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Abstract. A weak selection on an infinite set X is a function / : [X]2 —► X 
such that f{{x,y}) € {x,t/} for each {o;, y) € [X]2. A weak selection / 
on X defines a relation x -</ y if /({a,!/}) = x whenever x, y 6 X are 
distinct. The topology tj on X generated by the weak selection / is the 
one which has the family of all intervals («-,x)/ = {y 6 X : y -<f x} and 
(x, —>)f = {y € X : x -<f y) as a subbase. A weak selection on a space 
is said to be continuous if it is a continuous function with respect to the 
Vietoris topology on [X]2. The paper deals with topological spaces (X, r) 
for which there is a set W of continuous weak selections satisfying r = 
V/ew Tf (we say that the topology of X is generated by continuous weak 
selections). We prove that for any infinite cardinal a, there exists a weakly 
orderable space whose topology cannot be generated by less than or equal to 
or-many continuous weak selections. We prove that any subspace of a space 
generated by continuous weak selections is also generated by continuous 
weak selections. Assuming that c is regular, we construct a suborderable 
space whose topology is generated by c-many continuous weak selections but 
not by less than c. Also, under the assumption of GCH> for every infinite 
successor cardinal a+ we construct a space X that is generated by a+-many 
continuous weak selections but cannot be generated by a-many selections.
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1. Introduction and preliminaries

All spaces that we shall consider will be at least Hausdorff. For a set X, we 
let [X]2 = {F Ç X : \F\ = 2}. As usual, the symbols x(X) and w(X) denote the 
character and the weight of a space X, respectively. The symbols u and ui stand 
for the first infinite cardinal and the first uncountable cardinal, respectively. We 

the symbols <, >, <, > for the usual order of cardinals. If is a linear order 
set X, then the intervals are denoted by (x,2/)<, [x,j/]<, (x, ?/]<£, etc..

Given an infinite set X, we say that a function / : [X]2 —>■ X is a weak selection 
if /(F) £ F for all F £ [X]2. For a weak selection / : [X]2 -> X, we define x -</ y 
if f({x,y}) = x, for each {x,y} € [Xj2, and x y if either x -</ y or x = y. 
This relation -<$ is reflexive and antisymmetric but could fail to be transitive. 
Following [6], if B and C are (not necessarily nonempty) subsets of X, we write 
B <f C if y -</ z for every y £ B and z £ C. For a weak selection / : [X]2 —» X 
and x £ X, we define

(<-,*)/ = {y £ X : y -<f x} and (x,->)/ = {y £ X : x -<f y).

The topology on X having all open intervals («—,x)/ and (x, —>)/ as a subbase 
will be denoted by tj. These kind of topologies are called selection topologies. 
Selection topologies were introduced in [9] where it was proved that they are 
Hausdorff; In [10] was proved that they are regular; in [14] was proved they are 
always completely regular.

Let X be a topological space, and let F(X) be the set of all non-empty closed 
subsets of X. The Vietoris topology ry on T(X) is the one which has a base 
consisting of all sets of the form

(V) = {s € T{X) : sn V Í 0, V e V and S Ç [J v} ,
where V runs over the finite families of open subsets of X. If we consider [X]2 as a 
subspace of the space (X(X),r\/), then we say that a weak selection is continuous 
if it is a continuous function with respect to the relative Vietoris topology. The 
following result is summarised in [12].

Theorem 1.1. Let X be a space and let f : [X]2 -> X be a weak selection. Then, 
the following are equivalent.

(1) -<f is a closed subset of X x X.
(2) -<f is open in X x X.
(3) //x,y £ X and x -</ y, then there are open sets U,V C X such that 

x £ U, y £ V and U x V eff­

use
on a



TOPOLOGIES GENERATED BY WEAK SELECTION TOPOLOGIES 1387

(4) / is continuous.

For a space X, we let Sel^X) denote the set of all weak selections for X and 
the symbol Sel^iX) stands for the set of all continuous weak selections.

