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X-ray multiple diffraction experiments with synchrotron radiation were carried

out on pure and doped nonlinear optical crystals: NH4H2PO4 and KH2PO4

doped with Ni and Mn, respectively. Variations in the intensity profiles were

observed from pure to doped samples, and these variations correlated with shifts

in the structure factor phases, also known as triplet phases. This result

demonstrates the potential of X-ray phase measurements to study doping in this

type of single crystal. Different methodologies for probing structural changes

were developed. Dynamical diffraction simulations and curve fitting procedures

were also necessary for accurate phase determination. Structural changes

causing the observed phase shifts are discussed.

1. Introduction

The physical properties of materials are in general intrinsically

related to their crystal structures. Many materials with very

interesting physical properties for technological applications

can be grown or synthesized as single crystals, e.g. semi-

conductors, ferroelectrics, multiferroics, piezoelectrics and

others. Single-crystal forms of materials are necessary in

certain applications, as in the case of nonlinear optical (NLO)

crystals, widely used in laser technology. Controlling materials

properties is one of the most fundamental goals in the science

and engineering of materials. In terms of current trends in

designing technological crystals, quantifying correlations

between variations of physical properties and very small

changes of crystal structure can be the key to acquiring

knowledge of the physics involved and to allow the efficient

design of new materials with improved properties. Methods

for monitoring small structural changes are therefore impor-

tant. Although there are well established methods for probing

crystal structures, mostly X-ray diffraction methods, the scope

of conditions in which these methods can be applied is limited.

This is where alternative methods suitable for unusual

conditions can be helpful in studying technological crystals.

Since it was reported decades ago that information on the

phases of the structure factors – or more precisely, on invar-

iant triplet phases – could be accessed via X-ray multiple

diffraction (XRMD) experiments (Lipscomb, 1949; Hart &

Lang, 1961; Post, 1977; Chapman et al., 1981; Chang, 1984;

Shen & Colella, 1987), many attempts have been made to use

this phenomenon as a physical solution of the phase problem

in X-ray crystallography or, at least, as a general tool for

studying crystalline and nonperiodic materials (Tischler &

Batterman, 1986; Rossmanith, 1992; Weckert & Hümmer,

1997; Avanci et al., 1998; Stetsko et al., 2000, 2001; Shen et al.,

2000; Remédios et al., 2005). In this latter context, XRMD can

be seen as a method to provide specific pieces of information

that could not be retrieved by any other method and thus

make it possible to distinguish one atomic structure from

another among several possibilities. For instance, this was

demonstrated in elucidating the mechanism of resonant scat-

tering in LaMnO3 (Shen et al., 2006). However, the potential

field of applications of XRMD in phase measurements is not

widely exploited. It has potential for new opportunities in the

dynamical theory of X-ray diffraction beyond of the usual

two-beam diffraction cases. Phase sensitivity in XRMD

experiments is due to interference of simultaneously

diffracted waves inside the crystal, which is essentially a

dynamical diffraction process that can be described by the

N-beam dynamical theory in perfect crystal slabs (Colella,

1974; Chang, 1984; Weckert & Hümmer, 1997). There is,

however, a difficult point to be settled, which is how to account

for crystalline imperfections and their influence on the dyna-

mical interference of the X-ray waves undergoing multiple

diffraction.

In this work, we experimentally exploited the potential of

XRMD phase measurements for investigating small changes

of fractional coordinates (of the atoms in the unit cell), such as

those caused by internal stresses (Reeuwijk et al., 2000) in

doped NLO crystals. In particular, we studied ADP (ammo-

nium dihydrogen phosphate, NH4H2PO4) and KDP (potas-

sium dihydrogen phosphate, KH2PO4) doped with Ni and Mn,

respectively. In the former, remarkable phase shifts were

obtained, which could be correlated to an increased disorder

of oxygen sites due to doping. For the sake of comparison,
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similar phase shifts were induced in a GaAs crystal by chan-

ging the X-ray energy. In the case of Mn-doped KDP, the

polarization and energy of the synchrotron radiation were

adjusted to enhance the phase sensitivity for quantitative data

analysis. Samples with different contents of Mn in the crystal

lattice were investigated. The influence of lattice imperfec-

tions on measured phase values was minimized by using a

criterion to identify XRMD cases suitable for accurate

phasing. Structural changes in the doped samples accounting

for the observed phase shifts are discussed.

