics. Some studies emphasize morpho-
logical characteristics, which refer to the physical and structural features
of regions, such as shape, size, distribution, layout, and orientation.
These approaches extract spatial (contextual) features and apply them in
machine learning models for binary classification (deprived, non-
deprived) Chao et al. (2021); Owusu et al. (2024); Vanhuysse et al.
(2021); Kuffer et al. (2023); Owusu et al. (2023) or multi-class classifi-
cation to categorize deprived areas Georganos et al. (2021); Trento
Oliveira et al. (2023).

Deep learning models, particularly Convolutional Neural Networks
(CNN ), have also been used to learn spatial features and automatically
detect informal settlements. CNNs have been employed for binary
classification El Moudden and Amnai (2023); Raj et al. (2024); Mboga
et al. (2017), multi-class classification Verma et al. (2019), and regres-
sion tasks to compare local citizens’ perception of deprivation with Al-
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Fig. 1. Summary of this work’s methodology.
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generated assessments Abascal et al. (2024). Some studies propose
hybrid approaches, combining machine learning and deep learning. For
example, U-Net architectures have been used for semantic segmentation
to extract building footprints, followed by clustering algorithms (e.g., K-
Means) to identify deprivation levels or other characteristics Abascal,
Rodriguez-Carreno, et al. (2022); Wang et al. (2023).

Despite these advancements, most studies fail to address the gener-
alization capability of their models. Experiments are often limited to
specific urban contexts, and the proposed methods are rarely validated
across different locations. Consequently, the generalization and trans-
ferability of these models remain uncertain, with significant perfor-
mance discrepancies observed when models trained in one city are
applied to others Owusu et al. (2024); Vanhuysse et al. (2021); Geor-
ganos et al. (2021). The generalization capabilities of deep learning
models for automatic slum mapping, in particular, have received little
attention.

Therefore, further exploration is needed to assess the transferability
of deep learning models, especially in a country as diverse as Brazil,
where slum characteristics vary widely. Additionally, it is relevant to
investigate whether the use of Very High Resolution (VHR) imagery
impacts model accuracy, as the complexity of object-level details in
these images could potentially reduce performance Owusu et al. (2024).
In Section 5, we compare our methodology and results with those of
previous studies to address these gaps.

3. Materials and methods

This study’s methodology is structured into four stages: data acqui-
sition, data processing, model training, and analysis. The process begins
with the collection of relevant geographic and satellite data, followed by
processing steps to prepare the data for modeling. At the core of the
methodology is the training of a Convolutional Neural Network (CNN)
to classify urban areas into slum and non-slum categories. The model is
then evaluated in three scenarios (With-city, Cross-city, and Global) to
assess its generalization capability. The overall workflow, detailing each
step from data acquisition to analysis, is illustrated in Fig. 2.

3.1. Cities of reference

To ensure robust evaluation, models were trained and tested in
multiple Brazilian cities, selected for their diverse urban environments
and varying prevalence of informal settlements. These cities are:

e Sao Paulo, Sao Paulo (SP): the largest and most densely populated
city in Brazil, Sao Paulo features a complex urban fabric interwoven
with significant slum areas. Although slums occupy only 4 % of the
city’s surface, they house over 15 % of its population, resulting in
extremely high population densities IBGE (2022).

Salvador, Bahia (BA): known for its historical and cultural signifi-
cance, Salvador hosts numerous informal settlements, often located
along the coastline and characterized by dense, irregular housing.
Slums make up 9 % of the city’s area, housing 42 % of the population
IBGE (2022).

Belo Horizonte, Minas Gerais (MG): as the capital of the state of
Minas Gerais, Belo Horizonte presents a mix of planned urban areas
and spontaneous settlements. Slums frequently occupy hilly terrain.
Slums occupy 5 % of the city’s area and house 13 % of its population
IBGE (2022).

Brasilia, Distrito Federal (DF): despite its status as a planned city,
Brasilia has developed informal settlements on its periphery,
including Sol Nascente, the largest slum in Brazil. This makes it a
compelling case for testing the model in less conventional environ-
ments. Slums represent less than 1 % of the city’s area and house 7 %
of the population IBGE (2022).

Rio de Janeiro, Rio de Janeiro (RJ): renowned for its dramatic
topography, Rio de Janeiro’s slums vary widely in their
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characteristics, with some situated in flat urban areas and others on
iconic hillsides, such as Rocinha, one of the largest slums in the
country. Slums occupy almost 5 % of the city’s area, housing 21 % of
its population IBGE (2022).

Porto Alegre, Rio Grande do Sul (RS): located in southern Brazil,
Porto Alegre’s slums are primarily found in flatter, urbanized areas,
with fewer settlements on hillsides. Slums occupy 4 % of the city’s
area and house 13 % of the population IBGE (2022).

The selection of these cities provides a comprehensive evaluation of
the CNN model’s scalability and generalization across diverse urban
landscapes, each with unique physical and socioeconomic characteris-
tics. Figs. 4-9 showcase examples of informal settlements in each city,
while Fig. 3 highlights the city boundaries considered in this study.

3.2. Data acquisition

Data for this study was obtained from a combination of govern-
mental datasets and satellite imagery, specifically selected for robust
experimentation.

