
Métodos Discretos em Computação Gráfica

Antonio Elias Fabris Luciano Silva

Computer Gra.phics and Applied Computational Gcometry Projcct (CGCAP)
Instituto de Matemática e Estatística, Universidade de São Paulo

Caixa Postal 66281, 05315-970, São Paulo-SP, Brazil
aef,lucianos~ime.usp .br

1 Introdução

Um dos objetivos centrais da computação gráfica é produzir imagens a partir de um mode­
lo, processo denominado renderização. Um modelo pode ser descrito como um conjunto .de
objetos gráficos: um objeto gráfico O consiste de uma família finita U = {U1, ••• , Um} de
subconjuntos, U; e IR", de algum espaço euclidiano IR", e uma função F : U1 U ... LJ Um ➔
IR1' . A família U é chamada de conjunto ele dados geométricos e define a forma (geometria
e topologia) do objeto, e J é a função atributo do objeto que define, por exemplo, a cor e
textura do objetos. A dimensão da união U1 LJ ... LJ Um define a dimensão do objeto.

Objetos podem ser combinados de várias maneiras para produzir objetos mais com­
plexos:

• usando operações booleanas, como união, intersecção e diferença;

• usando operações morfológicas, como a soma e subtração de Minkowski.

• uma seqüência de objetos q-dimensíonais pode definir um objeto (q + !)-dimensional
por li111il.açiio. Por mw111plo, uma curva fechada simples no plano cldimita e define
uma região 2-dimensional.

A formação de objetos complexos através de operações booleanas tem grande importância
cm modelamento geométrico. Com base nas operações morfológicas e na limitação, podem
ser derivadas várias outras operações importantes. Utilizando a soma de Minkowski,

-2S-

obtem-se a operação ele stroking , que consiste numa transformação do tipo caminho­

região que modela a forma produzida quando um objeto(chamado brush) se move ao

longo de uma trajetória, ou comumente, ao longo de um caminho. A partir da operação
de limitação, pode-se produzir a operação de preenchimento, cujo função é preencher a

região delimitada por alguma seqiiê.ncia de objetos. As operações de preenchimento e

stroking constituem um suporte para muitas aplicações gráficas importantes, tais como

produção de fontes.

A figura abaixo mostra os efeitos destas duas operações:

Uma imagem é uma função / : !1 e R.2 ➔ R.k: para cada ponto p E !1, /(p) define

os atributos de p, como cor e opacidade, por exemplo. Uma classe de imagens muito

importante é formada tomando !1 = Z2, chamadas de imagens digitais.

No processo de transformação de um modelo cm uma imagem notam-se três fases

distintas:

Fase de pré-processamento: redução do modelo a uma forma mais simples.

Fase de rasterização: conversão do modelo simplificado em um bitmap((Fiu89)).

Fase d.e pós-processamento: composição dos bitmaps em uma imagem.

Uma taxonomia dos algoritmos.de renderização pode ser estabelecida com base no

modo em que realizam as três fases anteriores:

-26-

Algoritmos baseados no objeto: tratam objeto por objeto do modelo, encontrando
os pontos da imagem que são afetados por um determinado objeto. Neste processo,

realizam uma projeção explícita do objeto na imagem. Algoritmos baseados em
scan-conversion são exemplos clássicos desta classe.

Algoritmos baseados na imagem: para cada ponto da imagem a ser produzida, ver­

ificam se os atributos deste ponto são afetados por algum objeto(ou objetos) do

modelo. Caso afirmativo, calculam o valor desta contribuição. Um exemplo muito

familiar desta classe é o algoritmo de ray-tracing.

Para exemplificar melhor esta ta."<onomia, considere-se as duas operações básicas de­

scritas anteriormente: preenchimento e stroking. Para a operação de preenchimento, a

maioria dos algoritmos ele scan-conversion trabalham somente com regiões poligonais sim­

ples, i.e. sem auto-interseções, requerem uma prévia linearização e redução da região orig­

inal em regiões mais simples, por exemplo regiões convexas, trapezoidais ou triangulares.

Esta redução pode ser encontrada, por exemplo, na implementação, feita pela Adobe, da

linguagem PostScrij)t [AdoB86]. Porém, esta fase de linearização pode levar a problemas

numéricos e de robustez dos algoritmos, como os descritos em Forrest [For85] [For88] e

Franklin [Fra86]. No casó especial do PostScript da Adobe, alguns exemplos de problemas

podem-ser encontrados cm Perky [Per88] e Pol-Corthout [CorP92].

Para a operação de stroking, du~ abordagens de scan-conversion são geralmente uti­

lizadas. Uma delas consiste em rasterizar o caminho, colocando a brosh em cada ponto do

caminho rasteriílado. Whittcd [Whi83] e Bleser et ai. [BlcSM88], por exemplo, realiílam

este processo com a pos~ibilidade de variação da intensidade, tamanho e forma da brosh ao

longo do caminho. Estes algoritmos foram produzidos para serem conjugados em sistemas

de pintura e implementados via tabelas do•tipo look-up. Strassmann [Str86] descreve out­

ro tipo de algoritmo, com a possibilidade de se controlar vários outros parâmetros. Em

[PosF89], Posch apresenta um algoritmo com brosh circular que somente atualiza os pon­

tos num arco semi-circular, perpendicular à direção do caminho, num ponto corrente do

caminho. A segunda abordagem é transformar o problema de stroking num problema de

preenchimento. Este processo é feito computando-se as equações algébricas do contorno da
região de stroking. Porém, se a complexidade geométrica dos objetos na operação cresce,

as equações tornam-se muito complexas, como descrito em Gosh e Mudur [GhoM84].

Alternativamente, caminhos e broshes são usualmente aproximados, em um fase de pré­

processamento, por polígonos, como no sistema METAFONT de D.E. Knuth [Knu86], e

o resultado da operação pode ser obtido como descrito por Guibas et ai. [GuiRS83].

-27-

Já os algoritmos baseados na imagem te.stam a pe_rtinência de ,u~ ponto ~a ima~em

b. t n a necessidade de um pré-processamento prev10. Para isto, existe contra um o Je o, se 1

a ucccssi<la<lc e.la cspec·ificação de um predicado de pertinência de um ponto a um obje-

tal conhecido como teste interior/exterior(Point Conlainment test). A utilização deste

pre~icado de pertinência para todos os pontos da imagem, implementada em software, é

consid.erada muito len1.a para o processo de renderização, como já notado por Newmann

e Sproull [New79).

Poucos algoritmos baseados na imagem têm sido publicados. Forrest [For85], Tang [Tan88]

e Guibas et ai. [GuiR.S83] descrevem algoritmos para objetos poligonais, detalhando testes

de pertinência de pontos em polígonos. O tratamento de objetos mais complexos, como

segmentos de curvas ele Bézier polinomiais e racionais, pode ser encontrado na tese de

doutoramento de Pol e Corthout [CorP92].

Estes exemplos permitem realçar uma série de vantagens dos algoritmos baseados na

imagem sobre os baseados no objetos, tais como:

1. Nenhum pré-processamento do objeto é necessário: os algoritmos baseados na im­
agem podem lidar diretamente com objetos de alta complexidade geométrica. Como

nenhum pré-processamento é realizado, não é necessário memória adicional para ar­

mazenar estruturas de dados intermediárias. Os algoritmos baseados no objeto

i:ealizam um pré-processamento do objetos, geralmente projeções seguidas de lin­

earizações, cujas estruturas intermediárias são armazenadas em alguma ordem para

facilitar a fase de rasterização: ·Em algumas implementações, os objetos são primeira­

mente reduzidos a regiões mais fáceis de serem rasterizadas, tais como segmentos
poligonais(Klassen [KlaS91]).

2. Clipping explícito de objetos contra a imagem ou outros objetos não é necessário:
simplesmente para cada ponto da imagem, ou ele é afetado ou não por um obje­

to(ou objetos) do modelo. Nos algoritmos b~eados no objeto, o clipping precisa ser
realizado ou no espaço do objeto ou no espaço da imagem.

3. Facilidade de adaptação com crescimento da complexidade do modelo: somente 0

predicado de pertinência, que testa se um ponto é afetado ou não por algum objeto,

precisa ser especiticado. Já nos algoritmos baseados no objeto, a complexidade do
processo cresce drasticamente com o aumento da complexidade do modelo, princi­
palmente nos processos de linearização e clipping.

1
Por _exemplo, testar se um ponto está na região de preenchimento ou stroking.

- 28-

4. Dada sua simplicidade e provada robustez, os algoritmos baseados na imagem po:

dem ser implementados em hardware dedicado. Implementações em hardware de

algoritmos baseados no objeto necessitam de uma quantidade considerável de pré­

processamento crn software; fato que pode limitar o poder de modelamento.

s. Os algoritmos baseados na imagem são altamente indicados para implementações
paralelas, uma veí\ que não existe uma dependência entre as computações das con­

tribuições nos pontos da imagem.

Porém, uma das maiores desvantagens dos algoritmos baseados na imagem é a sua

complexidade quadrática com respeito à resolução da imagem. Na abordagem baseada

no objeto, os algoritmos de scan-ccnversion têm, usualmente, complexidade linear na

resolução da imagem. Assim, o desenvolvimento de métodos que reduzam a complexidade

dos algoritmos baseados na imagem é de· grande interesse computacional.

Este mini-curso pretende introduzir alguns métodos discretos utilizados em algoritmos

baseados na imagem, evidenciando alguns resultados importantes no problema ~o teste

interior/exterior. Serão apresentados três problemas clássicos em computação gráfica:

preenchimento de regiões, stroking e antialiasing. Para cada problema, serão mostrados

fundamentos teóricos que permitem o desenvolvimento de algoritmos corretos, robustos e

eficientes. Alguns algoritmos básicos e outros mais avançados, desenvolvidos pelo CGCAP,

serão apresentados, atentando-se para aspectos teóricos e computacionais.

Estas notas estão organizadas da seguinte maneira:

Seção _2: descreve os pré-requisitos da Morfologia Matemática Discreta, que serão uti­

lizados nos capítulos subseqüentes, tais como representações matemáticas de curvas

discretas, distâncias discretas e ·conexidade, operações morfológicas básicas.

Seção 3: introduz o conceito de função de rasterização e descreve uma forma particular

destas funções. Esta forma particular permitirá. a construção de uma versão discreta

do bem conhecido Teorema de Jordan.

Seção 4: com a versão discreta estabelecida, serão evidenciadas aplicações em preenchi­

mento de regiões, stroking e antialiasing, evidenciando algoritmos onde robustez e

eficiência desempenham papel fundamental.

Apesar d~ escassez de literatura no segmento de teste interior/exterior baseado na im­

agem, não é pretensão deste mini-curso esgotar o assunto. O leitor interessado encontrará,

no final destas notas, referências relevantes da área.

-29-

2 Morfologia discreta

A morfologia discreta é uma teoria matemática importante para desenvolvimento de

operações no ambiente discreto, isto é, cm zn. Para a introdução de uma versão discreta

do Teorema de Jordan é necessário desenvolver noções geométricas e topológicas neste

ambiente. Tais noções são desenvolvidas nesta seção.

2.1 Listas

Uma lista de pontos será definida como uma função de um intervalo de naturais [0 ... n) em
Z2, ou seja, uma lista de pontos corresponderá a u,ma seqüência de pontos. Listas serão

utilizadas para representar curvas discretas.

Definição 2.1. Para todo n E N, o conjunto de funções de [O ... n) em 'l} será denotado

por An = {L : [O ... n)-+ Z.2}. As funções L serão chamadas de listas de comprimento n,

denotado por #L.

Usar-se-á Li para denotar a imagem L(i), ou seja, oi-ésimo ponto de L. Chamar-se-á

uma lista de fechada se ·e somente se L0 = L#L• O conjunto de pontos de uma lista L

será denotado por (L;)l~o- Em algumas definições, abusando da linguagem matemática,

tal notação também será utilizada para indicar a função L que define uma lista.

Da definição anterior segue que An é equivalente ao n + 1-produto cartesiano (Z2)n+i _

Definição 2.2. O conjunto de todas as listas será denotado por A, ou seja, A = UieN A;.

Neste conjunto podem ser especificados operadores importantes para a formação de

novas listas. O primeiro destes operadores será a concatenação:

Definição 2.3. Sejam L1 e L2 dua;·listas de comprimento n 1 e n2, respectivamente. L1

e L2 podem ser concatenadas se e somente se L~, = Lõ. A concatenação de duas listas

nestas condições será a lista L1 l:!J L2 , de comprimento n 1 + n 2 , definida por:

Observa-se facilmente que, se uma das listas tiver comprimento O, a concatenação

reduz-se à operação identidade.

-30-

Definição 2.4. A reversão é um opemdor unário R : A ➔ A, definido por:

Claramente R(R(L)) = L. O próximo operador é o bem conhecido operador de

diferença.

Definição 2.5. O operador de diferença t. : A - Ao ➔ A é definido por:

Coino conseqüência imediata destas definições, tem-se a seguinte relação entre estes

três operadores:

Teorema 2.1.
R(L1 l:!:J L2

) = R(L2
) l:!:J R(L1

)

t.(Ll l:!:J L2) = t.(LI) l:!:J t.(L2)

6.o'R= -'R,o!::,,

2.2 Métricas discretas e listas conexas

A noção de conectividade em listas pode ser comparada com uma versão discreta de

continuidade. Certas restrições de conectividade em listas permitirão obter um corolário

importante do Teorema Discreto de Jordan.

Para se desenvolver uma teoria coerente de conectividade no ambiente discreto bidi­

mensional, Z2 será dotado de uma estrutura métrica.

2.2.1 Estruturas métricas em·v

Para se induzir uma métrica em Z2, utilizar-se-á a seguinte norma geral:

Definição 2.6. Seja V = {v; : O :5 i :5 n} e Z2 um sistema finito de geradores de Z2,

considerado como um Z -módulo. Defina:·

IR 1-lv: z2 -+
p >-t min{í:la;I : I:a;v; = P}

- 31 -

A partir desta norma, pode ser construída uma métrica canônica, definida por:

dv : Z2 X Z2 ➔ R
(P,Q) ...+ IP-Qlv

Variando-se o conjunto de geradores V, as métricas correspondentes produzem as bem
conhecidas formas conexas estruturais de Z2

:

Figura 1: Formas conexas estruturais de Z2: 4-conexa,6-conexa e 8-conexa.

As métricas correspondentes a estas formas são induzidas, respectivamente, pelas
seguintes normas:

• 1-lv•, colocando-s<! V4 = {(1, O), (O, l)}

• 1-lv•, colocando-se V 6 = {(1,0), (1, 1), (O, l)}

• 1-lv•, colocando-se V8 = {(1,0), (1, 1), (O, 1), (-1, l)}

Na próxima seção, freqüentemente Z2 será imerso em R2 . Esta imersão será a canônica,
a menos que explicitado o contrário. Para manter uma compatibilidade de normas entre
estes dois espaços, o seguinte teorema relaciona a norma geral Z2, definida anteriormente,
com qualquer norma adotada cm R2 .