2. Theoretical aspects

Phases of single reflections, i.e. structure factor phases, are

values relative to the choice of origin. For instance,

F 0ðQÞ ¼ expðiQ ��rÞFðQÞ would be the structure factor for an

arbitrary choice that is displaced �r from the origin used to

calculate FðQÞ for the diffraction vector Q. The same depen-

dence of origin choice does not occur for structure factor

triplets such as

F 0ðBÞF 0ðCÞ

F 0ðAÞ
¼
jFðBÞjjFðCÞj

jFðAÞj
expfi½�þ ðBþ C�AÞ ��r�g;

ð1Þ

where � ¼ �B þ �C � �A, �Q is the phase of the structure

factor FðQÞ and the diffraction vectors fulfill the relationship

Bþ C�A ¼ 0. The phase triplet, or triplet phase, � is

therefore invariant regarding the choice of origin, and it is a

physically measurable quantity via XRMD experiments (Hart

& Lang, 1961; Post, 1977; Chapman et al., 1981; Chang, 1984;

Weckert & Hümmer, 1997).

For a short overview of the XRMD method, consider the

structure factor triplet already given in equation (1) for the

Bragg reflections A, B and C. The XRMD profile obtained by

measuring reflection A, while tuning and detuning reflection

B, is sensitive to the triplet phase �. It also corresponds to the

phase difference between the primary wave, from primary

reflection A, and the secondary wave that is systematically

generated when reflection B is tuned. This secondary wave has

been scattered twice: first on reflection B, and then on

reflection C, as detailed elsewhere (Giacovazzo, 2002;

Morelhão & Kycia, 2002; dos Santos et al., 2009). Henceforth,

we will refer to each XRMD case by the indices of the

reflections B&C whose sum provides the indices of reflection

A, i.e. hA ¼ hB þ hC, kA ¼ kB þ kC and ‘A ¼ ‘B þ ‘C, or,

occasionally, only by the indices of reflection B.

As a function of the triplet phases, the XRMD profiles

typically have an asymmetric character for � values around 0

or 180�, and a symmetric character for values equal to �90�.

Fig. 1 shows examples of such behavior in a GaAs (002)

crystal. At the X-ray energy E ¼ 10 200 eV, below the

absorption edge of Ga (Figs. 1a and 1c), both XRMD cases

have � close to�90�. Their profiles are nearly symmetric with

a slight destructive/constructive type of asymmetry. Above the

absorption edge (Figs. 1b and 1d), the triplet phases change by

about 50� and the levels of asymmetry increase significantly in

both profiles. Inversion of asymmetry, from destructive/

constructive to constructive/destructive, is observed in one

case (Fig. 1d), since the triplet phase of this case has moved

from the first to the second quadrant, crossing the value of 90�.

An accurate description of the interference process is given

by the N-beam dynamical theory of X-ray diffraction in

perfect crystal slabs (Colella, 1974; Chang, 1984; Weckert &

Hümmer, 1997). This allows simulation of the intrinsic dyna-

mical profiles Idynð!; ’Þ, as a function of the incidence ! and

azimuthal ’ angles. For triplet phase analysis via XRMD, the

interference profiles are usually monitored by azimuthal scans

of reflection A (’ scans; Renninger, 1937), as in Fig. 1, where

the incidence angle ! is kept constant at !A, the central angle

of reflection A whose value is equal to the Bragg angle plus a

small correction to account for refraction. Instrumental

parameters such as divergence, spectral bandwidth and

mosaicity are taken into account by convolution of the

intrinsic dynamical profile with a broadening function, in

general a suitable Gaussian G with standard deviations �! and

�’ with regard to the ! and ’ axes of rotation, respectively

(Weckert & Hümmer, 1997). Then, Ið’Þ ¼ ½Idyn �G�

ð! ¼ !A; ’Þ is the simulated profile to be compared with the

experimental ones.

Inevitably, measurements of triplet phases via XRMD

always raise questions of how good, from a crystallographic

viewpoint, the sample has to be for this method to work. This

is a crucial point in studying doped NLO crystals. When

comparing intensity profiles from pure and from doped

samples, inversion of profile asymmetry is strong evidence of

changes in the reflection phases. The presence of lattice

defects, such as grain boundaries in mosaic crystals, can

destroy the interference of the diffracted waves, leading to

profiles that look more symmetric. However, inversion of

research papers

94 Sérgio L. Morelhão et al. � X-ray phase measurements of NLO crystals J. Appl. Cryst. (2011). 44, 93–101

Figure 1
Experimental (open circles) XRMD interference profiles in a GaAs (002)
crystal: (a), (b) 111&111, and (c), (d) 111&111 cases. X-ray energy: (a),
(c) E ¼ 10 200 eV and (b), (d) E ¼ 10 500 eV. Reference direction: M =
[110] (see Experimental section for details on data acquisition).
Calculated triplet phases are shown beside each profile.
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asymmetry is an effect that does not seem possible by just

increasing the mosaicity of the crystal. The problem of lattice

imperfections is critical only when accurate measurements of

phase shifts are desired. In this case, it is necessary to distin-

guish changes in the profile asymmetries caused by loss of

crystalline quality from those caused by actual changes in the

reflection phases.