Recall that a space (X, r) is orderable if there is a linear order -C such that 
t = where r<^ is the order topology induced by the order. A space is called 
suborderable if it is a subspace of an orderable space (suborderable spaces are also 
named generalized ordered space). These spaces were introduced by Herrlich’s 
Ph. D. Dissertation in 1962. Ceeh [2, pp. 285-286] (see also [19, pp. 5-6]) proved 
that a topological space (X, r) is suborderable iff there exits a linear order on 
X such that

(1) Ç r, and
(2) r has a base consisting of open convex subsets1.

A suborderable space will be denoted by (X,t, <), where r is the topology of X 
and <C is the linear order on X witnessing the suborderability of (X, r). It is not 
hard to see that w(X) < |X| for every suborderable space X. A space (X, r) is 
weakly orderable if there is a linear order C on X such that r<^ C t. Clearly every 
suborderable space is weakly orderable, and every weakly orderable space has a 
continuous weak selection. The converses are not true. Hrusák and Martinez Ruiz 
[13] construct a space with continuous weak selections but not weakly orderable. 
The class of weakly orderable spaces is much wider than that of suborderable 
spaces, for instance, there are examples of weakly orderable (Polish) spaces with 
arbitrary large covering dimension (hence, small inductive dimension) [11], while 
the small inductive dimension of suborderable spaces is always less than or equal 
to 1.

By using selection topologies explicitly, some preceding results concerning 
(sub -)orderability of spaces with continuous weak selections can be read as fol­
lows:

• (van Mill-Wattel [17]) For a compact space (X,r) with SelZ(X) ^ 0, r = r/ 
and tj is orderable for any f G Sel^X).

Combining theorems of Artico, Marconi, Pelant, Lotter, Tkachenko [1] or 
Miyazaki [18], and Garcia-Ferreira, Sanchis [4], we have

• For a completely regular, pseudo-compact space (X, r) with Sel^X) ^ 0, 
t — Tf and Tf is suborderable for any / G Sel^X).

1A subset C of a linearly ordered set (X, <) is called convex if for each xt y G C with x < y 
we have that [x,y]< Ç C.
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• (Gutev [7]) For a locally compact paracompact space (X,t) with Sel^X) ^ 
0, t = Tf and Tf is semi-orderable for any / € Sel^X), where a space is semi- 
orderable if it is the topological sum of two orderable spaces (hence, suborderable).

The Sorgenfrey line is an example of a non-orderable, suborderable space. Here 
is a different type of a result concerning selection topologies:

• (Hrusák and Martinez-Ruiz [14]) For the Sorgenfrey line (5,r), there is / G 
Sel^iS) such that r = r/

• For the subspace (X,r) = (0,1) |J{2} of the reals, there is no / € Sel^X) 
satisfying r = 77 but there are two f,g e Sel^X) such that r is generated by
TfUTg.

Motivated by these results we introduce CWS-spaces and their cws-numbers 
as follows:

For a set X and a family {t* : i 6 /} of topologies on X, we recall that the 
supremum topology of this family is the smallest topology, denoted by Vie/ r*> on 
X that contains t* for each i € I. This topology has as a subbase the family 
{Uio H.... nUin :n<u and Vfc < n(Uik € rifc)}.

Definition 1.1. A space (A, r) is called a continuous weak selection space (CWS- 
space) if there is W C Sel^X) such that r = V/ewTf- For a CW5-space X, 
we define the cws-number of X, denoted by cws(X), as the minimum cardinality 
of a subset W Ç Sel^X) for which r = V/ewr/- ^ W Ç SefaiX), then we 
simply say that the space X is a IF5-space and the ws-number of X, denoted by 
ws(X), is defined as the minimum cardinality of a subset W Ç Sel2(X) for which 
r = V/6W Tf-

By definition, we have that every CW 5-space is a fF5-space and ws(X) < 
ctys(X), for every Ciy5-space X. We still do not have any example of a WS- 
space that is not a CWS-space. In this paper, we shall mainly address our 
attention to C'I/F5-spaces and their cws-numbers. Automatically the WS-spaces 
are Tychonoff (see [14]).

Clearly, every orderable space X is a CW 5-space with cws(X) = 1. We know 
that cws(S) = 1 for the Sorgenfrey line 5 [14].

In this paper we shall consider the following natural question.