3.2.1. Dataset AGSN

The primary dataset used for identifying and classifying slum areas is
the Aglomerados Subnormais (AGSN), translated as Subnormal Ag-
glomerations IBGE (2010). According to the Brazilian Institute of Ge-
ography and Statistics IBGE), AGSNs refer to irregular land occupations
primarily used for housing, characterized by disorganized urban layouts,
limited access to essential public services, and locations often subject to
land-use restrictions. In 2019, IBGE conducted a preliminary mapping of
AGSNSs as a preparatory step for the 2020 census. This initiative not only
supported census operations but also raised public awareness about
vulnerable populations during the COVID-19 pandemic. The pre-
liminary mapping identified over 13,000 informal settlements,
comprising more than 5 million households IBGE (2020).

Dataset AGSN is ideally suited for supervised machine learning and is
among the most comprehensive open-source datasets on slums world-
wide. It includes vector data that precisely identifies city regions as
either slum or non-slum, providing a reliable data source. Fig. 10 illus-
trates the dataset provided for the city of Sao Paulo. In the following, we
use Sao Paulo for illustration purposes; but, in the experiments, we use
all the reference cities (Section 3.1) over the same training-testing
protocols.

3.2.1.1. Vector data. For this study, vector data was obtained from IBGE
platforms, providing information on administrative boundaries' and
AGSN mappings.” These data was used to create the grid system used in
data processing and to overlay AGSN data with satellite imagery.

3.2.2. Satellite imagery

Two types of satellite imagery were employed: Very High Resolution
(VHR) and High Resolution (HR), as illustrated in Fig. 11. Additionally,
Fig. 12 presents the color histograms for “slum” and “non-slum” images
in the city of Sao Paulo, highlighting differences in their color distri-
butions. From the plot, it is possible to notice subtle differences in the
three color channels; we hypothesize that color is a feature that guided
the CNNs in our problem domain.

I ht tps://portaldemapas.ibge.gov.br/portal.php

2 https:/
br/geociencias/organizacao-do-territorio/tipologias-do-

territorio/15788-favelas-e-comunidades-urbanas.html

ibge.gov.
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Fig. 2. Overview of the methodology, including data acquisition, processing, model training, and evaluation. We repeat this process for every city in our dataset.

e VHR images, with a spatial resolution of less than 1 m per pixel, were
sourced from the Google Maps Static, freely accessible by the time of
this work API> These RGB images have a resolution of 400 x 400
pixels at a zoom level of 19, covering an area of approximately 100 x
100 m (10,000 m?)—the reference size for grid components (see
Section 3.3.1).

e HR images were sourced from the Sentinel-2 satellite, which offers
free imagery with a spatial resolution of 10 m per pixel. Each image
covers the same area as the VHR images (100 x 100 m) but at a lower
resolution. To ensure cloud-free data, Google Earth Engine was used
alongside the precomputed s2cloudless product. The s2cloudless al-
gorithm, developed by the EO Research team at Sinergise,” employs
gradient boosting to detect clouds across any resolution. The algo-
rithm uses ten Sentinel-2 bands as input to generate a cloud proba-
bility map, which is converted into a cloud mask using a defined
threshold Skakun et al. (2022). The image selection process involved
applying an initial cloud cover filter to exclude images with high
cloud presence. Subsequently, the s2cloudless mask is used for
refinement.

3.3. Data processing

The data processing pipeline was implemented using QGIS, an open-
source GIS software that offers robust tools for spatial data manipula-
tion. The following steps outline the process used to prepare the data for
model training.

3.3.1. Grid creation

Vector data for each city were divided into a uniform grid system,
with each grid component covering an area of 100 x 100 m (10,000 m?).
This grid structure provided a systematic framework for classifying and
analyzing different parts of the city.

3 https://developers.google.
com/maps/documentation/maps-static/overview

4 https://www.sinergise.
com/en/news/eo-browser-goes-public

3.3.2. Grid classification criteria

The classification of each grid component was based on the AGSN
dataset (Section 3.2.1), which provides detailed information on slum
coverage. For each grid component, the proportion of the area covered
by slums was calculated. Grid components where more than 50 % of the
area overlapped with slums were labeled as “slum”; the remaining grid
components, with less than 50 % of the area overlapped with slums,
were classified as “non-slum”, as detailed in Eq. 1.

Aslum

P =
Agrid

€9)

where P is the proportion of the grid area covered by slums; Agyy, is the
area of the grid component overlapping with slum regions; and Agg is
the total area of the grid component. If P > 0.5, a grid component is
labeled as “slum”.

3.3.3. Vegetation filter

Many cities in the dataset contain extensive vegetation, rivers, and
coastal areas. Including such regions in the model would not enhance
performance, as they lack urban characteristics. Since the analysis uti-
lizes 3-band (RGB) images, the widely used Normalized Difference
Vegetation Index (NDVI), which requires the near-infrared band, could
not be applied. Instead, we employed the VIGreen vegetation index
Gitelson et al. (2002), which uses only the red and green bands to
effectively identify regions with dense vegetation, rivers, and oceans.
This allowed us to focus the analysis on urban areas.

3.3.4. Component selection

After filtering grid components based on urban characteristics, a
balanced and randomized selection process was used to build the
training dataset. The dataset consisted of 50 % “slum” and 50 % “non-
slum” grid components. For each selected grid component, a corre-
sponding satellite image was extracted, covering the same 100 x 100 m
area. This process is illustrated in Fig. 13.