Teorema 2.2. Seja 1-1 alguma nonna em R2 . Definindo e = max{l(l, O)lv, 1(0, l)lv},
v = max{IV;I} e p = max{IWI + IRVI : REIR e IRI = l}, tem-se:

e-1/IPlv -~ IPI.~ vlPlv

v- 1IPI ~ IPlv ~ eplPI

-32-

2.3 Listas conexas

A norma geral, definida na seção anterior, pode ser extendida para o domínio das listas,

da seguinte maneira:

Definição 2.7. Seja L uma lista de comprimento n. Define-se a norma de L(com relação

a um conjunto de geradores V do Z-módulo 'l}} por:

A partir desta nornia, tem-se a noção de listas conexas:

Definição 2.8. Uma lista é m-conexa, m E { 4, 6, 8}, se l~(L)lvm $ 1.

A figura 2 mostra exemplos destas listas:

Figura 2: Listas 4-conexa, 6-conexa e 8-conexa.

Advinda desta definição, tem-se a noção de região conexa:

Definição 2.9. Uma 1·cgião R (subconjunto finito de Z2
} é ditam-conexa, m E {4,6, 8},

se para todo ponto P, (J E R existe uma lista m-conexa L, tal que { L;} f=~ e R , L0 = P

e L#L = Q.

2.4 Operadores de Minkowski

Seja E = Z2, munido da estrutura usual de grupo abeliano. Define-se em E dois operadores

importantes, chamados adição e subtração de Minkowski:

Definição 2.10. Sejam X e A subconjuntos de E . Define-se a adição X EBA e subtração

X e A de Minkows/.."i de X por A, por:

• XEBA={xEE : (A1 +x)ílX~0}

.33.

• X 0 A = { x E E : .4., Ç X}.

onde A., representa o conjunto Az ={a+ x: a E A} e, AI, o conjunto A'= {a E E:
-a E A}.

Usualmente a adição de Minkowski é chamada de dilatação e, a subtração, de erosão.

O conjunto A recebe a designação de elemento estruturante.

Jean Serra [Ser82] caracteriza de modo mais algébrico estas operações, dando as

seguintes definições equivalentes.

• X EB A = UaeA Xa

• X e A = ílaeA ,'La

Um.enfoque mais geométrico para estas operações pode ser encontrado em Guibas et.

ai. (GuiRS83], que trabalham com dilatação e erosão com figuras geométricas.

Estas operações permitirão formaiizar noções de coerência em rasterização, das quais

serão derivados algoritmos, de complexidade quasi-linear na resolução, para algumas

operações básicas de rnsterização (preenchimento de regiões e stroking). Nestas noções

de coerência, algumas propriedades básicas destas operações serão necessárias, as quais

são listadas a seguir.

Propriedade 2.1. A soma é um operador monotônico, isto é,

A e B ⇒ (A E!) C) e (B EB C).

Propriedade 2.2. A soma distribui sobre uniões, isto é,

(Au B) EB e= (AEBC) u (B EBC).

Propri.edade 2.3. A soma é um operador associativo, isto é,

(A EB .tiJ EB C = A EB (B EB C).

Propriedade 2.4. A soma e a subtração estão relacionadas pela seguinte inclusão

(A e B) EB C_c: (A.EB B) e e.

-34-

A monotonicidade será utilizada.cm várias situações de limitação de regiões. A dis­
tributividade permitirá construir processos de recursão. A associatividade levará a trans­

formações de elementos estruturantes na operação de stroking e, a relação entre as duas

operações, para refinamento de testes de coerência.

3 Versão discreta do Teorema de Jordan

Os resultados preliminares necessários para o estabelecimento e prova de uma versão

discreta do Teorema de Jordan são introduzidas neste capítulo. Esta versão discreta

servirá de base para o desenvolvimento de algoritmos eficientes e corretos para testes de

pertinência interior/exterior no problema de preenchimento de regiões delimitadas por

curvas discretas.

3.1 -Números de rotação

A noção de interior e exterior de uma curva{não necessariamente discreta) é baseada no

conceito de número de rotação (winding number). Existem, essencialmente, dois modos

diferentes de se definir o número de rotação: uma versão analítica, que emprega uma

integral complexa de linha, e outra, conhecida como versão geométrica, que conta o número

de intersecções diretas com um raio.

Usualmente, a definição que melhor se adequa ao contexto de algum problema de

pertinência é escolhida. Nas próximas seções será provado que, sob certas restrições, estas

duas versões são equivalentes. A ferramenta matemática utilizada para se estabelecer esta

eqüivalência será a Teoria das Funções-CW.

3.1.1 Teoria de cross weight (CW)

A versão geométrica do número de rotação é baseada na noção de cross weight{CW). In­

formalmente, dadas duas curvas em R2 , o CW destas duas curvas é igual ao número

de cruzamentos com orientação esquerda-para-direita menos o número de cruzamen­

tos com orientação dircita-para-esq!!erda, com as definições usuais da Teoria dos Nós

([BurZ85), [Kau87)).

No âmbito das curvas discretas, será definida a noção de função CW. Esta definição

será mais geral do que o necessário, praticamente sem nenhuma relação com a versão

-3S-

analítica do número de rotação. Numa seção posterior, será derivada uma função CW
específica para este fim.

Definição 3.1. Uma Junção C : A x A ➔ Z é chamada de função CW se satisfaz às

seguintes condições:

Distribuição sob concatenação:

C(L1 ~ L2
, L3

) = C(L1
, L3

) + C(L2, L3
)

C(L1
, L2 ~ L3

) = C(L1
, L2

) + C(L1
, L3

)

Inversão de sinal sob reversão:

Nulidade sob triângulos: Se L1 e L2 são listas fechadas de comprimento 3, então:

Utilizando-se indução no comprimento das listas e as definições anteriores, pode ser

provado o seguinte:

Teorema 3.1. Sejam L1 e L2 duas listas fechadas. Então C(L1, L2) = O.

Na prova do Teorema discreto de Jordan, este teorema representa um papel funda­
mental.

Observa-se, também, que este teorema induz uma relação de equivalência cm Z2:

Corolário 3.1. Dada uma função CW C e uma lista fechada L1, a relação P = Q ç>

C(L1
, L2) = O, para toda L2 com L~ = P e L1L• = Q, é uma eqüivalência em Z2•

3.1.2 Versão analítica

A versão analítica do número de rotação emprega uma integral complexa sobre um cam­

inho 'Y, e constitui uma ferramenta poderosa na Teoria de Funções Analíticas ((Pal91]) e

na Teoria de Intersecção em Topologia Diferencial ([GuiP74]):

-36-

·oefini.c;ão 3.2. O número de rotação w(-y, P), de u~ caminho ·-y, fechado e suave por
parte~, com respeito a P, é dado pela fórmula:

1 1 dz w(-y, P) = -
2

. -p•
7rl -, Z -

onde está admitido .IR.2 é imerso em C para o cálculo da integral complexa.

Esta definição possui urna interpretação geométrica bastante simples. Considere-se
-y: [a, b]-+ C um caminho, fechado e suave por partes, e um ponto P E C- {-y}. Fixe-se
um círculo J(= K(P, r) centrado em P e defina-se a projeção radial de -y em K por

.B(t) = P + r [1~!:l=~1], conforme mostrado na Figura 3.

Figura 3: Interpretação geométrica do número de rotação.

Denotando-se por v(t) o vetor radial de P até .B(t), pode-se relacionar o número de
revoluções deste vetor, em torno do ponto P, com a integral que define o número de
rotação pelo seguinte resultado:

Teorema 3.2. O número de rotação w(-y, P) conta o número de revoluções completas - o
númeró de revoluções positivas menos o número de revoluções negativas - realizadas por
v(t) quando t varia de a para b.

2Isto significa que, tomando-se 'Y : [a, b) --+ C, então é possível subdividir [a, b) em um número finito
de partes e a restrição de 'Y a cada uma destas partes existe e, sua derivada comple.,ca -y'(t), é contínua e
nunca se anula na parte considerada.

-37-

Com a definição analítica, pode-se provar o seguinte resultado:

Teorema 3.3. Seja 'Y um caminho fechado, suave por partes no plano complexo e V =
C - 'Y· Então:

• w(-y, P) pennane,,c constante quando P varia sobre toda componente de U

• w(-y, P) = O se P pertence a uma componente ilimitada de V

• Quando 'Y é sim11les1 i.e. sem auto-intersecções, w('Y, P) = 1, para todo P na

componente limit,ida de V, ou w('Y,P) = -1 para tais pontos P.

A partir deste resultado, já se tem uma forma analítica para se testar se um ponto

pertence ou não ao interior de alguma região limitada por um caminho nas condições

anteriores. Apesar de simples, a implementação computacional deste resultado é imprat­

icável, pois envolve o cálculo de uma integral complexa: mesmo por métôdos numéricos,

a tarefa não é das mais fáceis.

Para interpor esta dificuldade, tem-se a versão geométrica do número de rotação, cuja

principal característica reside na facilidade de implementação.

3.1.3 Versão geométrica

Para definir uma versão mais implementável do número de rotação e estabelecer uma

relação com a versão aualítica, será desenvolvida um função CW especial. Para tal fim,

fixar-se-á algumas nota:;ões:

Definição 3.3. • O produto vetorial de P e Q será denotado por P x Q, onde a
imersão em R3 está implícita.

• A coordenada z d,: um ponto P E lR3 será denotada por p•.

• Considerar-se-á a função sinal s : R ➔ {-1,0,1} como: s(x) = -1 se x < O,
s(x) = O se x = O e s(x) = 1, se x > O.

• Utilizar-se-á quatro imersões, definidas por:

A imersão de pontos por ip6 : Z2 ➔ JR2 por:

-38-

- A imersão cp6 (L) de uma lista L = (L0,L1}, de comprimento 1, como~ seg­

mento de rela parametrizado l(t) = (1 - t)Lo + tL1 + ó E IR2 , para O ::5 t :5 1.

A imersão de cp,(L) de listas L E An de comprimento n > 1 como o polígono

{não necessariamente fechado}:

onde o opemdor l:!:I denôta a concatenação de segmentos de reta imersos na

J orma paramétrica.

A imersão canônica, denotada por cp. A imersão canônica da origem será

denotada po1· tpo-

Com as notações desta definição, constrói-se a seguir, recursivamente, uma função que

desempenhará papel fundamental no relacionamento com a versão analítica.

Definição 3.4. Seja E E IR2 dado e defina-se uma função parcial W, : A x A ➔ Z por:

• W, : Ao x /\. U /\. x Ao ➔ Z por:

{
cp(L1

) n cp,(L2
) = 0 => W,(L1, L2

) = O
,p(L') ncp,(L2) # 0 => W,(L1,L2) = s((b.(L1) x b.(L2))')

n1-ln2-l .

w,(L1,L2
) = L 1: w~((LLLl+1), (LJ,LJ+1)) .

. i=O j=O

Nota-se que, como somente uma lista é deslocada de E antes de ser checado se os

segmentos das listas têm um ponto em comum, uma assimetria é introduzida na função:

pode ser que W,(L1,L2) # ~W,(L2,L1).

O próximo passo será mostrar que a função parcial definida anteriormente é uma

função CW:

Teorema 3.4. W, distribui sob concatenações e muda de sinal sob reversões.

-39-

A prova deste teorema é simples, pois a distribuição sob concatenações segue direta­

mente da terceira parte da definição de W,. A mudança de sinal sob reversões segue da
fato cp1c o sinal do produto vetorial muda de sinal quando a orientação de um dos vetores

é alterada.

A próxima tarefa é mostrar que W, se anula sob triângulos. Isto pode ser feito

checan_do-se todas as configurações de dois triângulos. Isto pode acarretar um número

grande de testes. Para diminuir esta quantidade, utilizar-se-á o seguinte resultado inter­

mediário:

Proposição 3.1. W, é invariante sob translações e transformações lineares inteiras3 com

determinante positivo.

Utilizando-se este resultado, o número qe configurações essencialmente diferentes reduz­

se drasticamente.

Ao invés de se provar diretamente a nulidade sob triângulos, será estabelecido um

resultado mais geral, que fará, inclusive, a ligação entre as duas versões do número de

rotação.

3.1.4 Relação entre a versão analítica e geométrica

O seguinte teorema mostra uma equivalência, sob certas restrições, entre as definições

analítica e geométrica do número de rotação:

Teorema 3.5. Sejam L1 e L2 duas listas. Se L1 é fechada e t: <t cp(L), VL E A1, então:

W (L1 L2) = _1 1 dz __ 1 1 dz
' ' 2iri ,p(L') z - cp,(L~.) 2iri ,p(L') z - cp,(L?,.)

W (L2 L1) = _1_1 dz __ 1_1 . dz
' ' 2iri ,p,(L') z - ·cp(L~.) 2iri ,p,(L') z - cp,(L~.)

Antes de se provar o teorema, uma observação quanto à restrição sobre t:. Analisando­

se a definição analítica do número de rotação, observa-se que a integral complexa não está

definida quando P está no caminho 'Y- Esta é a razão pela qual o parâmetro de translação

t: não poder estar na imersão de cada segmento da lista.

Prova. Nota-se, primeiramente, que as versões analíticas utilizadas estão bem definidas,

pois os pontos cp,(Ll) nunca estarão no caminho cp(L1), pelo comentário anterior.
3 A matriz de transformação é composta somente por inteiros.

-40-

A prova utilizará indução no comprimento das listas L1 e L2 • Para isto, serão estab­

elecidos três casos-base:

• (n1 = O ou n1 = 1), n2 qualquer:

Como L1 é fechada, precisa-se ter Là = L\ . Pela definição de W,, segue diretamente

que

Por outro lado,

_l [dz = _1 { dz = O
211i },p(L') z - <p,(L~.) 21ri J,p(L') z - ,p,(L~,) .

• n 1 = 2, n2 qualquer:

Como L1 é fechada, ela precisa ser da forma L l:!l 'R.(L). Assim:

Como a definição analítica também distribui sob concatenações e muda de sinal sob

reversõcs, tem-se:

_1 { dz = _1 { dz = O.
21ri J,p(L') z - ,p,(L~.) 21ri J,p(L') z - ,p,(L~,)

• n1 = 3, n2 = 1

Este caso será provado enumerando-se todas as possibilidades. Aqui somente casos

essencialmente diferentes serão checados, uma vez que W, e w(-y, P) são invariantes

sobre translações e transformações inteiras com determinante positivo. Além disto,

W, e w(-y, P) mudam de sinal sob reflexões: assim, toda transformação linear não­

degenerada pode ser usada.

- Se L~ = Ll, tem-se W,(L1, L2
) = O e

_1 { dz = _1 { . dz =
0

2,ri J,p(L') z - ,p,(L~.) 21ri J,p(L') z - ,p,(L~.) '

ou seja, a primeira asserção do teorema vale neste caso.

