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Abstract

The International Swimming Federation has developed a points system that allows comparisons of results between
different events. Such system is important for several reasons, since it is used as a criterion to rank swimmers in awards
and selection procedures of national teams. The points system is based entirely on the world record of the corres-
pondent event. Since it is based on only one observation, this work aims to suggest a new system, based on the
probability distribution of the best performances in each event. Using extreme value theory, such distribution, under
certain conditions, converges to a generalized Pareto distribution. The new performance index, based on the peaks over
threshold methodology, is obtained based on the exceedance probabilities correspondent to the swimmers’ times that
exceed a given threshold. We work with 17 officially recognized events in 50 m pool, for each women and men, and
considered all-time rankings for all events until 31 December 2016. A study on the adequacy of the proposed generalized
Pareto distribution index and a comparison between the performances of Usain Bolt and Michael Phelps are also

conducted.
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Introduction

Competitive swimming has a non-subjective ranking
system, based on times. When one analyzes the results
of a given event, such criterion is free from arbitrariness
and is the universal way to choose the “best (fastest)
swimmers.” However, for some reasons, it might be
reasonable to compare performances in different
events. For example, the winning time of the 100m
freestyle in a given competition is better than the win-
ning time of the 200 m butterfly?

Obviously, the concept of “better” needs to be
defined. Intuitively, a great performance is the one
that, in its respective event, corresponds to a discrepant
result in comparison to the others.

Such comparison is made by the International
Swimming Federation (FINA) through a points
system. It is important, since it is used to determine
the winners of the World Cup.' It is also used by several
national federations as the criterion to determine
national teams, such as Brazil.”

In 2015, the FINA points system was used for the
first time to select the best performances of that year. In
2016, Katie Ledecky (United States) and Adam Peaty

(Great Britain) were chosen the best performers of the
year, by their performances in women’s 800 m freestyle
and men’s 100 m breaststroke, respectively, in Rio de
Janeiro Olympic Games.®

The FINA points system is based on what is called
the base times.* The base times are defined every year,
based on the latest world record that was approved by
FINA. The base times are defined with the cut date of
31 December. So, in a given event, let 7;(¢) be the time
obtained by the swimmer i, in seconds, at the year z,
and B(t — 1) the base time, which is the world record, in
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seconds, at the end of the year 7—1. The points of the
swimmer i at the year ¢, Pi(z), are given by

3
Pi(1) = Lmoo(B (;(_t)l)> J (1)

with | x| denoting the integer part of x. The fragility of
this methodology is the fact that the points system uses
little information—in fact, only the world record—and
does not have scientific support. World records of
different events do not necessarily represent the same
difficult level, and because of this they do not represent
a fair ground for comparisons.’

The motivation to obtain an alternative criterion is
to use a set of times as the base, and not only one time,
as the FINA points system, in equation (1), and the
evaluation of the data distribution.

Usually, studies about probability models in sports
data refer to records behavior and forecasts. The
majority of works is about athletics data and extreme
value theory.

Smith® proposed a maximum likelihood (ML)
method for fitting models to a series of records and
applied his method to athletic records for the 1500 m
and the marathon, comparing normal and extreme
value distributions. Robinson and Tawn’ considered
the annual best times in the women’s 3000 m event
and applied several extreme values methods to evaluate
how discrepant was the 1993 world record time estab-
lished by the Chinese runner Wang Junxia. Bardo and
Tawn® studied the evolution of 1500m and 3000 m
annual best times in a bivariate set-up. The analysis
conducted in these papers was based on the develop-
ment of top performances over time. This is not the
case in this paper. We are using only the top perform-
ances associated with a set of n athletes, as in Einmahl
and Magnus’ and Henriques-Rodrigues, Gomes and
Pestana,'” who evaluated how good was a world
record in comparison to the others and what were the
estimated ultimate world records. Adam and Tawn''
performed an analysis of swimming times data over
different events and modeling evolution over time
using a bivariate extreme value analysis. Stephenson
and Tawn'? used a Bayesian framework and Markov
chain Monte Carlo methods to simultaneously model
performances over both time and event distance in
athletics.

In this paper, some ideas explored by the papers
cited above will be used to evaluate a theoretically jus-
tified criterion alternative to the FINA’s one. Such
methodology could be applied to athletics as well.
Regarding the data, they will be used in the same
approach as Einmahl and Magnus,” who analyzed
athletics historical rankings. In this paper, the aim is
to compare performances that do not necessarily

represent world records. Our approach is based on
Fisher-Tippet and PickandsBalkemade Haan theorems
and the peaks over threshold (POT) methodology.'*'°

The paper is organized as follows. Firstly, we
describe the data related with the swimming events
under study. Next, we present some preliminary results
in extreme value theory related with the peaks over
threshold (POT) methodology and present the new gen-
eralized Pareto distribution (GPD) performance index
proposed for performance comparisons between differ-
ent swimming events. Then, we present the application
of the POT methodology to the data sets under consid-
eration, the performance comparisons, the GPD’s suit-
ability and a comparison between Usain Bolt and
Michael Phelps best performances. Finally, some con-
clusions are drawn regarding the FINA points system
and the new GPD performance index.

