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Abstract

The International Swimming Federation has developed a points system that allows comparisons of results between

different events. Such system is important for several reasons, since it is used as a criterion to rank swimmers in awards

and selection procedures of national teams. The points system is based entirely on the world record of the corres-

pondent event. Since it is based on only one observation, this work aims to suggest a new system, based on the

probability distribution of the best performances in each event. Using extreme value theory, such distribution, under

certain conditions, converges to a generalized Pareto distribution. The new performance index, based on the peaks over

threshold methodology, is obtained based on the exceedance probabilities correspondent to the swimmers’ times that

exceed a given threshold. We work with 17 officially recognized events in 50 m pool, for each women and men, and

considered all-time rankings for all events until 31 December 2016. A study on the adequacy of the proposed generalized

Pareto distribution index and a comparison between the performances of Usain Bolt and Michael Phelps are also

conducted.
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Introduction

Competitive swimming has a non-subjective ranking
system, based on times. When one analyzes the results
of a given event, such criterion is free from arbitrariness
and is the universal way to choose the ‘‘best (fastest)
swimmers.’’ However, for some reasons, it might be
reasonable to compare performances in different
events. For example, the winning time of the 100m
freestyle in a given competition is better than the win-
ning time of the 200m butterfly?

Obviously, the concept of ‘‘better’’ needs to be
defined. Intuitively, a great performance is the one
that, in its respective event, corresponds to a discrepant
result in comparison to the others.

Such comparison is made by the International
Swimming Federation (FINA) through a points
system. It is important, since it is used to determine
the winners of the World Cup.1 It is also used by several
national federations as the criterion to determine
national teams, such as Brazil.2

In 2015, the FINA points system was used for the
first time to select the best performances of that year. In
2016, Katie Ledecky (United States) and Adam Peaty

(Great Britain) were chosen the best performers of the
year, by their performances in women’s 800m freestyle
and men’s 100m breaststroke, respectively, in Rio de
Janeiro Olympic Games.3

The FINA points system is based on what is called
the base times.4 The base times are defined every year,
based on the latest world record that was approved by
FINA. The base times are defined with the cut date of
31 December. So, in a given event, let TiðtÞ be the time
obtained by the swimmer i, in seconds, at the year t,
and Bðt� 1Þ the base time, which is the world record, in
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seconds, at the end of the year t–1. The points of the
swimmer i at the year t, PiðtÞ, are given by

PiðtÞ ¼ 1000
Bðt� 1Þ

TiðtÞ

� �3
$ %

ð1Þ

with xb c denoting the integer part of x. The fragility of
this methodology is the fact that the points system uses
little information—in fact, only the world record—and
does not have scientific support. World records of
different events do not necessarily represent the same
difficult level, and because of this they do not represent
a fair ground for comparisons.5

The motivation to obtain an alternative criterion is
to use a set of times as the base, and not only one time,
as the FINA points system, in equation (1), and the
evaluation of the data distribution.

Usually, studies about probability models in sports
data refer to records behavior and forecasts. The
majority of works is about athletics data and extreme
value theory.

Smith6 proposed a maximum likelihood (ML)
method for fitting models to a series of records and
applied his method to athletic records for the 1500m
and the marathon, comparing normal and extreme
value distributions. Robinson and Tawn7 considered
the annual best times in the women’s 3000m event
and applied several extreme values methods to evaluate
how discrepant was the 1993 world record time estab-
lished by the Chinese runner Wang Junxia. Barão and
Tawn8 studied the evolution of 1500m and 3000m
annual best times in a bivariate set-up. The analysis
conducted in these papers was based on the develop-
ment of top performances over time. This is not the
case in this paper. We are using only the top perform-
ances associated with a set of n athletes, as in Einmahl
and Magnus9 and Henriques-Rodrigues, Gomes and
Pestana,10 who evaluated how good was a world
record in comparison to the others and what were the
estimated ultimate world records. Adam and Tawn11

performed an analysis of swimming times data over
different events and modeling evolution over time
using a bivariate extreme value analysis. Stephenson
and Tawn12 used a Bayesian framework and Markov
chain Monte Carlo methods to simultaneously model
performances over both time and event distance in
athletics.

In this paper, some ideas explored by the papers
cited above will be used to evaluate a theoretically jus-
tified criterion alternative to the FINA’s one. Such
methodology could be applied to athletics as well.
Regarding the data, they will be used in the same
approach as Einmahl and Magnus,9 who analyzed
athletics historical rankings. In this paper, the aim is
to compare performances that do not necessarily

represent world records. Our approach is based on
Fisher-Tippet and PickandsBalkemade Haan theorems
and the peaks over threshold (POT) methodology.13–15

The paper is organized as follows. Firstly, we
describe the data related with the swimming events
under study. Next, we present some preliminary results
in extreme value theory related with the peaks over
threshold (POT) methodology and present the new gen-
eralized Pareto distribution (GPD) performance index
proposed for performance comparisons between differ-
ent swimming events. Then, we present the application
of the POT methodology to the data sets under consid-
eration, the performance comparisons, the GPD’s suit-
ability and a comparison between Usain Bolt and
Michael Phelps best performances. Finally, some con-
clusions are drawn regarding the FINA points system
and the new GPD performance index.