-41-

A Se ~gora que L2 J. L2 Nota-se que nenhum vértice do triângulo - ssuma- , " , o r 1 •

T gerado por cp(L1) pode estar na linha l através de cp,(L
2
). Quando todos

os vértices de T estão de um lado de l precisa-se ter T n l = 0, implicando
W,(L1, L2) = O. Por outro lado,

1 1 · dz __ 1 1 dz = 0 .
2,ri 'l'(L'} z - cp,(L~.) - 2,ri !p(L') z - cp,(L~2) '

que pode ser visto cortando-se o plano complexo com um raio partindo de um
extremo de l.

Assim, os casos remanescentes são formados quando um vértice de T está de
um lado de l, e os outros dois vértices estão do outro lado. Isto significa que
exatamente dois lados de T cruzam l. Novamente, pelas restrições sobre f,

estas intersecções não podem coincidir com os extremos de cp,(L2
).

Quando aplicada uma translaç~o. e uma transformação linear não-degenerada,
Lõ é mapeado na origem O, L~ é mapeado em (1, O) e os dois outros vértices
de T estão sobre o eixo x. Um extremo de L2 pode estar à esquerda, entre
ou à direita dos pontos de intersecção. Assim, tem-se seis casos distintos a
considerar (não contando a orientação de T):

Figura 4: Posições relativas de L1 e L2' sem orientação.

Em cada um destes casos, para cada orientação de T, o valor resultante da
definição de· W, é igual à.diferença das integrais complexas.

Isto conclui os casos-base.

• Suponha-se o teorema válido para n 1 = m ~ 3 e n2 fixado. Seja LI uma lista de
comprimento m + 1. Assim:

W,(L1, L2) == W,((Li, ... ' L:.,+1) l:!:J (L:.,+i, L:.,_1: L:.,, L:.,+1), L2) = W,(L3 1±1 L4, L2),

onde os comprimentos de L3 e L4 são me 3, respectivamente. Logo:

-42-

1 f dz 1 f dz 1 · f dz 1 f dz
= 27l"i } 1,3 z - L;,

2
- 27l"i }1,J z - L5 + 27l"i }1,• z - L;,

2
- 27l"i } 1,• z - Li

l f dz 1 f dz 1 f dz 1 f dz
= 27l"i } 1,J z - L~

2
+ 27l"i } 1,• z - L~

2
- 27l"i } 1,J z - Li - 27íi } 1,• z - Li

= 2~i [, z !~;,
2

- 2:i [1 z ~
2

L5

Isto mostra que a primeira assifrção do teorema é válida para n 1 = m + 1 e n2 fixo.

Por outro lado, assumindo-se o teorema válido para n 1 fixo e n2 = m ~ 3, tem-se

para uma lista L 2 de comprimento m + 1:

Wc(L1
, L2

) = W,(L1
; (Lr}~o ltJ (Lr}~~~)

1 f dz 1 f dz 1 f dz 1 1 dz
= 27l"i } L' z - L~ - 27l"i } LI z - Lã + 27l"i } LI z - L~,+1 - 27l"i L1 z - L-:n

lf dz lf dz
= 27l"i J LI z - L;,.+1 - 21l"i J LI z - Lg

Isto mostra que a primeira asserção do teorema é válida para ·n1 fixo e n 2 = m + 1.

Uma prova similar pode ser feita para a segunda asserção do teorema. D

Um· corolário imediato deste teorema estabele a nulidade sob triângulos de W,.

Corolário 3.2. Para e satisfazendo· à condição do teorema anterior, W, anula-se sob
triângulos.

Isto pode ser provado observando-se que o teorema implica que W,(L1, L2) = O quando

L1 e L2 são fechadas. Instanciando as listas para triângulos (listas fechadas de compri­

mento 3), o corolário segue imediatamente:. ·

Uma questão importante sobre o teorema refere-se à existência do parâmetro de

translação e. O resultado seguinte contempla sua existência:

Teorema 3.6. Seja q E Q - Z e r E lR - Q dados. Se e = (q, r) ou e = (r, q), então

e f/. cp(L), VL E A1-

- 43-

3.2 A translação €

_ b :-) de pontos são largamente utilizadas cm algorit-Técnicas de translaçao(ou pertur açao .]
- ··'fica([Gla95]) e geometria computacional([Ede87). Problemas mos de computaçao gi,t . . d tas técnicas para trata-

fundamentais, como intersecção, freqüentemente ut1hzam-sc es . . -

d • · . As técnicas mais conhecidas, geralmente, ut1hzam perturbaçoes . mento e casos especiais.

pequenas ou aleatórias. _ . . .
'fi d 1· t Figura 5 mostra porque a translaçao i: e mtroduz1da No problema espec1 co as 1s as, a

e seus efeitos.

~ r
·,
~ r

I'

Figura 5: Perturbações em pontos.

Na esquerda, o ponto P não tem númi:ro de .rotação definido, pois está sobre um dos
segmentos da curva: isto pode ser contornado transladando P de i:, antes de se calcular
efetivamente o número de rotação. Caso esta translação não seja efetuada com cuidado,
podem aparecer problemas como os mostrados no centro e à direita da figura. No centro,
o diagrama mostra que a introdução da translação i: poderia também mover pontos do
interior para as bordas, recaindo no caso da esquerda. No caso da direita, a translação
foi grande demais, chegando-se a alterar o número de rotação do ponto P .

O principal problema encontrado nestas técnicas é controlar, de maneira efetiva, o
tamanho da translação e Conforme mostra a figura, translações pequenas podem não ser
satisfatórias, ou seja, dado i: =p O, existe uma lista L E A1 tal que cp(L) ncp((O, i:)) </. { O}.
Em outras palavras, a translação f pode mover os pontos para fora de alguma borda,
alterando seus números de rotação. ···

Para se evitar tal situação, fixar-se-á um grau de liberdade para i:. Será deixada
sua direção indeterminada, porém seu tamanho será tomado infinitesimal. Isto significa
que, para todo segmento de linha com um extremo na origem e outro num ponto de
coordenadas inteiras, pode ser determinado (usando somente a direção) em que semi­
plano E está contido e, para todo segmento não passando pela origem, i: sempre estará do
mesmo lado da origem.

-44-

Para se provar tal ru;serção, utilizar-se-á a seguinte definição: ·

Definição 3.5.

Claramente A" C A11+1 e A= UneN A". A seguinte proposição afirma que, para toda
lista L, existe uma translação f que não mapeia P para além de L.

Proposição 3.2. Seja q E Q - Z e r E lR - Q dados. Então para todo n E N, existe
um>. > O tal que, VL E A",P E :i?,O < µ(q,r) ~ >., tomando-se f = µ(q,r), vale
cp((P,P+e))ncp(L) e {P}.

Isto significa afirmar que, para um .À suficientemente pequeno, substituindo-se f por
µ(q,r), com O< /L(q,r) $ >., W, não é afetado em A" x A". Além disto, pode-se provar
que esta invariância de W, em A n x A" não depende do tamanho de f, mas somente de
sua direção. Isto é contemplado pela seguinte proposição:

Proposição 3.3. Seja q E Q - Z e r E lR - Q dados. Então para todo n EN, existe um
>.>O tal que, VL1,L2 E A",P E Z2,0 < µ1(q,r) $ µ2(q,r) $>.,vale que

Um detalhe extremamente importante neste processo de minimização dos efeitos da
translação fé manter a propriedade CW de W, . Isto é analisado pelo próximo resultado:

Teorema3.7. Olimitelim-¼oW.x,(L1,L2) existeparatodaL1 eL2 • Além disto, afunção
limite:

é uma Junção CW.

Para uma conveniência de notaç_i~o do tamanho e direção de f, tomar-se-á a forma
polar de f por (r, p). Na seqüência, utilizar-se-á a notação Wp para indicar Wcr,p) e será
tomada a versão analítica correspondente por:

1 f dz
21ri} cp(L) z - 'Pp(P).

-45-

Se um ponto P não pertence a um.segmento poligonal, a infinitesimalidade der garante

que P nunca será movido para ou além deste segmento, após a translação. Porém, se P

pertence a algum segmento poligonal, a irracionalidade da tangente p permite garantir

que P nunca permanece neste segmento após a translação.

3.3 O Teorema de Jordan

O Teorema da Curva de Jordan é um resultado importante em topologia de baixa di­

mensão, estabelecido por Camille Jordan (1838-1892) e provado rigorosamente por Oswald

Veblen (1880-1960) em 1905. Este resultado afirma o seguinte:

Teorema 3.8. Seja, uma curva homotópica a S1, i.e. sem auto-intersecções, imersa

em R2 . Então o complemento de , , com respeito a R2 , tem examente duas componentes,

cada qual tendo , como borda. Uma destas componentes (o interior de ,) é um conjunto

limitado, e a outra, o e:r.terior de 'Y, um conjunto ilimitado.

Apesar de parecer intuitiva, a prova deste teorema requer argumentos sofisticados de

topologia algébrica, como homotopia e homologia([Mas91]) .

3.4 Versão disci·eta do teorema

Esta seção introduz uma versão discreta do Teorema da Curva de Jordan. Esta versão

contempla listas arbitrárias, inclusive com auto-intersecção.

Teorema 3.9. Seja p um ângulo com tangente irracional. Dada uma lista fechada L 1, a

função CW Wp divide o plano Z2 em um número finito de regiões com pontos P de igual

número de rotação:
1 { dz

21ri },p(L) z - rpp(P)"

Precisamerlte urna destas regiões é infinita, contendo pontos com número de rotação igual

a O. Além disto, quando para uma lista L2 de comprimento n2 valer:

então necessariamente precisa-se ter:

-46-

Prova. O corolário 3.1 mostra como construir a partição dada pela função W e a lista L1.
O teorema 3.5 mostra que as regiões·tontém pontos com números de rotação igu~is. Para

mostrar que precisameute uma das regiões é infinita, basta notar que para todo ponto P

com IPI > IL11 tem-se:

_l [dz = O.
2r.i },,,(ll i - cpp(P)

Logo, segue-se que somente um número finito de pontos tem número de rotação difer­
ente de zero.

Para provar a última asserção do teorema, observa-se que, por definição de W., tem-se

para todo e:

lf dz 1'1{ dz
2r.i Jv>(l) z - cpp(Lã) 27l'i J<p(l) z - 'Pp(L~.) =>

W,(L1,L2
) #O=>

<p(L1
) n<p,(L2

) ,:/ 0.

Como os polígonos gerados por <p, são conjuntos fechados para todo E, no limite r .j. O

a intersecção não é vazia também. O

Este teorema afirma que, sob certas condições, as imersões poligonais de duas listas

precisam ter um ponto em comum. O teorema a seguir afirma que, sob certas condições

de conectividade, elas têm um ponto em comum.

Teorema 3.10. Seja (m1,m2) E {(4,4),(4,6),(4,8),(6,4), (6,6),(8,4)}, L 1 e L2 listas

m1 -conexa e m 2-conexa, respectivamente, não necessariamente fechadas. Se Wp(L1, L2) #
O, então {L/}n{LD # 0. Este resultado não é válido para (m1 , m2) E { (6, 8), (8, 6), (8, 8)}.

Estes dois 11ltimos teoremas serão utilizados na próxima seção para o desenvolvimento
de algoritmos eficientes e corretos para o preenchimento de regiões delimitadas por curvas

discretas, contorno de caminhos e operações de antialiasing.

4 Aplicações

A beleza matemática dos resultados anteriores não está só encerrada no cunho teórico.

Esta seção mostra três aplicações importantes de tais resultados em computação gráfica.

-47-

4.1 Preenchimento de regiões

Preenchimento de regiões é uma importante operação gráfica de transformação de um
caminho fechado numa região, qué··cncontra aplicações cm algoritmos de iluminação e

texturização, fontes, d(•ntre outros.

4.1.1 Funções de rnsterização

No contexto da opcrai;;io de preenchimento, considera-se o processo de rasterização do

interior(e do exterior) de uma lista L consistindo de dois estágios:

• Construção de uma relação de eqüivalência em'/"}, atribuindo a cada região de uma

classe de eqüivalência um único número (por exemplo, o número de rotação com

relação a L).

• Atribuição de um valor binário ao pontos da imagem, tal que todos os pontos em

uma classe de eqiiivalência tenham um mesmo valor, geralmente não único.

O primeiro estágio requer a especificação de uma função de partição, a ser calculada

para cada ponto de uma região de""lnteresse. A funcionalidade requerida pelo segundo

estágio pode ser provida por uma função muito simples4•

As funções que fazem o particionamento da região de interesse em classes de eqüivalência

são conhecidas como funções de rasterização:

Definição 4.1. Uma função de rasterizaç/io Q(L, P) é uma função Q : Ac x Z2 ➔ Z,
onde Ac denota o conjunto das listas fechadas.

Especificando-se uma função de rasterização Q(L, P), obtém-se a numeração de cada

classe de eqiiivalência. Estas classes são, no máximo, enumeráveis. ·oada uma lista fechada

L e um ponto P na imagem, calcula-se Q(L, P) para se obter a qual classe de eqüivalência
P pertence.

4.1.2 Extremização

Extremização é uma propriedade desejada em· funções de rasterização. Isto expressa a

propriedade que, quando um conjunto de polígonos simples que se sobrepõem uns aos

outros, a rasterização também produz regiões que se sobrepõem umas as outras.
4Por exemplo, classes de eqüivalência no interior da curva recebem valor O, e as do exterior, valor 1.

-48·

Para se formalizar n noção desta propriedade, precisar-se-á de algumas definições:

Definição 4.2. • Um polígono L E /1.0 de comprimento 3 é chamado constante se e

somente se ô(L)u x ô(L) 1 = O.

• Um polígono L E /1.0 de comprimento 3 é chamado simples se e somente se não é
constante.

• Um polígono L E A0 de comprimento n > 3 é chamado simples se e somente se

• O interior de um polígono simples é definido como o conjunto dos pontos que não

tem número de rotação O com respeito ao polígono. Pontos do polígono não fazem

parte do interior.

• A orientação de um polígono simples é dita definida positiva quando os pontos do

interior têm número de rotação +1 e, definida negativa, quando têm número de
rntação -1.

Os polígonos simples são objetos topológicos homotópicos ao círculo unitário S1 e têin

o interior como um conjunto simplesmente conexo. Assim, a orientação de um polígono

simples é bem definida.

Definição 4.3. Um conjunto de polígonos é chamado um conjunto de extremidades se e

somente se

• todos os polígonos são simples e com orientação definida positiva

• todos os polígonos podem ser agrupados por rotação dos índices de pontos, concate­

nação e remoção de extremidades, em um polígono simples.

Utilizando-se estas ferramentas, pode-se formalizar a noção de extremização:

Definição 4.4. Uma função de rasterização Q(L, P) é dita ter a propriedade de extrem­

izaçii.o se e somente se:

• Q é invariante sob rotação de índices

S-e L 1 't!:J L2 é fechada, então Q(L1 l±I L2 , P) = Q(L? l!J LI, P) . . . ,

-49-

• Q anula-se sobre concatenações da forma L1 l:!:J n(L1}

Q(L' 1±1n(L1},P) = O.