An approach to identify XRMD cases that are highly

susceptible to the presence of imperfections is possible. It is

based on comparing the exact solution from N-beam dyna-

mical theory and an approximated second-order series

expansion solution of the diffraction process (Juretschke,

1982; Shen, 1998). Within the second-order approximation,

the primary wave D1, from reflection A, and the secondary

wave D2, from reflections B and C, lead to the expression

I2ndð!; ’Þ ¼ jD1j
2
þ jD2j

2
þ �ðD1 �D

�
2 þD�1 �D2Þ ð2Þ

for the intrinsic profile. The interference term, which appears

multiplied by �, is responsible for the information on triplet

phases carried on by the XRMD profiles, and the parameter �
has been introduced by hand in order to gauge the contribu-

tion of the interference term in the intensity profile

(Morelhão, 2003a).

In the exact dynamical solution, all possible interactions of

X-ray photons with the crystalline lattice are taken into

account, which corresponds to a non-truncated series expan-

sion solution. The number of interactions, however, depends

on the size and perfection of the crystal (Thorkildsen et al.,

2003; Authier, 2005). A general overview of this dependence

and the validity of the most common theoretical approaches

(Chang, 1984; Rossmanith, 2007) are given in Table 1. In a

small single crystal where the X-ray photons can interact at

most twice, the XRMD process can be, in principle, described

by equation (2) with � ¼ 1 (row 2 of Table 1). Equation (2) is

also valid for large imperfect crystals where the perfect

diffracting regions are small enough to eliminate the prob-

ability of a third intra-region interaction (row 5 of Table 1).

However, in this case, 0<�< 1 since jD2j
2 also accounts for

twice-diffracted photons among distinct regions without phase

coherence (inter-region interaction, i.e. B and C reflections

taking place at different perfect regions) (Morelhão, 2003a).

Therefore, it is straightforward to conclude that XRMD

profiles dominated by the second-order term, even in large

single crystals, will not be severely affected by a reduction in

the size of the perfect diffracting regions, since equation (2) is

still valid. The problem is how to use this fact, in practice, to

identify suitable XRMD cases for accurate triplet phase

measurements.

The critical sizes of the single crystals (SC) or perfect

diffracting regions (PDR) used in Table 1 can be specified with

respect to the number Ne of diffracting planes fitted in the

dynamical extinction distance of reflection B. In two-beam

diffraction, a comparison of kinematical and dynamical

calculations, such as the one performed by Authier (2005,

equation 4.50), has shown that dynamical effects are negligible

when the actual number N of diffracting planes is smaller than

about one-tenth of Ne, i.e. N=Ne 	 0:1. This corresponds to

the definition of very small SC or PDR in Table 1 (rows 1 and

4). Even under three-beam diffraction, this definition is valid

since the diffracted waves are so weak that no coherent

coupling is possible below this very small size limit. The

definition of small SC or PDR (rows 2 and 5) falls in the size

range where 0:1<N=Ne < 1. The condition for X-ray photons

to interact at most twice inside a small single crystal or perfect

diffracting region also requires that N=Ne < 1 for both A and

C reflections. Within the mosaic model of imperfect crystals,

details about the perfect diffraction region size effects on

XRMD intensity profiles can be found in the work by Thor-

kildsen et al. (2003).

Here, to analyze only the phase information in XRMD

profiles, the line-profile function

Lð’Þ ¼ ½I2ndð! ¼ !AÞ �G�ð’Þ=D2
0 ð3Þ

will be used for curve fitting purposes. Equation (3) is derived

from equation (2) when writing D1 ¼ DAv1½1� gj f ð’Þj�1=2,

D2 ¼ RDAv2 f ð’Þ expði�Þ and D2
0 ¼ jDAv1j

2 as the base-line

intensity determined by the primary reflection A. Only the

convolution with the Gaussian G regarding the ’ axis is

required. In the ! axis, the convolution is implied in the values

of DA, g, R and f ð’Þ. The DA values disappear as a result of the

normalization, and the others are adjustable parameters in the

fitting process. f ð’Þ ¼ wS=½2ð’� ’0Þ � iwS� imitates the

dependence with the azimuthal ’ angle, wS ¼ �w and w is the

effective width of the azimuthal profiles (Morelhão & Kycia,

2002; Morelhão, 2003a). gj f ð’Þj is empirical and accounts for

energy loss due to photons exiting the crystal through the

diffracted beam from reflection B (the amount not coupled by

reflection C) (Thorkildsen et al., 2003; Morelhão et al., 2005a).