Data

In this paper, the aim is to evaluate swimming per-
formances from 2016 to point out the better results of
that year.

There are 34 officially recognized individual swim-
ming events in 50m pool, 17 for women and 17 for
men, in the following distances and styles: 50 m, 100 m,
200 m, 400 m, 800 m, and 1500 m freestyle; 50 m, 100 m,
and 200 m butterfly; 50 m, 100 m, and 200 m backstroke;
50m, 100m, and 200 m breaststroke; and 200 m, and
400 m individual medley. The all-time rankings for all
events are considered, until 31 December 2016.

The database is comprised of world rankings pub-
lished by FINA (http.://www.fina.org) and SwimNews
(http:/Jwww.swimnews.com) websites from 1990 on
and an all time world ranking published by
Swimming World Magazine website (http://www.swim
mingworldmagazine.com) in 2007.

The data correspond to the best times over all times
until 31 December 2016. Only the best time of each
athlete is considered in each event. Obviously, one ath-
lete may have several times registered, which are corre-
lated. So, considering only the best time is a way to
guarantee the independence assumption. We collected
data on the personal best performances of as many of
the top athletes in each event as we could, taking care
that no “holes” occur in the list. Thus, if an athlete
appears on our list, then all athletes with a better per-
sonal mark will also appear on our list. Table 1 gives an
overview of the number of athletes (the depth) and the
worst and best results for each event in the sample.

It is very frequent to obtain repeated values (clus-
ters) for several athletes, due to the lack of precision of
the measurements and discretization of data, the times
being registered to the second decimal place. Because
clusters can cause problems in the estimation and in the
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Table I. Summary data until 31 December 2016.
Women Men

Event Depth (n) Best Worst Depth (n) Best Worst
50 m freestyle 595 23.73 25.75 486 2091 22.66
100 m freestyle 546 52.06 55.79 458 46.91 49.68
200 m freestyle 557 1:52.98 2:00.39 491 1:42.00 1:49.29
400 m freestyle 488 3:56.46 4:12.83 438 3:40.07 3:52.33
800 m freestyle 440 8:04.79 8:40.38 485 7:32.12 8:06.85
1500 m freestyle 457 15:25.48 16:43.58 469 14:31.02 15:24.64
50 m butterfly 602 2443 27.46 499 2243 24.32
100 m butterfly 527 55.48 1:00.08 373 49.82 53.16
200 m butterfly 445 2:01.81 2:11.96 562 I:51.51 1:59.70
50 m backstroke 649 27.06 29.54 594 24.04 26.19
100 m backstroke 645 58.12 1:02.54 550 51.85 55.83
200 m backstroke 589 2:04.06 2:13.99 626 1:51.92 2:01.75
50 m breaststroke 509 29.28 32.29 537 26.42 28.48
100 m breaststroke 489 1:04.35 1:09.71 469 57.13 1:01.92
200 m breaststroke 556 2:19.11 2:30.34 525 2:07.01 2:14.68
200 m ind. medley 583 2:06.12 2:16.26 534 1:54.00 2:02.78
400 m ind. medley 620 4:26.36 4:48.79 667 4:03.84 4:23.87

evaluation of the goodness-of-fit tests, we smoothed the
data, according to the procedure suggested by Einmahl
and Magnus.” So, if r athletes complete the 100m free-
style for women in the time of #, seconds (s), the r
results are smoothed in the interval
1t0 — 0.005, 79 + 0.005] in the following way, where
tsk(.) is the time after smoothing of the kth athlete, in s

2k—1

tsi(to) = (19 —0005)+001T, k=1,...,r.
r

This procedure was conducted for all the observed
clusters, resulting in a new data set denoted by
T= {Zj,]: 1,...,1’1}.

Besides that, one more transformation is required
for the subsequent analysis. Usually, the extreme
value theory deals with inference based on sample
maxima. Since swimming times implies a sample
minima analysis, we have to transpose the smoothed
swimming times to a maxima context. This is done con-
verting the times in swimming speeds, so that a lower
swimming time corresponds to a higher speed. This
way, selecting the lowest time for an athlete is equiva-
lent to selecting the highest speed.

Preliminary results in extreme
value theory

Let us think on any swimming event, like for instance
the women’s 100 m freestyle. Let X;, 1 <i < N, denote

the best personal mark of the ith athlete, N the number
of athletes being considered. By ““best personal mark,”
we mean the swimming time transformed to speed, so
the higher the speed, the best. Note that N is different
from n, which refers to the sample size available,
whereas N is the number of athletes that has swum
the event in the world.

We consider these N personal bests as independent,
identically distributed (i.i.d.) observations from some
distribution function (d.f.) F. Let X;.nx < Xony <
... < Xn.n be the associated order statistics, so that
Xv-ny denotes the world record.

