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ABSTRACT The vaccine roll-out has currently established a new trend in the fight against COVID-19.
In many countries, as vaccination cover rises, the economic and social disruptions are being progressively
reduced, bringing more confidence and hope to the population. However, a crucial debate is related to fair
access to vaccines, which would lead to stepping up the pace of vaccination in developing countries. Another
important issue is how immunization has influenced the control of the infection, deaths, and transmissibility
of the new coronavirus in these countries. In this work, we investigate the effects of the rate of vaccination
on the COVID-19 epidemic curves, by employing a new data-driven methodology, formulated on the
basis of a modified Susceptible-Infected-Recovered model and Machine Learning designs. The data-driven
methodology is applied to assess the influence of the vaccines administered in Brazil on the fight against the
virus. The impacts of vaccine efficacy and immunization speed are also investigated in our study. Finally,
we have found that the use of anti-SARS-CoV-2 vaccines with a low/moderate efficacy can be offset by
immunizing a larger proportion of the population more quickly.

INDEX TERMS COVID-19, data-driven, SIR, vaccination, artificial intelligence.

I. INTRODUCTION
Massive vaccination campaigns are one of the most effec-
tive strategies against the COVID-19 disease. Under this
premise, many countries have dedicated a considerable
amount of effort in negotiating and administering differ-
ent types of COVID-19 vaccines such as Pfizer/BioNTech,
Oxford/AstraZeneca and CoronaVac/Sinovac in order to con-
trol the spread of new coronavirus. As a result, the nations
that implemented mass vaccination early have seen a sig-
nificant reduction of their SARS-CoV-2 cases and deaths,
as for instance, Israel and the UK [1]–[3]. However, due to
limitations on the capacity of vaccine production and the
global fluctuation in its distribution, it is well-known that
several countries around the world have faced enormous
challenges in trying to cope with new waves of COVID-19.
This is the case experienced by Brazil, a developing country
that has suffered from delays in negotiating early deals with
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pharmaceutical companies [4] and due to the high social
inequality present in the country [5]. As a consequence, the
total number of new cases and deaths significantly increased
in 2021, surpassing the worst scenario seen in the previous
year [1].

Brazil is drawing the attention of the international com-
munity because of the rapid increase of new cases, hospi-
talizations and deaths so that its health system is teetering
on the brink of collapse [6]. Variant P.1, which emerged
at the Brazilian Amazon region, has a higher rate of trans-
mission [7], taking the country to the worst moment of the
pandemic. Also, as previously pointed out, the country has
strongly been affected by the shortage of COVID-19 vac-
cines, so that knowing the number of doses administered per
day, forecasting the number of new cases and the transmissi-
bility levels for the months ahead can significantly contribute
to the Brazilian authorities’ efforts in containing the advance
of the virus.

In order to carry out such a complete assessment of
vaccination in Brazil, in this paper we propose a new
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data-driven approach, whose parameters are learned from
individual regressors, to model the vaccination dynamics
under a two-dose regime. Unlike recent studies [8], [9] con-
cerning vaccination in Brazil, our methodology applies Arti-
ficial Intelligence tools to predict the parameters used in a
hybrid compartmental model, since most of these parameters
present a transient behavior, as discussed in our recently
published work [10]. As shown by the experiments, this
methodology successfully captures the trend in the epidemi-
ological curves for well-behaved data such as that of Israel,
as well as for particular scenarios wherein the data is ill-
conditioned, as it is the case in Brazil. We also assess the
outcome from the CoronaVac/Sinovac vaccination of the
adult population of Serrana’s town experiment, in São Paulo
State – Brazil, which is another important contribution of this
work. It is worth mentioning that recently, Serrana became
the world’s first fully vaccinated population in consequence
of the Project S [11], a Brazilian study conducted by Instituto
Butantan [12] to shed light on important issues regarding
mass vaccination of a population with two-dose shots of the
Sinovac vaccine. Finally, this work can be extended further
to investigate COVID-19 vaccine mixing, i.e., the proposed
methodology allows for numerically exploring the recent idea
of mix-and-match vaccination strategies [13], [14].