The polarization vectors v1;2 are computed for each polar-

ization angle � of the incident synchrotron radiation, as

detailed in Appendix A. For each given value of �, there are a

total of six adjustable parameters in Lð’Þ, which are

summarized in the parameter vector p ¼ ðw;R; �; g; �’; ’0Þ.

An evolutionary algorithm (Wormington et al., 1999) has been

used to adjust these parameters in p for a pre-fixed number of

generations. The fitting evolution is driven by the least-mean
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Table 1
Validity of X-ray multiple diffraction theories regarding crystal size and
perfection.

PðmÞ denotes the probability of photon–lattice interaction of mth order in
single crystals (SC), as well as in one of many perfect diffracting regions (PDR)
composing imperfect crystals (IC). Valid theoretical approaches are indicated
by ‘Yes’, non-valid ones by ‘No’ and undefined situations by ‘?’. Pðm> 1Þ 6¼ 0 is
required for accessing information on triplet phases.

XRD theories

Crystal size and
perfection

Regime of
diffraction Kinematic Dynamic

Second order
[equation (2)]

Very small SC Pðm> 1Þ ¼ 0 Yes Yes Yes (D2 ¼ 0)
Small SC Pðm> 2Þ ’ 0 No Yes Yes (� ¼ 1)
Large SC Pðm 
 3Þ>> 0 No Yes ?
IC with very small PDR Pðm> 1Þ ¼ 0 Yes No Yes (� ¼ 0)
IC with small PDR Pðm> 2Þ ’ 0 No ? Yes (0<�< 1)
IC with large PDR Pðm 
 3Þ>> 0 No ? ?
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absolute deviation (LMAD) of Lð’Þ with respect to a given

azimuthal profile (simulated or experimental).

3. Experimental

NLO crystals were investigated at room temperature, in

rectangular a� b� c samples with dimensions greater than

5 mm along all axes. Pure and doped samples were grown from

supersaturated aqueous solutions at pH 3.9 (1) at 313 K, an

Ni-doped ADP sample (ADP:Ni) in a molar solution with 1%

NiCl2�6H2O and 99% NH4H2PO4, and Mn-doped KDP

samples in 1% (KDP:Mn1) and 5% (KDP:Mn5) stoichio-

metric concentrations of KMnO4 in a KH2PO4 solution. The

actual amounts of Mn incorporated into the crystal lattice

were verified by Rutherford backscattering (RBS) as being

0.001 and 0.009 mol of Mn per mol of KDP, or 0.04 and

0.36 wt% contents in the KDP:Mn1 and KDP:Mn5 samples,

respectively.

XRMD experiments were carried out at diffraction station

XRD1 of the Brazilian Synchrotron Light Laboratory

(LNLS). Thus is a bending magnetic beamline with a focusing

mirror, a two-bounce Si(111) monochromator with a sagittal

second crystal and slit screens. The X-ray optics were in

parallel beam mode (mirror and sagittal crystal focused at

infinity): photon energy E with �E=E ’ 2� 10�4, effective

divergences of 18 (vertical) � 24 (horizontal) arcseconds, and

incident beam size of 0:5� 0:5 mm. The mechanical accuracy

was 0.0002� in both ! and ’ rotation axes.

In each sample, data acquisition was performed after

aligning the diffraction vector A parallel to the ’ rotation axis

within a precision of about 0.002�. The angle of azimuth in

which a chosen reference direction M is on the incidence plane

of the diffractometer (pointing towards the X-ray source)

corresponds to ’ ¼ 0. All ’ scans were collected at the center

of the rocking curve of reflection A, and they refer to a

clockwise rotation of the reciprocal space, with vector A

pointing towards the observer. The polarization angle � allows

the incidence plane to rotate around the incident beam

direction: � and � polarization for � ¼ 0� and � = 90�,

respectively (Appendix A).

4. Results and discussions

4.1. ADP

Experimental ’ scans in ADP and ADP:Ni samples are

shown in Fig. 2. As can be noticed, the constructive/destructive

pattern of interference is shifted along the scan of the doped

sample. This fact suggests a phase shift of nearly 180� in the

400 reflection responsible for the base-line intensity. Similar to

the 002 GaAs reflection of structure factor FGaAsð002Þ ¼

4ðfAs � fGaÞ, the 400 ADP reflection is very weak since its

structure factor is also proportional to a difference of atomic

scattering factors, i.e. FADPð400Þ ’ 4ðfP þ fN � 2:754fOÞ ¼

jFAj exp ði�AÞ. Consequently, the phase of this type of reflec-

tion can be shifted by several tens of degrees in response to a

small change in the scattering properties of the atomic site.