Data

In this paper, the aim is to evaluate swimming per-
formances from 2016 to point out the better results of
that year.

There are 34 officially recognized individual swim-
ming events in 50m pool, 17 for women and 17 for
men, in the following distances and styles: 50m, 100m,
200m, 400m, 800m, and 1500m freestyle; 50m, 100m,
and 200m butterfly; 50m, 100m, and 200m backstroke;
50m, 100m, and 200m breaststroke; and 200m, and
400m individual medley. The all-time rankings for all
events are considered, until 31 December 2016.

The database is comprised of world rankings pub-
lished by FINA (http://www.fina.org) and SwimNews
(http://www.swimnews.com) websites from 1990 on
and an all time world ranking published by
Swimming World Magazine website (http://www.swim
mingworldmagazine.com) in 2007.

The data correspond to the best times over all times
until 31 December 2016. Only the best time of each
athlete is considered in each event. Obviously, one ath-
lete may have several times registered, which are corre-
lated. So, considering only the best time is a way to
guarantee the independence assumption. We collected
data on the personal best performances of as many of
the top athletes in each event as we could, taking care
that no ‘‘holes’’ occur in the list. Thus, if an athlete
appears on our list, then all athletes with a better per-
sonal mark will also appear on our list. Table 1 gives an
overview of the number of athletes (the depth) and the
worst and best results for each event in the sample.

It is very frequent to obtain repeated values (clus-
ters) for several athletes, due to the lack of precision of
the measurements and discretization of data, the times
being registered to the second decimal place. Because
clusters can cause problems in the estimation and in the
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evaluation of the goodness-of-fit tests, we smoothed the
data, according to the procedure suggested by Einmahl
and Magnus.9 So, if r athletes complete the 100m free-
style for women in the time of t0 seconds (s), the r
results are smoothed in the interval
�t0 � 0:005, t0 þ 0:005½ in the following way, where
tskð:Þ is the time after smoothing of the kth athlete, in s

tskðt0Þ ¼ ðt0 � 0:005Þ þ 0:01
2k� 1

2r
, k ¼ 1, . . . , r:

This procedure was conducted for all the observed
clusters, resulting in a new data set denoted by
T ¼ ftj, j ¼ 1, . . . , ng.

Besides that, one more transformation is required
for the subsequent analysis. Usually, the extreme
value theory deals with inference based on sample
maxima. Since swimming times implies a sample
minima analysis, we have to transpose the smoothed
swimming times to a maxima context. This is done con-
verting the times in swimming speeds, so that a lower
swimming time corresponds to a higher speed. This
way, selecting the lowest time for an athlete is equiva-
lent to selecting the highest speed.

Preliminary results in extreme
value theory

Let us think on any swimming event, like for instance
the women’s 100m freestyle. Let Xi, 1 � i � N, denote

the best personal mark of the ith athlete, N the number
of athletes being considered. By ‘‘best personal mark,’’
we mean the swimming time transformed to speed, so
the higher the speed, the best. Note that N is different
from n, which refers to the sample size available,
whereas N is the number of athletes that has swum
the event in the world.

We consider these N personal bests as independent,
identically distributed (i.i.d.) observations from some
distribution function (d.f.) F. Let X1:N � X2:N �

. . . � XN:N be the associated order statistics, so that
XN:N denotes the world record.

Suppose that there exists real sequences aN> 0 and
bN 2 R such that ðXN:N � bNÞ=aN converges in distribu-
tion for some non-degenerate d.f. G(x), i.e.

lim
N!1

P
XN:N � bN

aN
� x

� �
¼ lim

N!1
FNðaNxþ bNÞ ¼ GðxÞ:

ð2Þ

If this condition holds, we say that F is in the max-
domain of attraction of G and we write F 2 DðGÞ.
According to the Fisher-Tippet theorem,15 if
F2D(G), the d.f. G in equation (2) is in the family of
G�, where G� is the d.f. of the generalized extreme value
(GEV) distribution, given by

G�ðxÞ ¼
exp �ð1þ �xÞ�1=�

� �
, if � 6¼ 0

exp expð�xÞ
� �

, if � ¼ 0

(
ð3Þ

Table 1. Summary data until 31 December 2016.