• Q distribui sob concatenações

Se L' e L2 são listas concatenáveis, então Q(L' \±1 L2, P} = Q(L', P} + Q(L2 , P).

• Q é simples

Se L é simples, então para toâo P tem-se Q(L, P) E {O, 1} se L tem orientação

definida positiva, e Q(L, P) E {-1, O} se L tem orientação definida negativa.

Esta definição permite obter um resultado importante sobre funções de rasterização:

Teorema 4.1. As regiões produzidas por uma Junção de rasterização(com a propriedade

de extremização), aplicada a um conjunto de extremidades, têm intersecção duas-a-duas

vazia. Além disto, a união destas regiões é igual ao conjunto das regiões produzidas pela
aplicação da Junção de rasterização ao polígono simples resultante do agrupamento das
extremidades.

4.1.3 Rasterização via funções CW

A função CV\' Wp, estabelecida na seção anterior, pode ser usada para construir uma

função .de rasterização. Para listas fechadas, o valor do número de rotação relacionado

será utilizado como a função de enumeração de classes de eqüivalência.

Definição 4.5. Defina-se a função de ras~erização :Fp : A x Z2 ➔ Z por:

Nota-se que o domínio de :F é maior que o requerido pela definição de função de

rasterização. Este levantamento de domínio é utilizado para gerar resultados fundamentais

sobre a função. Um destes resultados é mostrado a seguir:

-SO-

Proposição 4.1. Se L é uma lista fechada, então:

Utilizando-se este resultado, pode-se provar que a função de rasterização definida an­
teriormente, com o auxílio de Wp, possui a propriedade de extremização:

Teorema 4.2 . :Fp é uma função de rasterização com a propriedade de extremização.

Alguns outros resullados adicionais acerca de :Fp são listados a seguir.

Proposição 4.2. • :FP anula-se sobre triângulos constantes

Se L é um triângulo constante, então :Fp(L, P) = O.

• :F p distribui sobre concatenações gerais

Se L1 e L2 são listas concatenáveis, não necessariamente fechadas, então :Fp(L1 l±J

L2, P) = :Fp(L1, P) + :Fp(L2 , P) .

• :Fp é invariante sobre mudanças de escala

Vaez-(o) : :Fp(aL, aP) = :Fp(L, P) .

- SI·

Estes resultados adicionais serão utilizadas para provas de corretudes de algoritmos
para a operação de preenchimento de região.

4.1.4 Polígonos

Em qualquer implementação da função de rasterização :Fp definida anteriormente, um limite para p precisa ser escolhido. Algumas escolhas deste limite são mais fáceis de se implcl!lentar, tais como p t O ou valores limites de ½k1T. Nesta seção, será construída uma
implementação eficiente de limpto :Fp,

Definição 4.6. Defina-se a função de rasterização :F como:

:F = lim :Fp,
pta

Como :F distribui sob concatenações, -0 primeiro passo da implementação de :F será uma soma das contribuições dos lados poligonais da lista. Nesta implementação, existem
vários casos nos quais a contribuição de um segmento poligonal L = (La, L 1) é O ou de cálculo imediato, podendo ser detectados facilmente.

A seguir, serão enumerados alguns casos suficientes para a implementação do lim-ite. Os dois primeiros casos mostram como calcular a função de rasterização :F(L, P), em relação a uma região retangular limitante de L, chamada bounding box.

La

Figura 6: Bounding box de um segmento poligonal L.

O primeiro caso consiste em verifi~ar se o ponto p est, . ·-a na segumte regiao:
Proposição 4.3. Se pu > max{LII,.} pu {

(ou $ min Ln ou P"' < min{L',"-}, então :F L,P) = O.

• 52-

Figura 7: Caso em que :F(L, P) = O.

O segundo caso verifica se P está na seguinte região:

Figura 8: Caso em que :F(L, P) = s(Lg - Lf) .

Proposição 4.4. Se P!I 5 max{Lr} e pv > min{Lr} e P"' ~ max{Lf}, então :F(L, P) =
s(Lg - Ln.

O próximo resultado mostra como calcular a função de rasterização dentro da bounding
box:

Figura 9: Elementos para cálculo dentro da bounding box.

Proposição 4.5. Sejam min{Lr} < pv s; max{Lf}, min{Ln < P"' s; max{Ln e l a
linha passando através do segmento poligonal de interesse L.

-53-

• Se l é 11arnlcla ao eixo x, então :F(L, P} = O.

• Se l não é 71arnlela ao eixo x, então ó.{L)Y / O. Seja v o vetor perpendicular a l, tal

que v:r > O e v = :i: (t:.(L)Y, -ó.(L)x). Assim, l pode ser descrita como (x, y) · v = c

e vale :

P · v ~ e=> :F(L, P} = s(L~ - Ln

P · v < c => :F(L, P) = O.

Estes casos cobrem todas as possibilidades de posicionamento do ponto P em relação

ao segmento poligonal L. Assim, o primeiro passo da implementação será detectar to­
dos estes casos. A fu11ção referente a tal implementação será, doravante, denominada

Contribuição e terá o protótipo Contribuição (Ponto LO,Ponto Ll).

Tendo-se a contribuição para cada um dos segmentos poligonais da lista, utiliza-se

a propriedade de distribuição sob _çpncatenação para se calcular o valor da função de
rasterização para um ponto P:

Algoritmo 1.1 Cálculo de número de rotação de poligonais.

NúmeroDeRotaçãoPoligonal(Lista L,Ponto P)
Entrada: L - pontos da lista

P - ponto de intersse.

Saída: Valor de :F(L, P).
1: wn+--0

2: para i=O até Comprimento(L)-1 faça

3: wn+-- wn+Contribuição(L[i]-P,L[i+l]-P)
4: fim para

5: Devolva(wn)

O translação do passo 3 do algoritmo é uma otimização para acelerar o processo de

cálculo. Esta otimii ação é conhecid~_como nonnalização do ponto P.

4.1.5 Curvas de Bézier Polinomiais

O algoritmo apresentado na seção anterior refere-se exclusivamente a polígonos. Porém,

em muitas aplicações, tais como fontes, ocorrem elementos gráficos importantes, como

curvas. Esta seção analisa uma extensão do algoritmo anterior para curvas de Bézier

discretas.

-54-

Curvas .de Bézier podem ser incorporadas ao algoritmo anterior convertendo-as para
listas poligonais e calculando a função de rasterização nestas listas. O algoritmo a ser

exibido utiliza um método híbrido para estes passos, combinando conversão e cálculo,
produzindo significantes otimizações. Um ponto importante reside no fato que a conversão
preservará a propriedade de extremização:

Em primeiro lugar, formalizar-se-á a noção de curva de Bézier, com pontos de controle

numa lista.

Definição 4.7. Seja L uma lista de comprimento n. Para t E (O, 1] defina-se BL(t), a

curva de Bézier de L, por:

Desta definição também surge uma nova maneira de se intepretar listas: uma lista
também pode definir uma curva de Bézier, onde o comprimento de lista, usualmente,

determina o grau da curva.

Uma operação essencial que pode ser definida em curvas de Bézier é a subdivisão.

Subdivisões de curvas de Bézier resultam em duas curvas de Bézier, chamadas de parte

esquerda e parte direita.

Lo

Figura 10: Partes esquerda e direita de uma curva de Bézier.

Definição 4.8. Seja L uma lista de comprimento n . Define-se a parte esquerda & de BL
por:

-55-

e a parte direita 'D por:
TJ:A-tA

'D(L); = 2i-n t ·(n ~ i) L;.
1=• J

Um dos aspectos essenciais do teste interior/exterior de Pol e Corthout (CorP92] é o

uso exclusivo de aritmética inteirá. Assim, da definição, a divisão por uma potência de 2

precisa produzir um resultado exato. Para implementar uma subdivisão em um algoritmo

que manipula somente inteiros, precisa-se mapear as coordenadas produzidas pela subdi­

visão no conjunto do inteiros. Para isto, serão introduzidas as funçõu aproximadoras:

Definição 4.9. Uma função não-decrucente d : R ➔ Z é chamada uma função aprox­

imadora se e somente se V.,eR,yeZ, d(y) = y e se x E (y,y + l], então d(x) = y ou

d(x),,; y + 1.

As funções de truncamento e arredondamento são exemplos familares desta classe de

funções. Neste contexto, serão redefinidas as noções de parte uquerda e parte direita de

uma curva de Bézier, no ambi1mte discreto:

Definição 4.10. Seja L uma lista de comprimento n. Define-se a parte esquerda discreta

&' de 81, por: ·

&':A ➔ A

ê'(L); H d(&(L);)

e parte direita discreta V' por:

V'(L); H d(V(L);) .

Estes operadores de subdivisão discreta formarão a base para a conversão curva-lista

poligonal. Esta conversão será construída sobre o paradigma de divisão-e-conquista, cujo

critério de parada será a distância entre dois argumentos da lista.

Definição 4 .11. Seja L uma lista ·de comprimento n. Seja ed,(L) o diâmetro 8-conexo

de L, ou seja, ed, (L) = max;j{IL; - Ldv•} .

Define-se o operado1· conversão curva-polígono V por:

Cd8 (L) > 1 ~ V(L) = V(t'(L)) l:!:I V('D'(L)).

Neste processo de conversão, dois fatos precisam ser verificados:

• o critério de parada é sempre atingido após um número finito de subdivisões

• V(t:'(L)) e V('D'(L)) sempre podem _ser concatenadas

Para o primeiro fato, como todas as definições e cálculos são invariantes sob translações,

pode-se assumir, sem perda de generalidade, que o espaço que contém os pontos de controle

de uma curva de Bézier de grau n, representada por uma lista L, seja [-m . .. m] x

[-m .. . m], onde m é alguma constante pré-definida.

Assim, pode ser provado o seguinte limitante superior:

Teorema 4.3. Após k = ílog2 m 1 +n subdivisões, a curva de Bézier resultante t:'" satisfaz
o critério de parada.

Uni resultado semelhante pode ser provado para V'" .

Para o segundo fato, precisar-se-á da seguinte proposição:

Proposição 4.6. Seja L uma lista de comprimento n e p o comprimento de V(L). Então

V(L)o = Lo e V(L)p = Ln.

Verificado que o processo de convers~o é 1!álido, discutir-se-á um detalhe sutil: o

processo produz uma lista 8-conexa.

Proposição 4.7. Para toda lista L, V(L) é uma lista 8-conexa.

A prova desta proposição é feita diretamente por indução no número de subdivisões. A
utilidade deste detalhe está estritamente relacionada com uma simplificação no algoritmo

para computar .r(V(L), P): somente listas 8-conexàs precisarão ser suportadas.

Os modelos que o algoritmo irá tratar serão formados de listas de listas representativas

de curvas de Bézier. Seja L uma destas listas de listas, com L} representando o j-ésimo

ponto de controle da i-ésima lista. Para formar um contorno fechado a ser preenchido,

estas curvas de Bézier precisam estar conectadas, ou seja, L~L; = L~+i e L!Z#L = Lg. A
operação de preenchimento é feita pelo cálculo de .r(l:!:I; V(Li), P): como :F distribui sob

concatenações, isto pode ser reescrito como L; :F(V(Li), P) .

Um ponto importante sobre a conversão curva-polígono refere-se à preservação da

propriedade de extrcmizaçào. Para provar isto, utilizar-se-á a seguinte proposição:

-51-

Proposi'ção 4.8. O opi:rador reversão comuta com o operador de conversão curva-polígono,

ou seja,

)

'RoV = Vo'R.

A prova desta proposição vem imediatamente das definições.

Teorema 4.4. O proce.-;so de rasterização I:i .r(V(Li), P), de uma seqüência fechada de

curvas representada por uma lista de listas, possui a propriedade de extremização.

Para um cálculo elidente de I:i .r(V(Li), P), mecanismos de limitação por bounding

boxes serão utilizados, ,malogamente ao caso dos polígonos. Curvas de Bézier contínuas

possuem uma propriedade chamada casco convexo: os pontos de uma curva sempre podem

ser escritos como combinações lineares convexas dos pontos de controle da curva. Esta

propriedade terá analogias no caso discreto, utilizando-se bounding boxes, como mostrado

pela seguinte proposiçã:i:

'
' . .
' . . .

Lo --------------------------------------··-·--- ---- :

L3

Figura. 11: llounding box usando os pontos de controle da curva.

Proposição 4.9. Seja L uma lista de comprimento n e V(L) uma lista de comprimento

m. Então:

min{Lt} $ min{V(L)j} $ max{V(L)j} $ ma"<{Lf}

miu{Lr} :5 min{V(L)J} :5 max{V(L)H $ max{LD

Para se estabelecer os casos de computação imediata de .r(L, P), o primeiro passo será

extender as proposições 4.3 e 4.4, para listas de qualquer comprimento:

-SB •

Proposição 4.10. Seja L uma lista de comprimento n. Assim, tem-se:

• Se P" > min{Lr} ou pu > min{Lf} ou pu < min{LD, então F(L,P) = O

• Se P" ;:>: max{Lf} então F(L,P) = ½ (s ((Lo -P)Y + ½)- s ((Ln -P)11 + ½)).

O seguinte resultado permite obter dois resultados imediatos de cálculo da função de

rasterização, para a conversão curva~polígono:

Proposição 4.11. Seja L uma lista de comprimento n. Assim, tem-se:

• Se P 11 ~ max{Ln e pu > min{LD e P" ;:>: max{Lr}, então F(V(L), P) = O

• Se pu > min{Lf} ou pu > min{Ln ou pu < min{LD, então F(V(L),P) =
½ (s ((Lo - P)Y + ½) - s ((Ln - P)11 + ½)).

A expressão ½ (s ((Lo - P)Y + ½) - s { (Ln - P)11 + ½)) não parece muito implementável
com o uso de artimética inteira. Para contrapor esta dificuldade, será definida uma função
sinal, no âmbito dos inteiros, e provada uma expressão eqüivalente:

Definição 4 .12. Define-se a função sinal inteiros': Z ➔ {O, 1} por:

s'(x) = { 1 se x < O
O se x ~ O.

Com esta definição, pode ser provado o seguinte resultado de equivalência entre as

funções-sinal:

Teorema4.5. ½ {s {(Lo - P)11 + ½) - s ((Ln - P)11 + ½)) = s' ((Ln - P)Y)-s' ((Lo - P)Y)).

Estes resultados são suficientes para se construir uma extensão no algoritmo de ras­

terização de polígonos para curvas de Bézier discretas. A função correspondente a está

implementação será chamada ContribuiçãoBézier (Lista L).

Como F distribui sob concatenação, o algoritmo para calcular a contribuição de uma
lista de listas, para um ponto P, é simplesmente uma soma de contribuições de listas
normalizadas.5

5 Nova.mente, a normalização de listas é utilizada para acelerar a computação.

-59-

Algoritmo 1.2 Cálculo de número de rotação para Curvas de Bézier.
NúmeroDeRotaçãoBezier(Lista de listas L,Ponto P)

Entrada: L - lista L de listas contendo pontos de controle de curvas de Bézicr discretas
P - Ponto de interesse.