Suppose that there exists real sequences ay >0 and
by € R such that (Xy.y — by)/ay converges in distribu-
tion for some non-degenerate d.f. G(x), i.e.

lim P(XNW—_I’N < x) = lim FN(ayx + by) = G(x).
N—o00 an N—o00
(2)

If this condition holds, we say that F is in the max-
domain of attraction of G and we write F € D(G).
According to the Fisher-Tippet theorem,'® if
F e D(G), the d.f. G in equation (2) is in the family of
G¢, where G; is the d.f. of the generalized extreme value
(GEV) distribution, given by

exp{—(1 +&x)78), ifE#£0

G = exp{exp(—x)}, ife=0

(©)



International Journal of Sports Science & Coaching 0(0)

where 14 &x > 0. The shape parameter & is directly
related with the right-tail of the d.f. G; and it deter-
mines the weight of the right-tail of G¢. The shape par-
ameter is also known as the tail index and is one of the
main parameters in extreme value theory. For £ =0, we
say that d.f. Go(x), in equation (3), is in the max-
Gumbel-type domain of attraction, which contains
exponential right-tailed distributions such as normal,
exponential, Gama and Gumbel itself. If £ > 0, Gg(x),
in equation (3), is in the max-Frechet-type domain of
attraction, which contains heavy right-tailed distribu-
tions such as Pareto, Student-r and Fréchet itself. If
£ <0, Gg(x), in equation (3), is in the max-Weibull-
type domain of attraction, which contains light right-
tailed distributions such as Beta and Weibull itself."

POT methodology

The POT methodology refers to the analysis of random
variables that exceed a given high and fixed threshold u.
The observations that exceed such threshold u are
called exceedances over u.

Let x* be the finite or infinite right endpoint of the
support of F, i.e. x' = sup{x € R: F(x) < 1}. The con-
ditional d.f. of the exceedances over u is given by

F(x +u) — Flu)

F(x)=PX —u<x|X>u = = F)

for 0 <x<xf—u Balkema and de Haan'® and

Pickands'” proved that, for a sufficiently high threshold
u and under the validity of equation (2), the conditional
d.f. F, may be well approximated by GPD, they proved
that the GPD is the limiting distribution of suitably
normalized exceedances when u — x. Such result is
known as the Pickands—Balkema—de Haan theorem,'
and the GPD is expressed by

L= (1 +&x/6)",
1 —exp{—x/0},

if £ #£0,

4
if&=0, @

Gos(x) = I

where 6 > 0 is a scale parameter and the support is
x>0ifé>0and 0 <x< —0/6if £ <0.1

The theorem suggests that, for a sufficiently high
threshold u, the d.f. of the exceedances, i.e. d.f of the
athletes’ performances that are higher than u, can be
approximated by a GPD.

We perform the analysis of maxima of speeds,
instead of minima of times. According to Wadsworth
et al.,'® the settings can result in potentially different
results. However, we opted to analyze the maxima of
speeds because POT methodology is based on the con-
ditional d.f. of the exceedances over threshold. To per-
form the analysis of minima of times, one could negate
the data and analyze that.

The choice of the threshold u is still an open prob-
lem. Some methods are suggested in the literature (see
Vicente'? for an overview on the subject).

Davison and Smith*® suggest the use of the Mean
Excess function, e(u) = E(X —u|X > u). Instead of
working with the exceedances over u, we can work
with the excesses, represented by the r.v. Y := X —u.
If Y follows a GPD distribution, then e(u) = (0 + &u)/
(1=2¢),if ¢ <1 So, if the GPD assumption is true, the
plot of e(u) versus u, called mean excess plot (ME-Plot),
should follow a straight line with intercept 6/(1 — &)
and slope &/(1 —&). In practice, based on a sample
size n, x| - - - X, e(u) is estimated by its empirical coun-
terpart, the sample mean excess function

Yoy xid(x; > u) B
Yo Ixi > w)

én (u) =

where I(x; > u) is the indicator function of the event
(set) {x; : x; > u}, given by 1, if x; > u and 0 otherwise.

We generally construct the sample ME-plot with
pairs x,_i, and ¢,(x,_xn), k=1,...,n—1 where x;.,
is the kth order statistics. If the data over a high thresh-
old is well fitted by a GPD, we would expect the sample
ME-plot to become linear. But even for data that are
genuinely GP-distributed, the sample ME-plot is
seldom perfectly linear, particularly toward the right-
hand side, where we are averaging a small number of
large excesses. We often omit the final few points from
consideration, as they can severely distort the plot."?
Consequently, the threshold u« is chosen at the point
to the right of which a rough linear pattern appears
in the plot.

Coles®! suggests to fit the GPD at a range of thresh-
olds, and to look for stability of parameter estimates.

If a GPD is a reasonable model for the excesses over
a threshold u, then the excesses over a higher threshold
u, u > uy, should also follow a GPD. The shape param-
eters of the two distributions are identical, as well as the
reparameterized scale parameter

0" =0, — &u.