II. RELATED WORK
A financially inexpensive yet effective way to mea-
sure the success of vaccination from a dynamical
point-of-view is by applying the classical Susceptible-
Infected-Recovered (SIR) model. In fact, additional sets
of Ordinary Differential Equations (ODE) can be included
as part of the full SIR formulation to model the num-
ber of vaccinated individuals and their roles in the result-
ing dynamical system. This is the strategy adopted by
many researchers, to simulate and understand the impacts
of previous pandemics. For instance, Alexander et al. [15]
investigated the spread of influenza from the so-called
Susceptible-Vaccinated-Infected-Recovered-Susceptible
(SVIRS) model, while Counotte et al. [16] studied the epi-
demics of Zika virus, by rearranging the SIRmodel to account
for vaccination. Other interesting mathematical advances
on SIR-based models with vaccination were also presented
by Sun and Hsieh [17], Sinha et al. [18], and Mathur and
Narayan [19].

Most recently, specific SIR-type models with vaccina-
tion compartments have been applied for dealing with the
COVID-19 pandemic. The so-called SEIRD model was
employed by Roy et al. [20] to investigate the best vaccine
allocation strategy in the New York State, while Fudolig and
Howard [21] introduced a multi-strain version of the SIR
model to study some variations in the reproduction number of
the disease. Based on the advance of the SARS-CoV-2 vac-
cines, Saad-Roy et al. [22] presented a very robust investiga-
tion concerning the single or double doses of immunizers,
including the analysis of different scenarios in terms of trans-
mission and vaccine immunity. Similarly, Harizi et al. [23]

applied a compartmental model to investigate the dynamical
behavior of COVID-19 spreading in Canada under various
daily vaccination rates and vaccine efficacies. An alterna-
tive SIR-type model covering impulsive vaccination strate-
gies has been discussed by Etxeberria-Etxaniz et al. [24],
while the mass vaccination in Greece was analyzed by
Rachaniotis et al. [25]. The vaccination was also considered
as part of a feedback immunization control rule in the
model studied by De la Sen et al. [26], while Mak et al. [27]
assumed a two-dose vaccine model to explore vaccine rollout
policies.

Another effective manner to assess and forecast the num-
ber of cases and deaths by COVID-19 is by applying deep
learning, such as Artificial Neural Networks (ANN). Most
recently, popular deep learning architectures like Recursive
Neural Networks [28]–[32] and Convolutional Neural Net-
works [33], [34] have been successfully used to forecast
COVID-19 time-series without the inclusion of compart-
mental models of infections dynamics [35]. However, con-
cerning the vaccination data, the fresh literature on purely
ANN-based methods is very scarce [36]. Indeed, many
important issues are still open and deserve a deeper investiga-
tion, for example, the impact of COVID-19 vaccine efficacy
on epidemic curves, the effect of vaccination rate according
to the number of doses administered per day, the influence
of not-fully vaccinated people in the dynamics of the virus
spread, etc. In addition, the possibility of learning unknown
parameters only from the raw data of infected, recovered,
deaths, and vaccinated is an important trait of our unified
approach that is not present in purely ANN-based methods.
Indeed, our methodology does not require any prior knowl-
edge of specific epidemiological data such as, for example,
the transmission rate, to generate the forecasts and approxi-
mations for the model’s parameters.

Therefore, aiming at addressing some of the issues
raised above, in this work we propose a hybrid compart-
mental model based on a Susceptible-Vaccinated-Infected-
Recovered-Deceased (SVIRD) formulation that combines
vaccination dynamics with an effective ANN-based design
for parameter estimation. Unlike classical deep learning
methods which usually learn the time-series of cases and
deaths, our approach learns the unknown functions of the
epidemiological model while still allowing for constructing
different vaccination scenarios by just redefining new con-
trol parameters such as vaccine efficacy and immunization
speed.

III. MATERIALS AND METHODS
In this section, we introduce our data-driven SVIRD-based
approach, quality metrics, and the data collection used to run
the experiments.