Question 1.2. For each cardinal number a > 1, is there a (suborderable) space 
(X, r) such that cws(X) = a ?

The paper is organized as follows:
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In the second section, we present some basic properties of CW5-spaces. The 
third section is devoted to the study of the cws-number of weakly orderable spaces 
by using spaces with only one non-isolated point. In particular, for every infinite 
cardinal a we give an example of weakly orderable space whose cws-number is 
bigger than a. The Michael line M is an example of a suborderable space that is 
not orderable. We will show that cws(M) = 1. By modifying the Michael line, 
in the last section, we construction, assuming that c is regular, a suborderable 
space whose cws-number is c. By using the main idea of this construction, under 
the assumption of GCH, for every infinite successor cardinal a+ we construct a 
space X such that cius(X) = a+.

2. Topologies generated by weak selections

For a given space (X, r), it is pointed out in [9] that if the weak selection 
/ : [X]2 —> X is continuous, then r/ Ç r. Also an example is given in [9, Ex. 
3.6] showing that the condition r/Cr does not imply the continuity of the weak 
selection /.

Yamauchi[20] shows that cu;s(X) < 2 for every subspace of the reals. In the 
next theorem, we shall show that every subspace of a CWS-space is a CWS-space.

Lemma 2.1. Let Y be a subspace of a CWS-space X with \Y\ > 2. Let A be a 
clopen subset ofY. Then A is V{r/ : / € Se^YJJ-open.

Proof. If A = Y, obviously the topology of Y is generated by V(r/ : / € 
Se/i; (Y)}-open. Let p € A. We will show that there exists a V{r/ : / € SeZo( Y)}- 
open set W satisfying p € W C A. Choose any / € Sel^X) and let g = /| [Y]2. 
Then g € Sel^fY). First we show the case when A = Y. Choose x € A\{p}. "Then 
(<— ,x)g or (xt—>)g is a neighborhood of p in Y, depending on p x or x p. 
The case Y\A ^ 0 follows Proposition 3.2 in [8]. Namely, whenever g 6 Sel%(Y), 
define € Sel^iY) such that £j({x,2/}) = x if and only if (i) x 6 A and
y € Y\A ,and (ii) g\({x,y) = g({xty}) for the other case; ^({x,y}) = p({ar,y}) 
if and only if (i) y € A and x € Y \ A ,and (ii) g^{{xyy}) = <?({£,y}) for the 
other case. Choose any point q e Y \ A. Then (<—,q)g+ H = A is
V{t/ : / G 5eÍ2(Y)}-open.

Theorem 2.2. Let (X,r) be a CWS-space and Y be a subspace of X with || >2. 
Then Y is a CWS-space.

Proof. For a point x G X and a weak selection / we denote by 0(x,/), either 
(x ->)/ or (<-,x)f. Let U be an open set of Y and V be a open subset of X

□
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such that V C\Y = U. Let p G U. Then there exist a finite set H C X and 
{/z : x G H) C Sel%(X) such that p G fixe// /*) c ^■

Choose q Ç. H. We will show that there exist a V{r/ : / ^ 5e^2(^)}-open set 
W such that p G W C 0(q, fq).

For simplicity we set fq = f and g = f\[Y]2- Note g G Sel^iY). Without 
loss of generality, we may assume 0(q,fq) = (<-,q)f. In the case q G Y, clearly 
p G («-, q)g C (<-, q)/, so, we need to show only the case q £Y. But in this case 
the set Y fl («-, q)f = Y D (<—, q]f is clopen in Y and contains p. By Lemma 2.1, 
the proof is completed.

In the next section, we shall prove that some weakly orderable CW5-spaces 
X with just one non-isolated point satisfy that |X| < cws(X).

Example 2.3. There exists a weakly orderable space X (hence, Sel^X) ^ 
0) which is not a CWS-space.
{(0,0)} Uii^»sin(l/ic)) : x G (0,1)} as a subspace of the plane R2. It is known 
that X is connected and has exactly two continuous weak selections. But the 
space generated by the both selections is homeomorphic to [0,1) which is not 
homeomorphic to X.