Consequently, estimates of both 8* and & should be
constant above uy, if 1 1s a valid threshold for excesses
to follow the GPD. This argument suggests plotting
both 6* and against u, together with confidence inter-
vals for each of these quantities, and selecting u, as the
lowest value of u for which the estimates remain near-
constant. Sampling variability means that the estimates
of these quantities will not be exactly constant, particu-
larly towards the right-hand side, where we deal with a
small number of large excesses.
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After the determination of threshold, the estima-
tion of # and & should be conducted, based on the avail-
able data. There are several estimation methods
available in the literature. For a deeper discussion
about its practical aspects, please refer to Bermudez
and Kotz.**

Given a threshold u, the exceedance probability p of
a high level xj, in a GPD context, can be estimated
through its d.f. by p=1—Gyz(xo —u), with Gog
given in equation (4). Such value 1s the GPD perform-
ance index proposed in this article for performance
comparisons between different swimming events or dif-
ferent sports events.

Let 4 and B be two distinct swimming events and
(uA;nuA;éA,EA) and (up; nuB;éB, &p) the thresholds, u,
number of exceedances above the threshold u, n,, and
the scale and shape estimators, (0, &), associated to the
events A and B, respectively. Let x, be the mark
obtained by an athlete in event 4 and xp the mark
obtained by other athlete in event B and let us
assume that . With Gy, given in equation (4), the excee-
dance probabilities associated to x4 and xp are,
respectively,

ﬁA =1- G(;A,EAA(XA — uA) and

ﬁB =1- GéB’S*B(XB - ug).

We say that x4 is better than xp, i.e. we say that the
mark attained by an athlete in the event A4, x4, is better
than the mark attained by another athlete in the event
B, xp, if and only if p4 < pp or, similarly, if and only if
1 — p4 > 1 — pp, the criterion used later on in the data
sets under consideration.

Application
Preliminary data analysis and threshold selection

Consider one swimming event and let X1, X5,..., Xy
denote the best personal marks, in m/s, of all N athletes
in the world in this event. The definition and possible
measurement of N are difficult. Fortunately, the value
of N turns to be unimportant.’

We consider these N best personal marks as
1.1.d. observations from some d.f. F. According to the
results presented in the previews section, for a
high enough threshold u, the distribution of X; condi-
tional to X;>u converges to a GPD, 1 <i<N\,
under certain conditions. Such result can be used to
model the tail of the distribution of the best personal
marks and give a measure of how much the ith athlete
is discrepant from the distribution of all swimmers
in the world.

As mentioned before, we use ME-plots and param-
eter stability plots to determine the threshold associated
to each distribution.

If the GPD assumption is valid, the ME-plot should
follow a straight line from the threshold on.'* Figures 1
and 2 display the ME-plots for the women’s and men’s
400m freestyle, where we can see decaying patterns.
However, apart from the high volatility characterizing
the top sample, it is possible to note two linear patterns,
shown by the lines indicated by 1 and 2. The two linear
patterns are separated by a kink, visible at 1.59 and
1.73, respectively. As the objective of the POT method-
ology is to induce a cut-off in the sample above which
the sample ME-plot follows a linear trend, these values
are good candidates for the thresholds of the GPD.

Figures 3 and 4 display the stability plots for the
same events, women’s and men’s 400m freestyle.
The parameters are estimated by ML. Note that both
parameter estimates remain near-constant above the
mentioned values of 1.59 and 1.73, respectively.

We see that, toward the right-hand side, the confi-
dence intervals for the parameters seem unreliable. In
fact, one can expect to face numerical problems with

Mean Excess

0010 0012 0014 0016 0018 0020

Figure |. Women’s 400 m freestyle ME-plot.
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Figure 2. Men’s 400 m freestyle ME-plot.



6 International Journal of Sports Science & Coaching 0(0)

o]
= _ | T
: pHE
1
2
© -
"1 T T T T T
158 150 162 164 166
Threshoid
=
e T T T T 177
158 160 162 164 1.66
Threshold
Figure 3. Reparameterized scale and shape parameters estimates versus threshold, women’s 400 m freestyle.
o~ o —_—
= = al
. | =+
g
2 o A
]
5
2
r v
T T T T T T — T
1.72 174 1.76 1.78 1.80 182
Threshold
o 4 =
T T T T T T
172 174 176 178 180 182
Threshold
Figure 4. Reparameterized scale and shape parameters estimates versus threshold, men’s 400 m freestyle.
ML estimates of a GPD when dealing with a small Such analysis was conducted similarly for all

number of large excesses.”” This is an important issue events. In Table 2, the chosen thresholds can
to be discussed in the next section in order to choose the be found, as well as the respective number of excee-
value of the thresholds. dances, n,,.
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Table 2. Selected thresholds and number of exceedances.