A total of 3000 grid components/images were selected from each of
the cities—Sao Paulo, Salvador, Brasilia, Rio de Janeiro, Belo Horizonte,
and Porto Alegre—with an equal distribution between the “slum” and
“non-slum” categories. Table 1 provides a detailed breakdown of the
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grid components selected for each city.

3.4. Model training

A deep learning model was trained to identify slum areas from sat-
ellite imagery. The experiments were conducted on a Ryzen 9 CPU with
32GB of RAM and an NVIDIA RTX 3090 GPU with 24GB of VRAM. The
models were implemented using Keras with TensorFlow as the backend,
running on Linux Pop!_OS 22.04 LTS. The following steps outline the

training process:

3.4.1. Dataset Split

The dataset was randomly stratified and divided into three subsets:
training (70 %), validation (15 %), and testing (15 %), following the
work of Roshan Joseph (2022). The training set was used to optimize the
model’s parameters, the validation set for hyperparameter tuning and
overfitting prevention, and the test set to evaluate final model perfor-
mance. This split ensures robust generalization to unseen data.
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Fig. 5. Beiru - Salvador.

Fig. 7. Sol Nascente — Brasilia.

Fig. 8. Rocinha - Rio de Janeiro.



J.P. da Silva et al.

Computers, Environment and Urban Systems 121 (2025) 102306

Fig. 9. Vila Cruzeiro do Sul - Porto Alegre.
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Fig. 10. Example of AGSN data for Sao Paulo, highlighting slum (spot below) and non-slum (spot above) regions.

3.4.2. CNN model fine-tuning

For this task, the EfficientNetV2L architecture Tan and Le (2021) was
selected due to its superior balance between accuracy and computa-
tional efficiency. EfficientNetV2L improves upon EfficientNetV1 by
incorporating enhanced “Compound Scaling” and introducing “Fused-
MBConv” layers, which optimize the trade-offs between depth, width,
and resolution.

The model’s weights were initialized with those from a pre-trained
EfficientNetV2L model on the ImageNet dataset Russakovsky et al.
(2015). The convolutional layers remained unfrozen, allowing the
model to be fine-tuned specifically for satellite imagery. This fine-tuning
process helped the model to adapt to the unique characteristics of the
satellite images, improving its performance in identifying slum areas.

3.4.3. Binary classification

The model was trained for binary classification, distinguishing be-
tween “slum” and “non-slum” grid components. Its output layer consists
of a single neuron with a sigmoid activation function, mapping the
output to a probability between 0 and 1. The sigmoid function, ¢(x) =
Hl?, compresses the output into a narrow range, making it sensitive to
variations near 0 and 1. This allows the model to produce confidence
levels, which can be adjusted to prioritize metrics like recall in specific
applications.

The training process employed the Adam optimizer, see Eq. 2:

01 = 6; (2)

M
T ite
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Fig. 11. Comparison between satellite imagery with Very High Resolution (VHR) — sourced from Google Maps Static API, and with High Resolution (HR) — sourced
from satellite Sentinel-2, demonstrating the level of detail captured by each. At the last column, we present the result of the Sobel edge detection algorithm Gonzalez
and Woods (2008) — we hypothesize that the density of edges is another feature, together with color, guiding the CNNs of our methodology.
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Fig. 12. Average color histograms (RGB) summarizing 3000 satellite images from Sao Paulo. The left column displays the histograms for “slum” images, while the

right column shows the histograms for “non-slum” images.

where 6, are the model parameters at iteration t;  is the learning rate
(set to 1 x 107*); m, and v, are the estimates of the first and second
moments of the gradients; and e is a small constant to prevent division by
zero. Eq. 2 adjusts the model’s parameters during training by combining
momentum and adaptive learning rates. Momentum (m,) smooths up-
dates by considering past gradients, while adaptive scaling (v,) ensures
stable updates by adjusting step sizes based on gradient magnitudes.
This balance allows Adam to converge efficiently and reliably, even in
noisy or complex optimization landscapes.

On average, the models required 20 epochs to converge, with early
stopping to prevent overfitting — we employed the binary cross-entropy
loss function, as detailed in Eq. 3. Each training session took approxi-
mately 30 min to complete.

[yi-log(p:) + (1 —yi)-log(1 —pi)] 3)

where L is the loss; N is the number of samples; y; is the true label (0 for
non-slum, 1 for slum) of sample i; and p; is the predicted probability that
sample i is a slum area.

The choice of binary classification over segmentation was driven by
the study’s focus on capturing broader patterns of slum presence within
predefined grid areas rather than achieving pixel-level precision. In
satellite images, segmentation may introduce ambiguity due to the
blending of slum and non-slum features within individual pixels. Clas-
sification, by leveraging grid-level information, enables robust
discrimination of mixed areas. This approach aligns better with the
study’s objectives and the resolution of the available imagery, balancing
computational efficiency with actionable insights.



J.P. da Silva et al.

EEEEEN NN
ENEEENEE

I

I]
I
I
I
i
i
I
i
i
1
I

[

O
I o 5 5 A
I

Computers, Environment and Urban Systems 121 (2025) 102306

e

I

R
NN
OOCOO00n

|

o I
o
IEIEE

[ Slum
[ Not-Slum

[ | Grid Cell

DUD%DDDDD

EE

[ Selected/Not-Slum
I Selected/Slum

Fig. 13. Illustration of the grid creation process based on imagery, grid component discrimination based on AGSN data, and random balanced selection

of components.