Let us give some topological properties of the weak selection topologies. First, 
notice that w(X,tj) < |X| for every / G Sel2{X). To state a cardinal inequality 
involving the weight and the ans-number, we need the following lemma.

Lemma 2.4. Let X be an infinite set and let {r* : i G 1} be a family of topologies 
on X. If r — \/iej Ti, then

□

Indeed, consider the space X =

w(X,t) = ^^w(X,Ti).
i£l

Moreover, there is J Ç I such that r = yjçjTj and 1*^1 ^ w(X,r).

Proof. The equality is easy to verify. Let 3 be a base for r of size w(X, r). 
Consider the set

A = {(A, B)eBx3: 3IA,B € [/]<wVi G Ia,b3Uí G Ç ni€lAiBUi Ç B)}.

For each pair (.4, B) G A fix Ia,b € [I]<tv and, for each i G Ia,b, fix t/j G Tj so 
that A Ç C\iç.jA BUi Ç B. Put J = U(a,b)g.a It is not difficult to show that 
r = VjçjTj and \ J\ < \B x B\ < w(X,t).

Observe that for every X and for every / G Sel2{X), we have that w(X,Tf) < 
\X\. As a direct application of Lemma 2.4, we obtain the following theorem.

□
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Theorem 2.5. For a CWS-space X, the following inequality holds:

cws(X) < w(X) < cws(X) • \X\ 

Hence, if \X\ < w(X), then w(X) = cws(X).

Since w(X) < \X\ for a suborderable space X, we have

Corollary 2.6. cws(X) < \X\ for a suborderable space X.

Recall that a space is zero dimensional if it has a clopen base.

Theorem 2.7. Let X be a zero dimensional space. If Sel%(X) ^ 0, then X is a 
CW S-space.

PROOF. Apply Lemma 2.1 for Y = X. Then each clopen subset of X is generated 
by continuous weak selections for X.

Lemma 2.8. A countable regular space {X,r) is weakly orderable, in particular, 
Sel9,(X) ± 0.

PROOF. Since a countable regular space is zero dimensional, X has a family 
U — {Un : n £ u} of clopen sets such that for any x £ X, there exists a subfamily 
Vx C U satisfying p|Vx = {a;}. Now the topology t' on X obtained by U as 
a subbase is metrizable, hence orderable ([15]). Since the topology t' is weaker 
than r, (X, r) is weakly orderable.

□

□
By the above Lemma 2.8 and Theorem 2.7, every countable regular space is a 

CVP5-space.

Corollary 2.9. If X is a countable regular space with cws(X) < to, then X is 
second countable.

The next corollary is a direct application of Theorem 2.5 and the fact that a 
countable metrizable space is orderable ([15]).

Corollary 2.10. For a countable regular X, cws(X) < u if and only ifcws(X) =
1.

To finish this section we formulate the following question.

Question 2.11. Is there a CW5-space X with cws(X) = n for any natural 
number n > 2 or n = u? Or does cws(X) < u imply cws(X) < 2?
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3. Selection numbers for weakly orderable spaces with only one
NON-ISOLATED POINT

In this section, we shall prove that some spaces with only one non-isolated 
point are CW5-spaces. To work with this kind of spaces we shall introduce some 
notation. First of all, let us see how the discrete topology on an infinite set can 
be realized by a suitable weak selection:

Lemma 3.1. Let a be a cardinal with the discrete topology and |or| > 2. Then 
there is f £ Select) such that tj is the discrete topology on a.

Proof. If a is finite, then the selection defined by any order on a gives the 
discrete topology. For an infinite a, fix a partition {Zq : 6 < a} of a in countable 
infinite subsets identifying each copy with the integers Z. Then, we define / : 
[a]2 ->aas follows:

if fi £ Z7, í/ÇZfl and 7 <6 < a

/({a*."}) =
min{/z, v) if /i, v £ Ze,9 < a

for each {p, 1/} £ [a]2. □
Given an infinite cardinal a and a free filter T on a, £(/*) = qU{7} will 

be the space where a is discrete and the neighborhoods of T are of the form 
A U {}r} for A £ T. From Theorem 1.1 we can see that if a weak selection 
/ : [fC^7)]2 —•► is continuous then r/ is contained in the topology of f(.F). It 
follows from Theorem 2.7 that the space f(J') is a CW 5-space iff Sel^iT)) ^ 0. 
But this theorem does not say anything about the cws-number of the space. For 
a filter T on a, we define the norm of T by Ill'll = min{|A| : A £ J7}.