Women Men

Event u n, u n,

50 m freestyle 1.9735 218 2.2336 235
100 m freestyle 1.8194 214 2.0401 184
200 m freestyle 1.6900 173 1.8424 287
400 m freestyle 1.5955 261 1.7379 201
800 m freestyle 1.5614 174 1.6619 234
1500 m freestyle 1.5181 181 1.6407 209
50 m butterfly 1.8701 159 2.0968 156
100 m butterfly 1.6850 265 1.9014 188
200 m butterfly 1.5308 267 1.7020 177
50 m backstroke 1.7393 183 1.9596 152
100 m backstroke 1.6444 157 1.8216 223
200 m backstroke 1.5249 203 1.6783 175
50 m breaststroke 1.5871 150 1.7974 152
100 m breaststroke 1.4669 171 1.6467 151
200 m breaststroke 1.3534 235 1.5067 240
200 m ind. medley 1.4938 217 1.6612 153
400 m ind. medley 1.4064 253 1.5419 250

Fitting the GPD

Since the aim of this work is to compare performances
in different events by the computation of exceedance
probabilities, it is convenient that the distributions of
different events be based on the same number of
observations.

The chosen value for the threshold must be high
enough to guarantee the GPD assumption, but not so
high, so there can be a significant amount of observa-
tions for the estimation process.

If one particular GPD has threshold u, the observa-
tions above the threshold u; with u; > u also follow a
GPD, with the same & shape parameter.'* All 34 events
in study have more than 150 exceedances for the chosen
thresholds. If we choose the thresholds that results in
150 exceedances in each event (these thresholds must be
higher than the previously chosen thresholds), we can
expect that these exceedances follow GPDs.

One of the key issues here is considering the data
identically distributed. If the time trend effect was big,
then a single GPD fitted to all the data would start to
fail to be a good fit as the signal in the trend would
outweigh the noise in the GPD. But, in fact, 86% of the
data comes from the period 2007-2016, and only 4%
were registered before 1996 (the earliest year from
which a swimmer’s time is included in the data analysis
is 1976). We consider that it is reasonable to model the
data as being identically distributed as the trends are
small over the time range of the data relative to the

1000 1500 2000
L 1

Freguency
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L

—.—1—|—,_

T T T T 1
1980 1900 2000 2010 2020

1]
L

Year

Figure 5. Histogram of the years in which the data occur.

natural variation in the data in any given year.
Figure 5 shows the histogram of the years in which
the data occur.

Table 3 shows the thresholds for each event con-
sidering 150 exceedances, the estimated parameters
computed by ML and its standard errors. We also pre-
sent the p-values for the goodness-of-fit statistics
Anderson-Darling (AD) and Cramér-von Mises for
the adjustment of each event to the GPD. The p-
values are obtained based on the tables given in
Choulakian and Stephens.”® Although not all p-values
are above 0.05, they are, under the null hypothesis, uni-
formly distributed on (0, 1), as expected under the
assumption of GPD data.

In order to check the stability of the method, we
conducted the same analysis considering 160, 170,
180, 190, and 200 exceedances. The results are similar
in terms of parameter estimates and goodness-of-fit
tests.

Comparison of performances

For the comparison of performances in different events,
the proposed criterion suggests the comparison of the
exceedance probabilities of each event, based on esti-
mated GPDs, according to the procedure described.
Table 4 shows the best performances of 2016,
according to the proposed methodology, as well as
the FINA points system and the correspondent rank.
It is considered only the best performance of each ath-
lete in each event. For women and men, the best per-
formers, by the GPD, are the same as FINA ones:
Katie Ledecky from United States and Adam Peaty
from Great Britain, respectively. However, for FINA,
Ledecky has the best performance for the 400 m free-
style, and by the GPD her best performance was
obtained in the 800 m freestyle, which is in accord to
what specialists say.* It is worth noting that in 2016,
the 800 m freestyle performance by Katie Ledecky has a
very small exceedance probability, which indicates that
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Table 3. GPD fitting (150 observations in each event), ML estimates, standard errors, and goodness-of-fit tests.