Receiver Operating Characteristic

1.01
o 2
,J_r'f i
7’
7’
’
7’
’
B ”
0.8 3
-
-’
7’
’
,I
O
T »¥
Z 0.6 ™
H P
B 2
@
& >
r ’
-
2 04 P
= 0. =
’
’
7’
.,
s
’
7’
B ,,
0.2 =
-’
’
o7 ~— ROC curve (area = 0.96)
7’
#7 == Random guess
0.0 T T T T
0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

Fig. 14. ROC curve of the model trained on Very High Resolution (VHR) im-
ages for the city of Sao Paulo.

4. Results
4.1. Within-city evaluation

The initial evaluation considered training a separate model over the
training data of each selected city and testing it over the testing data of
the same city—within-city evaluation. As outlined in Section 3.3.4, a
total of 3000 grid components (100 x 100 m each) and their corre-
sponding satellite images were selected for each city, with equal rep-
resentation of “slum” and “non-slum” classifications.

Two models were trained per city: one utilizing Very High Resolution
(VHR) images and the other High Resolution (HR) images. To ensure
consistency and compatibility, all images were resized to 224 x 224
pixels prior to training. HR images, originally at 10 x 10 pixels, un-
derwent an upscaling using the nearest neighbor resampling method
proposed by Patil (2018) — see Eq. 4, aligning their spatial resolution to
the input size. Similarly, VHR images, initially at 400 x 400 pixels, were
downsampled to 224 x 224 pixels using nearest neighbor interpolation.
The models were based on the EfficientNetV2L architecture, as
described in Section 3.4.2 and underwent fine-tuning with satellite

images to adapt their weights for slum detection.
X
Liesized (X, y) = I(round <;) ) round (%’) ) ()]

where ILesized(X,y) is the pixel value at position (x,y) in the resized
image; I is the original image; s is the scaling factor; and function
round() rounds to the nearest integer.

Models trained on VHR images achieved superior performance
across most of the cities, with F1 scores exceeding 0.90 in Sao Paulo, Rio
de Janeiro, Belo Horizonte, and Brasilia. In contrast, Salvador and Porto
Alegre reported F1 scores of 0.85 and 0.81, respectively. When using HR
images, the models achieved F1 scores above 0.80 in Sao Paulo, Belo
Horizonte, and Brasilia, while Rio de Janeiro and Porto Alegre scored
only above 0.70. Salvador obtained an F1 score of 0.67. These results
underscore the impact of image resolution on model performance,
particularly in cities with more complex or heterogeneous urban lay-
outs. Table 2 summarizes the evaluation metrics for each city and Fig. 14
illustrates the ROC curve of the model trained on Sao Paulo using VHR
images — the plot demonstrates the high performance for a within-city
experiment over the largest Brazilian city.

4.2. Cross-city evaluation

To assess the model’s ability to generalize across different Brazilian
cities, we conducted a cross-city evaluation by testing models trained
with data from one city (source) on the test data from each of the other
cities (targets). Importantly, the models were not retrained or fine-tuned
with data from the test cities; instead, they were directly evaluated using
the pre-trained weights. This experiment was performed for both VHR
and HR models.

Fig. 15 presents the F1 scores for the cross-city evaluation using VHR
images. The y-axis corresponds to the source cities where the models
were trained, and the x-axis corresponds to the target cities where the
models were tested. Diagonal values indicate the F1 scores for models
tested on the same city they were trained on, providing a baseline for
within-city performance. Off-diagonal values show the model’s perfor-
mance when applied to unseen cities, highlighting its generalization
capabilities. Similarly, Fig. 16 displays the results for the HR models.

Detailed results of these evaluations are provided in Tables 3 and 4.

4.3. Global evaluation

To further evaluate the generalization of our CNN methodology, we
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Fig. 15. F1 scores for the cross-city evaluation using VHR images. The y-axis represents the source city (training), and the x-axis represents the target city (testing).
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Fig. 16. F1 scores for the cross-city evaluation using HR images. The y-axis represents the source city (training), and the x-axis represents the target city (testing).

trained a global model using a dataset comprising images from all the
selected cities: Sao Paulo, Rio de Janeiro, Belo Horizonte, Brasilia, Sal-
vador, and Porto Alegre. The aim was to assess the performance of a
model that learned from a diverse range of urban environments.

The results are summarized in Table 5. When using VHR images, the

10

model achieved F1 scores of 0.91 in Sao Paulo and Belo Horizonte, 0.89
in Rio de Janeiro and Brasilia, 0.85 in Salvador, and 0.78 in Porto Ale-
gre. Conversely, the model trained with HR images exhibited lower
performance, with F1 scores ranging from 0.55 to 0.70 across all cities.

The generalized model consistently outperformed most models when
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Table 1
Grid components selected for model training, with total grid components and
class distribution per city.

City Total Components Slum Non-slum Total Selected
Sao Paulo 156,623 3781 152,842 3000
Salvador 70,202 6256 63,946 3000
Brasilia 579,153 4235 574,918 3000
Rio de Janeiro 122,424 5579 116,845 3000
Belo Horizonte 33,875 1673 32,202 3000
Porto Alegre 50,586 2961 47,625 3000

compared to the cross-city evaluation, achieving F1 scores above 0.85 in
Sao Paulo, Belo Horizonte, Rio de Janeiro, Brasilia and Salvador for VHR
images. Additionally, it maintained acceptable performance in Porto

Computers, Environment and Urban Systems 121 (2025) 102306

Alegre, with F1 scores exceeding 0.78.