A. A SVIRD-BASED MODEL INTEGRATING VACCINATION
DYNAMICS AND PARAMETER LEARNING
Motivated by the SIR-based framework recently published
in [10], we formulate and solve the following system of ODEs
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with vaccination dynamics:

dS
dt
= −ν1S − β(t)IS,

dV̄1
dt
= ν1S − β(t)I V̄1 − α1V̄1,

dV1
dt
= α1V̄1 − β(t)IV1(1− θ1)− ν2V1,

dV̄2
dt
= ν2V1 − β(t)I V̄2(1− θ1)− α2V̄2,

dV2
dt
= α2V̄2 − β(t)IV2(1− θ2),

dIs
dt
= β(t)IS − (γd + γr )Is,

dIv,1
dt
= β(t)I (V1(1− θ1)+ V̄1)− γr Iv,1,

dIv,2
dt
= β(t)I (V2(1− θ2)+ V̄2(1− θ1))− γr Iv,2,

dRs
dt
= γr Is − ν1Rs,

dRv,1
dt
= γr Iv,1 + ν1Rs − ν2Rv,1,

dRv,2
dt
= ν2Rv,1 + γr Iv,2,

dD
dt
= γd Is. (1)

Due to the data-driven capability for parameter fitting,
the model splits the population of infected and recovered
into vaccinated and non-vaccinated so that we can track the
vaccinated population over time.

An illustrative representation of the mathematical model
can be seen in Figure 1. Susceptible individuals are repre-
sented by S, while V̄1 and V̄2 account for the vaccinated pop-
ulations that received the first and second doses, respectively,
but are not yet fully immunized due to the time necessary
for getting a definitive protection from vaccination. Since
an individual can be infected after receiving the first dose,
we have denoted this group by Iv,1. Similarly, Iv,2 represents
the group of individuals vaccinated with the second dose.
Moreover, in the mathematical model, I = Is + Iv,1 + Iv,2
gives the infected individuals, where Is accounts for the non-
vaccinated individuals. After the vaccine has taken effect,
vaccinated individuals aremoved toV1 andV2 (subscript 1 for
the first dose, and 2 for the second shot). Finally, Rv,1 and
Rv,2 are the recovered individuals that have been vaccinated
with doses 1 and 2, respectively, while D denotes the total
of deaths. Here, we assume that the vaccine has complete
effectiveness in severe cases, which means that deaths come
from non-vaccinated individuals. For a list of parameters and
variables, see Table 1.

In our approach, the Livermore Solver for ODEs with
Automatic Method Switching (LSODA) was employed for
numerically solving the mathematical model (1).

Below, we provide the main steps of our computational
methodology, including the redesign of the learning pipeline
previously presented in [10] to account for vaccination data.

FIGURE 1. Representation of the SVIRD-based model.

TABLE 1. Basic notation.

1) ARCHITECTURE OF THE ARTIFICIAL NEURAL NETWORK
In order to learn the transient behavior of the epidemiological
parameters, we employ an Artificial Neural Network (ANN).
Our architecture is composed of a hidden layer, with ten
neurons, and a Sigmoid as activation function. The output
layer is fully connected to the hidden layer through a sin-
gle neuron with no bias weights, while the Rectified Linear
Unit (ReLU) is taken as activation function to learn the β(t)
values. The unified ANN architecture and the mathematical
model are illustrated in Figure 2. It is important to highlight
that our unified methodology falls within the class of hybrid
machine learning + SIR-based approaches, as the ANN is
combined with a mathematical model of infectious disease to
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FIGURE 2. Representation of the simplified SVIRD-based framework and
the artificial neural network.

estimate the time-dependent parameters used for the compu-
tation of epidemiologymetrics such as theRt (t), as well as for
COVID-19 time series forecasting. Notice that the advantage
of using ANN instead of any other more complex learning
design lies in the simplicity and versatility of ANN in success-
fully learning the unknown parameters of the SVIRD model
while still requiring as input only the raw data of infected,
recovered, deaths and vaccination to produce the forecasts of
epidemiological data, including Rt (t) and vaccinated people
with doses 1 and 2.