Event u £ SE(£) 6 SE9) p AD p CVM
Women
50 m freestyle 1.986 —0.143 0.095 0.035 0.004 [0.25,0.5) >0.5
100 m freestyle 1.828 —0.261 0.067 0.031 0.003 [0.1,0.25) [0.1,0.25)
200 m freestyle 1.692 —0.123 0.078 0.019 0.002 >0.5 >0.5
400 m freestyle 1.608 —0.118 0.075 0.019 0.002 [0.25,0.5) [0.25,0.5)
800 m freestyle 1.565 —0.183 0.049 0.02 0.002 [0.005,0.01)
1500 m freestyle 1.521 —0.174 0.063 0.025 0.003 >0.5 >0.5
50 m butterfly 1.874 —0.156 0.06 0.04 0.004 [0.1,0.25)
100 m butterfly 1.704 —0.145 0.091 0.026 0.003 [0.025,0.05) [0.025,0.05)
200 m butterfly 1.544 —0.194 0.065 0.026 0.003 >0.5 >0.5
50 m backstroke 1.746 0277 0.077 0.037 0.004 [0.25,0.5) [0.25,0.5)
100 m backstroke 1.646 —0.183 0.093 0.024 0.003 [0.25,0.5) [0.25,0.5)
200 m backstroke 1.532 —0.182 0.078 0.023 0.003 [0.25,0.5) [0.25,0.5)
50 m breaststroke 1.587 —0.215 0.072 0.033 0.004 [0.25,0.5) [0.25,0.5)
100 m breaststroke 1.471 —0.203 0.077 0.025 0.003 >0.5 >0.5
200 m breaststroke 1.365 —0.259 0.081 0.026 0.003 [0.05,0.1) [0.25,0.5)
200 m ind. medley 1.502 —0.136 0.08 0.023 0.003 [0:25;0:5) [0.1,0.25)
400 m ind. medley 1.422 —0.178 0.071 0.022 0.002 [0.005,0.01) [0.01,0.025)
Men
50 m freestyle 2.25 —0.031 0.106 0.033 0.004 [0.05,0.1) [0.025,0.05)
100 m freestyle 2.047 —0.278 0.079 0.031 0.003 [0.25,0.5) [0.25,0.5)
200 m freestyle 1.86 —0.06 0.073 0.02 0.002 [0.1,0.25) [0.05,0.1)
400 m freestyle 1.747 —0.186 0.084 0.022 0.003 >0.5 >0.5
800 m freestyle 1.673 —0.143 0.074 0.024 0.003 >0.5 >0.5
1500 m freestyle 1.649 —0.281 0.075 0.026 0.003 >0.5 >0.5
50 m butterfly 2.099 —0.227 0.071 0.039 0.004 [0.025,0.05) [0.025,0.05)
100 m butterfly 1.909 —0.19 0.07 0.028 0.003 >0.5 >0.5
200 m butterfly 1.706 —0.172 0.074 0.023 0.002 >0.5 >0.5
50 m backstroke 1.961 —0.311 0.064 0.044 0.004 >0.5 >0.5
100 m backstroke 1.837 —0.162 0.095 0.029 0.004 [0.25,0.5) [0.25,0.5)
200 m backstroke 1.684 —0.174 0.075 0.028 0.003 >0.5 >0.5
50 m breaststroke 1.798 —0.244 0.063 0.029 0.003 [0.25,0.5) [0.1,0.25)
100 m breaststroke 1.647 —0.104 0.073 0.021 0.002 [0.1,0.25) [0.25,0.5)
200 m breaststroke 1.52 —0.522 0.054 0.031 0.002 [0.001,0.005) [0.001,0.005)
200 m ind. medley 1.661 —0.103 0.076 0.022 0.002 >0.5 >0.5
400 m ind. medley 1.555 —0.14 0.08 0.022 0.003 [0.25,0.5) [0.25,0.5)

AD: Anderson-Darling; CVM: Cramér-von Mises.

it corresponds to one of the greatest performances of all
time. In other ranks, we can observe notable differences
between the two criteria and eventually in other occa-
sions the two criteria may point out different swimmers
for the first position. The 95% C.I. for the exceedance
probabilities presented in the table is computed by
bootstrap methods (10,000 resamples).

Conducting the same analysis considering 160, 170,
180, 190, and 200 exceedances, the rankings are similar.
For all number of exceedances, the rankings are

composed by the same 40 performances shown in
Table 4. Few changes in order are observed. For
instance, considering 200 exceedances, only one
switch of positions is observed in the women’s ranking,
and four are observed in the men’s ranking.