Theorem 3.2. Let a be an infinite cardinal and T be a filter on a with 
Sel^i^iJ7)) y£ 0. Then ^(T) is a CWS-space with cws^^T)) < xifi-^7))- U 
xm) > m, then cws(((7)) = xttPO)-
Proof. By Theorem 2.7, £(.F) is a CWS-space. Let B £ T be a set with car­
dinality \B\ = yj'll = (3. We identify B with the cardinal /?. Choose a neigh­
borhood base A of T in £(.F) satisfying A C j0 U {J} for each A £ A and 
|.4| = x(£(^))- For each A £ A, define weak selections f\ and /J satisfying (i) 
A <fl £(JF) \ A *f- A, (ii) /+ \[((J0 \ A]2 = fX\[t(JF) \ A]2 and (iii) /+ (hence 
ÍÃ) generates the discrete topology on £(.F)\j4, (iv) f\\[A]2 = \[A]2 = f\[A\2.
Then clearly /^,/J £ SelZ^T)), and (A,“>)/- n (•f-,A)/+ = A for any
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A G £(/■) \ A by the definition of f\ and /J. To get each A G A we need 
two continuous weak selections f\ and /J, so ctus^J7)) < x(£(.F)).

Put Q = {F n ft : F G J°} and Ç(Ç) = fi U {£}. The implication cws(Ç(F)) >
follows from xféC?7)) = x(£(£)) < w(£(É/)) <X(í(^)) when x(£(-F)) > P 

cws(Ç(G)) • \P\ = cws(^{F)) • \p\ = cws(^(F)) in Theorem 2.5.
now

□
A family W of subsets of a set X is nested if U C V or V C U for every

U, v e W.
Lemma 3.3. (Corollary 5.5 [5JJ Let a be an infinite cardinal and T be a filter on 
a. Then 5,(T) is weakly orderable so that T is the last or, respectively, the first 
point of if and only if there exists a nested family W of neighborhoods of T 
such that {.T7} = f] W.

Corollary 3.4. Let a be a cardinal and T be a free ultrafilter on a. Then 
is a CWS-space and cws(£(F)) = x(£(^))-
Proof. All we need to show is that Sel^i^iF)) 0. We show that £{F) has a 
nested family of neighborhoods of T satisfying the condition of Lemma 3.3. Let 
B = {b^ : fi G «} G T such that |B| = ||.F||. Then = {be : p < 0 < /c} U {/*}, 
p < k is a nested family satisfying the condition of Lemma 3.3.

A filter T on a is said to be uniform if ||.77|| = a. For a uniform ultrafilter T 
on a, xtei-T7)) > O’^ so for any infinite cardinal a, we can get examples of weakly 
orderable spaces with arbitrarily large cws-numbers.

Let a be an infinite cardinal. Let “w = {/ : a —> cu} be the functions from a 
to to. Let us recall that the generalized sequential fan Sa is the space Ç(FQ) = 
(a x co) U {Fa} where J-Q is the filter on axw generated by the sets of the form 
Aj = {(0,n) G a x u : f(0) < n} for a function / G aw. The points ofaxw 
are isolated, and the neighborhoods of TQ are F U {^a}» where F G Ta. For 
f,g G Qu, we write that / <* g if \{0 < a : g{9) < f(0)}\ is finite. A subset 
D Ç Qu is said to be dominating if for every f € Qu there is g G D such that 
/ <* g. Let dQ be the minimum cardinality of a dominating subset of Qu.

We remark that x(5a) = <>«> and is the dominating number D > cji.

Corollary 3.5. For every infinite cardinal a, SQ is a CWS-space with cws(Sa) —

□

£>a.