2) OBTAINING THE MODEL’s PARAMETERS
The epidemiological parameters β(t), γr and γd are com-
puted from a learning strategy based on the real data, by min-
imizing the following loss function:

L(βnet(t), γr , γd , ν1, ν2) =
∑
l∈L

l, (2)

where

L = {lI , lR, lD, lv,1, lv,2, lsum},

lI =
1
M

M∑
i=0

∣∣∣log(Ii)− log(Ĩi)
∣∣∣2 ,

lR =
1
M

M∑
i=0

∣∣∣log(Ri)− log(R̃i)
∣∣∣2 ,

lD =
1
M

M∑
i=0

∣∣∣log(Di)− log(D̃i)
∣∣∣2 ,

lv,1 =
1
M

M∑
i=0

∣∣∣log(V1,i)− log(Ṽ1,i)
∣∣∣2 ,

lv,2 =
1
M

M∑
i=0

∣∣∣log(V2,i)− log(Ṽ2,i)
∣∣∣2 ,

lsum =
1
M

M∑
i=0

∣∣∣log(T̃i)∣∣∣2 ,

Ĩi = Ĩs(ti)+ Ĩv,1(ti)+ Ĩv,2(ti),

R̃i = R̃s(ti)+ R̃v,1(ti)+ R̃v,2(ti),

Ṽj,i = Ṽj(ti)+ ˜̄Vj(ti)+ Ĩv,j(ti)+ R̃v,j(ti), j = 1, 2,

T̃i = S̃i + Ĩi + R̃i + D̃i + Ṽ1,i + Ṽ2,i.

In Equation (2), we make use of the notation Xi and X̃i to
represent, respectively, the exact and the numerical solutions
at the discretized time ti of a given target variable. Notice that,
in the absence of available data of the vaccinated individuals
who got infected, we take the number of vaccine shots when
computing lv,1 and lv,2.

In order to assign time variation to the transmission rate,
βnet(t) is computed from the network-based architecture. As a
result, the trainable parameters of the epidemic model are
properly learned and computed by solving the following
optimization problem:

argmin
W ,b,γr ,γd

L(βnet(t), γr , γd ), (3)

where {W , b} are the ANN weights and bias.

3) PREDICTING THE ODE VARIABLES
Since we have computed the epidemiological parameters in
the previous step, we then apply the numerical solver LSODA
for estimating the final forecasts for t ∈ [0,M + p], where p
is the desirable forecast period [10].

4) IMPROVING DATA FITTING CAPABILITY
A moving window-based strategy has been employed to
detect and remove data outliers. The rationale is to calibrate
the net weights, bias, and parameters γr , γd , ν1 and ν2 for
different simulation intervals Mi. This step is accomplished
by running Steps (2) and (3) for eachMi, i = 1, . . . , n, where
n is a pre-defined value representing the number of windows.
In the experiments, we take as timewindows 20, by setting the
most recent data and taking Mi days before for each running
window. For implementation details, see [10].

5) FILTERING OUTLIERS AND GETTING THE FINAL
ESTIMATES
For each window, we filter out outliers by comparing the
results from Step (3) with the actual data for each target
variable. This is performed using the MAPE metric (see
Equation (5)). We then determine whether a training window
should be discarded or not according to theMAPE calculated.
Finally, we compute the geometric mean of the outputs cor-
responding to the same day to get the final estimate.

B. EFFECTIVE REPRODUCTION NUMBER
Since the effective reproduction numberRt (t) is a very impor-
tant measure used in infectious diseases, we analyze how the
new variables inserted into the mathematical model influence
it. Formally speaking, Rt (t) is defined as the quotient between
the transmission and recovery rates weighted by the percent-
age of the susceptible population [10].
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FIGURE 3. Geographic location of the investigated regions.

Notice that, in our SVIRD formulation, vaccinated indi-
viduals are still susceptible to contagion, but they are subject
to a lower rate of infectivity due to the vaccine. Following
the multi-group model of the reproduction number given by
Driessche and Watmough [37], Rt (t) can be computed as:

Rt (t) =
β(t)
γr

[
V̄1 + (1− θ1)(V1 + V̄2)+ (1− θ2)V2

]
+

β(t)
γr + γd

S (4)

C. DATA SETS AND QUALITY EVALUATION METRICS
The data collection used in our experiments comprises several
data resources and public repositories, which vary according
to the region/country studied. Below, we detail the data sets
employed in our analysis and simulations.