Women Men

Event Depth (n) Best Worst Depth (n) Best Worst

50 m freestyle 595 23.73 25.75 486 20.91 22.66

100 m freestyle 546 52.06 55.79 458 46.91 49.68

200 m freestyle 557 1:52.98 2:00.39 491 1:42.00 1:49.29

400 m freestyle 488 3:56.46 4:12.83 438 3:40.07 3:52.33

800 m freestyle 440 8:04.79 8:40.38 485 7:32.12 8:06.85

1500 m freestyle 457 15:25.48 16:43.58 469 14:31.02 15:24.64

50 m butterfly 602 24.43 27.46 499 22.43 24.32

100 m butterfly 527 55.48 1:00.08 373 49.82 53.16

200 m butterfly 445 2:01.81 2:11.96 562 1:51.51 1:59.70

50 m backstroke 649 27.06 29.54 594 24.04 26.19

100 m backstroke 645 58.12 1:02.54 550 51.85 55.83

200 m backstroke 589 2:04.06 2:13.99 626 1:51.92 2:01.75

50 m breaststroke 509 29.28 32.29 537 26.42 28.48

100 m breaststroke 489 1:04.35 1:09.71 469 57.13 1:01.92

200 m breaststroke 556 2:19.11 2:30.34 525 2:07.01 2:14.68

200 m ind. medley 583 2:06.12 2:16.26 534 1:54.00 2:02.78

400 m ind. medley 620 4:26.36 4:48.79 667 4:03.84 4:23.87
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where 1þ �x4 0. The shape parameter � is directly
related with the right-tail of the d.f. G� and it deter-
mines the weight of the right-tail of G�. The shape par-
ameter is also known as the tail index and is one of the
main parameters in extreme value theory. For �¼ 0, we
say that d.f. G0ðxÞ, in equation (3), is in the max-
Gumbel-type domain of attraction, which contains
exponential right-tailed distributions such as normal,
exponential, Gama and Gumbel itself. If �4 0, G�ðxÞ,
in equation (3), is in the max-Fréchet-type domain of
attraction, which contains heavy right-tailed distribu-
tions such as Pareto, Student-t and Fréchet itself. If
�5 0, G�ðxÞ, in equation (3), is in the max-Weibull-
type domain of attraction, which contains light right-
tailed distributions such as Beta and Weibull itself.15

POT methodology

The POT methodology refers to the analysis of random
variables that exceed a given high and fixed threshold u.
The observations that exceed such threshold u are
called exceedances over u.

Let xF be the finite or infinite right endpoint of the
support of F, i.e. xF ¼ supfx 2 R : FðxÞ5 1g. The con-
ditional d.f. of the exceedances over u is given by

FuðxÞ ¼ PðX� u � xjX4 uÞ ¼
Fðxþ uÞ � FðuÞ

1� FðuÞ

for 0 � x � xF � u. Balkema and de Haan16 and
Pickands17 proved that, for a sufficiently high threshold
u and under the validity of equation (2), the conditional
d.f. Fu may be well approximated by GPD, they proved
that the GPD is the limiting distribution of suitably
normalized exceedances when u! xF. Such result is
known as the Pickands–Balkema–de Haan theorem,14

and the GPD is expressed by

G�,�ðxÞ ¼
1� ð1þ �x=�Þ�1=�, if � 6¼ 0,

1� expf�x=�g, if � ¼ 0,

(
ð4Þ

where �4 0 is a scale parameter and the support is
x � 0 if � � 0 and 0 � x � ��=� if �5 0.13

The theorem suggests that, for a sufficiently high
threshold u, the d.f. of the exceedances, i.e. d.f of the
athletes’ performances that are higher than u, can be
approximated by a GPD.

We perform the analysis of maxima of speeds,
instead of minima of times. According to Wadsworth
et al.,18 the settings can result in potentially different
results. However, we opted to analyze the maxima of
speeds because POT methodology is based on the con-
ditional d.f. of the exceedances over threshold. To per-
form the analysis of minima of times, one could negate
the data and analyze that.

The choice of the threshold u is still an open prob-
lem. Some methods are suggested in the literature (see
Vicente19 for an overview on the subject).

Davison and Smith20 suggest the use of the Mean
Excess function, eðuÞ ¼ EðX� ujX4 uÞ: Instead of
working with the exceedances over u, we can work
with the excesses, represented by the r.v. Y :¼ X� u.
If Y follows a GPD distribution, then eðuÞ ¼ ð� þ �uÞ=
ð1� �Þ, if �5 1 So, if the GPD assumption is true, the
plot of e(u) versus u, called mean excess plot (ME-Plot),
should follow a straight line with intercept �=ð1� �Þ
and slope �=ð1� �Þ. In practice, based on a sample
size n, x1 � � � xn, e(u) is estimated by its empirical coun-
terpart, the sample mean excess function

ênðuÞ ¼

Pn
i¼1 xiIðxi 4 uÞPn
i¼1 Iðxi 4 uÞ

� u

where Iðxi 4 uÞ is the indicator function of the event
(set) fxi : xi 4 ug, given by 1, if xi 4 u and 0 otherwise.

We generally construct the sample ME-plot with
pairs xn�kn and ênðxn�k:nÞ, k ¼ 1, . . . , n� 1 where xk:n

is the kth order statistics. If the data over a high thresh-
old is well fitted by a GPD, we would expect the sample
ME-plot to become linear. But even for data that are
genuinely GP-distributed, the sample ME-plot is
seldom perfectly linear, particularly toward the right-
hand side, where we are averaging a small number of
large excesses. We often omit the final few points from
consideration, as they can severely distort the plot.13

Consequently, the threshold u is chosen at the point
to the right of which a rough linear pattern appears
in the plot.