PROOF. We need to check the condition of Lemma 3.3. Let Wn = {(0,m) G
ocxoj :m> n) U {.Fa} for n G cj, and W = {Wn : n G a;}. Then W is nested and
nw=(a □



S. GARCÍ A-FERREIRA, K. MIYAZAKI, T. NOGURA, AND A.H. TOMITA1394

The space Su is countable and cws(Slt}) = 0 > Wi, so Corollary 2.10 cannot be 
improved beyound u.

We say that a space X is p-orderable [5], where p € X, if X has an open nested 
base at p. It is proved in [5] that;

Theorem 3.6. £(.F) is orderable so that T is the last or, respectively, the first 
point of£{T) if and only if it is T-orderable.

Using this theorem we can get the following theorem.

Theorem 3.7. Let T be a free filter on an infinite cardinal a. If £(T) is subor- 
derable, then it is orderable.

PROOF. Let < be the linear order on £(J") witnessing its suborderability. Let 
L = {6 e £{T) : 9 < 7} and R = {9 G : 9 » T}. Then L D R = 0 
and = L U R U {J7}. If ^(J7) is suborderable, then LU{J} and HU{7} 
are suborderable such that the point T is the last or the first point, respectively. 
Since {(A, : A G L} is nested, LUT is .F-orderable with the last point T. By
the above Theorem, L U {T} is orderable. Similarly R U {.T7} is orderable with 
the first point T. We can conclude that Ç(J') is orderable.

So, all the CWS-spaces given in this section are either orderable or non- 
suborderable. If a free filter T on a > co satisfies ^ then the space
£(.F) cannot be suborderable.

4. Selection numbers for sub-orderable spaces-Variations of the
Michael line

In the sequel, the usual order of the real line will be simply denoted by < and 
the open intervals of R will be denoted by (x, —»), (<— ,x) and (#,?/), for each 
x, y € R. Similarly, for the closed intervals of R. For x, y € R, min{x, y} and 
max{x, y) are taken in the usual order of R. The set of irrational numbers will 
be denoted by I.

The Michael line M is the space whose underlying set is R and its topology 
is the one generated by the Euclidean topology of R and the family of singletons 
{{r} : r E I}. This space was introduced by E. Michael [16]. To give more 
examples of CWS-spaces we shall use some variation of the Michael line:

Definition 4.1. Let B a subsets of the real line. We will denote by Mb the 
topological space whose underlying set is the real numbers and a base for its 
topology is given by {{x} : x e R\jB}U{(x- -j-,» + : x G B and n < cj}.

□
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When 5 = Qwe obtain the Michael line. It is interesting to see that the space 
Mr\{z> admits a continuous weak selection and cws(Mr\{x}) = 1 (indeed, this 
space is homeomorphic to (0,1) U {2} U (3,4) and apply some characterizations 
from [20]), for every sGl, although cws(X) = 2 for X = (0,1) U {2}. For more 
than two points we have the following.

Lemma 4.1. Let B be a proper dense subset of R. For two distinct points x,y G 
Mb \ B, there exists a continuous weak selection fX}V : [Mb]2 —> Mb such that 
the topology tj is finer than the topology on Ms, a,nd {a;} and {y} are isolated 
points in the topology Tjxy.

PROOF. Assume that x < y. We define the required weak selection /x>y : 
[Mb]2 —> Mb as follows:

min{a, 6} if {a, b} ± {x, y}
if a = x and b = y.

One can see without any difficulty that /x,y is continuous. Clearly,
(*-, X){x,y = (<-.*) U M and (y, = (y, ->) U {x}.

Hence, the points x and y are isolated in the topology Tjxy.

The next lemma follows directly from the previous lemma and the proof that 
the Michael line is suborderable (see [19]).

Lemma 4.2. For every subset B ofR, the space Mb is a suborderable space. 

Theorem 4.3. For the Michael line M, cws(M) = 1.

Proof. For each integer n 6 Z, fix a Cantor set Cn Ç [n,n + 1] \ Q and let 
Dn = [n,n+l]\(CnUQ). Let {c% : Ç < c} and {d£ : Ç < c} be a faithful indexation 
of Cn and Dn, respectively, for each n G Z. Our selection / : [M]2 —> M is defined

fx,y({ai b}) —
y

□

by
if {x,y} = {4.4+J 
if {x,y} = {4,4+J 

min{x, ?/} otherwise,

for each {x,2/} € [R]2. To prove the continuity we apply Theorem 1.1. To do that 
fix {x,2/} G [R]2 with x < y} and assume that x G [n,n + 1) and y G [m,m + 1), 
for some n, m G Z.