• Israel dataset: COVID-19 confirmed cases and deaths
data were downloaded from the well-known Johns
Hopkins University (JHU) data repository [2], which is
available at https://coronavirus.jhu.edu/map.html. Con-
cerning vaccination data, it was collected from the Israel
Ministry of Health website, at https://www.gov.il/en/
departments/guides/information-corona.

• Serrana’s town dataset: Times-series of confirmed
cases, recoveries, and deaths data were obtained from
the COVID-19 health bulletins of Serrana’s local
government, hosted at http://www.serrana.sp.gov.br/
coronavirus. The total number of vaccine doses admin-
istered per day was obtained from the São Paulo State
governmentwebsite, at https://www.saopaulo.sp.gov.br/

TABLE 2. Efficacy of different vaccine types.

planosp/simi/dados-abertos, while the vaccination
time-series used to simulate a regular immunization
campaign was taken from the online tracking plat-
form SP Covid-19 Info Tracker [10], available at
http://www.spcovid.net.br.

• São Paulo State dataset: Data acquired from the São
Paulo State government website, including confirmed
cases, recoveries, deaths, and the number of immunized
people per day for each type of vaccine dose.

• Brazil dataset: Time-series taken from the Brazilian
Ministry of Healthwebsite, at https://covid.saude.gov.br.
The administered doses per day were obtained from
the Vaccinometer-SUS, a real-time platform of Brazilian
government hosted at https://localizasus.saude.gov.br.

The quality of the predictions were assessed via
well-established quality evaluation metrics such as Mean
Absolute Percentage Error (MAPE) [38], [39] and Normal-
ized Root Mean Square Error (NRMSE) [10]:

MAPE(Yi, Ỹi) =
1
n

n∑
i=1

∣∣∣∣∣Yi − ỸiYi

∣∣∣∣∣× 100, (5)

NRMSE(Yi, Ỹi) =
1
n

√∑n
i=1(Yi − Ỹi)2

Y
, (6)

where Yi and Ỹi represent the observed and estimated values
of a given variable in a time-series of n entries, while Y is the
average of Yi.

IV. RESULTS, SIMULATIONS AND DISCUSSION
In this section, we present and discuss the forecast results,
simulated scenarios, and the main findings emerging from
our data-driven analysis. Parameters θ1, θ2 and α used to
run the learning steps of the SIR model were taken from the
literature, as reported in Table 2. The vaccination rates ν1 and
ν2 were set according to the total number of vaccinated people
per day for each type of vaccine dose as observed in each
region/country studied.

A. VALIDATION WITH REAL VACCINATION CAMPAIGNS
In order to assess the proposed methodology, we take as
benchmark the well-established vaccination data from Israel,
as it has already immunized a large number of people with
the Pfizer vaccine [41]. Also, the accuracy of the SIR-based
model is attested by analyzing themassive vaccination rollout
of Serrana’s town: a provincial city of 45,000 inhabitants
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FIGURE 4. Israel validation results. (a) Confirmed cases, (b) deaths, (c) vaccinated people who received at least one vaccine dose, (d) two doses,
(e) active cases, and (f) effective reproduction number. Training period from February 17th 2021 to March 18th 2021.

located in the State of São Paulo, Brazil. Very recently, Ser-
rana became the first fully immunized city in the world as
a result of Project S [11], [43], a Brazilian pilot study con-
ducted by the São Paulo State government in cooperationwith
Instituto Butantan [12] designed to address important issues
regarding mass vaccination effects of the Coronavac/Sinovac
immunizer. Finally, the results obtained from the recently
published data-driven model [10] (called here ‘‘SIRD’’) are
also presented for the sake of comparison, since it is a robust
SIR-based approach that does not include any vaccination
dynamics in its formulation.