Coles21 suggests to fit the GPD at a range of thresh-
olds, and to look for stability of parameter estimates.

If a GPD is a reasonable model for the excesses over
a threshold u0, then the excesses over a higher threshold
u, u4 u0, should also follow a GPD. The shape param-
eters of the two distributions are identical, as well as the
reparameterized scale parameter

�� ¼ �u � �u:

Consequently, estimates of both �� and � should be
constant above u0, if u0 is a valid threshold for excesses
to follow the GPD. This argument suggests plotting
both �̂� and against u, together with confidence inter-
vals for each of these quantities, and selecting u0 as the
lowest value of u for which the estimates remain near-
constant. Sampling variability means that the estimates
of these quantities will not be exactly constant, particu-
larly towards the right-hand side, where we deal with a
small number of large excesses.
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After the determination of threshold, the estima-
tion of � and � should be conducted, based on the avail-
able data. There are several estimation methods
available in the literature. For a deeper discussion
about its practical aspects, please refer to Bermudez
and Kotz.22

Given a threshold u, the exceedance probability p of
a high level x0, in a GPD context, can be estimated
through its d.f. by p̂ ¼ 1� G�̂,�̂ðx0 � uÞ, with G�,�
given in equation (4). Such value is the GPD perform-
ance index proposed in this article for performance
comparisons between different swimming events or dif-
ferent sports events.

Let A and B be two distinct swimming events and
ðuA; nuA; �̂A, �̂AÞ and ðuB; nuB; �̂B, �̂BÞ the thresholds, u,
number of exceedances above the threshold u, nu, and
the scale and shape estimators, ð�̂, �̂Þ, associated to the
events A and B, respectively. Let xA be the mark
obtained by an athlete in event A and xB the mark
obtained by other athlete in event B and let us
assume that . With G�,� given in equation (4), the excee-
dance probabilities associated to xA and xB are,
respectively,

p̂A ¼ 1� G�̂A,�̂A ðxA � uAÞ and

p̂B ¼ 1� G�̂B,�̂BðxB � uBÞ:

We say that xA is better than xB, i.e. we say that the
mark attained by an athlete in the event A, xA, is better
than the mark attained by another athlete in the event
B, xB, if and only if p̂A 5 p̂B or, similarly, if and only if
1� p̂A 4 1� p̂B, the criterion used later on in the data
sets under consideration.

Application

Preliminary data analysis and threshold selection

Consider one swimming event and let X1,X2, . . . ,XN

denote the best personal marks, in m/s, of all N athletes
in the world in this event. The definition and possible
measurement of N are difficult. Fortunately, the value
of N turns to be unimportant.9

We consider these N best personal marks as
i.i.d. observations from some d.f. F. According to the
results presented in the previews section, for a
high enough threshold u, the distribution of Xi condi-
tional to Xi 4 u converges to a GPD, 1 � i � N,
under certain conditions. Such result can be used to
model the tail of the distribution of the best personal
marks and give a measure of how much the ith athlete
is discrepant from the distribution of all swimmers
in the world.

As mentioned before, we use ME-plots and param-
eter stability plots to determine the threshold associated
to each distribution.

If the GPD assumption is valid, the ME-plot should
follow a straight line from the threshold on.14 Figures 1
and 2 display the ME-plots for the women’s and men’s
400m freestyle, where we can see decaying patterns.
However, apart from the high volatility characterizing
the top sample, it is possible to note two linear patterns,
shown by the lines indicated by 1 and 2. The two linear
patterns are separated by a kink, visible at 1.59 and
1.73, respectively. As the objective of the POT method-
ology is to induce a cut-off in the sample above which
the sample ME-plot follows a linear trend, these values
are good candidates for the thresholds of the GPD.

Figures 3 and 4 display the stability plots for the
same events, women’s and men’s 400m freestyle.
The parameters are estimated by ML. Note that both
parameter estimates remain near-constant above the
mentioned values of 1.59 and 1.73, respectively.

We see that, toward the right-hand side, the confi-
dence intervals for the parameters seem unreliable. In
fact, one can expect to face numerical problems with

Figure 1. Women’s 400 m freestyle ME-plot.

Figure 2. Men’s 400 m freestyle ME-plot.

Gomes and Henriques-Rodrigues 5



ML estimates of a GPD when dealing with a small
number of large excesses.22 This is an important issue
to be discussed in the next section in order to choose the
value of the thresholds.

Such analysis was conducted similarly for all
events. In Table 2, the chosen thresholds can
be found, as well as the respective number of excee-
dances, nu.

Figure 4. Reparameterized scale and shape parameters estimates versus threshold, men’s 400 m freestyle.

Figure 3. Reparameterized scale and shape parameters estimates versus threshold, women’s 400 m freestyle.
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Fitting the GPD

Since the aim of this work is to compare performances
in different events by the computation of exceedance
probabilities, it is convenient that the distributions of
different events be based on the same number of
observations.

The chosen value for the threshold must be high
enough to guarantee the GPD assumption, but not so
high, so there can be a significant amount of observa-
tions for the estimation process.