Saída: Valor de F(L, P) .

1: wnt-0
2: para it- O até Comprimento(L)-1 faça
3: wnt- wn+ContribuiçãoBézier(L[ij-P)
4: fim para

5: Devolva(wn)

Pol e Corthout [CorP92] também desçrevem as curvas de Bézier racionais no espaço
discreto, cujo cálculo das funções de rasterização recai no caso anterior por transformações
via projeções.

4.1.6 O algoritmo quadrático

Estabelecido um método de teste interior/exterior, o algoritmo para realizar a operação.de
preenchimento aparece de maneira natural: simplesmente para cada ponto P da imagem
a ser produzida, verifica-se se P está no interior ou exterior.

Algoritmo 1.3 Preenchimento de regiões quadrático.
Filling(Lista L)
Entrada: L • Lista poligonal ou lis.~ti, de listas (curvas de Bé-6ier)
Saída: Interior de L.
1: para cada ponto P da imagem faça

2: se L é poligonal então
3: tcstet- NúmeroDeRotação(L,P)
4: senão

5: testet- NúmeroDeRotaçãoBezier(L,P)
6: fim se

7: se teste#O então

8: Pintar ponto P
9: fim se

10: fim para

Indicando por custoiordan a complexidade do teste interior/exterior6 e a resolução da

ºObserva-se que esta complexidade é linear no número de pontos da curva discreta.

- 60-

imagem por r, tem-se a ·seguinte complexidade para o algoritmo:

pois, para cada ponto, é realizado um teste interior/exterior.

Apesar de polinomial na resolução, este algoritmo é considerado lento na maioria das
aplicações práticas. A próxima seção aborda alguns métodos para reduzir esta complexi­
dade, utilizando-se a noção de coerência.

4.1.7 Redução da complexidade

A utilização do teste interior/exterior de Pol e Corthout [CorP92], no algoritmo trivial
para preenchimento, tem comportamento quadrático com respeito à resolução. Algumas

técnicas alternativas têm comportamentÓ linear na resolução: scan-conversion (Fol96],
por exemplo, passa duas vezes sobre uma scan-line. Em primeira instância, pode parecer
que a utilização do teste de Pol e Corhout não seja interessante, devido à discrepância de

complexidade: contudo, existem mecanismos para reduzir a complexidade de utilização do
teste à patamares quasi-linear e sub-linear na resolução. Estes mecanismos são conhecidos
como testes de coerência.

4.1.8 Coerência

Para o estabelecimento efetivo dos testes de coerência, é necessária a formalização do
conceito de coerência na operação de preenchimento.

Definição 4.13. Seja L uma lista fechada e :F uma função de rasterização. Uma região

R é chamada coerente, com respeito a L, se e somente se R é um subconjunto de uma
classe de eqüivalência simples, induzida em Z2 por 1"·

Isto é equivalente a dizer que uma região R é coerente, com respeito a L, se e somente
se R ou está totalmente contida no interior de L ou em seu exterior. Embora a definição
seja matematicamente precisa, ela é pouco operacional.

O próximo resultado traduz a relação de coerência entre uma região e uma curva em
termos mais implementáveis.

Figura 12: Teste de coerência.

Teorema 4.6. Seja (m1, m2) E {(4, 4), (4, 6), (4, 8), (6, 4), (6, 6), (8, 4)}. Se L é uma lista

fechada, m 1 -conexa, e fl. uma região mrcónexa; então se P f/. { L;} EB R, tem-se que P- R
é coerente com respeito a L, onde EB denota a soma de Minkowiski usual.

Este resultado estabelece que a coerência de uma região P - R é implicada quando

um simples teste interior/exterior com uma região dilatada (L EB R) retorna negativo. A

Figura 12 mostra alguns exemplos de testes, onde tem-se as regiões indexadas por Pl e

P2 coerentes e, a indexada por P3, não-coerente.

A recíproca do resultado anterior não é verdadeira. Para isto, basta considerar uma

lista da forma L = L 1 l!J R(L1): como o interior de L não contém pontos, existe uma

região P - R coerente, com P E {L;} EB R.

4.1.9 Coerência com quadtrees

.O teste anterior pode ser implementado, de maneira eficiente, utilizando a bem conhecida

estrutura de dados quadtrees. O algoritmo é baseado no artigo original de Hunter e

Stciglitz [HunS79], que aborda quadtrees !1º contexto de representações em modelagem

geométrica. No algoritmo a seguir, foi modificada apenas a questão de classificação com

base no teste acima:

-62-

Algoritmo 1.4 Preem:himento de regiões com quadtrees.

FillingComQuadtrecs(Região R,Lista L)
Entrada: R - região de incteresse para preenchimento

L - Lista poligonal ou lista de listas (curvas de Bézier)
Saída: Interior de L.
1: se R é coerente com respeito a L então

2: Escolher um representante P de R

3: Fazer wf-NúmeroDeRotaçãoPoligonal(Lista L,Ponto P) ou

wf-.NúmeroDeRotaçãoBezier(Lista L,Ponto P) de acordo com o tipo de lista
4: se w,tO então

5: Pintar P

6: senão

7: Subdividir R cm quatro partes Rl,R2,R3,R4

8: FillingComQuacltrees(Rl,L)

9: FillingComQuacltrees(R2,L)

10: FillingComQuadtrees(R3,L)

11: FillingComQuadtrecs(R4,L)

12: fim se

13: fim se

A Figura 13, mostrada na próxima página, simula algumas etapas do funcionamento

para uma entrada do algoritmo:

Claramente este algoritmo recursivo sempre pára, pois, no max1mo, atinge-se uma

região R formada por um único ponto e tais regiões são coerentes com respeito a L.

Observa-se, facilmente, que as f~!has da árvore resultante da recursão são as regiões

coerentes e, os nós internos, regiões não coerentes.

Hunter e Steiglitz [HunS79], Samet [Sam90], mostram que o número de nós em uma
quadtrne é de ordem O(r + p), onde p é o perímetro da lista e r o nível máximo de

subdivisão. Este nível pode atingir a resolução do espaço de imersão da lista. Como

o número de testes interior/exterior, necessários para se construir a quadtree, depende

linearmente do número de nós, o número de testes também é de ordem O(r + p).

-63-

RI Í ! : i R4

\ ~ ~ 1
i l ~ ~

l. \ l. ·········\
Rl\',,,,,··-- , ,. ! R3

~ l i

\ \ 1

\, q 1. : :

Figura 13: Algumas etapas do algoritmo de preenchimento com quadtrees.

Assim, o algoritmo com quadtrees tem complexidade de utilização de testes interi­or/exterior de Pol e Corthout [CorP92]

O(r + p)cu.sto;orda,..

4.2 Coerência maximal

A técnica com quadtrees reduz significativamente a complexidade de utilização dos testes interior/exterior a um limite quasi-linear na resolução. Porém, o tamanho da região coerente encontrada em cada folha não é idéal , coino mostra o exemplo da próxima página.

-64 •

- --- --

tl tl tI
~ ~ ~
• • o • • • • o o • • • • o • •

Figura 14: Regiões internas não-maximais.

As· folhas contendo regiões coerentes internas poderiam ser agrupadas numa única

região, coerente com L. Isto provém do fato que o teste com quadtrees encontra regiões

coerentes retangulares, não necessariamente maximais com relação à coerência.

Porém, a definição operacional de coerência do Teorema 4.6 pode ser refinada para

a produção de um algoritmo que encontra as regiões ma.-ximais, com número de testes

interior/exterior independente da resoluçã?.

Este resultado é fortemente baseado no Teorema Discreto de Jordan, que afirma que

pontos dentro de uma mesma componente conexa, resultante da excisão da lista de Z2,

têm o mr$mO número de rotação.

O algoritmo é formado de dois passos:

• detecção de um representante de uma componente conexa do interior

• propagação da cor nesta componente

Primeiramente, serão mostrados o algoritmos e procedimentos auxiliares. Em seguida,

serão analisadas a corretude e complexidade dos procedimentos e do algoritmo.

A fase de detecção, mostrada na p~óxima página, tenta encontrar um ponto no interior

da lista, fazendo uma busca pela vizinhança 8-conexa de um ponto da lista.

-65-

Figura 15: Detecção num ponto P

Function 1.1 Detecção de um ponto do interior.

Detecção(Ponto P,Lista L,Ponto Q): Booleano
Entrada: P - ponto da lista

L - Lista poligonal

Saída: TRUE - P tem vizinho interior, devolvido em Q

FALSE - P não tem vizinho interior.
1: para cada vizinho V de P, com cor diferente de COR.INTERIOR faça
2: se V está no interior de L então

3: Q+-V
4: Devolva (TRUE)

5: fim se

6: fim para

7: Devolva (FALSE)

Como as curvas são conexas, observa-se facilmente que o número de testes interi­
or/exterior é menor ou igual a 6: os dois vizinhos do ponto P que estão na curva não
precisam ser testados. Assim, esta função tem complexidade O(l)custojordan•

Dado um ponto Q pertencente ao.interior de uma lista L, o procedimento Propagação,
mostrado na próxima página, assinala COR.INTERIOR a todos os pontos da região
coerente que contém Q.

-66-

Procedimento 1.1 Propagação na componente interior.

Propagação(Ponto Q)
Entrada: Q - ponto do interior de uma lista
Saída: A todos os pontos da componente conexa que contém Q

é atribuída a cor CORJNTERIOR
1: Fila.criaFila()
2: Fila.insere(Q)

3: Cor(Q)t--CORJNTERIOR
4: enquanto Fila.Va;da{);éTRUE faça
5: P+-Fila.rctira()
6: para cada vizinho T de P tal que cor(T)/CORJNTERIOR faça
7: cor(T)+-CORJNTERIOR
8: Fila.insere(T)
!>: fim para

10: fim enquanto

O tipo de propagação utilizado é.baseado em busca em largura no grafo definido pela
estrutura conexa de Z2• A Figura 16 mostra a um exemplo da ação deste algoritmo.

Figura 16: Propagação de cor a partir de um ponto Q.

Observa-se facilmente que este procedimento não faz nenhum teste interior/exterior.
Porém, faz um outro tipo de operação básica: uma atribuição de cor ao pontos que estão
no interior. Como o interior pode ocupar quase toda-a imagem, esta operação faz O(r2)

atribuições de cor na imagem toda, onde r representa a resolução da imagem.

Especificados a função de detecção de um ponto de uma componente interior e um

-67-

procedimento para pr<:i,nchimento desta componente, um algoritmo para preenchimento

de todas as component<:s interiores pode ser contruido:

Algoritmo 1.5 Preenchimento de regiões com coerência ma.ximal.

FillingCoerênciaMaximal(Regiao R,Lista L)
Entrada: L - lista dcscritora da curva discreta

R - região onde L está imers!1

Saída: Interior dt: L
1: para cada ponto PER faça ·

2: cor(P)+-COR_EXTERIOR

3: fim para

4: se L é uma lista de pontos de controle então

5: L+-Conversão_Poligonal(L)
6: fim se

7: para cada ponto l'EL faça

8: se Detecção(P,L,Q)=TRUE então
9: · Propagação(Q)

10: fim se
11: fim para

Observa-se que, para cada ponto P da curva, é realizada uma chamada à função

Detecção(P,L, Q). Somente neste ponto é realizado algum teste interior/exterior. Logo,

este algoritmo tem complexidade O(p) em- relação ao número de testes interior/exterior,

onde p representa o perímetro da curva. A conversão poligonal, no caso das curvas de

Bézier, pode ser efetuada com complexidade O(p) e a propagação, no máximo, faz O(n2)

atribuições de cor aos pontos da imagem.

Para assegurar o fu11cionamento correto da função Detecção, do procedimento Propa­

gação e do algoritmo Fi!lingCoerênciaMaximal, precisar-se-á das seguintes definições:

Definição 4.14. Defin1:-se o interior de uma lista fechada L, int(L), por:

int(L) = {P E Z2
: F(L, P)-:/: O}.

Assim, o interior de uma listaL corresponde aos pontos P, cujo número de rotação

com respeito a L é diferente de O. E_~~es pontos são chamados de pontos interiores.

Definição 4.15. Um CCLminho (ou um l-2-caminho} entre dois pontos P1 e P2, chamados

extremos, é uma seqüência {Vi = Pi, V2 , • •• , Vn-i, V,, = P2 }, onde d(V;, V;+1l = 1, para

i = I, . .. , n - 1. Os po11los V; , i -:/: 1, n, são chamados internos.

-68 •

Nota-se que esta definição é análoga à definição de lista: porém, caminhos não pe"r­
mitem a repetição de pontos consecutivos. ·

Uma conseqüência imediata desta definição é que, se vi' é uma região m-conexa, então
sempre existe um caminho ligando P1 e P2 , para todo P1, P2 E W.

Proposição 4.12. Seja L uma lislã fechada e P 1 E int(L). Então existe um caminho,
com extremos P1 e P2 , com P2 E L, cujos pontos internos estão contidos em int(L).

A proposição anterior afirma que todo ponto do interior de uma lista L pode ser
alcançado a partir de algum ponto desta l_ista.

Definição 4.16. Seja W uma região e L uma lista fechada. W é chamada coerente
conexa maximal se W é m-conexa, :F(L, P) = :F(L, Q) para todo P,Q E W e se V e Z2

satisfaz:

• WÇ V

• V m-conexa

• 3T E V, 3S E W , tal que :F(L, T) = :F(L, S)

então V= W.

Exemplos triviais de regiões coerentes conexas maximais são as regiões interiores do
Teorema Discreto de Jordan.

Proposição 4.13. Se um ponto Q é encontrado pela função Detecção(P,L,Q), então o
procedimento Propagação(Q) atribui cor -CQR_-fNTERIOR a todos os pontos P E W,
onde W é uma região coerente conexa maximal que contém Q.

O teorema a seguir mostra que o algoritmo FillingCoerênciaMaximal(R,L) encontra

as regiões coerentes conexas maximais de L:

Teorema 4.7. Seja L uma lista fechada. Então, o algoritmo FillingCoerênciaMaximal(R,L)
encontra as regiões coe1·entes conexas maximais de L.

Estabelecidas as provas de funcionamento dos algoritmos, a próxima seção compara
suas complexidades.

-69-

4.2.1 Comparação das complexidades teóricas

Os três algoritmos apresentados anteriormente praticamente são formados de duas operações
básicas:

• teste, que decide se um ponto está dentro ou fora da região de preenchimento;

• atribuição, que atribui cores (preto ou branco)7 aos pontos testados.

Assim, a comparação téorica d_as complexidades destes algoritmos será feita com base

nestas operações.

A complexidade da fase de- teste já foi estabelecida para os três algoritmos ao lon­

go deste capítulo, sumarizada na Tabela 1. Os algoritmos quadrático e com quadtrees

fazem somente uma atribuição a cada ponto da imagem a ser gerada: assim, fazem O(r2
)

atribuições, onde r representa a resolução da imagem. O algoritmo de coerência maxi­

mal faz, no máximo, duas atribuições de cor a um mesmo ponto da imagem: uma para

atribuição da cor COR_ EXTERIOR e desenho da curva, e outra, para os pontos do
interior. Logo, cst.c algoritmo faz também O(r2) atribuições.