4.4. Global evaluation - leave-one-out

To assess the robustness of the global model, we conducted yet
another experiment — we used technique leave-one-out with 6 cities. We
trained the model with five cities and tested it over the left-out city; we
trained and tested for each of the 6 cities according to the leave-one-out
protocol. This experiment allowed us to evaluate the potential of the
methodology over unseen urban contexts. The quality of global pre-
dictions is significantly influenced by the spatial distribution and
representativeness of the training data, particularly when models are
applied to regions with conditions that differ from those in the training
set Meyer and Pebesma (2022).

Table 2
Classification results for the within-city evaluation using VHR and HR images.
City Data source Accuracy Precision Recall AUC PRC F1
Sao Paulo VHR-Google Maps 0.94 0.94 0.94 0.96 0.96 0.94
HR-Sentinel-2 0.85 0.85 0.85 0.91 0.91 0.85
Belo Horizonte VHR-Google Maps 0.93 0.93 0.92 0.98 0.97 0.93
HR-Sentinel-2 0.81 0.81 0.81 0.87 0.85 0.81
Rio de Janeiro VHR-Google Maps 0.90 0.90 0.91 0.96 0.95 0.91
HR-Sentinel-2 0.79 0.79 0.78 0.86 0.85 0.78
Brasilia VHR-Google Maps 0.90 0.90 0.90 0.94 0.93 0.90
HR-Sentinel-2 0.86 0.87 0.86 0.95 0.95 0.87
Salvador VHR-Google Maps 0.85 0.85 0.85 0.90 0.89 0.85
HR-Sentinel-2 0.67 0.67 0.67 0.76 0.76 0.67
Porto Alegre VHR-Google Maps 0.81 0.81 0.81 0.86 0.84 0.81
HR-Sentinel-2 0.72 0.72 0.72 0.78 0.76 0.72

Table 3
Classification results for the cross-city evaluation using VHR images. The training occurred over data of the source city, and the test occurred over the data of the target
city.
Source Target Accuracy Precision Recall AUC PRC F1
Sao Paulo Sao Paulo 0.93 0.93 0.93 0.97 0.97 0.93
Rio de Janeiro 0.87 0.87 0.87 0.93 0.91 0.87
Belo Horizonte 0.90 0.90 0.90 0.94 0.93 0.90
Brasilia 0.81 0.81 0.81 0.83 0.81 0.81
Salvador 0.78 0.78 0.78 0.81 0.79 0.78
Porto Alegre 0.75 0.75 0.75 0.77 0.72 0.75
Belo Horizonte Belo Horizonte 0.93 0.93 0.92 0.98 0.97 0.93
Rio de Janeiro 0.85 0.85 0.85 0.90 0.89 0.85
Sao Paulo 0.85 0.85 0.85 0.91 0.90 0.86
Brasilia 0.80 0.80 0.80 0.84 0.82 0.80
Salvador 0.74 0.74 0.74 0.80 0.78 0.74
Porto Alegre 0.76 0.76 0.77 0.80 0.73 0.76
Rio de Janeiro Rio de Janeiro 0.90 0.90 0.91 0.96 0.95 0.91
Belo Horizonte 0.86 0.87 0.86 0.93 0.93 0.87
Sao Paulo 0.86 0.86 0.85 0.92 0.92 0.86
Brasilia 0.76 0.76 0.76 0.78 0.77 0.76
Salvador 0.80 0.80 0.80 0.85 0.83 0.80
Porto Alegre 0.76 0.76 0.75 0.76 0.76 0.76
Brasilia Brasilia 0.90 0.90 0.90 0.94 0.93 0.90
Belo Horizonte 0.77 0.77 0.77 0.85 0.85 0.77
Sao Paulo 0.77 0.77 0.77 0.84 0.82 0.78
Rio de Janeiro 0.77 0.77 0.77 0.83 0.80 0.78
Salvador 0.73 0.73 0.73 0.79 0.76 0.72
Porto Alegre 0.69 0.69 0.69 0.70 0.64 0.69
Salvador Salvador 0.85 0.85 0.85 0.90 0.89 0.85
Belo Horizonte 0.82 0.82 0.82 0.89 0.88 0.83
Sao Paulo 0.82 0.82 0.82 0.90 0.89 0.82
Rio de Janeiro 0.82 0.82 0.82 0.90 0.89 0.83
Brasilia 0.83 0.83 0.83 0.89 0.88 0.83
Porto Alegre 0.74 0.74 0.74 0.76 0.72 0.74
Porto Alegre Porto Alegre 0.81 0.81 0.81 0.86 0.84 0.81
Belo Horizonte 0.79 0.79 0.79 0.84 0.82 0.79
Sao Paulo 0.77 0.77 0.77 0.81 0.79 0.77
Rio de Janeiro 0.83 0.83 0.83 0.88 0.87 0.83
Brasilia 0.71 0.71 0.71 0.75 0.69 0.71
Salvador 0.76 0.76 0.76 0.81 0.79 0.76
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Table 4
Classification results for the cross-city evaluation using HR images. The training occurred over data of the source city, and the test occurred over the data of the target
city.