1) ISRAEL VACCINATION CAMPAIGN
Figure 4 shows the forecasting results, under a 14 days’
time horizon, for several Israeli COVID-19 curves. One can
verify that our model fits the real scenario as precisely as
the SIRD method [10]. However, since the SIRD approach
does not take into account a data-driven vaccine compart-
ment, the effects of the transmission rate are only assigned
to the learned parameter β(t), which attempts to capture the
different stages of the virus spreading. On the other hand,
our model allows for properly dealing with an immunization
campaign, which includes the tuning of the vaccination
parameters as well as understanding the role of the vacci-
nated individuals on the full dynamics of the disease. The
reproduction number also follows similar trajectories for both
predictors, indicating that active cases and the effective repro-
duction number Rt (t) significantly decrease when a massive
vaccination rollout is combined with a high-efficacy vac-
cine. Finally, concerning the quantitative verification listed

TABLE 3. Average MAPE and NRMSE for the two-week forecasting period
plotted in Figure 4.

in Table 3, once again both models produce very similar
results, as the highest computed MAPE is of the order of less
than 1%, i.e., a very small prediction error.

2) SERRANA’s TOWN VACCINATION CAMPAIGN
Figure 5 presents the fitting and forecasting results con-
cerning Serrana’s massive vaccination campaign. Since the
adult residents of Serrana have been immunized with the
Sinovac vaccine (Coronavac), we take θ1 and θ2 as in Table 2.
By visually inspecting the results, both methods follow the
trajectories of real data. Moreover, the models have learned
the changing trend of active cases, which is reflected by Rt (t)
turning less than 1.0 in the second half of March. The vac-
cination curves were also captured by our approach, even at
high immunization rates as those of Project S [11]: over 67%
of Serrana’s adult population had been vaccinated with one
shot of Coronavac by March 3rd. Finally, the quality metrics
listed in Table 4 indicate a good agreement between the real
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FIGURE 5. Serrana’s town validation results. (a) Confirmed cases, (b) deaths, (c) vaccinated people who received at least one vaccine dose, (d) two doses,
(e) active cases, and (f) effective reproduction number. Training period from March 4th 2021 to April 2nd 2021.

TABLE 4. Average MAPE and NRMSE for the two-week forecasting period
plotted in Figure 5.

and the estimated data, as the highest MAPE and NRMSE
values are much smaller than 10% and 0.2, respectively.

B. SIMULATION-BASED VACCINATION SCENARIOS
We now assess the impact of different vaccination scenarios
for Serrana’s town, São Paulo State, and Brazil. More pre-
cisely, we simulate a variety of potentially realistic scenarios
of vaccinations, by varying in our data-driven technique both
the vaccination rates and the immunization efficacies.

1) ASSESSING THE IMPACT OF VACCINATION SPEED AND
VACCINE EFFICACY ON A FULLY VACCINATED POPULATION
We start by investigating how the vaccination speed can
influence the epidemic curves in a population almost fully
immunized as the one in Serrana. For this purpose, we take
two evaluation scenarios: (i) the real data from Serrana,
including its true vaccination rates as quickly leveraged by
Project S with the Coronavac vaccine, and (ii) the same data

as in (i), but now replacing the Serrana’s vaccination rates for
another time-series which follows the ‘‘standard’’ vaccination
rollout as observed in Dracena – another small town in the
state of São Paulo about the same size of Serrana. We also
simulate the use of several vaccine efficacies according to
data reported by the vaccine producers (see Table 2).

The blue and orange lines in Figures 6(a)-(c) give the
learned data and future estimates in a time horizon of
two-months for scenarios (i) and (ii), respectively. The vac-
cination speed has positively affected both confirmed cases
and deaths. Indeed, after two months, it is expected that the
‘‘orange campaign’’ reaches around 140 deaths against 89 for
the blue one representing the real immunization program
of Serrana. Therefore, the reduction in the total number of
COVID-19 fatalities is around 38%, for these two scenarios.
Concerning Figure 6(c), immunizing faster reduces Rt (t) by
29% after two months, which is another bonus from acceler-
ated vaccination.

The performance of three vaccine efficacies, Coronavac
(blue), AstraZeneca (orange) and Pfizer (green), are dis-
played in Figures 6(d)-(f). Due to the moderate efficacy of
Coronavac, a higher number of cases is observed, while
AstraZeneca and Pfizer prevent the virus from spreading
more efficiently. At the end of the forecasting interval,
the estimates from orange and green lines produce 292 and
306 cases less than the blue one. In contrast to the reduc-
tion in the number of cases, deaths avoided by all three
immunizers remain at the same level as time advances,
thus indicating they are capable of ensuring high protec-
tion against COVID-19 mortality. Finally, Rt (t) assigned to
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FIGURE 6. Serrana’s town scenarios results. (a)-(d) Confirmed cases, (b)-(e) deaths, and (c)-(f) effective reproduction number. Training period from
March 20th 2021 to April 18th 2021.