A tabela abaixo compara a complexidade destas duas operações básicas para os três

algoritmos:

Algoritmo Número de Testes Número de Atribuições

Quadrático .. . O(r2
) O(r2

)

Coerência com quadtress O(r + p) O(r2)

Coerência maximal O(p) O(r2
)

Tabela 1: Comparação das complexid~des teóricas para preenchimento de região.

O passo mais custoso num algoritmo de preenchimento de região é justamente com­

putar quem está dentro ou fora da região de interesse (fase de teste). A simples observação

da Tabela 1 evidencia que o algoritmo com coerência maximal reduz significativamente a

complexidade teórica da fase de teste, comparada com os outros dois algoritmos. Porém,

esta redução pode parecer estar mascarada pela notação assintótica da complexidade: as- ·

sim, foram implementados os três algoritmos, para poligonais e curvas de Bézier, a fim

de evidenciar a redução da complexidade. Alguns detalhes de implementação e vários

resultados práticos dos algoritmos são analisados nas duas próximas seções.
70u,·alternativamente, cor do interior e exterior.

-70-

4.2.2 Alguns resultados numéricos

A partir dos algoritmos anteriores, foram efetuados vários testes para averiguar o compor­

tamento da implementação e comparar resultados cm situações práticas. Mediu-se apenas
a quantidade de testes interior/exterior feitos pelos algoritmos, uma vez que as atribuição

de cor ·aos pontos é, essencialmente, a mesma.

O ambiente dos testes foi um computador IBM Pentium 200 MHz. A resolução das im­

agens é sempre 512 x 512, a menos que explicitado o contrário. As imagens geradas foram

armazenadas no formato bitmap, escaladas a 40%, convertidas para Postscript e incluídas

nesta dissertação através do pacote graphicx, disponível para MEX- A impressão foi

efetuada numa impressora HPLaserJet 5Si a 600 dpi.

Os dois primeiros resultados mostram a habilidade do algoritmo com coerência ma.xi­

mal, juntamente com o teste interior/exterior de Pol e Corthout (CorP92], em detectar pe­

quenos detalhes, conforme mostra o exemplo das poligonais, e tratar várias sobreposições

de curvas, como mostra o exemplo das curvas de Bézier.

(a) Poligonais (b) Poligonais preenchidas

Figura 17: Preenchimento de poligonais.

Um ponto importante refere-se à distribuição das curvas na imagem a ser produzida,

pois ela é fator determinante na quantidade de regiões coerentes para as quadtrees. Assim,

foram gerados exemplos desta distribuição e comparados os resultados.

- 71-

(a) Cur\"as de Bé-tier (b) Curvas preenchidas

Figura 18: Preenchimento de curvas de Bézier.

O primeiro exemplo mostra o caracter japonês Hon, formado por 28 segmentos de

curvas de Bézier, que se distribuiu por grande parte da imagem.

Figura 19: Preenchimento do caracter Hon.

A tabela 2, mostrada a seguir, compara o número de testes efetuados por cada um dos
algoritmos.

-72-

Ali:;oritmo Número de Testes

Quadrático 262.144

Coerência com quadtrecs 5.329

Coerência maximal 4.200

Tabela 2: Comparação do número de testes para o caracter Hon.

O segundo exemplo foi construído com outro caracter japonês, Ni, concentrado no
eixo vertical médio da imagem. Este·caracter foi formado por 14 segmentos de curvas de
Bpzicr.

~

\

Figura 20: Preenchimento do caracter Ni.

A Tabela 3, mostrada a seguir, traz o número de comparações para este exemplo.

Algoritmo ... Número de Testes

Quadrático 262.144

Coerência com quadtrees 5.206

Coerência maximal 4.347

Tabela 3: Comparação do número de testes para o caracter Ni.

O terceiro exemplo concentrou o caracter japonês Na, formado por 22 segmentos de

curvas de Bézier, na parte superior esquerda da imagem .

••. 73-

Figura 21: Preenchimento do caracter Na .

. A Tabela 4 mostra o resultado do número de comparações:

Algoritmo Número de Testes

Quadrático 262.144

) .

Coerência com quadtrees 3.799

Coerência maximal 2.828

Tabela 4: Comparação do número de testes para o caracter Na.

Antes de se passar aos próximos testes, reduziu-se os tamanhos dos caracteres Ni e

Hon a patamares próximos de um texto de tamanho normal, cujo efeito é mostrado na

figura abaixo.

Figura 22: Caracteres japoneses preenchidos e reduzidos.

Exemplos adicionais foram construídos com caracteres de outras línguas, como os

caracteres da língua árabe, mostrados a seguir. ·

-74-

(a) Daal (b) Preenchi­
mento

(e) Taa (d) Preenchi­
mento

Figura 23: Preenchimento de caracteres árabes.

O caracter Daal é formado por 7 segmentos de curvas de Bézier e, o caracter Taa, por
10 segmentos. A Tabela 5 compara o número de testes:

Algoritmo Número de Testes

Daal Taa
Quadrático 262.144 262.144
Coerência com quadt~ees 1.894 3.520
Coerência maximal 1.369 . 2.600

Tabela 5: Comparação do número de testes para os caracteres árabes.

Se o interior ou exterior de uma curva discreta for muito coerente com respeito à divisão
efetuada pelas quadtrees, o números de folhas nestas árvores fica próximo do perímetro da
curva. Assim, o número de testes efetuados pelo algoritmo com coerência maximal pode
superar o algoritmo com quadtrees, conforme mostra o exemplo a seguir:

nn
Figura 24: Preenchimento de poligonais com alto grau de coerência no interior e exterior.

-75-

A Tabela 6 compara o número de testes neste exemplo:

Algoritmo Número de Testes

Quadrático . . 262.144

Coerência com quadtrces 2.500

Coerência maximal 2.947

Tabela 6: Comparação do número de testes para poligonais.

Foram também gerados vários testes mantendo-se uma determinada curva e variando­

se o tamanho da imagem a ser gerada. O método com quadtrees não sofreu muita grandes

variações nestes testes. O método com coerência maximal não sofreu variações na fase de

testes, uma vez que tal fase independe do tamanho da imagem.

4.3 Stroking

A operação de stroking destina-se a modelar a forma produzida quando uma caneta ou,

formalmente, uma brush é movida sobre um papel(ou canvas), ao longo de uma trajetória.

Esta operação tem importantes aplicações! principalmente na produção de fontes.

4.3.1 Descrição da operação

Dadas duas regiões, chamadas brush e caminho, o resultado da operação de stroking uti­

lizando estes elementos é definida como o conjunto de pontos formado pela união de

imagens transladadas da brush, de tal modo que a origem da brush seja mapeada em

algum ponto do caminho.

Esta operação pode ser formalizada em termos da soma de Minkowski:

Definição 4.17. Sejam T e B duas regiões em l-2. Define-se a região de stroking T e

brush B como o conjunto T EB B, com predicado de pertinência TTee(P) .

O predicado de pertinência TTeo(P) decide se um ponto P pertence ou não à região

TEBB.

Pai e Corthout [CorP92] descrevem uma implementação desta operação para curvas

de Bézier discretas 8-conexas, descrito na_ próxima seção. Nota-se que a conectividade

citada não representa uma restrição no espaço das curvas aceitas pelo algoritmo: curvas

4 e 6-conexas podem ser facilmente incorporadas ao algoritmo.

-76-

4.3.2 O algoritmo quadrático

Na implementação da operação .de stroking, desenvolvida por Pol. e Corthout [CorP92],

primeiramente houve a especificação do predicado de pertinência r-re8 (P). Esta imple­
mentação requer dois itens associados corri a brush:

• uma bounding box para a brush

• um predicado de pertinência para a brush r8 : Z2 x Z2 ➔ Boolean.

A bounding box serve para acelerar os casos de rejeição na implementação do predicado

de pertinência TTeB e não necessita ser a menor box que contenha a brush. Porém, a

performance do algoritmo será tanto maior quanto mais ajustada for a bounding box.

O predicado de pertinência r8 (Q, P) determina se um ponto P é coberto pela brush B

transladada de Q. Por exemplo, uma brush circular de raio r pode delimitada por uma

bounding box de lado 2r e especificado um predicado de pertinência pelo teste r8 (Q, P):
(xp - Xq)2 + (yp - yq)2 ~ r2.

O primeiro passo do algoritmo será detectar se um ponto P não está na região T EB B.

Para um teste de rejeição rápida, basta verificar se P não está contido em B1,o%(T) ·e
Bno:r(B), onde Bbo:r(T) e Bsa:r(B) repres~ntarn . bounding boxes do caminho e da brush,

respectivamente. A corretude deste teste advém imediatamente da monotonicidade da

sorna de Minkowski. Caso o ponto P não satisfaça este teste de rejeição, o segundo passo

do algoritmo será detectar se P é coberto pela brush colocada nos pontos extremos da

curva: caso afirmativo, o algoritmo pára; caso negativo, a curva é dividida em duas partes

e o processo continua recursivamente, num processo tipo divisão-e-conquista. A fase de

divisão justifica-se pela distributividade da união em relação à soma de Minkowski.

O procedimento mostrado a seguh:, contém a especificação do teste de pertinência para
a origem.

-77-

Procedimento 1.2 Teste de pertinência Tn;in(Origem) .

TesteStroking(Lista T ,Brush B)
Entrada: T _ Listn contendo os pontos de controle de uma curva de Bézier discreta.

B - Brush.
Saída: TRUE - urigem está contid~ em T EB B.

FALSE - caso contrário.
1: se #T = O então
2: Devolva(FALSE)

3: fim se
4: se Origem ,t Bboz(T) EB B1,oz(B) então
s: Devolva(FALSE)
6: fim se
7: se Origem Ta(T0, Origem)=TRUE ou Ta(T #T, Origem)=TRUE então
8: Devolva(TRUE)
9: fim se

10: se TcsteStroking(hrte_Esquer?~(T),B)=TRUE então
11: Devolva(TRUE)
12: senão
13: se TesteStroking(Parte_Direita(T), B)=TRUE então
14: Devolva(TRUE)
15: fim se
16: fim se

17: Devolva(FALSE)

A recursividade gerada por este procedimento tem caráter finito, pois o processo de
subdivisão das curvas de Bézier discretas, Parte_Esquerda(T) e Parte_Direita(T), é finito,
conforme explicitado na definição do operador de conversão curva-polígono.

O procedimento a11terior pode ser utilizado para testar quaisquer outros pontos P:
basta transladar a lista T de -P antes de efetuar o teste. Observa-se que o procedimento
utiliza; no máximo, O(v) chamadas ao predicado de pertinência da brosh, onde p repre­
senta o perímetro da curva representada pela lista T. Na maioria dos casos, a computação
do predicado de pertinência para ~-brush pode ser computado com complexidade 0(1):
tome-se como exemplo as brushes quadradas e circulares, usuais em aplicações práticas.

Utilizando-se este procedimento, existe um algoritmo natural para se calcular a região
T EB B: para cada ponto P da imagem a ser gerada, verifica-se se P E T EB B .

• 78-

Isto pode ser especificado em termos do procedimento anterior:

Algoritmo 1.6 Stroking quadrático.

Stroking(Lista T, Brush B)
Entrada: T - Lista contendo os.pontos de controle de uma curva de Bézier discreta.

B - Brush.
Saída: TeB.

1: para todo P E Imagem faça

2: se Se TesteStroking(T-P,B)=TRUE então
3: Pintar P na imagem

4: fim se

5: fim para

Para se calcular a complexidade deste algoritmo, primeiramente observa-se que são
efetuados r 2 testes de pertinência contra a região T EB B, onde r indica a resolução da
imagem a ser gerada. Assim, este número de testes tem complexidade quadrática com
respeito à resolução.

Ap'esar de polinomial na resolução, este algoritmo é considerado lendo na maioria das
aplicações práticas, como antialias(,:ig [Fab95] [FabF97]. A próxima seção aborda alguns

métodos para redução desta complexidade, baseada cm noções de coerência.

4.3.3 Redução da complexidade

A utilização do predicado de pertinência de· Pol e Corthout [CorP92], no algoritmo trivial
para calcular a região de stroking Te B, tem comportamento quadrático com respeito

à resolução. Para se reduzir esta complexidade, serão utilizad_os dois mecanismos de
localização rápida de pontos pertencentes à região de stroking: testes de coerência com
quadtrees e lcsfos liaseiulos cm TI-coerência.

4.3.4 Coerência com quadtrees

O objetivo da coerência com quadtrees é localizar regiões, na imagem a ser gerada, que
contenham exclusivamente pontos da região de stroking ou pontos fora dela. Para estal>­

elecimento efetivo dos testes de coerência com quadtrees, é necessário _a formalização do
conceito de região coerente com respeito à região de stroking S.

-79-

Definição 4.18. Seja S uma região produzida pela operação de stroking. Uma região R

é chamada coerente, com respeito a S, se e somente se R n S = R ou R n S = 0.

Es~a definição equivale a dizer que uma. região R é coerente, com respeito s S, se e

somente se R está contida em S ou no seu complemento.

)

A seguinte proposição é usada para. detectar se uma região R é coerente com respeito

a uma região S:

Proposição 4.14. Seju.m R e S' regiões. Então valem as seguintes asserções:

(P - R) n S' = 0 <::} P r/. S' E9 R

(P - R) e S' ç:} p E S' e R.

A figura 25 mostra duas regiões coerentes detectadas pelo teste da ·proposição anterior:

p

EJ
R

o

Figura 25: Regiões coerentes com respeito a urna região S'.

Como a região S' pode ser a soma de Minkowski de um caminho T e uma brush B, a

Proposição 4.14 afirma que testar se P - Ré coerente com respeito a T E9 B é equivalente

a checar se P E (T EB B) EB R ou P E (T EB B) e R. O teste P E (T EB B) EB R pode

· 80·

se colocado na forma P E T EB (B EB R), usando a propriedade associativa da soma de
Minkowski . O teste P E {T EB B) e R pode ser refinado testando se P E T EB (B e R),

uma vez que T EB (B e R) e (T EB B) e R.

Como a região de stmking cobre, usualmente, somente uma pequena porção da imagem,

é mais eficiente começar a detecção pelo coerência no complemento da região. Para isto,

utiliza-se o teste da primeira asserção da proposição 4.14, com a modificação do teste
P E (T EB B) EB R mencionada anteriormente. Se o teste pela coerência no exterior

falha, utiliza-se o teste no interior, utilizando-se a segunda asserção da Proposição 4.14,

com o refinamento do teste P E (T EB B) e R do parágrafo anterior. Seguindo-se esse

método, pode ser derivado um algoritmo para calcular o stroking de curvas discretas com

coerência. Quando uma imagem é para ser gerada, primeiro se detecta se a imagem inteira

é coerente. Caso afirmativo, determina-se qual a cor de seus pontos. Caso negativo, a

imagem é subdividida em quatro quadrantes, e o aplica-se recursivamente o algoritmo,

criando uma estrutura de quadtree. Isto pode ser especificado pelo algoritmo a seguir:

Algoritmo 1.7 Stroking T EB B com quadtrees.