If one particular GPD has threshold u, the observa-
tions above the threshold u1 with u1 4 u also follow a
GPD, with the same � shape parameter.14 All 34 events
in study have more than 150 exceedances for the chosen
thresholds. If we choose the thresholds that results in
150 exceedances in each event (these thresholds must be
higher than the previously chosen thresholds), we can
expect that these exceedances follow GPDs.

One of the key issues here is considering the data
identically distributed. If the time trend effect was big,
then a single GPD fitted to all the data would start to
fail to be a good fit as the signal in the trend would
outweigh the noise in the GPD. But, in fact, 86% of the
data comes from the period 2007–2016, and only 4%
were registered before 1996 (the earliest year from
which a swimmer’s time is included in the data analysis
is 1976). We consider that it is reasonable to model the
data as being identically distributed as the trends are
small over the time range of the data relative to the

natural variation in the data in any given year.
Figure 5 shows the histogram of the years in which
the data occur.

Table 3 shows the thresholds for each event con-
sidering 150 exceedances, the estimated parameters
computed by ML and its standard errors. We also pre-
sent the p-values for the goodness-of-fit statistics
Anderson-Darling (AD) and Cramér-von Mises for
the adjustment of each event to the GPD. The p-
values are obtained based on the tables given in
Choulakian and Stephens.23 Although not all p-values
are above 0.05, they are, under the null hypothesis, uni-
formly distributed on (0, 1), as expected under the
assumption of GPD data.

In order to check the stability of the method, we
conducted the same analysis considering 160, 170,
180, 190, and 200 exceedances. The results are similar
in terms of parameter estimates and goodness-of-fit
tests.

Comparison of performances

For the comparison of performances in different events,
the proposed criterion suggests the comparison of the
exceedance probabilities of each event, based on esti-
mated GPDs, according to the procedure described.

Table 4 shows the best performances of 2016,
according to the proposed methodology, as well as
the FINA points system and the correspondent rank.
It is considered only the best performance of each ath-
lete in each event. For women and men, the best per-
formers, by the GPD, are the same as FINA ones:
Katie Ledecky from United States and Adam Peaty
from Great Britain, respectively. However, for FINA,
Ledecky has the best performance for the 400m free-
style, and by the GPD her best performance was
obtained in the 800m freestyle, which is in accord to
what specialists say.24 It is worth noting that in 2016,
the 800 m freestyle performance by Katie Ledecky has a
very small exceedance probability, which indicates that

Table 2. Selected thresholds and number of exceedances.

Women Men

Event u nu u nu

50 m freestyle 1.9735 218 2.2336 235

100 m freestyle 1.8194 214 2.0401 184

200 m freestyle 1.6900 173 1.8424 287

400 m freestyle 1.5955 261 1.7379 201

800 m freestyle 1.5614 174 1.6619 234

1500 m freestyle 1.5181 181 1.6407 209

50 m butterfly 1.8701 159 2.0968 156

100 m butterfly 1.6850 265 1.9014 188

200 m butterfly 1.5308 267 1.7020 177

50 m backstroke 1.7393 183 1.9596 152

100 m backstroke 1.6444 157 1.8216 223

200 m backstroke 1.5249 203 1.6783 175

50 m breaststroke 1.5871 150 1.7974 152

100 m breaststroke 1.4669 171 1.6467 151

200 m breaststroke 1.3534 235 1.5067 240

200 m ind. medley 1.4938 217 1.6612 153

400 m ind. medley 1.4064 253 1.5419 250

Figure 5. Histogram of the years in which the data occur.
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it corresponds to one of the greatest performances of all
time. In other ranks, we can observe notable differences
between the two criteria and eventually in other occa-
sions the two criteria may point out different swimmers
for the first position. The 95% C.I. for the exceedance
probabilities presented in the table is computed by
bootstrap methods (10,000 resamples).

Conducting the same analysis considering 160, 170,
180, 190, and 200 exceedances, the rankings are similar.
For all number of exceedances, the rankings are

composed by the same 40 performances shown in
Table 4. Few changes in order are observed. For
instance, considering 200 exceedances, only one
switch of positions is observed in the women’s ranking,
and four are observed in the men’s ranking.

GPD’s adequacy

A question that arises is to know if the GPD perform-
ance index is more reliable than the FINA one. Also, it

Table 3. GPD fitting (150 observations in each event), ML estimates, standard errors, and goodness-of-fit tests.