In the case of Ni doping, a small increase in the disorder of

the oxygen sites can induce such a large shift in �A, but this

depends on the exact scattering amplitudes of the ions in the

structure. For instance, the statistical distribution of misplaced

oxygen is analogous to thermal vibration of the lattice and can

be taken into account in a similar manner. Then, the structure

factor of the 400 reflection in the ADP:Ni sample is written as

FADP:Nið400Þ ’ 4
�

fP þ fN

� 2:754fO exp �8�2
hu2
iðsin �=�Þ2

� �
þ�

�
; ð4Þ

where hu2i is the mean-squared displacement of the O

atoms owing to the presence of Ni2þ ions in the crystal lat-

tice, � ¼ ð fP5þ � fPÞTh þ ð fNH1þ
4
� fNÞTh � 2:754ð fO2� � fOÞTh

denotes the overall difference in the actual Thomson scat-

tering amplitudes regarding the tabulated values for neutral

atoms, and � and � denote the Bragg angle and wavelength,

respectively. Fig. 3 shows the phase angle of the 400 reflection
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Figure 2
Azimuthal scan of the 400 reflection in ADP and ADP:Ni crystals. M =
[001], E ¼ 6480 eV and � = 90� (� polarization). Pairs of indices stand for
four-beam cases.

Figure 3
Phase of the 400 reflection as a function of the oxygen r.m.s. displacement
in the ADP:Ni sample. Values of the parameter �, defined in equation
(4), are shown beside each curve.
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as a function of the oxygen r.m.s. displacement, hu2i
1=2

, for

different values of �. Contributions of atomic resonances to

the scattering amplitudes are responsible for the slopes of the

curves. In the absence of resonances, whose strongest contri-

bution is from the P atoms, the curves would be sharper steps

providing phase shifts of 180�. The used values of atomic

resonances, f 0 and f 00, are given in Appendix B. According to

the curves in Fig. 3, large phase shifts of more than 100� in �A

are possible if �< � 1 and hu2i
1=2
> 0:3 Å. This r.m.s. value is

of the same order as the expected thermal parameters for this

family of materials at room temperature (Fukami & Chen,

2006), but it can shift �A because it is affecting only the oxygen

contribution in equation (4).

Although the choice of a weak primary reflection can favor

the occurrence of large phase shifts, which is helpful in

providing enhanced signals relating to possible effects of

dopant ions in the crystal lattice, it is inappropriate for

quantitative phase analysis because the amplitude of the

primary wave is much smaller than the amplitude of the

secondary wave. Since the phase information derives from the

interference of these waves, they must be waves of comparable

strength, i.e. with amplitudes of the same order, to allow phase

determination with good accuracy.

4.2. KDP

Slight variations in the ’ profiles, without inversion of

asymmetry, can also be evidence of structural changes.

Experimental profiles of the three-beam cases 112&152 and

152&112 in the KDP, KDP:Mn1 and KDP:Mn5 samples are

compared in Fig. 4. The 260 reflection (reflection A) has been

chosen because of the low symmetry of the reciprocal space

around the [130] direction, which favors the occurrence of

individual three-beam cases. To enhance the profile sensitivity

for triplet phase analysis, the strength of the 260 reflection was

reduced by tuning the X-ray energy to E ¼ 7440 eV (Bragg

angle of 45�) and the polarization angle from � = 90� (�
polarization) to � = 32�.

As can be clearly seen in Fig. 4, the experimental profiles of

the 112&152 and 152&112 cases of XRMD vary systematically

with the Mn content. The profiles correspond to out–in posi-

tions, and such variations indicate triplet phases shifting in the

opposite sense: ��> 0 (��< 0) for 112&152 (152&112). By

using the line-profile function Lð’Þ [equation (3)], the ��
values in each case could be obtained within an error bar of

�5�, as presented in Table 2 (see

Appendix C for details on the phasing

procedure).

To obtain information on structural

changes from the measured shifts of

triplet phases, model structures are

very helpful. In the case of KDP, data

on computer modeling of Mn2þ ions

in the crystal lattice are available. It

has been demonstrated that inter-

stitial impurities (dopants) of

adequate ionic radius, such as Mn2þ,

can turn the nearest PO4 tetrahedron

groups by an angle of approximately

6�, favoring the formation of impurity

chains and clusters (Rak et al., 2005).