FIGURE 7. São Paulo state vaccination speed scenarios. (a) Confirmed cases, (b) deaths, and (c) effective reproduction number. Training period from
March 3rd 2021 to April 1st 2021.

Coronavac decreases by 31% and 54% when it is compared
with AstraZeneca and Pfizer, respectively.

2) ASSESSING THE IMPACT OF VACCINATION SPEED ON A
PARTIALLY IMMUNIZED POPULATION
We now evaluate the impact of different immunization rates
in a much bigger population: São Paulo State, which is the
most populous state in Brazil, home to around 46 million
people, i.e., the same as Spain. Notice that the vaccination
rollout in São Paulo is still in progress so that the percentage
of vaccinated people with at least one vaccine dose reached
20% only recently. To design this experiment, in Figure 7
we take the real data from March 3rd to April 1nd, to train
the model, and then simulate the next three months of the
pandemic. Four vaccination speed rates were simulated: the
blue one is the real data, and then rates are set to 0.5x (orange),

2x (green), and 5x (red). Confirmed cases decrease slowly as
the vaccination advances, except for the real speed against the
5x campaign: the cases drop from around 3.9 to 3.4 million,
a reduction of 13%. Similarly, deaths are substantially miti-
gated as more people are vaccinated in an increasingly short
period, dropping from 141, 000 (blue) to 131, 000 (green)
and 111, 000 (red). Finally, by accelerating the vaccination,
the transmission rate is also pulled down. Thus, this experi-
ment confirms how important it is to speed up vaccination,
as done in Israel, UK, and USA.

3) ASSESSING THE IMPACT OF DIFFERENT
COVID-19 VACCINES
Figure 8 displays how vaccine efficacies can influence
the infectivity of SARS-CoV-2 in São Paulo and Brazil.
Together with Coronavac (purple), AstraZeneca (red) and
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FIGURE 8. São Paulo state and Brazil COVID-19 vaccines scenarios. (a)-(d) Confirmed cases, (b)-(e) deaths, and (c)-(f) effective reproduction number.
Training period from March 3rd 2021 to April 1st 2021.

TABLE 5. Mixed vaccine proportions and their resulting efficacies used to
run the experiments in Figures 8 and 9. Brazilian vaccine distribution (in
blue) taken from Ministry of Health - Brazil [44] on March 31, 2021.

Pfizer (green) efficacies, we take two combinations of mixed
efficacies (blue and orange), to simulate the vaccination
roll-outs with multiple types of vaccines in São Paulo
and Brazil. Table 5 lists several combinations of vaccines,
by computing the weighted average between their real effi-
cacies and the number of administrated doses.

First, considering São Paulo’s case study, efficacies related
to AstraZeneca, Pfizer, and the combination θ1 = 37% with
θ2 = 72%make the confirmed cases to go downmore quickly
compared to the purple and blue curves. Indeed, green and red
campaigns perform similarly, producing the lowest number
of cases, i.e., 362k and 360k against 398k from Coronavac.
Moreover, the first dose efficacy plays a key role in the
immunization process. Deaths are also mitigated when taking
vaccines of greater efficacy. For example, a campaign purely
based on Coronavac vaccine reaches around 1.43K deaths at

TABLE 6. Vaccine efficacy comparison from the current scenario
(θ1 = 18%, θ2 = 59% - Blue line from Figure 8).

the end of the period against 1.34k and 1.33k deaths from
campaigns with Pfizer and AstraZeneca. A similar pandemic
signature is observed in Brazil: if one assumes the current sce-
nario (blue line), from Figure 8 and Table 6, the highest reduc-
tion of cases and deaths are delivered by the AstraZeneca
vaccine with the current immunization speed, and with Pfizer
when boosting 5x the vaccination speed. Finally, Rt (t) drops
significantly more than 50% if the speed is increased by 5x
with θ1 = 52% and θ2 = 95%.