StrokingComQuadtrees(Região R ,Lista T,Brush B)
Entrada: R - região de interesse para preenchimento

Saída:

T - Lista contendo os pontos de controle de uma curva de Bézier discreta.

B - Brush.

TEBB.
1: se Ré coerente com respeito ao·exterior de T EB B então

2: Retornar da chamada recursiva
3: senão

4: se R é coerente com respeito ao interior de T EB B então

5: Pintar todos os pontos de R

6: senão

7: Subdividir R cm quatro partes Rl,R2,R3,R4

8: StrokingComQuadtrees(Rl,T,B)

9: StrokingComQuadtrees{R2,T,B)

10: StrokingComQuadtrccs{R3,T,B}

11: StrokingComQuadtrees{R4,T,B}
12: fim se

13: fim se

A Figura 27 mostra um exemplo de aplicação deste algoritmo, onde considerou-se um

- 81 -

caminho como um segmento e curva de Bézier e a brush, um círculo de raio 10.

)

1 1
11 1

....
- ~ ;'

-

~
--

- ~:i; ---

~-~
~- :);~

j ~ ---
~ ..1 1 1 hr.

-

~ ~li=
~~ ~~

1 1 -f!f'I.I fq:q 1 1

Figura 26: Exemplo de stroking com quadtrees.

Nota-se que este algoritmo sempre termina, pois em última instância de recursão tem­

se um ponto: um ponto é sempre coerente com respeito a uma região de stroking.

A estrutura recursiv~ do Algoritmo 1.7 cria uma quadtree. Hunter [HunS79] e Samet (Sam90

mostram que o número de nós em uma qua.dtree é de ordem O(r+p), onde pé o perímetro

da curva discreta representada pela lista e r o nível máximo de subdivisão. Este nível

pode atingir a resolução da imagem a ser gerada: assim, r pode ser entendido como a

resolução da imagem. Para cada uma das regiões R candidatas à coerência, existe um

ponto P associado. Para cada um destes pontos, precisa ser verificado se P E T EB (B e R)

e, em alguns casos, se P E Te (B e R). Para cada um destes pontos, são necessários

O(p) testes para_ efetiva computação do resultado. Assim, o algoritmo com quadtrees tem

complexidade de testes O((r + p)p) .

-82-

4.3.5 n-coerência

O método com quadtrci:s envolve muitos testes com as dilatações B EB R e erosões B e R,

pois muitas regiões R podem ser geradas no processo recursivo para formar a quadtree.

Para reduzir o número de tais dilatações, será proposto um novo método baseado num
tipo diferente de coerêucia: a n-coerência.

Definíção 4.19. Uma região R é II-coerente com respeito a T EB B se e somente se

TEBB ç R.

Um exemplo simplc.-; de região II-coerente é T EB Q80:,;(B), onde QBo:,;(B) denota uma

bounding box quadrada da brush B. Isto pode ser provado facilmente utilizando-se o fato

que QBoz(B) Ç R e aplicando-se a monotonicidade da soma de Minkowski. A escolha

da bounding box quadrada não foi uma escolha aleatória: como o ambiente de trabalho é

8-conexo, esta brush permitirá uma computação eficiente de uma região n-coerente.

O método para stroking utilizando o conceito de II-coerência utiliza dois procedimentos

auxiliares:

• Cobertura, que tem a finalidade de calcular uma região II-coerente;

• Refinamento, cuj,\ finalidade é extrair a região T EB B da região II-coerente cal­
culada pelo procedimento Cobertura, utilizando a implementação do predicado de

p_ertinência Tren desenvolvido por Pol e Corthout [CorP92].

O Procedimento Cobertura calcula a seguinte região n-coerente:

#T

LJ{T; EB QBo:,;(B)},
i=O

isto é, limita a região de stroking T EB B pela cobertura T EB Qs0:1:(B).

O cálculo de T;EBQ 80:,;(B) tem alto custo computacional para a lista toda. Usualmente,

{T; EB QBo:,;(B)} n {T;+1 EB Qs0:r:(B)} -:/ 0: assim, evitar a computação dos pontos desta

intersecção diminui o custo de cálculo da região TI-coerente descrita acima.

Tendo-se calculado a dilatação para uma parte da lista, isto é, U7:~{T; EB Q80:r:(B)},
para 1 $ k < #T, pode-se computar facilmente a contribuição da dilatação Tk (f) Q80;z;(B)
pelos casos mostrados 11a Figura 27:

- 83 .•

EJ [I] [3
Figura 27: Contribuição da dilatação Tk EB QBo:(B) para U~;;{T; EB QB02:(B)} ·

Na implementação dos casos mostrados na figura, as regiões escuras representam linhas

e colunas de pontos. Se Tk = Tk-l, então a computação da contribuição não é necessária .

Observa-se que a computação de tal contribuição funciona porque está-se trabalhando num

ambiente 8-conexo e pela escolha da boun~ing box quadrada. Utilizando-se esta forma de
computar a contribuição, tem-se a seguinte especificação do procedimento Cobertura:

Procedimento 1.3 Cobertura da região de stroking.

Cobertura(Lista T,Brush B)
Entrada: T - Caminho (Curva Discreta)

B - Brush.

Saída: Ul:~{Ti EB Qnoz(B)}
l: U +-Ta EB B

2: para todo T;, i = 1, ... , #T faça

3: U +- ULJ Contribuição de '.I';.$ B
4: fim para

5: Devolva (U)

A variável U do Procedimento 1.3 representa a estrutura de dados que irá armazenar
a imagem final. ·

-84-

A figura 28 mostra os primeiros passos deste procedimento usando uma brush do tipo
diamante:

@ PonlM do proc:tdl,.tnlO

~hdlomonl<

loatuUnc box ctu•dnda
da brvah

Figura 28: Cobertura com uma brush do tipo diamante.

Dada uma região rI-coerente U, com respeito à região de stroking T E9 B, o proced­
imento Refinamento calcula a intersecção U n (T EB B), usando o algoritmo de stroking
básico.

Procedimento 1.4 Refinamento de uma região TI-coerente.

Refinamento(Lista T,Brush B,Region U)
Entrada: T - Pontos de controle da curva

B - Brush
U - Região TI-coerente

Saída: TEB B
1: p~a todo P E Ú .. faça

2: se Stroking(T,B,P)=FALSE então
3: Retire P de U
4: fim se
5: fim para

6: Devolva(U)

- 85-

A Figura 29 mostra um exemplo dé acão deste procedimento, usando uma brush do

tipo diamante:

· lma~tm(U)

t/' Pontm do caminho

@ Ponto. d■ rczl:ao coerente

~ Pon J•lladoo

Bnash com boundlnc

boi

Figura 29: Refinamento de uma região Il-coerente.

Especificados os procedimentos anteriores, pode-se derivar o seguinte algoritmo para

a operação de stroking usando Il-coerência:

Algoritmo 1.8 Stroking com Il-coerência.

StrokingComPiCoerencia{Lista T ,Brush B)
Entrada: T - Lista contendo os pontos de controle de uma curva de Bézier discreta.

B - Brush.

Saída: U - Região de stroking T EB B
1: L~Curva de Bézie_r Discreta com pontos de controle de T

2: U~Cobertura{L,BJ

3: U~Refinamento(T,B,U)

4: Devolva (U)

Para assegurar o correto funcionamento cio Algoritmo 1.8, precisa-se provar que os

procedimentos Cobertura(T,B) e Refinamento(T,B,U) cumprem suas funções. O primeiro

resul.tado estabelece que a o procedimento Cobertura(T,B) consegue computar uma região

Il-coerente-com respeito a T EB B.

Teorema 4.8. O procedimento Cobertura(T,B) calcula uma região coerente U com re­

speito à região de stroking T EB B.

- 86-

Calculada uma região U TI-coerente com respeito a T $ B, o próximo resultado prova

que o procedimento Refinamento(T,B,U) consegue extrair a região T $ B de U.

Teorema 4.9. O procedimento Refinamento{T,B,U) calcula a região T$B de uma região

TI-coerente U.

Para se computar o número de testes efetuados pelo Algoritmo 1.8 na região T $

B, é necessário estimar a cardinalidade da região Uf:~{T; EB Qo0 ,,(B)}, retornada pelo

procdimento Cobertura. Para isto, considere-se e o número de pontos numa linha (ou

coluna) da região Qoax(B). No pior caso, quando o caminho é uma diagonal, tem-se

no máximo é2 + 2c(p - 1) pontos na região de teste para refinamento, onde p representa

o perímetro do caminho: é2 provém da cardinalidade de To EB Qsoz(B) e 2c(p - 1) da

quantidade das contribuições dos pontos T; , i = 1, .. . , #T. Assim, tem-se O((c + p)c)

testes na região T $ B. Para se comparar esta complexidade com a obtida no algoritmo
que usa quadtrees, O((r + p)p) são.necessárias algumas considerações. Usualmente, o

tamanho da brush B é muito menor que a imagem a ser gerada na operação de stroking.

Deste fato, tem-se e < r. Além disto, também é usual o tamanho da brush ser menor

que o tamanho do caminho T: nestes casos, tem-se e < p. Estes afirmações permitem

concluir que, se o tamanho da brush for bem menor que os tamanhos da imagem a ser

gerada e do caminho, o algoritmo com 11~coerência reduz a complexidade do número de

testes necessários para se produzir o resultado da operação de stroking. Esta dependência

do tamanho da brush será melhor reafirmada nos testes resultantes da implementação,

mostrados nas próxirrn~~ seções.

A próxima seção compara de maneira mais efetiva os três algoritmos apresentados.

4.3.6 Comparação das complexidades teóricas

Os três algoritmos apresentados anteriormente praticamente são formados de duas operações
básicas:

• teste, que decide se um ponto está dentro ou fora da região T EB B;

• atribuição, que atribui cores (preto ou branco)8 aos pontos testados.

Assim, como na operação de preenchimento, a comparação téorica das complexidades

destes algoritmos será feita com base nestas operações.
8Ou, alternativamente, cor do interior e exterior.

• 87-

A complexidade da fase de test~ já foi estabelecida para os três algoritmos ao lon­

go deste capítulo, sumarizada na Tabela 7. Os algoritmos quadrático e com quadtrll$

fazem somente uma atribuição a cada ponto da imagem a ser gerada: assim, fazem O(r2
)

atribuições, onde r representa a resolução da imagem. O algoritmo de TI-coerência faz, no

máximo, três atribuiçf,.,s de cor a um mesmo ponto da imagem: a primeira, que coloca

todos os pontos da ima~em com a cor do exterior da região T EB B; a segunda, resultante

do processo de cobertura; a terceira, resultante do processo de refinamento. Logo, este

algoritmo também faz O(r2) atribuições.

A tabela abaixo compara a complexidade destas duas operações básicas para os três

algoritmos:

Algoritmo Operação de teste Operação de atribuição

Quadrático O(r2) O(r2}

Coerência com quadtrees O((r + p)p) O(r2}

TI-Coerência O((c + p)c) O(r2
)

Tabela 7: Comparação das complexidades teóricas para contorno de caminhos.

O passo mais custoso num algoritmo de contorno de caminhos é justamente computar

quem está dentro. ou fora da região de int~resse _(fase de teste). A simples observação da
Tabela 7 não evidencia diretamente uma redução da complexidade do algoritmo de IT­

coerência em relação ao algoritmo com quadtrees, em virtude da dependência do tamanho

da brus/i. Para se verificar si tu ações práticas em que há redução do número de testes, foram

implementados os três algoritmos curvas de Bézier. Alguns detalhes de implementação e

vários resultados práticos dos algoritmos são analisados nas duas próximas seções.

4.3. 7 Alguns resultados numéricos

A partir dos algoritmos anteriores, foram efetuados vários testes para averiguar o compor­

tamento da implementação e comparar resultados em situações práticas. Mediu-se apenas

a quantidade de testes iuterior/exte~i?r feitos pelos algoritmos, uma vez que as atribuição

de cor aos pontos é, essencialmente, a mesma.

O ambiente dos testes foi um computador IBM Pentium 200 MHz. A resolução das im­

agens é sempre 512 x 512, a menos que explicitado o contrário. As imagens geradas foram

armazenadas no formato bitmap, escaladas a 50%, convertidas para PostScript e incluídas

nesta dissertação através do pacote graphicx, 'disponível para ~JEX. A impressão foi

- 88-

efetuada numa impressora HPLaserJet 5Si a 600 dpi.

Os 'primeiros resultados apenas mostram o efeito das três brushes implementadas num
segmento ele curva de I3ézier como .~aminho. Nestes exemplos, usou-se um tamanho de
brush igual a 10.

(a) Caminho

(b) Brush circular

(e) Brush quadrada

(d) Brush diamante

Figura 30: Efeitos da variação do tipo de brush.

As bn.ishes do tipo circular e quadrada são largamente utilizadas na maioria dos sis­
temas de pintura.

-89-

O próximo resultado utilizou o caracter japonês Ni, com uma brush de tamanho baixo

(4):

Figura 31: Curvas do caracter Ni.

Algoritmo Número de Testes

Brush circular Brush quadrada Brush diamante

Quadrático 262.144 262.144 262.144

Quadtrees 146.167 147.101 157.104

D-coerência 18.104 18.104 18.104

Tabela 8: Comparação do número de testes de contorno para o caracter Ni.

Os resultados da Tabela 8 reforçam a tese que, quanto menor o tamanho da brush,
mais eficiente será o método de D-coerência. Além disto, nota-se uma variação do número

de testes quando ocorre uma mudança de brush no algoritmo com quadtree. Isto não

ocorre com o mecanismo de Pi-coerência: mantendo-se o tamanho constante, não ocorre
mudança na bounding box quadrada da brush.

O próximo exemplo mostra um~-~ituação em que a brush tem ·tamanho grande (30).

-90- ..

Neste exemplo, foi utilizado o caracter japonês Hon, distribuído por grande parte da
imagem.

Figura 32;. Curvas do caracter Hon.

Algoritmo Número de Testes

Brush circular Brush quadrada Brush diamante
Quadrático 262.144 262.144 262.144

Quadtrees 94.728 88.645 98.215

O-coerência 109.755 109.755 109.755

Tabela 9: Comparação do número de testes de contorno para o caracter Hon.

Neste exemplo, além de uma grande distribuição da curvas pela imagem, o tamanho
da brush, relativamente grande, contribuiu para a queda da performance do algoritmo
de O-coerência, conforme explicitado na Tabela 9. Isto já era esperado na comparação
teórica das complexidades.

Para reforçar a dependência do tamanho da brush no desempenho do algoritmo de

11-coerência, foi gerado um exempl<_? __ de pior caso para entrada do algoritmo (segmento
diagonal).

- 91 -

.... -------
//

t::., __ ;m~·.=.,~,,:,:J

Figura 33: Segmento diagonal na imagem (redução de 30%).