Source Target Accuracy Precision Recall AUC PRC F1
Sao Paulo Sao Paulo 0.85 0.85 0.85 0.91 0.91 0.85
Rio de Janeiro 0.73 0.73 0.72 0.78 0.75 0.73
Belo Horizonte 0.70 0.70 0.69 0.73 0.68 0.70
Brasilia 0.83 0.83 0.84 0.87 0.85 0.83
Salvador 0.68 0.68 0.68 0.70 0.65 0.68
Porto Alegre 0.67 0.67 0.67 0.69 0.64 0.67
Belo Horizonte Belo Horizonte 0.81 0.81 0.81 0.87 0.85 0.81
Rio de Janeiro 0.76 0.76 0.75 0.78 0.76 0.76
Sao Paulo 0.78 0.78 0.78 0.85 0.83 0.78
Brasilia 0.81 0.81 0.81 0.88 0.85 0.81
Salvador 0.64 0.65 0.64 0.66 0.63 0.64
Porto Alegre 0.64 0.64 0.64 0.65 0.63 0.64
Rio de Janeiro Rio de Janeiro 0.79 0.79 0.78 0.86 0.85 0.78
Belo Horizonte 0.70 0.70 0.69 0.72 0.73 0.70
Sao Paulo 0.70 0.70 0.70 0.73 0.73 0.70
Brasilia 0.67 0.67 0.67 0.70 0.69 0.67
Salvador 0.70 0.70 0.70 0.72 0.72 0.70
Porto Alegre 0.72 0.72 0.72 0.76 0.74 0.72
Brasilia Brasilia 0.86 0.87 0.86 0.95 0.95 0.87
Belo Horizonte 0.68 0.67 0.68 0.71 0.71 0.68
Sao Paulo 0.69 0.69 0.69 0.71 0.70 0.69
Rio de Janeiro 0.71 0.71 0.71 0.75 0.75 0.71
Salvador 0.64 0.64 0.64 0.61 0.60 0.64
Porto Alegre 0.56 0.56 0.56 0.60 0.61 0.56
Salvador Salvador 0.73 0.73 0.73 0.78 0.78 0.73
Belo Horizonte 0.64 0.64 0.64 0.66 0.65 0.64
Sao Paulo 0.66 0.66 0.66 0.70 0.69 0.66
Rio de Janeiro 0.72 0.72 0.73 0.79 0.79 0.73
Brasilia 0.73 0.73 0.73 0.74 0.75 0.73
Porto Alegre 0.66 0.66 0.66 0.68 0.62 0.66
Porto Alegre Porto Alegre 0.72 0.72 0.72 0.78 0.76 0.72
Belo Horizonte 0.68 0.68 0.68 0.70 0.67 0.68
Sao Paulo 0.68 0.68 0.68 0.70 0.63 0.68
Rio de Janeiro 0.71 0.71 0.71 0.78 0.76 0.71
Brasilia 0.59 0.59 0.58 0.62 0.58 0.59
Salvador 0.67 0.67 0.67 0.73 0.71 0.67
Table 5
Performance of the global model on individual cities using VHR and HR images.
City Data source Accuracy Precision Recall AUC PRC F1
Sao Paulo VHR-Google Maps 0.91 0.91 0.91 0.96 0.95 0.91
HR-Sentinel-2 0.86 0.86 0.86 0.93 0.92 0.86
Belo Horizonte VHR-Google Maps 0.91 0.91 0.91 0.97 0.97 0.91
HR-Sentinel-2 0.75 0.75 0.74 0.85 0.85 0.75
Rio de Janeiro VHR-Google Maps 0.89 0.89 0.89 0.94 0.93 0.89
HR-Sentinel-2 0.79 0.79 0.78 0.85 0.83 0.79
Brasilia VHR-Google Maps 0.89 0.89 0.89 0.96 0.95 0.89
HR-Sentinel-2 0.86 0.86 0.86 0.93 0.93 0.86
Salvador VHR-Google Maps 0.85 0.86 0.85 0.91 0.89 0.85
HR-Sentinel-2 0.68 0.68 0.67 0.74 0.73 0.68
Porto Alegre VHR-Google Maps 0.78 0.79 0.78 0.86 0.85 0.78
HR-Sentinel-2 0.72 0.72 0.72 0.78 0.75 0.72
Table 6
Performance of the global model on individual cities using VHR and HR images - Leave-one-out technique.
City Data source Accuracy Precision Recall AUC PRC F1
Sao Paulo VHR-Google Maps 0.86 0.86 0.86 0.91 0.90 0.86
HR-Sentinel-2 0.74 0.74 0.74 0.81 0.79 0.74
Belo Horizonte VHR-Google Maps 0.90 0.90 0.90 0.95 0.94 0.90
HR-Sentinel-2 0.74 0.73 0.75 0.81 0.78 0.74
Rio de Janeiro VHR-Google Maps 0.87 0.87 0.87 0.91 0.89 0.87
HR-Sentinel-2 0.77 0.77 0.77 0.83 0.80 0.77
Brasilia VHR-Google Maps 0.76 0.76 0.75 0.81 0.78 0.76
HR-Sentinel-2 0.75 0.75 0.75 0.81 0.78 0.75
Salvador VHR-Google Maps 0.81 0.80 0.81 0.86 0.84 0.81
HR-Sentinel-2 0.63 0.63 0.63 0.67 0.64 0.63
Porto Alegre VHR-Google Maps 0.73 0.73 0.73 0.75 0.71 0.73
HR-Sentinel-2 0.66 0.66 0.66 0.67 0.62 0.66
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The results in Table 6 show that when using VHR images, the model
maintained satisfactory performance in most cities, with F1 scores of
0.90 in Belo Horizonte, 0.87 in Rio de Janeiro, 0.86 in Sao Paulo, 0.81 in
Salvador, 0.76 in Brasilia and 0.73 in Porto Alegre. In comparison,
models using HR images exhibited lower performance, with F1 scores
ranging from 0.63 to 0.77.