Event u �̂ SE
�
�̂
�

�̂ SEð�̂ Þ p AD p CVM

Women

50 m freestyle 1.986 �0.143 0.095 0.035 0.004 ½0:25,0:5Þ �0:5

100 m freestyle 1.828 �0.261 0.067 0.031 0.003 ½0:1,0:25Þ ½0:1,0:25Þ

200 m freestyle 1.692 �0.123 0.078 0.019 0.002 �0:5 �0:5

400 m freestyle 1.608 �0.118 0.075 0.019 0.002 ½0:25,0:5Þ ½0:25,0:5Þ

800 m freestyle 1.565 �0.183 0.049 0.02 0.002 ½0:005,0:01Þ

1500 m freestyle 1.521 �0.174 0.063 0.025 0.003 �0:5 �0:5

50 m butterfly 1.874 �0.156 0.06 0.04 0.004 ½0:1,0:25Þ

100 m butterfly 1.704 �0.145 0.091 0.026 0.003 ½0:025,0:05Þ ½0:025,0:05Þ

200 m butterfly 1.544 �0.194 0.065 0.026 0.003 �0:5 �0:5

50 m backstroke 1.746 �0.277 0.077 0.037 0.004 ½0:25,0:5Þ ½0:25,0:5Þ

100 m backstroke 1.646 �0.183 0.093 0.024 0.003 ½0:25,0:5Þ ½0:25,0:5Þ

200 m backstroke 1.532 �0.182 0.078 0.023 0.003 ½0:25,0:5Þ ½0:25,0:5Þ

50 m breaststroke 1.587 �0.215 0.072 0.033 0.004 ½0:25,0:5Þ ½0:25,0:5Þ

100 m breaststroke 1.471 �0.203 0.077 0.025 0.003 �0:5 �0:5

200 m breaststroke 1.365 �0.259 0.081 0.026 0.003 ½0:05,0:1Þ ½0:25,0:5Þ

200 m ind. medley 1.502 �0.136 0.08 0.023 0.003 [0:25;0:5) ½0:1,0:25Þ

400 m ind. medley 1.422 �0.178 0.071 0.022 0.002 ½0:005,0:01Þ ½0:01,0:025Þ

Men

50 m freestyle 2.25 �0.031 0.106 0.033 0.004 ½0:05,0:1Þ ½0:025,0:05Þ

100 m freestyle 2.047 �0.278 0.079 0.031 0.003 [0.25,0.5) ½0:25,0:5Þ

200 m freestyle 1.86 �0.06 0.073 0.02 0.002 ½0:1,0:25Þ ½0:05,0:1Þ

400 m freestyle 1.747 �0.186 0.084 0.022 0.003 �0:5 �0:5

800 m freestyle 1.673 �0.143 0.074 0.024 0.003 �0:5 �0:5

1500 m freestyle 1.649 �0.281 0.075 0.026 0.003 �0:5 �0:5

50 m butterfly 2.099 �0.227 0.071 0.039 0.004 ½0:025,0:05Þ ½0:025,0:05Þ

100 m butterfly 1.909 �0.19 0.07 0.028 0.003 �0:5 �0:5

200 m butterfly 1.706 �0.172 0.074 0.023 0.002 �0:5 �0:5

50 m backstroke 1.961 �0.311 0.064 0.044 0.004 �0:5 �0:5

100 m backstroke 1.837 �0.162 0.095 0.029 0.004 ½0:25,0:5Þ ½0:25,0:5Þ

200 m backstroke 1.684 �0.174 0.075 0.028 0.003 �0:5 �0:5

50 m breaststroke 1.798 �0.244 0.063 0.029 0.003 ½0:25,0:5Þ ½0:1,0:25Þ

100 m breaststroke 1.647 �0.104 0.073 0.021 0.002 ½0:1,0:25Þ ½0:25,0:5Þ

200 m breaststroke 1.52 �0.522 0.054 0.031 0.002 ½0:001,0:005Þ ½0:001,0:005Þ

200 m ind. medley 1.661 �0.103 0.076 0.022 0.002 �0:5 �0:5

400 m ind. medley 1.555 �0.14 0.08 0.022 0.003 ½0:25,0:5Þ ½0:25,0:5Þ

AD: Anderson-Darling; CVM: Cramér-von Mises.
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Table 4. Performance index comparisons: GPD and FINA.