GPD’s adequacy

A question that arises is to know if the GPD perform-
ance index is more reliable than the FINA one. Also, it
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Table 4. Performance index comparisons: GPD and FINA.
~ 95% Cl.l for GPD FINA  FINA
Athlete Event Time Competition Il —p | —p rank  points rank
Women
K. Ledecky (USA) 800 m freestyle 8:04.79  Olympic Games 0.9996 (0.9962,1.0000) | 1016 3
K. Ledecky (USA) 400 m freestyle 3:56.46  Olympic Games 0.9983 (0.9913,1.0000) 2 1024 |
K. Hosszu (HUN) 400m ind. medley  4:26.36  Olympic Games 0.9976 (0.9889,1.0000) 3 1023 2
C. Campbell (AUS) 100 m freestyle 52.06 AUS Grand Prix 0.9968 (0.9896,1.0000) 4 1001 5
S. Sjostrom (SWE) 100 m butterfly 55.48 Olympic Games 0.9959 (0.9860,1.0000) 5 1009 4
K. Hosszi (HUN) 200m ind. medley  2:06.58  Olympic Games 0.9909 (0.9790,0.9996) 6 989 6
K. Ledecky (USA) 200 m freestyle 1:153.73  Olympic Games 0.9894 (0.9753,0.9992) 7 980 I
S. Sjostrom (SWE) 50 m butterfly 24.99 European Champs.  0.9880 (0.9739,1.0000) 8 934 80
S. O’Connor (GBR) 200m ind. medley  2:06.88  Olympic Games 0.9876 (0.9742,0.9987) 9 982 10
R. Kaneto (JPN) 200 m breaststroke  2:19.65  Japan Nationals 0.9868 (0.9749,0.9975) 10 988 7
C. Campbell (AUS) 50 m freestyle 23.84 AUS Olympic Trials  0.9847 (0.9728,0.9955) 11 986 8
S. Sjostrom (SWE) 200 m freestyle 1:154.08  Olympic Games 0.9828 (0.9659,0.9974) 12 971 15
L. King (USA) 100 m breaststroke 1:04.93  Olympic Games 0.9814 (0.9665,0.9964) 13 973 12
K. Hosszi (HUN) 100 m backstroke 5845 Olympic Games 0.9768 (0.9614,0.9910) 14 983 9
B. Campbell (AUS) 100 m freestyle 52.58 AUS Olympic Trials  0.9751 (0.9575,0.9958) |5 971 I5
L. Smith (USA) 400 m freestyle 4:00.65  USA Olympic Trials 0.9717 (0.9495,0.9947) 16 972 14
F. Pellegrini (ITA) 200 m freestyle 1:54.55  Trofeo Sette Colli 0.9687 (0.9462,0.9899) 17 959 27
R. Meilutyte (LTU)  50m breaststroke  29.98 Mare Nostrum 0.9686 (0.9486,0.9950) 18 950 48
S. Manuel (USA) 100 m freestyle 52.70 Olympic Games 0.9648 (0.9439,0.9897) 19 964 23
P. Oleksiak (CAN) 100 m freestyle 52.70 Olympic Games 0.9648 (0.9435,0.9901) 19 964 23
Men
A. Peaty (GBR) 100 m breaststroke 57.13 Olympic Games 0.9989 (0.9926,1.0000) | 1042 |
M. Phelps (USA) 200 m ind. medley  1:54.66  Olympic Games 0.9913 (0.9787,0.9997) 2 983 I
G. Paltrinieri (ITA) 1500 m freestyle 14:34.04 Olympic Games 09911 (0.9799,0.9999) 3 990 6
A. Peaty (GBR) 50 m breaststroke  26.61 Olympic Games 0.9909 (0.9796,1.0000) 4 979 16
R. Murphy (USA) 100 m backstroke 51.85 Olympic Games 0.9884 (0.9778,0.9970) 5 1005 2
J. Prenot (USA) 200 m breaststroke  2:07.17  USA Olympic Trials 0.9877 (0.9776,0.9991) 6 996 3
C. McEvoy (AUS) 100 m freestyle 47.04 AUS Olympic Trials  0.9873  (0.9761,0.9979) 7 992 5
K. Hagino (JPN) 200 m ind. medley 1:55.07  Japan Nationals 0.9864 (0.9711,0.9984) 8 972 21
K. Hagino (JPN) 400 m ind. medley ~ 4:06.05  Olympic Games 0.9858 (0.9711,0.9978) 9 973 20
I. Watanabe (JPN) 200 m breaststroke 2:07.22  Olympic Games 0.9852 (0.9750,0.9980) 10 995 4
A. Govorov (UKR) 50 m butterfly 22.69 Open de France 0.9829 (0.9683,0.9975) 11 966 27
L. Cseh (HUN) 200 m butterfly 1:52.91 European Champs.  0.9807 (0.9639,0.9977) 12 963 30
C. Kalisz (USA) 400m ind. medley  4:06.75  Olympic Games 0.9794 (0.9620,0.9950) 13 965 29
J. Schooling (SIN) 100 m butterfly 50.39 Olympic Games 0.9794 (0.9627,0.9976) 14 966 27
D. Plummer (USA) 100 m backstroke 52.12 USA Olympic Trials  0.9772 (0.9635,0.9904) |5 990 6
M. Horton (AUS) 400 m freestyle 3:41.55  Olympic Games 0.9735 (0.9556,0.9904) 16 980 15
R. Murphy (USA) 100 m backstroke 1:53.62  Olympic Games 0.9724 (0.9537,0.9918) 17 955 35
S. Yang (CHN) 400 m freestyle 3:41.68  Olympic Games 0.9709 (0.9520,0.9889) 18 978 18
D. Balandin (KAZ) 200 m breaststroke 2:07.46  Olympic Games 0.9696 (0.9562,0.9892) 19 989 8
C. Jaeger (USA) 1500 m freestyle 14:39.48 Olympic Games 0.9679 (0.9487,0.9897) 20 971 23

GPD: generalized Pareto distribution; FINA: International Swimming Federation.
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Figure 6. GPD adequacy: GPD x 2016 world rankings
(women'’s events).
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Figure 7. FINA adequacy: FINA x 2016 world rankings
(women’s events).

is important to know which of the ‘““global rankings”
offered by the two methods is in line with the annual
world rankings of each event. For instance, in women’s
events, if the global ranking reflected exactly the 2016
world rankings, we would have the 17 swimmers best
ranked in each event in the first 17 positions. In the
subsequent 17 positions (18 to 34), we would have the
17 swimmers that ended 2016 ranked in second place in
each event, and so on.