Variando-se o tamanho da brush circular, obteve-se a seguinte tabela:

Tamanho Quadrático Quadtrees TT-coerência
4 262.144 69.206 5.262
6 262.144 72.755 8.176
8 262.144 74.266 10.869
10 262.144 76.617 13.379
20 262.144 80.063 26.478
30 262.144 83.174 38.925
40 262.144 86.187 50.975
60 262.144 86.054 73.812
80 262:144 82.138 95.391
100 262.144 77.984 114.976

Tabela 10: Efeitos da variação do tamanho da brush.

A dependência do tamanho da brush é notória pelos resultados da Tabela 10. Além
disto, ocorre um efeito interessante com o algoritmo de quadtrees: o número de testes
cresce até um certo ponto, quando passo a cair. O mesmo não acontece com o algoritmo
de TT-coerência, que tem comportamento crescente com o aumento do tamanho da brush.

4.4 Antialiasing

Os algoritmos de prcnchimcnto e stroking podem ser utilizados em várias aplicações im­
portantes. Este capítulo mostra uma aplicação destes algoritmos para uma técnica de
antialiásing.

-92-

4.4.1 A necessidade de antialiasing

Sistemas gráficos de exibição matricial são dispositivos discretos: em tais sistemas, uma

imagem é gerada atribuindo-se uma intensidade para cada pixel pertencente a uma matriz

bidimensional finita de pixeis. Essa natureza discreta acarreta um dos principais problemas

dos sistemas de exibiç,-LO matricial: a inabilidade de se obter contornos contínuos e de

se exibir os detalhes finos de uma cena. Um exemplo familiar é o aspecto serrilhado

das imagens de retas e contornos ~~m dispositivo de saída do tipo CRT (Cathode Ray

Tube). Outro exemplo é a cintilação devida a pequenos objetos em movimento, que

aparecem e desaparecem numa exibição dinâmica. Tais defeitos ocorrem quando uma

função de variáveis contínuas que contém abrupta alteração de intensidade é aproximada

por amostras discretas. O erro desse processo de discretização foi originariamente chamado

aliasing em Teoria do Processamento de Sinais e esta terminologia tem sido usada em

Computação Gráfica.

O conjunto de técuicas para atenuar os efeitos de aliasing é conhecido comumente
como antialiasing.

Para exemplificar estes mecanismos, a Figura 35 mostra duas versões de uma mesma
curva discreta:

(a) Aliasing (b) Antialiasing

_Figura 34: Efeitos d_e_ aliasing e antialiasing.

Na versão mostrada em (a), não foi efetuado ne·nhum tratamento para aliasing, onde

são notórios os efeitos do tipo serrilhado. Em (b) foi aplicada uma técnica de antialiasing,

cujo aspecto é visivelmente mais confortável.

4.4.2 A técnica de Fabris e Forrest para antialiasing

Pré-filtragem é geralmente considerada a abordagem ideal para antialiasing, mas tem sido

difícil de ser implementada com exatidão para geometrias complexas, tais como curvas ou

para uma escolha arbitrária de filtros.

-93-

Em (Fab95, FabF97, FabF97b], Fabris e Forrest desenvolveram uma téc~ica para an­

tialiasing de curvas bidimensionais contínuas baseada em pré-filtragem que, não só evita

os problemas geométricos e numéricos encontrados cm técnicas anteriores, mas também

permite o uso de uma classe genérica de filtros, o que a torna aplicável a diferentes dis­
positivos de saída.

O processo de rasterização utilizado em (Fab95, FabF97, FabF97b] consiste no teste

interior/exterior, descrito nos capítulos anteriores. Neste processo, não houve uma pre­

ocupa~ão especial no que diz respeito à eficiência. O uso de um teste interior/exterior com

sua complexidade original - quadrática com relação à resolução - torna a implementação

consideravelmente lenta. Utilizand<rse o mecanismo de II-coerência, a implementação da

técnica tornou-se bastante rápida, como mostram os resultados da próxima seção.

4.4.3 Alguns resultados

Utilizando-se a implementação da técnicà de Fabris e Forrest, com o mecanismo de II­

coerência, foram gerados vários exemplos para se verificar o comportamento da técnica

frente ao novo mecanismo de teste e medidas de tempo. A medida de tempo foi tomada

em minutos e segundos, ao invés da contagem do número de operações, com o intuito de se

ter uma noção de tempo de execução numa aplicação prática. Os testes foram efetuados
num equipamento IBM Pentium 200 MHz. A resolução das imagens é sempre 512 x 512.

Para melhor definição dos resultados, utilizou-se uma resolução de sub-pixel 26 x 26•

As imagens geradas foram armazenadas no formato bitmap, escaladas, convertidas para

PostScript e incluídas através do pacote graphicx, disponível para ~'IEX- A impressão

foi efetuada numa impressora HPLaserJet 5Si a 600 dpi. Como o objetivo primordial era

introduzir velocidade na técnica de _a_ntialiasing, não foi efetuado nenhum tratamento de

gamma correction9, fato que pode, eventualmente, refletir negativamente na imagem final.

Entretanto, isto não produz nenhuma alteração significante de desempenho na técnica de

stroking incorporada, uma vez que se trata de uma etapa de pós-processamento.

Os primeiros resultados, mostrados nos casos (1) a (6) nas próximas páginas, ressaltam

o comportamento da técnica frente a váriàs particularidades geométricas das curvas. As

curvas geradas têm largura 1 e foi utilizado um filtro do tipo Bartlett. As imagens fi-

ºTipicamente, deseja-se que a resposta do monitor de vídeo seja linear com um sinal de entrada.

Porém, na prática, obscrva-~c um comportamento não-linear entre a intensidade emitida pelo monitor e a
voltagem do sinal de entrada. A compensação desta não-linearidade é conhecida como gamma correction,

podendo ser efetuada diretamente por hardware por alguns sistemas ou por tabelas de compensação, via
software.

-94-

nais estão em tamanho natural. A Tabela 11 sumariza os tempos necessários para a
computação de cada uma das imagens com antialiasing:

Caso Tempo (segundos)
1 12
2 12
3 19

4 10

5 15
6 16

Tabela 11: Tempos para várias particularidades geométricas de curvas.

(a) Aliasing (b) Antialiasing

Figura 35: Caso (1) - Curva com porções quase verticais e horizontais.

-95-

Figura 3G: Caso (2) - Curva com pequeno raio de curvatura.

Figura 37: Caso (3) :··curva com gra~de raio de curvatura.

-96-

/\/\
Figura 38: Caso (4) - Curva com um cúspide.

Figura 39: Caso (5) - Curva com um pequeno loop.

1\1\
Figura 40: Caso (6)_,: Curva com dois ~ontos de inflexão.

-97-

Os próximos resultados, mostrados nas páginas seguintes, evidenciam o efeito da

variação da largura da curva no dcscmpe11ho de> implementação. Ressalta-se que, quanto

maior a largura da currn, maior a região de teste interior/exterior. As imagens estão cm

tamanho natural e as 1:icdidas de largura estão cm unidade de pixel.

A Tabela 12 comp;lra os tempos necessários para a produção de cada uma destas

imagens.

Largura Tempo (segundos)

0.5 7

1.0 15

1.5 17

2.0 26

2.5 ... 27

3.0 37

Tabela 12: Tempos com variação da largura das curvas.

A
Figura 41 : Curva utilizada para teste de variação de largura.

AAAAA
(a} 0.5 (b) LO (e) 1.5 (d} 2.5 (e) 3.0

Figura 42: Variação de largura das curvas.

A variação do filtro, utilizado na técnica, interfere no tamanho da região de teste

interior/exterior, evidenciada pela alteração de suporte do filtro. Quanto maior O suporte

do filtro, maior será a área de testes e, conseqüentemente, maior o tempo necessário para

-98-

antialiasing. Para reforçar esta afir~nação, foram gerados testes com tamanho crescente
do suporte dos filtros . As imagens correspondentes aos testes encontram-se na próxima
página.

(a)

Teste
Curva (b) Box (e) Bartlett

Figura 43: . Efeitos da variação do filtro.

A Tabela 13 mostra o efeito temporal desta variação:

(d) Bell

Filtro Suporte Tempo (minutos:segundos)
Box (-0.5, 0.5) 11

Bartlctt (-1.0,1.0) 12
Bell (-1.5, 1.5] 20

Tabela 13: Tempos com variação dos filtros.

Finalmente, se a curva for fechada, pode-se preenchê-la e aplicar a técnica de antialias­
ing na bordas, como mostra a seqüência do exemplo a seguir, onde ambos tratamento de
aliasing e preenchimento foram feitos em alta resolução, utilizando-se um filtro simples
(box filtering).

-99-

Figura 44: .Curvas fechadas.

Figura 45: Curvas fechadas preenchidas e com antialiasing.

5 Considerações finais

Algoritmos baseados na imagem desepenham papel fundamental em computação gráfica.
O desenvolvimento de formalismos que suportem tais algoritmos é de grande interesse
computacional. Em especial, o problema do teste interior/exterior em dimensões mais
altas, ou mesmo em dimensões fracionárias, constitui um desafio devido a alta complexi­
dade dos objetos. Mecanismos que tornem a computação mais simples, eficiente e robusta
são cada vez mais necessários. Assim, fica evidente que a proximidade entre computação
gráfica e áreas como análise, topologia e geometria torna-se bastante estreita.

Referências

(Adol38Gj Adobe Systems Incorporated, PostScript Language Reference Manual.
Addíson-Wesley Publishíng Company, Reading, 1986.

(BleSM88] Bleser, T.W., Silbcrt, J .L:, McGee, J .P. Charcoal sketching: returning control
to the artist. ACM Transactions ou Graphics, 7(1), 76-81, Janeiro 1988.

[BurZ85] Burde, G., Zieschang, H. Knots. Walter de Gruytcr, Berlín, 1985.

-100-

[CorP92] Corthout, !VI.E.A., Pol, E.J.D. Point Containmcnt and the Pharos Chip. Tese

de Doutorado, Lciden University, the Netherlands, 1992.

[Ede87] Edclsbruner, H. Algorithms in Combinatorial GeometnJ. Springer-Verlag, Hei­

delberg, 1987.

(Fiu89] Fiume, E.L. The Mathematical Structure of Rastcr Graphics. Academic Press,

1989.

[Fab95] Fabris, A.E. Robust Antialiasing of Curves. PhD thcsis, Univcrsity ofEast Anglia,

Norwich, Novembro 1995.

(FabF97] Fabris, A.E., Forrest, A.R. Anti-aliasing of curves by discrete pre-

filtering. Computer· Graphics (SJGGRAPH'97 Proceedings), 31, 317-326, Agosto

1997.

(FabF97b) Fabris, A.E., Forrest, A.R. High quality rendering of two-dimensional contin­

uous curves. SIBGRAP/'97 Conference Proceedings, IEEE Computer Society Press,

10-17, Outubro l!J97.

[FabSF97] Fabris, A.E., Silva, L., !'?rrest, A.R. An efficient filling algorithm for non­

simplc closcd curves using the Point Containment paradigm. SJBGRAP/'97 Confer­

ence Proceedings, IEEE Computer Society Press, 2-9, Outubro 1997.

(FabSF98] Fabris, A.E., Silva, L., Forrest, A.R. Stroking Discrete Polynomial Bézier

Curves via Point Containment Par~digm._ SIBGRAP/'98 Conference Proceedings,

IEEE Computcr Society Press, Outubro 1998.

[Fo196] Folcy, J .D. ct ai. Computer Graphics: Principies and Practice (second edition in

C). Addison-Wcslcy Publishing Company, Reading, 1996.

(For85] Forrcst, A.R. Computational gcometry in p~actice. Fundamental Algorithms for

Computer Graphics, Ed. R.A.Earnshaw, Springer- Verlag, 707-724, 1985.

(For88] Forrest, A.R. Gcometric computing environments: some tentative thoughts. Theo­

retical Foundations of Computer Graphics and CAD, Springer-Verlag, 185-197, 1988.

[Fra86] Franklin, W.R. Problems with raster graphics algorithms. Data Structures for

Raster Graphics, Eds. L.R.A. -Kessener, F.J. Peters, M.L.P. van Lierop, Springer­

Verlag, 1-7, Hl86.

- 101 -

{Gla95) Glassncr, A.S. P1inciples of Digital Jmage Sy11thesis (Fir-st volume). Morgan
Kaufmann Publishcrs Inc., San Francisco, California, 1995.

(GhoM84) Ghosh, P.l(., Mudur, S.P. The brush-trajectory approach to figure specifica­
tion: some algcbraic solutions·.· ACM Transactions on Graphics, 3(2), 1-24, Abril
1984.

[GuiRS83] Guibas, L.J., Ramshaw, L.H., Stolfi, J. A kinetic framework for computational
geometry. Proceedings of 24th IEEE Symposium on the Foundations of Computer
Scicncc, 100-111, 1983.

(GuiP74) Guillemin, V., Pollack, A. Differential Topology. Prentice-Hall, Inc., New Jersey,
1974.

{HunS79) Huntcr, G.M., Steiglitz, K. Operations on images using quadtrees. /EEE Trans­
actions on Pattern Analysis and Machine Intelligence, 145-153, 1979.

[Kau87) Kauffam, L.H. On Knots. Princeton University Press, Princeton, 1987.

(KlaS91) Klassen, R.V. Drawing antialiased cubic spline curves. ACM Transactions on
Graphics, 10(1), 92-108, Janeiro 1991.

[Knu86] Knuth, D.E. The METAFONT book. Addison- Wes\ey, Reading, MA, 1986.

[Mas91) Massey, W.S. A Basic Course in Algebraic Topology. Springer-Verlag, New York,
1991.

[New79] Newman, W., Sproull, R. Princip.les of Jntercative Computer Graphics, 2" edição,
MacGraw- Hill, Ncw York, 1979.

[Pal91] Palka, B.P. An /ntroduction to Complex Function Theory. Springer- Yerlag, New
York, 1991.

[Per88) Pcrky, T .S. PostScript prints anything: a case history. IEEE Spectrum, 42- 46,
Maio 1988.

[PosF89] Posch, K.C., Fellner, W.D. The circle- brush algorithm. ACM Transactions on
Graphics, 8(1), 1- 24, Janeiro 1989.

[Sam90] H. Samet. T/ie Design and Analysis of Spatial Data Structures. Addison-Wesley,
1990.

- 102 - . .

[Scr82] Serra, J . Imay,; Analysis and Mathematical Morphology. Academic Press, 1982.

[Str86] Strassmann, S. Hairy brushcs. Computer Graphics (SIGGRAPH'86 Proceedings),

2~, 225- 232, Agosto 1986.

[Tan88] Tang, G.Y. R<•gion filling with the use ot the discrete Grecn Theorem. Computer

Vision, Graphics ,md Image P;cessing, 42, 297-305, 1988.

(Whi83] Whitted, T . ;\nti-aliased line drawing using brush extrusion. Computer Graphics

{SIGGRAPH'83 i'roceedings},17,151-156, Julho 1983.

-103-