We have used a very simple model

structure to check if the measured

triplet phases can in fact be sensitive

to the PO4 rotation around the c axis.

The model consists in writing the x, y

and z fractional coordinates of the

first O atom in the unit cell as a

function of the PO4 rotation angle ��,
so that x ¼ 0:1698 cos(29.1� + ��),

y ¼ 0:1698 sin(29.1� + ��) and z ¼

0.1259. Symmetry operations of the

I42d space group provide the coordi-

nates of the other O atoms. �� ¼ 0
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Figure 4
Experimental ’ profiles (open circles) in KDP, KDP:Mn1 and KDP:Mn5 samples: (a) 112&152 and (b)
152&112. Triplet phases �0, determined with Lð’Þ fittings (solid lines), are compared with the
theoretical � values beside each profile. KDP reference profiles (dashed curves) and horizontal
(dashed–dot) lines were used for enhancement of the visual perception of changes in the profiles. M =
[001], E ¼ 7440 eV and � = 32�.

Table 2
Theoretical triplet phases in KDP, �, and their respective �� shifts
obtained by fitting with Lð’Þ [equation (3)] the experimental data from
samples KDP:Mn1 and KDP:Mn5.

Phase values are given in degrees and �0 ¼ �þ��.

KDP KDP:Mn1 KDP:Mn5

XRMD � �� �0 �� �0

112&152 33.6 11 (5) 45 (5) 29 (5) 62 (5)
152&112 �24.3 �6 (5) �30 (5) �21 (5) �45 (5)
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represents the ideal KDP structure. An illustrative view of a

structure with rotated tetrahedra, �� 6¼ 0, is depicted in Fig. 5.

Using this model, �� shifts were calculated as a function of

�� for both cases of XRMD, 112&152 and 152&112, as shown

in Fig. 6. When compared with the experimental data, there is

a good agreement of the model with the systematic variation

of �� in the series of samples with increasing Mn content

(Table 2). This suggests that the average number of rotated

PO4 units increases with the content of Mn2þ ions in the

crystal lattice and, as a consequence, the average angle of

rotation, i.e. ��, also increases. However, before being

concerned with more refined model structures, it is important

to test the accuracy and reliability of the measured triplet

phases.

A test of reliability consists of using the N-beam dynamical

theory with Gaussian convolution, Ið’Þ, to simulate ’ profiles

in thin (2 mm) and thick (200 mm) slabs, as well as in both ideal

(�� ¼ 0) and changed (�� = 8.3�) KDP structures. Then, Lð’Þ
fittings are used on simulated data to retrieve the triplet

phases and to compare them with the expected (theoretical)

values. The simulated ’ profiles are shown in Fig. 7. Profile

analysis based on the LMAD of function Lð’Þ are shown in

Fig. 8, where each XRMD case exhibits distinct responses to

this phasing procedure. In the 112&152 case, the retrieved

values of the triplet phases in thick and thin slabs were

different (Fig. 8a), while in the other case (Fig. 8b), the

retrieved values were exactly the same.

Reflection B can have either transmission or reflection

diffraction geometry. Each geometry may have different

effects on how the XRMD profiles vary in response to shifts in

the triplet phases. Transmission geometry increases the
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Figure 5
Model structure of KDP with PO4 units rotated by �� = 8.3� with regard
to the ideal structure (contours in dashed lines). Atomic radii are not
scaled to their actual sizes.

Figure 6
Theoretical �� shifts of triplet phases as a function of the PO4 rotation
angle �� for the 112&152 and 152&112 cases. Experimental shifts in the
KDP:Mn1 and KDP:Mn5 samples (Table 2) are indicated by error bars of
�5� (horizontal grey bars). For the sake of comparison, theoretical shifts
were calculated assuming either ionized (solid lines) or neutral (dashed
lines) atoms (Appendix B).

Figure 8
Minimum LMAD values as a function of the trial triplet phases �n, for
the simulated ’ profiles in Fig. 7. (a) 112&152 and (b) 152&112 in thin and
thick slabs, as indicated.