Case I. x, j/ G Q. Chose open intervals I C (n — l,n + 1) \ (Cn_i U Cn) and 
J Ç (m — l,m + 1) \ (Cm-1 U Cm) so that (x,y) G J x J and i < j for every 
(i,j) G I x J. Then, i <f j for each (i,j) G I x J

Cn+1

f({x,y}) = {4n+1
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Case II. x G Q and y G L As in the previous case, choose an open interval 
I Ç (n— 1, n + 1) \ (Cn-1 UCn) containing x and satisfying i < y for all * € I. It 
is evident that i -</ y for all i G I.

Case III. x G l and y G Q. This case is completely similar to the previous one. 
Case IV. x, y G E. This case is trivial.
Thus, we have that the weak selection is continuous and so rj is contained in 

the original topology of M. Since
(4+1 >->)/ = (4+1.->)U{4} and (4+1.-0/ = (4+1.-0 u {4}.

for every n G Z and for every £ < c, it then follows that r/ coincides with the 
topology of M.

To construct more examples we recall that a Bernstein set is a subset B of R 
such that every compact subset of R contained either in B or in R\B is countable. 
For the existence of a Bernstein set of cardinality c see [3, P. 5.5.4(a)]. We need 
a special Bernstein set which will be describe in the next lemma.

In what follows, let D = {{x,y) G R2 : x < y}.

Lemma 4.4. Assume that c is regular. Then, there exists a Bernstein set B of 
the reals such that ifU Ç D is an open subset ofR2 containing (B x B)C\D, then 
D\U is contained in the union of fewer than c vertical and horizontal lines. That 
is, there exists A of cardinality smaller than c such that D\U Ç (A x R)U(IR x A).

Proof. First let us see some properties of the closed subsets of D that cannot 
be covered by fewer than c many vertical and horizontal lines. We shall prove 
that for such a closed subset F of D we can find

(*) {xa • & < c} U {ya : a < c} pairwise distinct real numbers such that 
(xQ, yQ) G F for each a < c.
Indeed, let G = {a; G R : |({x} x E) fi F| = c. If G has cardinality c then 
using a diagonal argument we can show that F satisfies (*). Now, assume that 
G has cardinality smaller than c. Let H = {x G R : 0 < |({.t} x IR) n F\ < c}. 
Note that in this case ({a;} x K) D F is countable, for each x G H, and the set 
H has cardinality c. Let L be the projections of (H x M) n F into the second 
coordinate. If \L\ < c, then F would be covered by fewer than c vertical and 
horizontal lines. Therefore, L must have cardinality c. Suppose that for some 
(3 < c we have defined (xQ,yQ) G (H x R) fl F pairwise distinct, for each a < (3. 
Notice that the set ({xa : a < (3} xR) C\ F has cardinality smaller than c. Fix 
y$ G L\{ya : a < (3} so that yp is not in the projection of {xQ : a < (3} x R)flF 
into the second coordinate. Now choose xp G H such that (xp,yp) G F. We can 
check that {xp,yp} fl {xQ,ya : a < (3} = 0. Thus, F satisfies (*).

□
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We know that there are c-many closed subsets of R x R of cardinality c. Hence, 
there are c-many closed subsets F of K x R satisfying (*). Using a standard 
diagonal argument, we can find B such that R\B is dense in R, has cardinality 
c, B intersects every closed subset of R of cardinality c and B intersects every 
closed set with property (*).

Next, we shall require the following notation:
Given / G SefaiX) and two finite subsets L and R of X, we let

I/{L, R) = {x G X : Vy G Liz G R(y -</ x A x -</ z)}.

Lemma 4.5. Assume that c is regular. Let B be the Bernstein set of the reals 
from Lemma 4-4■ For every finite subset {fi : i < 1} of Sel^Ms), the topology 
\Ji<iTfi onM has strictly less than c many isolated points.