4) ASSESSING THE IMPACT ON INCREASING THE
VACCINATION SPEED AS THE VACCINE EFFICACY CHANGES
Next, we evaluate the combined impact of accelerating
the vaccination speed as θ1 and θ2 vary. To design this
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FIGURE 9. São Paulo state and Brazil COVID-19 vaccines and vaccination speed scenarios. (a)-(d) Confirmed cases, (b)-(e) deaths, and (c)-(f) effective
reproduction number. Training period from March 3rd 2021 to April 1st 2021.

TABLE 7. Vaccine efficacy comparison by taking as baseline the blue line
from Figure 9.

experiment, we assume in Figure 9 that the vaccination
advances 5x faster than the real immunization campaign in
São Paulo and Brazil. In contrast to the results from the
current vaccination rates, as previously discussed in Figures 6
and 8, all the vaccines in Figure 9 and Table 7 significantly
contribute to the flattening of the curves, making the gaps
between them much more prominent with the increased vac-
cination. Also, from Table 7, one can check that the reduc-
tion in cases and Rt (t) are more pronounced than deaths,
as expected, given the COVID-19 vaccines are highly effec-
tive against deaths.

Finally, in Table 8, we discuss the reduction of COVID-
19 rates in São Paulo and Brazil for a three-month forecasting
period with their actual immunization campaigns against the
hypothetical scenarios with the vaccination speed increased

TABLE 8. Vaccine efficacy comparison by taking as baseline the current
scenarios in São Paulo and Brazil.

by 5x. From the tabulated results, notice that the total num-
ber of cases and deaths are significantly attenuated as more
people are vaccinated over the period considered. In fact,
even though themost significant falls in confirmed cases have
been found with the Pfizer vaccine, all immunizers clearly
reduce deaths to similar levels, especially in Brazil (see the
last column in Table 8).

V. LIMITATIONS OF THE STUDY
Despite the good properties and results, there are two aspects
to be observed when using our methodology. First, the more
accurate the data source used, the better themodel’s assertive-
ness. For instance, the excessive delay in publicly reporting
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COVID-19 cases by Brazilian Government sources may neg-
atively impact the training step of our approach due to the
large peaks artificially created in the collected data.

Another issue is related to the vaccine efficacies took to
perform the simulations. Although we have adopted the effi-
cacies as reported in the pioneering studies conducted by the
vaccine producers, other more recent works have also inves-
tigated the efficacy of the doses under different populations
and immunization circumstances. However, new vaccination
scenarios could be easily built just by re-setting new vaccine
efficacies into the dynamic SVIRD model.

VI. CONCLUSION
In this work, we provided several simulation-based evalua-
tions of the pros and cons of COVID-19 vaccination cam-
paigns in Brazil, São Paulo State, and Serrana’s town. Our
analysis concentrated on assessing the impacts of the immu-
nization speed and vaccine efficacy in the epidemic curves of
confirmed cases, deaths and infectivity rate, for at least three
types of immunizers. The study was conducted by applying
a SIR-based model combined with a Machine Learning strat-
egy, yielding a new data-driven methodology used to fit the
epidemic curves as well as to predict the behavior and trends
of the time-series.

As discussed in Section IV, the use of different vaccines
indicates that, between them, the difference in confirmed
cases is more pronounced than in the deceased. In fact,
we found that the protection against SARS-CoV-2 deaths is
similar among all immunizers, in line with published clinical
studies. Another finding is that the speed in administering
new shots of vaccine is of paramount importance to pull
down the deaths and infectivity levels of the disease, even
for those COVID-19 immunizers with moderate efficacy. For
example, we have found that confirmed cases and deaths in
Brazil may be pruned to around 16% and 27%, by adopting
an immunization campaign purely carried out with a vaccine
of moderate efficacy as long as the speed of vaccination is
accelerated.

Finally, as shown in Figure 8 and 9, our methodology
can be successfully used to perform numerical investigation
concerning the recent strategy of mix-and-match vaccination,
as the one in progress in the UK according to the Com-COV
Study Team [13].
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