5. Discussion

This research provides insights into the application of deep learning
for slum detection using satellite imagery in three settings: within-city,
cross-city, and global; and considering two image resolutions: High
Resolution (HR) and Very High Resolution (VHR).

5.1. Cross-City evaluation

The cross-city evaluation, where models trained on data from one
city were tested on data from other cities without retraining or fine-
tuning, yielded the lowest performance compared to within-city and
global evaluations. As shown in Figs. 15 and 16, F1 scores for cross-city
evaluations were generally lower, with significant variability depending
on the source-target city pair. This highlights the difficulty of trans-
ferring models across regions with distinct urban and slum
characteristics.

5.2. Within-City vs. global models

The results of the global evaluation (Tables 5 and 6) in comparison to
the results of the within-city evaluation (Table 2) demonstrate that
exposing the model to a broader range of slum characteristics and urban
patterns does not necessarily lead to superior performance compared to
models trained on data from individual cities. This suggests that the
generalization benefits of a mixed dataset come at the cost of reduced
specificity, as the model must learn features that are broadly applicable
across diverse urban landscapes, rather than optimizing for the unique
characteristics of a single city.

5.3. HR vs. VHR imagery

Across all evaluation settings—within-city, cross-city, and global-
—models utilizing Very High Resolution (VHR) images consistently
outperformed those using High Resolution (HR) images. As detailed in
Tables 2 and 5, VHR models achieved higher F1 scores, with improve-
ments ranging from 5 to nearly 20 percentage points depending on the
city and evaluation setting. Despite this pronounced difference in per-
formance, the High Resolution 10 x 10 images still demonstrated
discriminatory potential in the proposed task; this is evidence that such
low-cost images can still perform reasonable if images with higher res-
olutions are not available.

The comparison of performance metrics between HR and VHR im-
ages requires careful consideration, as their varying spatial resolutions
introduce differences in the scale and granularity of the input data. VHR
images, with finer spatial details, provide a more precise representation
of urban morphology, which can enhance the model’s ability to detect
nuanced patterns associated with slums. In contrast, HR images, with
coarser resolution, may aggregate features from mixed areas, such as
regions containing both slum and non-slum characteristics, potentially
reducing model accuracy. This difference in spatial scale has implica-
tions for model interpretability and generalization. To ensure fair
comparisons, future studies could normalize the input data by aggre-
gating VHR pixels to match HR resolution or assess model performance
on metrics that account for scale differences, such as grid-level preci-
sion. In this study, we considered the trade-offs between computational
efficiency, data availability, and model accuracy, which become rele-
vant for data with varying resolutions.

13

Computers, Environment and Urban Systems 121 (2025) 102306
5.4. Comparison to previous works

In Table 7, we summarize the performance of our methodology in
direct comparison to other works. In the table, one can see that we
achieved results similar or superior to every other methodology. It is
important to note that these comparisons do not rely on the same dataset
(Location); accordingly, these numbers provide a relative estimative of
performance, instead of an absolute perspective.

In the first stage of our experiments, where models were trained and
tested within each city, F1 scores ranged from 0.81 to 0.94 using VHR
imagery. These results align closely with those reported in previous
studies. For instance, Mboga et al. Mboga et al. (2017) achieved an ac-
curacy of 0.91 in Dar es Salaam, Tanzania, using a CNN model with VHR
Quickbird imagery. Similarly, Verma et al. Verma et al. (2019) reported
an accuracy of 0.94 in Mumbai, India, using a CNN trained on VHR
Pleiades imagery, while performance dropped to 0.90 when using HR
Sentinel-2B images. Using contextual features with machine learning,
Owusu et al. Owusu et al. (2023) reported F1 scores of 0.77, 0.86, and
0.77 in Accra, Lagos, and Nairobi, respectively, with Sentinel-2 imagery.
In a follow-up study, Owusu et al. Owusu et al. (2024) achieved F1
scores of 0.93, 0.58, and 0.92 in the same cities.

Regarding cross-city results, F1 scores varied significantly depending
on the source-target city pairs, ranging from 0.69 to 0.93 across 36

Table 7
Non-absolute comparison of slum detection studies using deep learning and
satellite imagery - each author used a different dataset.

Study Location Imagery Method Performance
Type
Mboga et al. Dar es VHR CNN Accuracy: 0.91
(2017)- Salaam, TZ QuickBird
Within-City
Verma et al. Mumbai, IN  VHR CNN Accuracy: 0.94
(2019)- Pleiades
Within-City
HR CNN Accuracy: 0.90
Sentinel-2B
Owusu et al. African HR ML -+ Features F1 Score:
(2023)- Cities Sentinel-2 0.77-0.76
Within-City
Owusu et al. African HR ML -+ Features F1 Score:
(2023)- Cities Sentinel-2 0.57-0.69
Cross-City
Owusu et al. African HR ML + Features F1 Score:
(2023)- Cities Sentinel-2 0.63-0.84
Global
Owusu et al. African HR ML + Features F1 Score:
(2024)- Cities Sentinel-2 0.58-0.93
Within-City
Owusu et al. African HR ML + Features F1 Score:
(2024)- Cities Sentinel-2 0.13-0.81
Cross-City
Owusu et al. African HR ML + Features F1 Score:
(2024)- Cities Sentinel-2 0.68-0.86
Global
This Work- Brazilian VHR EfficientNetV2L  F1 Score:
Within-City Cities GMaps 0.81-0.94
Accuracy:
0.81-0.94
This Work- Brazilian VHR EfficientNetV2L  F1 Score:
Cross-City Cities GMaps 0.69-0.93
Accuracy:
0.69-0.93
This Work- Brazilian VHR EfficientNetV2L  F1 Score:
Global Cities GMaps 0.78-0.91
Accuracy:
0.79-0.91
This Work- Brazilian VHR EfficientNetV2L  F1 Score:
Global Cities GMaps 0.73-0.90
(Leave-one-
out)
Accuracy:
0.73-0.90