Athlete Event Time Competition 1� p̂

95% C.I. for

1� p̂

GPD

rank

FINA

points

FINA

rank

Women

K. Ledecky (USA) 800 m freestyle 8:04.79 Olympic Games 0.9996 ð0:9962,1:0000Þ 1 1016 3

K. Ledecky (USA) 400 m freestyle 3:56.46 Olympic Games 0.9983 ð0:9913,1:0000Þ 2 1024 1

K. Hosszu (HUN) 400 m ind. medley 4:26.36 Olympic Games 0.9976 ð0:9889,1:0000Þ 3 1023 2

C. Campbell (AUS) 100 m freestyle 52.06 AUS Grand Prix 0.9968 ð0:9896,1:0000Þ 4 1001 5

S. Sjoström (SWE) 100 m butterfly 55.48 Olympic Games 0.9959 ð0:9860,1:0000Þ 5 1009 4

K. Hosszú (HUN) 200 m ind. medley 2:06.58 Olympic Games 0.9909 ð0:9790,0:9996Þ 6 989 6

K. Ledecky (USA) 200 m freestyle 1:53.73 Olympic Games 0.9894 (0.9753,0.9992) 7 980 11

S. Sjoström (SWE) 50 m butterfly 24.99 European Champs. 0.9880 (0.9739,1.0000) 8 934 80

S. O’Connor (GBR) 200 m ind. medley 2:06.88 Olympic Games 0.9876 ð0:9742,0:9987Þ 9 982 10

R. Kaneto (JPN) 200 m breaststroke 2:19.65 Japan Nationals 0.9868 ð0:9749,0:9975Þ 10 988 7

C. Campbell (AUS) 50 m freestyle 23.84 AUS Olympic Trials 0.9847 ð0:9728,0:9955Þ 11 986 8

S. Sjoström (SWE) 200 m freestyle 1:54.08 Olympic Games 0.9828 ð0:9659,0:9974Þ 12 971 15

L. King (USA) 100 m breaststroke 1:04.93 Olympic Games 0.9814 ð0:9665,0:9964Þ 13 973 12

K. Hosszú (HUN) 100 m backstroke 58.45 Olympic Games 0.9768 ð0:9614,0:9910Þ 14 983 9

B. Campbell (AUS) 100 m freestyle 52.58 AUS Olympic Trials 0.9751 ð0:9575,0:9958Þ 15 971 15

L. Smith (USA) 400 m freestyle 4:00.65 USA Olympic Trials 0.9717 ð0:9495,0:9947Þ 16 972 14

F. Pellegrini (ITA) 200 m freestyle 1:54.55 Trofeo Sette Colli 0.9687 ð0:9462,0:9899Þ 17 959 27

R. Meilutyte (LTU) 50 m breaststroke 29.98 Mare Nostrum 0.9686 ð0:9486,0:9950Þ 18 950 48

S. Manuel (USA) 100 m freestyle 52.70 Olympic Games 0.9648 ð0:9439,0:9897Þ 19 964 23

P. Oleksiak (CAN) 100 m freestyle 52.70 Olympic Games 0.9648 ð0:9435,0:9901Þ 19 964 23

Men

A. Peaty (GBR) 100 m breaststroke 57.13 Olympic Games 0.9989 ð0:9926,1:0000Þ 1 1042 1

M. Phelps (USA) 200 m ind. medley 1:54.66 Olympic Games 0.9913 ð0:9787,0:9997Þ 2 983 11

G. Paltrinieri (ITA) 1500 m freestyle 14:34.04 Olympic Games 0.9911 ð0:9799,0:9999Þ 3 990 6

A. Peaty (GBR) 50 m breaststroke 26.61 Olympic Games 0.9909 ð0:9796,1:0000Þ 4 979 16

R. Murphy (USA) 100 m backstroke 51.85 Olympic Games 0.9884 ð0:9778,0:9970Þ 5 1005 2

J. Prenot (USA) 200 m breaststroke 2:07.17 USA Olympic Trials 0.9877 ð0:9776,0:9991Þ 6 996 3

C. McEvoy (AUS) 100 m freestyle 47.04 AUS Olympic Trials 0.9873 ð0:9761,0:9979Þ 7 992 5

K. Hagino (JPN) 200 m ind. medley 1:55.07 Japan Nationals 0.9864 ð0:9711,0:9984Þ 8 972 21

K. Hagino (JPN) 400 m ind. medley 4:06.05 Olympic Games 0.9858 ð0:9711,0:9978Þ 9 973 20

I. Watanabe (JPN) 200 m breaststroke 2:07.22 Olympic Games 0.9852 ð0:9750,0:9980Þ 10 995 4

A. Govorov (UKR) 50 m butterfly 22.69 Open de France 0.9829 ð0:9683,0:9975Þ 11 966 27

L. Cseh (HUN) 200 m butterfly 1:52.91 European Champs. 0.9807 (0.9639,0.9977) 12 963 30

C. Kalisz (USA) 400 m ind. medley 4:06.75 Olympic Games 0.9794 ð0:9620,0:9950Þ 13 965 29

J. Schooling (SIN) 100 m butterfly 50.39 Olympic Games 0.9794 ð0:9627,0:9976Þ 14 966 27

D. Plummer (USA) 100 m backstroke 52.12 USA Olympic Trials 0.9772 ð0:9635,0:9904Þ 15 990 6

M. Horton (AUS) 400 m freestyle 3:41.55 Olympic Games 0.9735 ð0:9556,0:9904Þ 16 980 15

R. Murphy (USA) 100 m backstroke 1:53.62 Olympic Games 0.9724 ð0:9537,0:9918Þ 17 955 35

S. Yang (CHN) 400 m freestyle 3:41.68 Olympic Games 0.9709 ð0:9520,0:9889Þ 18 978 18

D. Balandin (KAZ) 200 m breaststroke 2:07.46 Olympic Games 0.9696 ð0:9562,0:9892Þ 19 989 8

C. Jaeger (USA) 1500 m freestyle 14:39.48 Olympic Games 0.9679 (0.9487,0.9897) 20 971 23

GPD: generalized Pareto distribution; FINA: International Swimming Federation.
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is important to know which of the ‘‘global rankings’’
offered by the two methods is in line with the annual
world rankings of each event. For instance, in women’s
events, if the global ranking reflected exactly the 2016
world rankings, we would have the 17 swimmers best
ranked in each event in the first 17 positions. In the
subsequent 17 positions (18 to 34), we would have the
17 swimmers that ended 2016 ranked in second place in
each event, and so on.