Figure 7
Simulated ’ profiles in ideal (�� = 0, blue curves) and changed (�� =
8.3�, red curves) KDP structures: (a), (b) 112&152 and (c), (d) 152&112.
Simulation conditions: slab thickness of (a), (c) 200 mm and (b), (d) 2 mm,
(010) surface, E ¼ 7440 eV, and � = 32�. Best-fitting curves (dashed
curves) of Lð’Þ are also shown.
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probability of photon–lattice interactions of third and higher

order occurring before the X-ray photons are able to exit the

crystal for detection. Therefore, it tends to increase the

contribution of high-order terms in the intensity profiles, so

that the second-order approach [equation (2)] is no longer

valid. 112&152 is a good example of such a case. Its intensity

profiles (Figs. 7a and 7b) are sensitive to changes in slab

thickness, and the shifts of triplet phases are perceived

differently in thick and thin slabs. Phase analysis with Lð’Þ
(Fig. 8a) works better in the thin slab since the second-order

approach becomes valid with a reduction of thickness. In the

other case, 152&112, the reflection geometry practically

eliminates any contribution of high-order terms. The profile is

therefore insensitive to changes in the slab thickness (Figs. 7c

and 7d), and triplet phase retrieval with the second-order

approach works very well in both thin and thick slabs, as can

be seen in Fig. 8(b).

In bulk crystals, the phase coherence of high-order terms

can be detuned by lattice imperfections. This implies that

phase analysis based on the Lð’Þ function can be, in general,

more suitable for samples of poorer crystalline quality, such as

doped crystals, than for highly perfect crystals. However, when

using reference ’ profiles from real crystals, the actual

contributions of high-order terms are difficult to quantify. As a

consequence, the accuracy in measuring relative triplet phases

from reference to doped samples becomes compromised for

most cases of XRMD. Exceptions are those cases where the

absolute predominance of the second-order term in the

perfect-crystal profile can be verified. According to the theo-

retical test of reliability mentioned above, and with the

experimental conditions used in this work [samples with (010)

surface, out–in positions, E = 7440 eV and � = 32�], 152&112 is

a reliable case for phasing. It is able to provide accurate phase

values with an error bar as small as �5� (Table 2), which can

be useful for comparison with model structures of Mn-doped

KDP.

Localized changes of the crystal lattice in the vicinity of

dopant ions do not seem to be able alone to explain the

observed phase shifts. If only local changes are taken into

account, the Mn contents obtained from RBS are too small to

generate phase shifts with the magnitudes that were observed.

Considering the KDP:Mn5 sample, for example, its 0.36 wt%

content of Mn is equal to 1/28 dopant ions per unit cell. At

interstitial positions like 0.35, 0.25 and 0.125 (Rak et al., 2005;

Lai et al., 2005), with eight equivalent sites in the unit cell, the

occupation factor of Mn is smaller than 1/200. Even in the case

of removing the nearest two Kþ ions to reach the balance of

valency, the structure factors will be changed by very small

amounts, no larger than ð fMn2þ þ 2fKþÞ=200< 0:3, and no

measurable phase shifts would result from these changes.

On the other hand, although the PO4 rotation model

appears to be a relatively simple model providing an expla-

nation for the experimental data, it requires a more detailed

discussion. The investigated triplet phases are sensitive to PO4

rotations ranging from 0 to about 16� (Fig. 6). This latter value

seems too large to be allowed in the KDP structure without

changing any atomic distances other than the length of the

O—H—O bridges (Fig. 5). Moreover, to obtain an average

rotation angle of �� = 8.3 (26)�, almost all PO4 units, or at

least half of them, would have to be rotated in the KDP:Mn5

sample to give rise to the measured phase shift of �� =

21 (5)�. Many other model structures can be proposed, and

perhaps some of them could provide different explanations for

the observed variations in ’ profiles as a function of the Mn

content in the samples. Otherwise, the experimental data

suggest a mechanism of internal stress in KDP, where a single

Mn2þ ion is rotating not only the nearest PO4 groups, as

predicted by computer modeling (Rak et al., 2005), but many

groups within at least two tens of unit cells.

5. Conclusions

This work has demonstrated that reflection phases are sensi-

tive to the presence of dopant ions in the lattice of NLO

crystals. It offers a new tool for studying doping effects in this

kind of material. Two strategies for phase measurements by

multiple diffraction experiments were also demonstrated: (i)

weak primary reflection susceptible to large phase shifts

providing a clear signal of the effects of doping; and (ii)

XRMD with diffracted waves of comparable strength properly

adjusted for accurate phasing with an error bar of �5�. In the

latter, three-beam dynamical simulation is necessary for

identifying reliable cases where the phase information can be

extracted even in the presence of lattice imperfection

(mosaicity). There is, however, a minimum grain size

requirement necessary for dynamical coupling of diffracted

beams, otherwise no phase information will be available from

the interference profiles of the XRMD phenomenon. In the

investigated samples, the effects of doping were correlated

with the dopant ions occupying interstitial sites close to O—

H—O bridges. In ADP:Ni, such interstitial occupation is the

probable cause of the increased disorder of oxygen sites that

explains the observed shift in the phase of the 400 reflection.

In KDP:Mn, the effect of doping seems to be more systematic,

driving extended regions of the material into an internally

stressed configuration with shortened hydrogen bridges.