J.P. da Silva et al.

combinations. Similar variability was observed by Owusu et al. Owusu
et al. (2023), who reported F1 scores between 0.57 and 0.69 in their
cross-city evaluations. In their subsequent work, Owusu et al. Owusu
et al. (2024) observed even wider variability, with F1 scores ranging
from 0.13 to 0.81 across African cities, highlighting the challenges of
generalizing models across diverse urban landscapes.

For the global results, a generalized model trained on data from all
six Brazilian cities, we achieved F1 scores ranging from 0.78 to 0.91.
When applying the Leave-one-out technique, where the model was
trained on five cities and tested on the remaining one, F1 scores ranged
from 0.73 to 0.90. These results are comparable to those of Owusu et al.
Owusu et al. (2023), who reported scores between 0.63 and 0.84, and
Owusu et al. Owusu et al. (2024), who achieved F1 scores from 0.68 to
0.86 in three African cities. These findings reinforce the effectiveness of
generalized models in capturing diverse urban patterns, albeit with
some performance trade-offs compared to city-specific models.

These results demonstrate the success of our methodology in slum
detection across diverse urban contexts using deep learning. Notably,
our use of the EfficientNetV2L architecture, combined with fine-tuning
on satellite imagery, consistently delivered competitive performance,
particularly in the within-city evaluation where VHR models achieved
F1 scores exceeding 0.90 in several cities. Additionally, even in the
challenging cross-city setting, our models demonstrated transferability
comparable to or exceeding previous works, with F1 scores as high as
0.90. The generalized model further underscores the robustness of our
approach, achieving strong performance across all cities, with F1 scores
between 0.78 and 0.91. These outcomes validate the effectiveness of our
specific training pipeline, including the careful preprocessing of both
VHR and HR images, the strategic use of diverse datasets, and the
emphasis on scalability for practical applications in urban analysis.

5.4.1. Morphological indicators

In another approach, morphological indicators have gained traction
in slum detection tasks Wang et al. (2023) because they provide valuable
contextual and structural insights into urban landscapes, such as
building density, size, layout, and spatial organization, which are often
key characteristics of slum areas. These indicators complement satellite
imagery by capturing physical patterns that may not always be evident
in pixel-based data alone, enabling a more nuanced understanding of
urban morphology. In future works, incorporating such indicators can
improve model performance and generalizability, particularly when
combined with high-resolution imagery.

5.5. Challenges of ground truth variability

One of the critical challenges in slum detection is the variability in
ground truth definitions, which differ significantly across countries and
cities due to variations in socioeconomic, cultural, and legal contexts.
While this study benefits from the Brazilian AGSN dataset, which pro-
vides detailed and well-defined labels tailored to the local context, these
definitions may not align with those used in other regions. Such dis-
parities could hinder the generalizability of models trained on localized
datasets, particularly in applications requiring global consistency, such
as monitoring progress toward Sustainable Development Goals (SDGs).
This challenge underscores the need for deeper discussions on how local
definitions influence the generalizability of slum detection models.
Future research could address this issue by incorporating domain
adaptation techniques or additional contextual features to bridge
regional differences. Furthermore, developing standardized global def-
initions for slums, while challenging, would significantly enhance the
scalability and impact of deep learning models in this field. By situating
this study within the broader context of slum detection challenges, we
aim to highlight the importance of addressing these disparities to
advance the field and support global urban monitoring efforts.

The study’s use of a consistent definition of slums from the AGSN
dataset ensures uniformity in labeling and robust model training,
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enhancing reproducibility. While tailored to the Brazilian context, the
methodology could be adapted to other countries by incorporating local
definitions and employing techniques like transfer learning or domain
adaptation, enabling broader applicability.

6. Conclusion

The findings of this study demonstrate the significant potential of
deep learning models, particularly CNNs, in leveraging satellite imagery
for automated slum detection in urban environments. The successful
application of these models across multiple Brazilian cities highlights
the effectiveness of using VHR images to capture the complex charac-
teristics of slums. However, the variation in model performance across
different cities underscores the importance of accounting for regional
differences in slum morphology and urban patterns.

Future work should focus on developing models that can better
generalize across diverse urban contexts, possibly through the use of
more advanced architectures like encoder-decoder networks (EDNs)
that can handle imbalanced data and preserve spatial information.
Additionally, expanding the classification beyond binary categories to
include different types of slum environments could enhance model
adaptability and usefulness for urban planning and policy-making.

By refining these approaches, we can improve the ability to monitor
and address the challenges of urban inequality, contributing to more
effective interventions in rapidly developing regions.
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