Consequently, in this ideal situation, the correlation
between the 2016 world rankings and the global rank-
ings would be close to 1.

Obviously we will never have such ideal situation,
but we expect that the higher the correlation between
the variables, the more adequate the global ranking
(given by FINA and GPD methods) is.

Figures 6 to 9 show the scatter plots between the
global rankings (GPD/FINA) and the 2016 world rank-
ings, for women and men’s events, for the 500 best
ranked swimmers in their respective global ranking.

The correlation between the GPD ranking and
the 2016 world rankings in women’s events is 0.914.

The bigger discrepancy is, according to GPD, a swim-
mer placed in 38th (100m backstroke) has a better per-
formance than a swimmer placed in 10th (1500m
freestyle) in the 2016 world rankings.

The correlation between the FINA points system
and the 2016 world ranking in women’s events is
0.781. The bigger discrepancy is, according to FINA
points system, a swimmer placed in 67th (100m back-
stroke) has a better performance than a swimmer
placed in 8th (50m backstroke) in the 2016 world
rankings.

The correlation between the GPD ranking and the
2016 world ranking in men’s events is 0.894. The bigger
discrepancy is, according to GPD, a swimmer placed in
43th (100m breaststroke) has a better performance
than a swimmer placed in 14th (50m butterfly) in the
2016 world rankings.

The correlation between the FINA points system
and the 2016 world ranking in women’s events is
0.566. The bigger discrepancy is, according to FINA
points system, a swimmer placed in 87th (200m breast-
stroke) has a better performance than a swimmer

Figure 8. GPD adequacy: GPD � 2016 world rankings (men’s

events).

Figure 7. FINA adequacy: FINA � 2016 world rankings

(women’s events).

Figure 6. GPD adequacy: GPD � 2016 world rankings

(women’s events).

Figure 9. FINA adequacy: FINA � 2016 world rankings (men’s

events).
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placed in 5th (50m butterfly) in the 2016 world
rankings.

It can be seen that the correlations are higher and the
discrepancies are smaller when the GPD rankings are
considered, in comparison to the FINA rankings.

Comparing different sports

Several comparisons can be conducted and it is possible
to compare different sports.

A natural comparison that arises is whether the
runner Usain Bolt of Jamaica is better than the swim-
mer Michael Phelps of United States. The question is
subjective and will never have a definitive answer.
However, using the results of this paper, it is possible
to check who has ever registered the best result in com-
parison to their rivals.

The following comparison will consider two of the
most spectacular results registered by the athletes: the
100m world record established by Bolt in the 2009
World Championships (9.58) and the 200m individual
medley world record established by Phelps in the 2003
USA Nationals (1:55.94).

According to the procedure already described,
GPDs were adjusted to the two cases, considering 150
exceedances:

. Usain Bolt (2009, 100m), we have got u¼ 9.9300,
(SEð�̂Þ ¼ 0:0100) and �̂ ¼ �0:0613 (SEð�̂Þ ¼ 0:0714).

. Michael Phelps (2003, 200m individual medley), we
have got u¼ 1.6183, �̂ ¼ 0:0213 (SEð�̂Þ ¼ 0:0021)
and (SEð�̂Þ ¼ 0:0616).

The AD and Kolmogorov-Smirnov p-values are
higher than 0.5 in both cases, indicating that the
adjusted distributions are reasonable for the data.

When we compare the exceedance probabilities,
1� p̂, we got for Michael Phelps’ time in 200m indi-
vidual medley the value 0.9993 (95% bootstrap
I.C.: (0.9918,1.000)), slightly higher than the one of
Usain Bolts’ 100m, 0.9988 (95% bootstrap I.C.:
(0.9928,1.000)). Even though the difference is not stat-
istically significant, the estimates of the exceedance
probabilities allow us to rank the performances, simi-
larly to the FINA points system. So, according to the
GPD criterion, Michael Phelps’ performance is better
than the one of Usain Bolt’s. Using FINA criterion
Phelps’ performance also would be better (1058� 1034).

Conclusions

The FINA points system used for comparing perform-
ances from different swimming events is based solely in
world records. In quest of an alternative criterion, it is
proposed a new system, based on the probability

distribution of the best performances of the 100 fastest
swimmers of history in each event. Using extreme value
theory, it is possible to get the approximate distribution
of such data. Under certain conditions, the distribution
of data that exceeds a threshold is GPD, assuming that
the threshold is high enough.

The performance index based on the GPD was com-
puted, considering swimming performances until the
end of 2016. Each swimming time was used with the
correspondent event’s GPD, and the performance index
was computed by exceedance probability. We argue
that the proposed index is more reasonable than the
FINA point system, which has no theoretical founda-
tions and considers that world records of different
events have the same difficulty level. Also, it is possible
to use the proposed methodology in other sports, and
even to compare performances between different sports.
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