PROOF. Let B be a Bernstein set as in Lemma 4.4. Let {fi : i < l} be a finite 
subset of Sel^Ms) and set r = Vi<iTfi. We remark that r/i is contained in the 
original topology of Ms, for every i < l. Since /, is continuous, by Theorem 1.1, 
for each (x, y) € (B x B) fl D and for each i < /, choose disjoint open intervals 
I(x,y) and J(x,y) such that (x,y) G I(x>y) x J(x,y) Q D and, f°r each i < U either 
a ^fib for all (a, b) G I(XtV) x J(x,y), or b -<fi a for all (a, 6) G I(XiV) x J(x,y). Put

u = UR(-.*) x J^y) ■■ (*’ y) e (B x B) n D).

Evidently, the set U is open and hence D\U is a closed set that does not intersect 
B x B. Thus, D \ U is contained in fewer than c horizontal and vertical lines 
of R2. Hence, there exists A of cardinality smaller than c such that D \U Ç 
(AxR)U(Rx A).

Let I be the set of isolated points of (R, r). We must have that I Ç R \ B. 
For each isolated point x G / and for each i < l, choose Rx,i G [R]<ui so that 
P),€/ Ifi(LXti, RXti) = {x}. Let us suppose that |/| = c. Since A has cardinality 
smaller than c and c is regular, we may choose C Ç I \ A of cardinality c so that

Lx,i H A = LVti f) A and RXti 0^4 = Ry,i fl A, 
for every i < l and for every x,y G C. Let z G C be an accumulation point of C in 
the Euclidean topology. We can find e > 0 so that for each y G (LZii\A)U(RZfi\A) 
we have that \z — y\ > e and, for every *</,/< either chooses always the first 
coordinate or always chooses the second coordinate on any point of the square 
of side 2e and center either (z,y) if z < y or (y, z) if y < z. Since 2 is an 
accumulation point of C, there exists t G C such that \z — t\ < e. Let i < l and 
y G (LZti \ A) U (RZfi \ A). Suppose that (y, z) G D, then (y,t) G D and (y,t) 
is in the square centered in (y, z) thus, either fi chooses z and t or fi chooses y

□

(*)
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for the pair (y, z) and (y,t). Similarly, if (z,y) G D then (t,y) G D and either fi 
chooses 2 and t or fi chooses y for the pair {z}y) and (£, y). This and (*) imply 
that t G a<, Ifi(Lz,iiRz,i) = {2}, a contradiction.

Theorem 4.6. Assume that c is regular. Then, there exists a Bernstein set B of 
the reals such that cws(Mb) = c.

Proof. Let B be a Bernstein set as in Lemma 4.4. By Corollary 3.7 cws(Mb) < 
\Mb\ = c. For each x G R \ B choose fx G Sel^Ms) as in Lemma 4.1 so that 
{#} G Tfx. It is evident that {fx : igE\B( generates the topology on Mb- 

On the other hand, according to Lemma 4.5, every finite subset of Sel^Ms) 
produces strictly less than c-many isolated points of Mb- Therefore, by the 
regularity of c, the topology of Mb cannot be generated by less than c-many 
continuous weak selections.

□

□
Theorem 4.7. [GCH] For every infinite cardinal a there exists a suborderable 
space X such that cws(X) = a+.

Proof. Let X be the set aQ and we equip X with the linear order given by 
f < g if and only if f ^ g and f(9) < g(6) where 6 = min{7 < a : /(7) 7^ g(7)}. 
We consider X as a space with the topology induced by this linear order. Then, 
we have that the set (J0<Q x Q^0{O} is a dense subset of X of size a, and 
X has weight a. Since it is an ordered space with density a and size a+ = 2Q, 
we can repeat the previous construction to obtain a subset B of X for which the 
’’Michael line” Xb B has the desired properties.

The authors would like to express their best gratitude to Professor Gutev for 
several valuable remarks and suggestions, especially for simplifying the proofs of 
Theorems 2.2, 3.7. The authors also would like to thank to the referee of this 
paper for careful reading.

□
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