Consequently, in this ideal situation, the correlation
between the 2016 world rankings and the global rank-
ings would be close to 1.

Obviously we will never have such ideal situation,
but we expect that the higher the correlation between
the variables, the more adequate the global ranking
(given by FINA and GPD methods) is.

Figures 6 to 9 show the scatter plots between the
global rankings (GPD/FINA) and the 2016 world rank-
ings, for women and men’s events, for the 500 best
ranked swimmers in their respective global ranking.

The correlation between the GPD ranking and
the 2016 world rankings in women’s events is 0.914.
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Figure 8. GPD adequacy: GPD x 2016 world rankings (men’s
events).
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Figure 9. FINA adequacy: FINA x 2016 world rankings (men’s
events).

The bigger discrepancy is, according to GPD, a swim-
mer placed in 38th (100 m backstroke) has a better per-
formance than a swimmer placed in 10th (1500 m
freestyle) in the 2016 world rankings.

The correlation between the FINA points system
and the 2016 world ranking in women’s events is
0.781. The bigger discrepancy is, according to FINA
points system, a swimmer placed in 67th (100 m back-
stroke) has a better performance than a swimmer
placed in 8th (50m backstroke) in the 2016 world
rankings.

The correlation between the GPD ranking and the
2016 world ranking in men’s events is 0.894. The bigger
discrepancy is, according to GPD, a swimmer placed in
43th (100m breaststroke) has a better performance
than a swimmer placed in 14th (50 m butterfly) in the
2016 world rankings.

The correlation between the FINA points system
and the 2016 world ranking in women’s events is
0.566. The bigger discrepancy is, according to FINA
points system, a swimmer placed in 87th (200 m breast-
stroke) has a better performance than a swimmer
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placed in 5th (50m butterfly) in the 2016 world
rankings.

It can be seen that the correlations are higher and the
discrepancies are smaller when the GPD rankings are
considered, in comparison to the FINA rankings.

Comparing different sports

Several comparisons can be conducted and it is possible
to compare different sports.

A natural comparison that arises is whether the
runner Usain Bolt of Jamaica is better than the swim-
mer Michael Phelps of United States. The question is
subjective and will never have a definitive answer.
However, using the results of this paper, it is possible
to check who has ever registered the best result in com-
parison to their rivals.

The following comparison will consider two of the
most spectacular results registered by the athletes: the
100m world record established by Bolt in the 2009
World Championships (9.58) and the 200 m individual
medley world record established by Phelps in the 2003
USA Nationals (1:55.94).

According to the procedure already described,
GPDs were adjusted to the two cases, considering 150
exceedances:

e Usain Bolt (2009, 100 m), we have got u=9.9300,
(SE(#) = 0.0100) and & = —0.0613 (SE(&) = 0.0714).

e Michael Phelps (2003, 200 m individual medley), we
have got u=1.6183, §=0.0213 (SE() = 0.0021)
and (SE(9) = 0.0616).

The AD and Kolmogorov-Smirnov p-values are
higher than 0.5 in both cases, indicating that the
adjusted distributions are reasonable for the data.

When we compare the exceedance probabilities,
1 — p, we got for Michael Phelps’ time in 200 m indi-
vidual medley the value 0.9993 (95% bootstrap
I.C.: (0.9918,1.000)), slightly higher than the one of
Usain Bolts” 100m, 0.9988 (95% bootstrap 1.C.:
(0.9928,1.000)). Even though the difference is not stat-
istically significant, the estimates of the exceedance
probabilities allow us to rank the performances, simi-
larly to the FINA points system. So, according to the
GPD criterion, Michael Phelps’ performance is better
than the one of Usain Bolt’s. Using FINA criterion
Phelps’ performance also would be better (1058 x 1034).

Conclusions

The FINA points system used for comparing perform-
ances from different swimming events is based solely in
world records. In quest of an alternative criterion, it is
proposed a new system, based on the probability

distribution of the best performances of the 100 fastest
swimmers of history in each event. Using extreme value
theory, it is possible to get the approximate distribution
of such data. Under certain conditions, the distribution
of data that exceeds a threshold is GPD, assuming that
the threshold is high enough.

The performance index based on the GPD was com-
puted, considering swimming performances until the
end of 2016. Each swimming time was used with the
correspondent event’s GPD, and the performance index
was computed by exceedance probability. We argue
that the proposed index is more reasonable than the
FINA point system, which has no theoretical founda-
tions and considers that world records of different
events have the same difficulty level. Also, it is possible
to use the proposed methodology in other sports, and
even to compare performances between different sports.
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