APPENDIX A
Polarization vectors

The polarization vectors v1 ¼ k̂kA � ðv̂v0 � k̂kAÞ and v2 ¼ k̂kA�

f½k̂kB � ðv̂v0 � k̂kBÞ� � k̂kAg are computed for each polarization

direction v̂v0 of the incident synchrotron radiation (Stetsko et

al., 2004). In a given reference system where k̂k0 ¼ ð0; 0; 1Þ is

taken as the incident beam direction and �Q as the Bragg angle

of reflection Q (= A, B and C), the diffracted beam directions

are k̂kA ¼ ðsin 2�A; 0; cos 2�AÞ, from reflection A, and

k̂kB ¼ ½x;�ðsin2 2�B � x2Þ
1=2; cos 2�B�, from reflection B.

x ¼ ðcos 2�C � cos 2�A cos 2�BÞ= sin 2�A and the ‘�’ signs

correspond to that used in wS [equation (3)]: ‘þ’ (‘�’) for out–

in (in–out) positions. In this system of reference,

v̂v0 ¼ ð� cos�; sin�; 0Þ. For � ¼ 0 the incidence plane of the

primary reflection, i.e. the plane that contains both k̂k0 and k̂kA
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versors, is in a horizontal position, corresponding to the � state

of linear polarization. At � = 90� the incidence plane is

vertical, hence in the � polarization. The minus signal in v̂v0 is a

convention owing to the rotation sense of the diffractometer’s

� axis (Morelhão, 2003b).

APPENDIX B
Atomic scattering and structure factors

In calculating the atomic scattering factors f ¼ fTh þ f 0 þ if 00,

the Thomson scattering was estimated by using the Cromer–

Mann coefficients (Prince, 2004), while the used atomic reso-

nance correction terms, f 0 and f 00, are given in Table 3.

The following crystals were used:

(1) GaAs crystal, cubic lattice: a = 5.6534 Å, space group

F43m. In calculating the triplet phases presented in Fig. 1, the

origin (0, 0, 0) was set at As with Ga at (0.25, 0.25, 0.25).

(2) ADP crystal, tetragonal lattice: a ¼ b ¼ 7:4997,

c ¼ 7:5494 Å, space group I42d. Origin set at P with the first O

atom at (0.1466, 0.0843, 0.1151), which leads to

FADPðh00Þ ’ 4½ fP þ fN þ 2ðcos 2�hxþ cos 2�hyÞfO� as the

structure factor for h00 reflections.

(3) KDP crystal, tetragonal lattice: a ¼ b ¼ 7:4521,

c ¼ 6:9740 Å, space group I42d. Origin set at P with the first O

atom at (0.1484, 0.0826, 0.1259). The effective charges of the

Kþ, P5þ and O2� ions (+0.98e, +1.80e and�1.14e, respectively;

Rak et al., 2005) were taken into account in the atomic scat-

tering factors as follows: fKþ ¼ fK � 0:98; fP5þ ¼ fP � 1:80; and

fO2� ¼ fO þ 1:14. Examples of structure factor values required

for N-beam dynamical simulations are given in Table 4

APPENDIX C
Phasing procedure

For a chosen XRMD case, the �� shift of the triplet phase

was determined with respect to a reference ’ profile of known

triplet phase �. With both profiles in hand, one as the refer-

ence and the other from the doped structure, the Lð’Þ fitting

procedure was carried out in two steps:

(1) A pair of values for R and g, e.g. R0 and g0, was obtained

by fitting the reference profile with the known value of �, and

with no boundaries imposed for the parameter–vector p

except that � and g are constrained in the interval [0, 1] so as to

have physical meaning in equation (3).

(2) The obtained R0 and g0 pair was used as input for fitting

the profile from the doped structure/sample with a trial triplet

phase �n, taken from a set of possible values. For out–in (in–

out) positions and destructive/constructive (constructive/

destructive) asymmetries �n 2 [�90, 90�], otherwise �n 2 [90,

270�].

During step 2, tight boundaries were used only on para-

meters R and g, otherwise the inaccuracy in the triplet phase

values can be as large as �90� (Morelhão et al., 2005b). We

have used �R=R ¼ �0:1 and �g=g ¼ 0, i.e. 0:9R0 <R< 1:1R0

and g ¼ g0, when phasing both the experimental and the

dynamical simulated profiles. A plot of the minimum LMAD

value [minimized with a genetic algorithm (Wormington et al.,

1999)] as a function of �n leads to ��, as well as to its

respective accuracy.

This work has been supported by FAPESP, CNPq and

LNLS.
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